1 /* 2 * hugetlbpage-backed filesystem. Based on ramfs. 3 * 4 * Nadia Yvette Chambers, 2002 5 * 6 * Copyright (C) 2002 Linus Torvalds. 7 * License: GPL 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/thread_info.h> 13 #include <asm/current.h> 14 #include <linux/falloc.h> 15 #include <linux/fs.h> 16 #include <linux/mount.h> 17 #include <linux/file.h> 18 #include <linux/kernel.h> 19 #include <linux/writeback.h> 20 #include <linux/pagemap.h> 21 #include <linux/highmem.h> 22 #include <linux/init.h> 23 #include <linux/string.h> 24 #include <linux/capability.h> 25 #include <linux/ctype.h> 26 #include <linux/backing-dev.h> 27 #include <linux/hugetlb.h> 28 #include <linux/pagevec.h> 29 #include <linux/fs_parser.h> 30 #include <linux/mman.h> 31 #include <linux/slab.h> 32 #include <linux/dnotify.h> 33 #include <linux/statfs.h> 34 #include <linux/security.h> 35 #include <linux/magic.h> 36 #include <linux/migrate.h> 37 #include <linux/uio.h> 38 39 #include <linux/uaccess.h> 40 #include <linux/sched/mm.h> 41 42 #define CREATE_TRACE_POINTS 43 #include <trace/events/hugetlbfs.h> 44 45 static const struct address_space_operations hugetlbfs_aops; 46 static const struct file_operations hugetlbfs_file_operations; 47 static const struct inode_operations hugetlbfs_dir_inode_operations; 48 static const struct inode_operations hugetlbfs_inode_operations; 49 50 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT }; 51 52 struct hugetlbfs_fs_context { 53 struct hstate *hstate; 54 unsigned long long max_size_opt; 55 unsigned long long min_size_opt; 56 long max_hpages; 57 long nr_inodes; 58 long min_hpages; 59 enum hugetlbfs_size_type max_val_type; 60 enum hugetlbfs_size_type min_val_type; 61 kuid_t uid; 62 kgid_t gid; 63 umode_t mode; 64 }; 65 66 int sysctl_hugetlb_shm_group; 67 68 enum hugetlb_param { 69 Opt_gid, 70 Opt_min_size, 71 Opt_mode, 72 Opt_nr_inodes, 73 Opt_pagesize, 74 Opt_size, 75 Opt_uid, 76 }; 77 78 static const struct fs_parameter_spec hugetlb_fs_parameters[] = { 79 fsparam_gid ("gid", Opt_gid), 80 fsparam_string("min_size", Opt_min_size), 81 fsparam_u32oct("mode", Opt_mode), 82 fsparam_string("nr_inodes", Opt_nr_inodes), 83 fsparam_string("pagesize", Opt_pagesize), 84 fsparam_string("size", Opt_size), 85 fsparam_uid ("uid", Opt_uid), 86 {} 87 }; 88 89 /* 90 * Mask used when checking the page offset value passed in via system 91 * calls. This value will be converted to a loff_t which is signed. 92 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the 93 * value. The extra bit (- 1 in the shift value) is to take the sign 94 * bit into account. 95 */ 96 #define PGOFF_LOFFT_MAX \ 97 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1))) 98 99 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma) 100 { 101 struct inode *inode = file_inode(file); 102 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 103 loff_t len, vma_len; 104 int ret; 105 struct hstate *h = hstate_file(file); 106 vm_flags_t vm_flags; 107 108 /* 109 * vma address alignment (but not the pgoff alignment) has 110 * already been checked by prepare_hugepage_range. If you add 111 * any error returns here, do so after setting VM_HUGETLB, so 112 * is_vm_hugetlb_page tests below unmap_region go the right 113 * way when do_mmap unwinds (may be important on powerpc 114 * and ia64). 115 */ 116 vm_flags_set(vma, VM_HUGETLB | VM_DONTEXPAND | VM_MTE_ALLOWED); 117 vma->vm_ops = &hugetlb_vm_ops; 118 119 ret = seal_check_write(info->seals, vma); 120 if (ret) 121 return ret; 122 123 /* 124 * page based offset in vm_pgoff could be sufficiently large to 125 * overflow a loff_t when converted to byte offset. This can 126 * only happen on architectures where sizeof(loff_t) == 127 * sizeof(unsigned long). So, only check in those instances. 128 */ 129 if (sizeof(unsigned long) == sizeof(loff_t)) { 130 if (vma->vm_pgoff & PGOFF_LOFFT_MAX) 131 return -EINVAL; 132 } 133 134 /* must be huge page aligned */ 135 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT)) 136 return -EINVAL; 137 138 vma_len = (loff_t)(vma->vm_end - vma->vm_start); 139 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 140 /* check for overflow */ 141 if (len < vma_len) 142 return -EINVAL; 143 144 inode_lock(inode); 145 file_accessed(file); 146 147 ret = -ENOMEM; 148 149 vm_flags = vma->vm_flags; 150 /* 151 * for SHM_HUGETLB, the pages are reserved in the shmget() call so skip 152 * reserving here. Note: only for SHM hugetlbfs file, the inode 153 * flag S_PRIVATE is set. 154 */ 155 if (inode->i_flags & S_PRIVATE) 156 vm_flags |= VM_NORESERVE; 157 158 if (!hugetlb_reserve_pages(inode, 159 vma->vm_pgoff >> huge_page_order(h), 160 len >> huge_page_shift(h), vma, 161 vm_flags)) 162 goto out; 163 164 ret = 0; 165 if (vma->vm_flags & VM_WRITE && inode->i_size < len) 166 i_size_write(inode, len); 167 out: 168 inode_unlock(inode); 169 170 return ret; 171 } 172 173 /* 174 * Called under mmap_write_lock(mm). 175 */ 176 177 unsigned long 178 hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 179 unsigned long len, unsigned long pgoff, 180 unsigned long flags) 181 { 182 unsigned long addr0 = 0; 183 struct hstate *h = hstate_file(file); 184 185 if (len & ~huge_page_mask(h)) 186 return -EINVAL; 187 if (flags & MAP_FIXED) { 188 if (addr & ~huge_page_mask(h)) 189 return -EINVAL; 190 if (prepare_hugepage_range(file, addr, len)) 191 return -EINVAL; 192 } 193 if (addr) 194 addr0 = ALIGN(addr, huge_page_size(h)); 195 196 return mm_get_unmapped_area_vmflags(current->mm, file, addr0, len, pgoff, 197 flags, 0); 198 } 199 200 /* 201 * Someone wants to read @bytes from a HWPOISON hugetlb @page from @offset. 202 * Returns the maximum number of bytes one can read without touching the 1st raw 203 * HWPOISON subpage. 204 * 205 * The implementation borrows the iteration logic from copy_page_to_iter*. 206 */ 207 static size_t adjust_range_hwpoison(struct page *page, size_t offset, size_t bytes) 208 { 209 size_t n = 0; 210 size_t res = 0; 211 212 /* First subpage to start the loop. */ 213 page = nth_page(page, offset / PAGE_SIZE); 214 offset %= PAGE_SIZE; 215 while (1) { 216 if (is_raw_hwpoison_page_in_hugepage(page)) 217 break; 218 219 /* Safe to read n bytes without touching HWPOISON subpage. */ 220 n = min(bytes, (size_t)PAGE_SIZE - offset); 221 res += n; 222 bytes -= n; 223 if (!bytes || !n) 224 break; 225 offset += n; 226 if (offset == PAGE_SIZE) { 227 page = nth_page(page, 1); 228 offset = 0; 229 } 230 } 231 232 return res; 233 } 234 235 /* 236 * Support for read() - Find the page attached to f_mapping and copy out the 237 * data. This provides functionality similar to filemap_read(). 238 */ 239 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to) 240 { 241 struct file *file = iocb->ki_filp; 242 struct hstate *h = hstate_file(file); 243 struct address_space *mapping = file->f_mapping; 244 struct inode *inode = mapping->host; 245 unsigned long index = iocb->ki_pos >> huge_page_shift(h); 246 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h); 247 unsigned long end_index; 248 loff_t isize; 249 ssize_t retval = 0; 250 251 while (iov_iter_count(to)) { 252 struct folio *folio; 253 size_t nr, copied, want; 254 255 /* nr is the maximum number of bytes to copy from this page */ 256 nr = huge_page_size(h); 257 isize = i_size_read(inode); 258 if (!isize) 259 break; 260 end_index = (isize - 1) >> huge_page_shift(h); 261 if (index > end_index) 262 break; 263 if (index == end_index) { 264 nr = ((isize - 1) & ~huge_page_mask(h)) + 1; 265 if (nr <= offset) 266 break; 267 } 268 nr = nr - offset; 269 270 /* Find the folio */ 271 folio = filemap_lock_hugetlb_folio(h, mapping, index); 272 if (IS_ERR(folio)) { 273 /* 274 * We have a HOLE, zero out the user-buffer for the 275 * length of the hole or request. 276 */ 277 copied = iov_iter_zero(nr, to); 278 } else { 279 folio_unlock(folio); 280 281 if (!folio_test_hwpoison(folio)) 282 want = nr; 283 else { 284 /* 285 * Adjust how many bytes safe to read without 286 * touching the 1st raw HWPOISON subpage after 287 * offset. 288 */ 289 want = adjust_range_hwpoison(&folio->page, offset, nr); 290 if (want == 0) { 291 folio_put(folio); 292 retval = -EIO; 293 break; 294 } 295 } 296 297 /* 298 * We have the folio, copy it to user space buffer. 299 */ 300 copied = copy_folio_to_iter(folio, offset, want, to); 301 folio_put(folio); 302 } 303 offset += copied; 304 retval += copied; 305 if (copied != nr && iov_iter_count(to)) { 306 if (!retval) 307 retval = -EFAULT; 308 break; 309 } 310 index += offset >> huge_page_shift(h); 311 offset &= ~huge_page_mask(h); 312 } 313 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset; 314 return retval; 315 } 316 317 static int hugetlbfs_write_begin(struct file *file, 318 struct address_space *mapping, 319 loff_t pos, unsigned len, 320 struct folio **foliop, void **fsdata) 321 { 322 return -EINVAL; 323 } 324 325 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping, 326 loff_t pos, unsigned len, unsigned copied, 327 struct folio *folio, void *fsdata) 328 { 329 BUG(); 330 return -EINVAL; 331 } 332 333 static void hugetlb_delete_from_page_cache(struct folio *folio) 334 { 335 folio_clear_dirty(folio); 336 folio_clear_uptodate(folio); 337 filemap_remove_folio(folio); 338 } 339 340 /* 341 * Called with i_mmap_rwsem held for inode based vma maps. This makes 342 * sure vma (and vm_mm) will not go away. We also hold the hugetlb fault 343 * mutex for the page in the mapping. So, we can not race with page being 344 * faulted into the vma. 345 */ 346 static bool hugetlb_vma_maps_page(struct vm_area_struct *vma, 347 unsigned long addr, struct page *page) 348 { 349 pte_t *ptep, pte; 350 351 ptep = hugetlb_walk(vma, addr, huge_page_size(hstate_vma(vma))); 352 if (!ptep) 353 return false; 354 355 pte = huge_ptep_get(vma->vm_mm, addr, ptep); 356 if (huge_pte_none(pte) || !pte_present(pte)) 357 return false; 358 359 if (pte_page(pte) == page) 360 return true; 361 362 return false; 363 } 364 365 /* 366 * Can vma_offset_start/vma_offset_end overflow on 32-bit arches? 367 * No, because the interval tree returns us only those vmas 368 * which overlap the truncated area starting at pgoff, 369 * and no vma on a 32-bit arch can span beyond the 4GB. 370 */ 371 static unsigned long vma_offset_start(struct vm_area_struct *vma, pgoff_t start) 372 { 373 unsigned long offset = 0; 374 375 if (vma->vm_pgoff < start) 376 offset = (start - vma->vm_pgoff) << PAGE_SHIFT; 377 378 return vma->vm_start + offset; 379 } 380 381 static unsigned long vma_offset_end(struct vm_area_struct *vma, pgoff_t end) 382 { 383 unsigned long t_end; 384 385 if (!end) 386 return vma->vm_end; 387 388 t_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) + vma->vm_start; 389 if (t_end > vma->vm_end) 390 t_end = vma->vm_end; 391 return t_end; 392 } 393 394 /* 395 * Called with hugetlb fault mutex held. Therefore, no more mappings to 396 * this folio can be created while executing the routine. 397 */ 398 static void hugetlb_unmap_file_folio(struct hstate *h, 399 struct address_space *mapping, 400 struct folio *folio, pgoff_t index) 401 { 402 struct rb_root_cached *root = &mapping->i_mmap; 403 struct hugetlb_vma_lock *vma_lock; 404 struct page *page = &folio->page; 405 struct vm_area_struct *vma; 406 unsigned long v_start; 407 unsigned long v_end; 408 pgoff_t start, end; 409 410 start = index * pages_per_huge_page(h); 411 end = (index + 1) * pages_per_huge_page(h); 412 413 i_mmap_lock_write(mapping); 414 retry: 415 vma_lock = NULL; 416 vma_interval_tree_foreach(vma, root, start, end - 1) { 417 v_start = vma_offset_start(vma, start); 418 v_end = vma_offset_end(vma, end); 419 420 if (!hugetlb_vma_maps_page(vma, v_start, page)) 421 continue; 422 423 if (!hugetlb_vma_trylock_write(vma)) { 424 vma_lock = vma->vm_private_data; 425 /* 426 * If we can not get vma lock, we need to drop 427 * immap_sema and take locks in order. First, 428 * take a ref on the vma_lock structure so that 429 * we can be guaranteed it will not go away when 430 * dropping immap_sema. 431 */ 432 kref_get(&vma_lock->refs); 433 break; 434 } 435 436 unmap_hugepage_range(vma, v_start, v_end, NULL, 437 ZAP_FLAG_DROP_MARKER); 438 hugetlb_vma_unlock_write(vma); 439 } 440 441 i_mmap_unlock_write(mapping); 442 443 if (vma_lock) { 444 /* 445 * Wait on vma_lock. We know it is still valid as we have 446 * a reference. We must 'open code' vma locking as we do 447 * not know if vma_lock is still attached to vma. 448 */ 449 down_write(&vma_lock->rw_sema); 450 i_mmap_lock_write(mapping); 451 452 vma = vma_lock->vma; 453 if (!vma) { 454 /* 455 * If lock is no longer attached to vma, then just 456 * unlock, drop our reference and retry looking for 457 * other vmas. 458 */ 459 up_write(&vma_lock->rw_sema); 460 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 461 goto retry; 462 } 463 464 /* 465 * vma_lock is still attached to vma. Check to see if vma 466 * still maps page and if so, unmap. 467 */ 468 v_start = vma_offset_start(vma, start); 469 v_end = vma_offset_end(vma, end); 470 if (hugetlb_vma_maps_page(vma, v_start, page)) 471 unmap_hugepage_range(vma, v_start, v_end, NULL, 472 ZAP_FLAG_DROP_MARKER); 473 474 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 475 hugetlb_vma_unlock_write(vma); 476 477 goto retry; 478 } 479 } 480 481 static void 482 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end, 483 zap_flags_t zap_flags) 484 { 485 struct vm_area_struct *vma; 486 487 /* 488 * end == 0 indicates that the entire range after start should be 489 * unmapped. Note, end is exclusive, whereas the interval tree takes 490 * an inclusive "last". 491 */ 492 vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) { 493 unsigned long v_start; 494 unsigned long v_end; 495 496 if (!hugetlb_vma_trylock_write(vma)) 497 continue; 498 499 v_start = vma_offset_start(vma, start); 500 v_end = vma_offset_end(vma, end); 501 502 unmap_hugepage_range(vma, v_start, v_end, NULL, zap_flags); 503 504 /* 505 * Note that vma lock only exists for shared/non-private 506 * vmas. Therefore, lock is not held when calling 507 * unmap_hugepage_range for private vmas. 508 */ 509 hugetlb_vma_unlock_write(vma); 510 } 511 } 512 513 /* 514 * Called with hugetlb fault mutex held. 515 * Returns true if page was actually removed, false otherwise. 516 */ 517 static bool remove_inode_single_folio(struct hstate *h, struct inode *inode, 518 struct address_space *mapping, 519 struct folio *folio, pgoff_t index, 520 bool truncate_op) 521 { 522 bool ret = false; 523 524 /* 525 * If folio is mapped, it was faulted in after being 526 * unmapped in caller. Unmap (again) while holding 527 * the fault mutex. The mutex will prevent faults 528 * until we finish removing the folio. 529 */ 530 if (unlikely(folio_mapped(folio))) 531 hugetlb_unmap_file_folio(h, mapping, folio, index); 532 533 folio_lock(folio); 534 /* 535 * We must remove the folio from page cache before removing 536 * the region/ reserve map (hugetlb_unreserve_pages). In 537 * rare out of memory conditions, removal of the region/reserve 538 * map could fail. Correspondingly, the subpool and global 539 * reserve usage count can need to be adjusted. 540 */ 541 VM_BUG_ON_FOLIO(folio_test_hugetlb_restore_reserve(folio), folio); 542 hugetlb_delete_from_page_cache(folio); 543 ret = true; 544 if (!truncate_op) { 545 if (unlikely(hugetlb_unreserve_pages(inode, index, 546 index + 1, 1))) 547 hugetlb_fix_reserve_counts(inode); 548 } 549 550 folio_unlock(folio); 551 return ret; 552 } 553 554 /* 555 * remove_inode_hugepages handles two distinct cases: truncation and hole 556 * punch. There are subtle differences in operation for each case. 557 * 558 * truncation is indicated by end of range being LLONG_MAX 559 * In this case, we first scan the range and release found pages. 560 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserve 561 * maps and global counts. Page faults can race with truncation. 562 * During faults, hugetlb_no_page() checks i_size before page allocation, 563 * and again after obtaining page table lock. It will 'back out' 564 * allocations in the truncated range. 565 * hole punch is indicated if end is not LLONG_MAX 566 * In the hole punch case we scan the range and release found pages. 567 * Only when releasing a page is the associated region/reserve map 568 * deleted. The region/reserve map for ranges without associated 569 * pages are not modified. Page faults can race with hole punch. 570 * This is indicated if we find a mapped page. 571 * Note: If the passed end of range value is beyond the end of file, but 572 * not LLONG_MAX this routine still performs a hole punch operation. 573 */ 574 static void remove_inode_hugepages(struct inode *inode, loff_t lstart, 575 loff_t lend) 576 { 577 struct hstate *h = hstate_inode(inode); 578 struct address_space *mapping = &inode->i_data; 579 const pgoff_t end = lend >> PAGE_SHIFT; 580 struct folio_batch fbatch; 581 pgoff_t next, index; 582 int i, freed = 0; 583 bool truncate_op = (lend == LLONG_MAX); 584 585 folio_batch_init(&fbatch); 586 next = lstart >> PAGE_SHIFT; 587 while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) { 588 for (i = 0; i < folio_batch_count(&fbatch); ++i) { 589 struct folio *folio = fbatch.folios[i]; 590 u32 hash = 0; 591 592 index = folio->index >> huge_page_order(h); 593 hash = hugetlb_fault_mutex_hash(mapping, index); 594 mutex_lock(&hugetlb_fault_mutex_table[hash]); 595 596 /* 597 * Remove folio that was part of folio_batch. 598 */ 599 if (remove_inode_single_folio(h, inode, mapping, folio, 600 index, truncate_op)) 601 freed++; 602 603 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 604 } 605 folio_batch_release(&fbatch); 606 cond_resched(); 607 } 608 609 if (truncate_op) 610 (void)hugetlb_unreserve_pages(inode, 611 lstart >> huge_page_shift(h), 612 LONG_MAX, freed); 613 } 614 615 static void hugetlbfs_evict_inode(struct inode *inode) 616 { 617 struct resv_map *resv_map; 618 619 trace_hugetlbfs_evict_inode(inode); 620 remove_inode_hugepages(inode, 0, LLONG_MAX); 621 622 /* 623 * Get the resv_map from the address space embedded in the inode. 624 * This is the address space which points to any resv_map allocated 625 * at inode creation time. If this is a device special inode, 626 * i_mapping may not point to the original address space. 627 */ 628 resv_map = (struct resv_map *)(&inode->i_data)->i_private_data; 629 /* Only regular and link inodes have associated reserve maps */ 630 if (resv_map) 631 resv_map_release(&resv_map->refs); 632 clear_inode(inode); 633 } 634 635 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset) 636 { 637 pgoff_t pgoff; 638 struct address_space *mapping = inode->i_mapping; 639 struct hstate *h = hstate_inode(inode); 640 641 BUG_ON(offset & ~huge_page_mask(h)); 642 pgoff = offset >> PAGE_SHIFT; 643 644 i_size_write(inode, offset); 645 i_mmap_lock_write(mapping); 646 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 647 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0, 648 ZAP_FLAG_DROP_MARKER); 649 i_mmap_unlock_write(mapping); 650 remove_inode_hugepages(inode, offset, LLONG_MAX); 651 } 652 653 static void hugetlbfs_zero_partial_page(struct hstate *h, 654 struct address_space *mapping, 655 loff_t start, 656 loff_t end) 657 { 658 pgoff_t idx = start >> huge_page_shift(h); 659 struct folio *folio; 660 661 folio = filemap_lock_hugetlb_folio(h, mapping, idx); 662 if (IS_ERR(folio)) 663 return; 664 665 start = start & ~huge_page_mask(h); 666 end = end & ~huge_page_mask(h); 667 if (!end) 668 end = huge_page_size(h); 669 670 folio_zero_segment(folio, (size_t)start, (size_t)end); 671 672 folio_unlock(folio); 673 folio_put(folio); 674 } 675 676 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 677 { 678 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 679 struct address_space *mapping = inode->i_mapping; 680 struct hstate *h = hstate_inode(inode); 681 loff_t hpage_size = huge_page_size(h); 682 loff_t hole_start, hole_end; 683 684 /* 685 * hole_start and hole_end indicate the full pages within the hole. 686 */ 687 hole_start = round_up(offset, hpage_size); 688 hole_end = round_down(offset + len, hpage_size); 689 690 inode_lock(inode); 691 692 /* protected by i_rwsem */ 693 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 694 inode_unlock(inode); 695 return -EPERM; 696 } 697 698 i_mmap_lock_write(mapping); 699 700 /* If range starts before first full page, zero partial page. */ 701 if (offset < hole_start) 702 hugetlbfs_zero_partial_page(h, mapping, 703 offset, min(offset + len, hole_start)); 704 705 /* Unmap users of full pages in the hole. */ 706 if (hole_end > hole_start) { 707 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 708 hugetlb_vmdelete_list(&mapping->i_mmap, 709 hole_start >> PAGE_SHIFT, 710 hole_end >> PAGE_SHIFT, 0); 711 } 712 713 /* If range extends beyond last full page, zero partial page. */ 714 if ((offset + len) > hole_end && (offset + len) > hole_start) 715 hugetlbfs_zero_partial_page(h, mapping, 716 hole_end, offset + len); 717 718 i_mmap_unlock_write(mapping); 719 720 /* Remove full pages from the file. */ 721 if (hole_end > hole_start) 722 remove_inode_hugepages(inode, hole_start, hole_end); 723 724 inode_unlock(inode); 725 726 return 0; 727 } 728 729 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset, 730 loff_t len) 731 { 732 struct inode *inode = file_inode(file); 733 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 734 struct address_space *mapping = inode->i_mapping; 735 struct hstate *h = hstate_inode(inode); 736 struct vm_area_struct pseudo_vma; 737 struct mm_struct *mm = current->mm; 738 loff_t hpage_size = huge_page_size(h); 739 unsigned long hpage_shift = huge_page_shift(h); 740 pgoff_t start, index, end; 741 int error; 742 u32 hash; 743 744 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 745 return -EOPNOTSUPP; 746 747 if (mode & FALLOC_FL_PUNCH_HOLE) { 748 error = hugetlbfs_punch_hole(inode, offset, len); 749 goto out_nolock; 750 } 751 752 /* 753 * Default preallocate case. 754 * For this range, start is rounded down and end is rounded up 755 * as well as being converted to page offsets. 756 */ 757 start = offset >> hpage_shift; 758 end = (offset + len + hpage_size - 1) >> hpage_shift; 759 760 inode_lock(inode); 761 762 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 763 error = inode_newsize_ok(inode, offset + len); 764 if (error) 765 goto out; 766 767 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 768 error = -EPERM; 769 goto out; 770 } 771 772 /* 773 * Initialize a pseudo vma as this is required by the huge page 774 * allocation routines. 775 */ 776 vma_init(&pseudo_vma, mm); 777 vm_flags_init(&pseudo_vma, VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 778 pseudo_vma.vm_file = file; 779 780 for (index = start; index < end; index++) { 781 /* 782 * This is supposed to be the vaddr where the page is being 783 * faulted in, but we have no vaddr here. 784 */ 785 struct folio *folio; 786 unsigned long addr; 787 788 cond_resched(); 789 790 /* 791 * fallocate(2) manpage permits EINTR; we may have been 792 * interrupted because we are using up too much memory. 793 */ 794 if (signal_pending(current)) { 795 error = -EINTR; 796 break; 797 } 798 799 /* addr is the offset within the file (zero based) */ 800 addr = index * hpage_size; 801 802 /* mutex taken here, fault path and hole punch */ 803 hash = hugetlb_fault_mutex_hash(mapping, index); 804 mutex_lock(&hugetlb_fault_mutex_table[hash]); 805 806 /* See if already present in mapping to avoid alloc/free */ 807 folio = filemap_get_folio(mapping, index << huge_page_order(h)); 808 if (!IS_ERR(folio)) { 809 folio_put(folio); 810 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 811 continue; 812 } 813 814 /* 815 * Allocate folio without setting the avoid_reserve argument. 816 * There certainly are no reserves associated with the 817 * pseudo_vma. However, there could be shared mappings with 818 * reserves for the file at the inode level. If we fallocate 819 * folios in these areas, we need to consume the reserves 820 * to keep reservation accounting consistent. 821 */ 822 folio = alloc_hugetlb_folio(&pseudo_vma, addr, 0); 823 if (IS_ERR(folio)) { 824 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 825 error = PTR_ERR(folio); 826 goto out; 827 } 828 folio_zero_user(folio, ALIGN_DOWN(addr, hpage_size)); 829 __folio_mark_uptodate(folio); 830 error = hugetlb_add_to_page_cache(folio, mapping, index); 831 if (unlikely(error)) { 832 restore_reserve_on_error(h, &pseudo_vma, addr, folio); 833 folio_put(folio); 834 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 835 goto out; 836 } 837 838 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 839 840 folio_set_hugetlb_migratable(folio); 841 /* 842 * folio_unlock because locked by hugetlb_add_to_page_cache() 843 * folio_put() due to reference from alloc_hugetlb_folio() 844 */ 845 folio_unlock(folio); 846 folio_put(folio); 847 } 848 849 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 850 i_size_write(inode, offset + len); 851 inode_set_ctime_current(inode); 852 out: 853 inode_unlock(inode); 854 855 out_nolock: 856 trace_hugetlbfs_fallocate(inode, mode, offset, len, error); 857 return error; 858 } 859 860 static int hugetlbfs_setattr(struct mnt_idmap *idmap, 861 struct dentry *dentry, struct iattr *attr) 862 { 863 struct inode *inode = d_inode(dentry); 864 struct hstate *h = hstate_inode(inode); 865 int error; 866 unsigned int ia_valid = attr->ia_valid; 867 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 868 869 error = setattr_prepare(idmap, dentry, attr); 870 if (error) 871 return error; 872 873 trace_hugetlbfs_setattr(inode, dentry, attr); 874 875 if (ia_valid & ATTR_SIZE) { 876 loff_t oldsize = inode->i_size; 877 loff_t newsize = attr->ia_size; 878 879 if (newsize & ~huge_page_mask(h)) 880 return -EINVAL; 881 /* protected by i_rwsem */ 882 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 883 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 884 return -EPERM; 885 hugetlb_vmtruncate(inode, newsize); 886 } 887 888 setattr_copy(idmap, inode, attr); 889 mark_inode_dirty(inode); 890 return 0; 891 } 892 893 static struct inode *hugetlbfs_get_root(struct super_block *sb, 894 struct hugetlbfs_fs_context *ctx) 895 { 896 struct inode *inode; 897 898 inode = new_inode(sb); 899 if (inode) { 900 inode->i_ino = get_next_ino(); 901 inode->i_mode = S_IFDIR | ctx->mode; 902 inode->i_uid = ctx->uid; 903 inode->i_gid = ctx->gid; 904 simple_inode_init_ts(inode); 905 inode->i_op = &hugetlbfs_dir_inode_operations; 906 inode->i_fop = &simple_dir_operations; 907 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 908 inc_nlink(inode); 909 lockdep_annotate_inode_mutex_key(inode); 910 } 911 return inode; 912 } 913 914 /* 915 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never 916 * be taken from reclaim -- unlike regular filesystems. This needs an 917 * annotation because huge_pmd_share() does an allocation under hugetlb's 918 * i_mmap_rwsem. 919 */ 920 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key; 921 922 static struct inode *hugetlbfs_get_inode(struct super_block *sb, 923 struct mnt_idmap *idmap, 924 struct inode *dir, 925 umode_t mode, dev_t dev) 926 { 927 struct inode *inode; 928 struct resv_map *resv_map = NULL; 929 930 /* 931 * Reserve maps are only needed for inodes that can have associated 932 * page allocations. 933 */ 934 if (S_ISREG(mode) || S_ISLNK(mode)) { 935 resv_map = resv_map_alloc(); 936 if (!resv_map) 937 return NULL; 938 } 939 940 inode = new_inode(sb); 941 if (inode) { 942 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 943 944 inode->i_ino = get_next_ino(); 945 inode_init_owner(idmap, inode, dir, mode); 946 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem, 947 &hugetlbfs_i_mmap_rwsem_key); 948 inode->i_mapping->a_ops = &hugetlbfs_aops; 949 simple_inode_init_ts(inode); 950 inode->i_mapping->i_private_data = resv_map; 951 info->seals = F_SEAL_SEAL; 952 switch (mode & S_IFMT) { 953 default: 954 init_special_inode(inode, mode, dev); 955 break; 956 case S_IFREG: 957 inode->i_op = &hugetlbfs_inode_operations; 958 inode->i_fop = &hugetlbfs_file_operations; 959 break; 960 case S_IFDIR: 961 inode->i_op = &hugetlbfs_dir_inode_operations; 962 inode->i_fop = &simple_dir_operations; 963 964 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 965 inc_nlink(inode); 966 break; 967 case S_IFLNK: 968 inode->i_op = &page_symlink_inode_operations; 969 inode_nohighmem(inode); 970 break; 971 } 972 lockdep_annotate_inode_mutex_key(inode); 973 trace_hugetlbfs_alloc_inode(inode, dir, mode); 974 } else { 975 if (resv_map) 976 kref_put(&resv_map->refs, resv_map_release); 977 } 978 979 return inode; 980 } 981 982 /* 983 * File creation. Allocate an inode, and we're done.. 984 */ 985 static int hugetlbfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 986 struct dentry *dentry, umode_t mode, dev_t dev) 987 { 988 struct inode *inode; 989 990 inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, dev); 991 if (!inode) 992 return -ENOSPC; 993 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 994 d_instantiate(dentry, inode); 995 dget(dentry);/* Extra count - pin the dentry in core */ 996 return 0; 997 } 998 999 static int hugetlbfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 1000 struct dentry *dentry, umode_t mode) 1001 { 1002 int retval = hugetlbfs_mknod(idmap, dir, dentry, 1003 mode | S_IFDIR, 0); 1004 if (!retval) 1005 inc_nlink(dir); 1006 return retval; 1007 } 1008 1009 static int hugetlbfs_create(struct mnt_idmap *idmap, 1010 struct inode *dir, struct dentry *dentry, 1011 umode_t mode, bool excl) 1012 { 1013 return hugetlbfs_mknod(idmap, dir, dentry, mode | S_IFREG, 0); 1014 } 1015 1016 static int hugetlbfs_tmpfile(struct mnt_idmap *idmap, 1017 struct inode *dir, struct file *file, 1018 umode_t mode) 1019 { 1020 struct inode *inode; 1021 1022 inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode | S_IFREG, 0); 1023 if (!inode) 1024 return -ENOSPC; 1025 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 1026 d_tmpfile(file, inode); 1027 return finish_open_simple(file, 0); 1028 } 1029 1030 static int hugetlbfs_symlink(struct mnt_idmap *idmap, 1031 struct inode *dir, struct dentry *dentry, 1032 const char *symname) 1033 { 1034 const umode_t mode = S_IFLNK|S_IRWXUGO; 1035 struct inode *inode; 1036 int error = -ENOSPC; 1037 1038 inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, 0); 1039 if (inode) { 1040 int l = strlen(symname)+1; 1041 error = page_symlink(inode, symname, l); 1042 if (!error) { 1043 d_instantiate(dentry, inode); 1044 dget(dentry); 1045 } else 1046 iput(inode); 1047 } 1048 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 1049 1050 return error; 1051 } 1052 1053 #ifdef CONFIG_MIGRATION 1054 static int hugetlbfs_migrate_folio(struct address_space *mapping, 1055 struct folio *dst, struct folio *src, 1056 enum migrate_mode mode) 1057 { 1058 int rc; 1059 1060 rc = migrate_huge_page_move_mapping(mapping, dst, src); 1061 if (rc != MIGRATEPAGE_SUCCESS) 1062 return rc; 1063 1064 if (hugetlb_folio_subpool(src)) { 1065 hugetlb_set_folio_subpool(dst, 1066 hugetlb_folio_subpool(src)); 1067 hugetlb_set_folio_subpool(src, NULL); 1068 } 1069 1070 folio_migrate_flags(dst, src); 1071 1072 return MIGRATEPAGE_SUCCESS; 1073 } 1074 #else 1075 #define hugetlbfs_migrate_folio NULL 1076 #endif 1077 1078 static int hugetlbfs_error_remove_folio(struct address_space *mapping, 1079 struct folio *folio) 1080 { 1081 return 0; 1082 } 1083 1084 /* 1085 * Display the mount options in /proc/mounts. 1086 */ 1087 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root) 1088 { 1089 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb); 1090 struct hugepage_subpool *spool = sbinfo->spool; 1091 unsigned long hpage_size = huge_page_size(sbinfo->hstate); 1092 unsigned hpage_shift = huge_page_shift(sbinfo->hstate); 1093 char mod; 1094 1095 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 1096 seq_printf(m, ",uid=%u", 1097 from_kuid_munged(&init_user_ns, sbinfo->uid)); 1098 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 1099 seq_printf(m, ",gid=%u", 1100 from_kgid_munged(&init_user_ns, sbinfo->gid)); 1101 if (sbinfo->mode != 0755) 1102 seq_printf(m, ",mode=%o", sbinfo->mode); 1103 if (sbinfo->max_inodes != -1) 1104 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes); 1105 1106 hpage_size /= 1024; 1107 mod = 'K'; 1108 if (hpage_size >= 1024) { 1109 hpage_size /= 1024; 1110 mod = 'M'; 1111 } 1112 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod); 1113 if (spool) { 1114 if (spool->max_hpages != -1) 1115 seq_printf(m, ",size=%llu", 1116 (unsigned long long)spool->max_hpages << hpage_shift); 1117 if (spool->min_hpages != -1) 1118 seq_printf(m, ",min_size=%llu", 1119 (unsigned long long)spool->min_hpages << hpage_shift); 1120 } 1121 return 0; 1122 } 1123 1124 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf) 1125 { 1126 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb); 1127 struct hstate *h = hstate_inode(d_inode(dentry)); 1128 u64 id = huge_encode_dev(dentry->d_sb->s_dev); 1129 1130 buf->f_fsid = u64_to_fsid(id); 1131 buf->f_type = HUGETLBFS_MAGIC; 1132 buf->f_bsize = huge_page_size(h); 1133 if (sbinfo) { 1134 spin_lock(&sbinfo->stat_lock); 1135 /* If no limits set, just report 0 or -1 for max/free/used 1136 * blocks, like simple_statfs() */ 1137 if (sbinfo->spool) { 1138 long free_pages; 1139 1140 spin_lock_irq(&sbinfo->spool->lock); 1141 buf->f_blocks = sbinfo->spool->max_hpages; 1142 free_pages = sbinfo->spool->max_hpages 1143 - sbinfo->spool->used_hpages; 1144 buf->f_bavail = buf->f_bfree = free_pages; 1145 spin_unlock_irq(&sbinfo->spool->lock); 1146 buf->f_files = sbinfo->max_inodes; 1147 buf->f_ffree = sbinfo->free_inodes; 1148 } 1149 spin_unlock(&sbinfo->stat_lock); 1150 } 1151 buf->f_namelen = NAME_MAX; 1152 return 0; 1153 } 1154 1155 static void hugetlbfs_put_super(struct super_block *sb) 1156 { 1157 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb); 1158 1159 if (sbi) { 1160 sb->s_fs_info = NULL; 1161 1162 if (sbi->spool) 1163 hugepage_put_subpool(sbi->spool); 1164 1165 kfree(sbi); 1166 } 1167 } 1168 1169 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1170 { 1171 if (sbinfo->free_inodes >= 0) { 1172 spin_lock(&sbinfo->stat_lock); 1173 if (unlikely(!sbinfo->free_inodes)) { 1174 spin_unlock(&sbinfo->stat_lock); 1175 return 0; 1176 } 1177 sbinfo->free_inodes--; 1178 spin_unlock(&sbinfo->stat_lock); 1179 } 1180 1181 return 1; 1182 } 1183 1184 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1185 { 1186 if (sbinfo->free_inodes >= 0) { 1187 spin_lock(&sbinfo->stat_lock); 1188 sbinfo->free_inodes++; 1189 spin_unlock(&sbinfo->stat_lock); 1190 } 1191 } 1192 1193 1194 static struct kmem_cache *hugetlbfs_inode_cachep; 1195 1196 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb) 1197 { 1198 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb); 1199 struct hugetlbfs_inode_info *p; 1200 1201 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo))) 1202 return NULL; 1203 p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL); 1204 if (unlikely(!p)) { 1205 hugetlbfs_inc_free_inodes(sbinfo); 1206 return NULL; 1207 } 1208 return &p->vfs_inode; 1209 } 1210 1211 static void hugetlbfs_free_inode(struct inode *inode) 1212 { 1213 trace_hugetlbfs_free_inode(inode); 1214 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode)); 1215 } 1216 1217 static void hugetlbfs_destroy_inode(struct inode *inode) 1218 { 1219 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb)); 1220 } 1221 1222 static const struct address_space_operations hugetlbfs_aops = { 1223 .write_begin = hugetlbfs_write_begin, 1224 .write_end = hugetlbfs_write_end, 1225 .dirty_folio = noop_dirty_folio, 1226 .migrate_folio = hugetlbfs_migrate_folio, 1227 .error_remove_folio = hugetlbfs_error_remove_folio, 1228 }; 1229 1230 1231 static void init_once(void *foo) 1232 { 1233 struct hugetlbfs_inode_info *ei = foo; 1234 1235 inode_init_once(&ei->vfs_inode); 1236 } 1237 1238 static const struct file_operations hugetlbfs_file_operations = { 1239 .read_iter = hugetlbfs_read_iter, 1240 .mmap = hugetlbfs_file_mmap, 1241 .fsync = noop_fsync, 1242 .get_unmapped_area = hugetlb_get_unmapped_area, 1243 .llseek = default_llseek, 1244 .fallocate = hugetlbfs_fallocate, 1245 .fop_flags = FOP_HUGE_PAGES, 1246 }; 1247 1248 static const struct inode_operations hugetlbfs_dir_inode_operations = { 1249 .create = hugetlbfs_create, 1250 .lookup = simple_lookup, 1251 .link = simple_link, 1252 .unlink = simple_unlink, 1253 .symlink = hugetlbfs_symlink, 1254 .mkdir = hugetlbfs_mkdir, 1255 .rmdir = simple_rmdir, 1256 .mknod = hugetlbfs_mknod, 1257 .rename = simple_rename, 1258 .setattr = hugetlbfs_setattr, 1259 .tmpfile = hugetlbfs_tmpfile, 1260 }; 1261 1262 static const struct inode_operations hugetlbfs_inode_operations = { 1263 .setattr = hugetlbfs_setattr, 1264 }; 1265 1266 static const struct super_operations hugetlbfs_ops = { 1267 .alloc_inode = hugetlbfs_alloc_inode, 1268 .free_inode = hugetlbfs_free_inode, 1269 .destroy_inode = hugetlbfs_destroy_inode, 1270 .evict_inode = hugetlbfs_evict_inode, 1271 .statfs = hugetlbfs_statfs, 1272 .put_super = hugetlbfs_put_super, 1273 .show_options = hugetlbfs_show_options, 1274 }; 1275 1276 /* 1277 * Convert size option passed from command line to number of huge pages 1278 * in the pool specified by hstate. Size option could be in bytes 1279 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT). 1280 */ 1281 static long 1282 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt, 1283 enum hugetlbfs_size_type val_type) 1284 { 1285 if (val_type == NO_SIZE) 1286 return -1; 1287 1288 if (val_type == SIZE_PERCENT) { 1289 size_opt <<= huge_page_shift(h); 1290 size_opt *= h->max_huge_pages; 1291 do_div(size_opt, 100); 1292 } 1293 1294 size_opt >>= huge_page_shift(h); 1295 return size_opt; 1296 } 1297 1298 /* 1299 * Parse one mount parameter. 1300 */ 1301 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param) 1302 { 1303 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1304 struct fs_parse_result result; 1305 struct hstate *h; 1306 char *rest; 1307 unsigned long ps; 1308 int opt; 1309 1310 opt = fs_parse(fc, hugetlb_fs_parameters, param, &result); 1311 if (opt < 0) 1312 return opt; 1313 1314 switch (opt) { 1315 case Opt_uid: 1316 ctx->uid = result.uid; 1317 return 0; 1318 1319 case Opt_gid: 1320 ctx->gid = result.gid; 1321 return 0; 1322 1323 case Opt_mode: 1324 ctx->mode = result.uint_32 & 01777U; 1325 return 0; 1326 1327 case Opt_size: 1328 /* memparse() will accept a K/M/G without a digit */ 1329 if (!param->string || !isdigit(param->string[0])) 1330 goto bad_val; 1331 ctx->max_size_opt = memparse(param->string, &rest); 1332 ctx->max_val_type = SIZE_STD; 1333 if (*rest == '%') 1334 ctx->max_val_type = SIZE_PERCENT; 1335 return 0; 1336 1337 case Opt_nr_inodes: 1338 /* memparse() will accept a K/M/G without a digit */ 1339 if (!param->string || !isdigit(param->string[0])) 1340 goto bad_val; 1341 ctx->nr_inodes = memparse(param->string, &rest); 1342 return 0; 1343 1344 case Opt_pagesize: 1345 ps = memparse(param->string, &rest); 1346 h = size_to_hstate(ps); 1347 if (!h) { 1348 pr_err("Unsupported page size %lu MB\n", ps / SZ_1M); 1349 return -EINVAL; 1350 } 1351 ctx->hstate = h; 1352 return 0; 1353 1354 case Opt_min_size: 1355 /* memparse() will accept a K/M/G without a digit */ 1356 if (!param->string || !isdigit(param->string[0])) 1357 goto bad_val; 1358 ctx->min_size_opt = memparse(param->string, &rest); 1359 ctx->min_val_type = SIZE_STD; 1360 if (*rest == '%') 1361 ctx->min_val_type = SIZE_PERCENT; 1362 return 0; 1363 1364 default: 1365 return -EINVAL; 1366 } 1367 1368 bad_val: 1369 return invalfc(fc, "Bad value '%s' for mount option '%s'\n", 1370 param->string, param->key); 1371 } 1372 1373 /* 1374 * Validate the parsed options. 1375 */ 1376 static int hugetlbfs_validate(struct fs_context *fc) 1377 { 1378 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1379 1380 /* 1381 * Use huge page pool size (in hstate) to convert the size 1382 * options to number of huge pages. If NO_SIZE, -1 is returned. 1383 */ 1384 ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1385 ctx->max_size_opt, 1386 ctx->max_val_type); 1387 ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1388 ctx->min_size_opt, 1389 ctx->min_val_type); 1390 1391 /* 1392 * If max_size was specified, then min_size must be smaller 1393 */ 1394 if (ctx->max_val_type > NO_SIZE && 1395 ctx->min_hpages > ctx->max_hpages) { 1396 pr_err("Minimum size can not be greater than maximum size\n"); 1397 return -EINVAL; 1398 } 1399 1400 return 0; 1401 } 1402 1403 static int 1404 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc) 1405 { 1406 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1407 struct hugetlbfs_sb_info *sbinfo; 1408 1409 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL); 1410 if (!sbinfo) 1411 return -ENOMEM; 1412 sb->s_fs_info = sbinfo; 1413 spin_lock_init(&sbinfo->stat_lock); 1414 sbinfo->hstate = ctx->hstate; 1415 sbinfo->max_inodes = ctx->nr_inodes; 1416 sbinfo->free_inodes = ctx->nr_inodes; 1417 sbinfo->spool = NULL; 1418 sbinfo->uid = ctx->uid; 1419 sbinfo->gid = ctx->gid; 1420 sbinfo->mode = ctx->mode; 1421 1422 /* 1423 * Allocate and initialize subpool if maximum or minimum size is 1424 * specified. Any needed reservations (for minimum size) are taken 1425 * when the subpool is created. 1426 */ 1427 if (ctx->max_hpages != -1 || ctx->min_hpages != -1) { 1428 sbinfo->spool = hugepage_new_subpool(ctx->hstate, 1429 ctx->max_hpages, 1430 ctx->min_hpages); 1431 if (!sbinfo->spool) 1432 goto out_free; 1433 } 1434 sb->s_maxbytes = MAX_LFS_FILESIZE; 1435 sb->s_blocksize = huge_page_size(ctx->hstate); 1436 sb->s_blocksize_bits = huge_page_shift(ctx->hstate); 1437 sb->s_magic = HUGETLBFS_MAGIC; 1438 sb->s_op = &hugetlbfs_ops; 1439 sb->s_time_gran = 1; 1440 1441 /* 1442 * Due to the special and limited functionality of hugetlbfs, it does 1443 * not work well as a stacking filesystem. 1444 */ 1445 sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH; 1446 sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx)); 1447 if (!sb->s_root) 1448 goto out_free; 1449 return 0; 1450 out_free: 1451 kfree(sbinfo->spool); 1452 kfree(sbinfo); 1453 return -ENOMEM; 1454 } 1455 1456 static int hugetlbfs_get_tree(struct fs_context *fc) 1457 { 1458 int err = hugetlbfs_validate(fc); 1459 if (err) 1460 return err; 1461 return get_tree_nodev(fc, hugetlbfs_fill_super); 1462 } 1463 1464 static void hugetlbfs_fs_context_free(struct fs_context *fc) 1465 { 1466 kfree(fc->fs_private); 1467 } 1468 1469 static const struct fs_context_operations hugetlbfs_fs_context_ops = { 1470 .free = hugetlbfs_fs_context_free, 1471 .parse_param = hugetlbfs_parse_param, 1472 .get_tree = hugetlbfs_get_tree, 1473 }; 1474 1475 static int hugetlbfs_init_fs_context(struct fs_context *fc) 1476 { 1477 struct hugetlbfs_fs_context *ctx; 1478 1479 ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL); 1480 if (!ctx) 1481 return -ENOMEM; 1482 1483 ctx->max_hpages = -1; /* No limit on size by default */ 1484 ctx->nr_inodes = -1; /* No limit on number of inodes by default */ 1485 ctx->uid = current_fsuid(); 1486 ctx->gid = current_fsgid(); 1487 ctx->mode = 0755; 1488 ctx->hstate = &default_hstate; 1489 ctx->min_hpages = -1; /* No default minimum size */ 1490 ctx->max_val_type = NO_SIZE; 1491 ctx->min_val_type = NO_SIZE; 1492 fc->fs_private = ctx; 1493 fc->ops = &hugetlbfs_fs_context_ops; 1494 return 0; 1495 } 1496 1497 static struct file_system_type hugetlbfs_fs_type = { 1498 .name = "hugetlbfs", 1499 .init_fs_context = hugetlbfs_init_fs_context, 1500 .parameters = hugetlb_fs_parameters, 1501 .kill_sb = kill_litter_super, 1502 .fs_flags = FS_ALLOW_IDMAP, 1503 }; 1504 1505 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE]; 1506 1507 static int can_do_hugetlb_shm(void) 1508 { 1509 kgid_t shm_group; 1510 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group); 1511 return capable(CAP_IPC_LOCK) || in_group_p(shm_group); 1512 } 1513 1514 static int get_hstate_idx(int page_size_log) 1515 { 1516 struct hstate *h = hstate_sizelog(page_size_log); 1517 1518 if (!h) 1519 return -1; 1520 return hstate_index(h); 1521 } 1522 1523 /* 1524 * Note that size should be aligned to proper hugepage size in caller side, 1525 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended. 1526 */ 1527 struct file *hugetlb_file_setup(const char *name, size_t size, 1528 vm_flags_t acctflag, int creat_flags, 1529 int page_size_log) 1530 { 1531 struct inode *inode; 1532 struct vfsmount *mnt; 1533 int hstate_idx; 1534 struct file *file; 1535 1536 hstate_idx = get_hstate_idx(page_size_log); 1537 if (hstate_idx < 0) 1538 return ERR_PTR(-ENODEV); 1539 1540 mnt = hugetlbfs_vfsmount[hstate_idx]; 1541 if (!mnt) 1542 return ERR_PTR(-ENOENT); 1543 1544 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) { 1545 struct ucounts *ucounts = current_ucounts(); 1546 1547 if (user_shm_lock(size, ucounts)) { 1548 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n", 1549 current->comm, current->pid); 1550 user_shm_unlock(size, ucounts); 1551 } 1552 return ERR_PTR(-EPERM); 1553 } 1554 1555 file = ERR_PTR(-ENOSPC); 1556 /* hugetlbfs_vfsmount[] mounts do not use idmapped mounts. */ 1557 inode = hugetlbfs_get_inode(mnt->mnt_sb, &nop_mnt_idmap, NULL, 1558 S_IFREG | S_IRWXUGO, 0); 1559 if (!inode) 1560 goto out; 1561 if (creat_flags == HUGETLB_SHMFS_INODE) 1562 inode->i_flags |= S_PRIVATE; 1563 1564 inode->i_size = size; 1565 clear_nlink(inode); 1566 1567 if (!hugetlb_reserve_pages(inode, 0, 1568 size >> huge_page_shift(hstate_inode(inode)), NULL, 1569 acctflag)) 1570 file = ERR_PTR(-ENOMEM); 1571 else 1572 file = alloc_file_pseudo(inode, mnt, name, O_RDWR, 1573 &hugetlbfs_file_operations); 1574 if (!IS_ERR(file)) 1575 return file; 1576 1577 iput(inode); 1578 out: 1579 return file; 1580 } 1581 1582 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h) 1583 { 1584 struct fs_context *fc; 1585 struct vfsmount *mnt; 1586 1587 fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT); 1588 if (IS_ERR(fc)) { 1589 mnt = ERR_CAST(fc); 1590 } else { 1591 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1592 ctx->hstate = h; 1593 mnt = fc_mount(fc); 1594 put_fs_context(fc); 1595 } 1596 if (IS_ERR(mnt)) 1597 pr_err("Cannot mount internal hugetlbfs for page size %luK", 1598 huge_page_size(h) / SZ_1K); 1599 return mnt; 1600 } 1601 1602 static int __init init_hugetlbfs_fs(void) 1603 { 1604 struct vfsmount *mnt; 1605 struct hstate *h; 1606 int error; 1607 int i; 1608 1609 if (!hugepages_supported()) { 1610 pr_info("disabling because there are no supported hugepage sizes\n"); 1611 return -ENOTSUPP; 1612 } 1613 1614 error = -ENOMEM; 1615 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache", 1616 sizeof(struct hugetlbfs_inode_info), 1617 0, SLAB_ACCOUNT, init_once); 1618 if (hugetlbfs_inode_cachep == NULL) 1619 goto out; 1620 1621 error = register_filesystem(&hugetlbfs_fs_type); 1622 if (error) 1623 goto out_free; 1624 1625 /* default hstate mount is required */ 1626 mnt = mount_one_hugetlbfs(&default_hstate); 1627 if (IS_ERR(mnt)) { 1628 error = PTR_ERR(mnt); 1629 goto out_unreg; 1630 } 1631 hugetlbfs_vfsmount[default_hstate_idx] = mnt; 1632 1633 /* other hstates are optional */ 1634 i = 0; 1635 for_each_hstate(h) { 1636 if (i == default_hstate_idx) { 1637 i++; 1638 continue; 1639 } 1640 1641 mnt = mount_one_hugetlbfs(h); 1642 if (IS_ERR(mnt)) 1643 hugetlbfs_vfsmount[i] = NULL; 1644 else 1645 hugetlbfs_vfsmount[i] = mnt; 1646 i++; 1647 } 1648 1649 return 0; 1650 1651 out_unreg: 1652 (void)unregister_filesystem(&hugetlbfs_fs_type); 1653 out_free: 1654 kmem_cache_destroy(hugetlbfs_inode_cachep); 1655 out: 1656 return error; 1657 } 1658 fs_initcall(init_hugetlbfs_fs) 1659