xref: /linux/fs/hugetlbfs/inode.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/falloc.h>
15 #include <linux/fs.h>
16 #include <linux/mount.h>
17 #include <linux/file.h>
18 #include <linux/kernel.h>
19 #include <linux/writeback.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/init.h>
23 #include <linux/string.h>
24 #include <linux/capability.h>
25 #include <linux/ctype.h>
26 #include <linux/backing-dev.h>
27 #include <linux/hugetlb.h>
28 #include <linux/pagevec.h>
29 #include <linux/fs_parser.h>
30 #include <linux/mman.h>
31 #include <linux/slab.h>
32 #include <linux/dnotify.h>
33 #include <linux/statfs.h>
34 #include <linux/security.h>
35 #include <linux/magic.h>
36 #include <linux/migrate.h>
37 #include <linux/uio.h>
38 
39 #include <linux/uaccess.h>
40 #include <linux/sched/mm.h>
41 
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/hugetlbfs.h>
44 
45 static const struct address_space_operations hugetlbfs_aops;
46 static const struct file_operations hugetlbfs_file_operations;
47 static const struct inode_operations hugetlbfs_dir_inode_operations;
48 static const struct inode_operations hugetlbfs_inode_operations;
49 
50 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
51 
52 struct hugetlbfs_fs_context {
53 	struct hstate		*hstate;
54 	unsigned long long	max_size_opt;
55 	unsigned long long	min_size_opt;
56 	long			max_hpages;
57 	long			nr_inodes;
58 	long			min_hpages;
59 	enum hugetlbfs_size_type max_val_type;
60 	enum hugetlbfs_size_type min_val_type;
61 	kuid_t			uid;
62 	kgid_t			gid;
63 	umode_t			mode;
64 };
65 
66 int sysctl_hugetlb_shm_group;
67 
68 enum hugetlb_param {
69 	Opt_gid,
70 	Opt_min_size,
71 	Opt_mode,
72 	Opt_nr_inodes,
73 	Opt_pagesize,
74 	Opt_size,
75 	Opt_uid,
76 };
77 
78 static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
79 	fsparam_gid   ("gid",		Opt_gid),
80 	fsparam_string("min_size",	Opt_min_size),
81 	fsparam_u32oct("mode",		Opt_mode),
82 	fsparam_string("nr_inodes",	Opt_nr_inodes),
83 	fsparam_string("pagesize",	Opt_pagesize),
84 	fsparam_string("size",		Opt_size),
85 	fsparam_uid   ("uid",		Opt_uid),
86 	{}
87 };
88 
89 /*
90  * Mask used when checking the page offset value passed in via system
91  * calls.  This value will be converted to a loff_t which is signed.
92  * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
93  * value.  The extra bit (- 1 in the shift value) is to take the sign
94  * bit into account.
95  */
96 #define PGOFF_LOFFT_MAX \
97 	(((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
98 
99 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
100 {
101 	struct inode *inode = file_inode(file);
102 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
103 	loff_t len, vma_len;
104 	int ret;
105 	struct hstate *h = hstate_file(file);
106 	vm_flags_t vm_flags;
107 
108 	/*
109 	 * vma address alignment (but not the pgoff alignment) has
110 	 * already been checked by prepare_hugepage_range.  If you add
111 	 * any error returns here, do so after setting VM_HUGETLB, so
112 	 * is_vm_hugetlb_page tests below unmap_region go the right
113 	 * way when do_mmap unwinds (may be important on powerpc
114 	 * and ia64).
115 	 */
116 	vm_flags_set(vma, VM_HUGETLB | VM_DONTEXPAND | VM_MTE_ALLOWED);
117 	vma->vm_ops = &hugetlb_vm_ops;
118 
119 	ret = seal_check_write(info->seals, vma);
120 	if (ret)
121 		return ret;
122 
123 	/*
124 	 * page based offset in vm_pgoff could be sufficiently large to
125 	 * overflow a loff_t when converted to byte offset.  This can
126 	 * only happen on architectures where sizeof(loff_t) ==
127 	 * sizeof(unsigned long).  So, only check in those instances.
128 	 */
129 	if (sizeof(unsigned long) == sizeof(loff_t)) {
130 		if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
131 			return -EINVAL;
132 	}
133 
134 	/* must be huge page aligned */
135 	if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
136 		return -EINVAL;
137 
138 	vma_len = (loff_t)(vma->vm_end - vma->vm_start);
139 	len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
140 	/* check for overflow */
141 	if (len < vma_len)
142 		return -EINVAL;
143 
144 	inode_lock(inode);
145 	file_accessed(file);
146 
147 	ret = -ENOMEM;
148 
149 	vm_flags = vma->vm_flags;
150 	/*
151 	 * for SHM_HUGETLB, the pages are reserved in the shmget() call so skip
152 	 * reserving here. Note: only for SHM hugetlbfs file, the inode
153 	 * flag S_PRIVATE is set.
154 	 */
155 	if (inode->i_flags & S_PRIVATE)
156 		vm_flags |= VM_NORESERVE;
157 
158 	if (!hugetlb_reserve_pages(inode,
159 				vma->vm_pgoff >> huge_page_order(h),
160 				len >> huge_page_shift(h), vma,
161 				vm_flags))
162 		goto out;
163 
164 	ret = 0;
165 	if (vma->vm_flags & VM_WRITE && inode->i_size < len)
166 		i_size_write(inode, len);
167 out:
168 	inode_unlock(inode);
169 
170 	return ret;
171 }
172 
173 /*
174  * Called under mmap_write_lock(mm).
175  */
176 
177 unsigned long
178 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
179 			    unsigned long len, unsigned long pgoff,
180 			    unsigned long flags)
181 {
182 	unsigned long addr0 = 0;
183 	struct hstate *h = hstate_file(file);
184 
185 	if (len & ~huge_page_mask(h))
186 		return -EINVAL;
187 	if (flags & MAP_FIXED) {
188 		if (addr & ~huge_page_mask(h))
189 			return -EINVAL;
190 		if (prepare_hugepage_range(file, addr, len))
191 			return -EINVAL;
192 	}
193 	if (addr)
194 		addr0 = ALIGN(addr, huge_page_size(h));
195 
196 	return mm_get_unmapped_area_vmflags(current->mm, file, addr0, len, pgoff,
197 					    flags, 0);
198 }
199 
200 /*
201  * Someone wants to read @bytes from a HWPOISON hugetlb @page from @offset.
202  * Returns the maximum number of bytes one can read without touching the 1st raw
203  * HWPOISON subpage.
204  *
205  * The implementation borrows the iteration logic from copy_page_to_iter*.
206  */
207 static size_t adjust_range_hwpoison(struct page *page, size_t offset, size_t bytes)
208 {
209 	size_t n = 0;
210 	size_t res = 0;
211 
212 	/* First subpage to start the loop. */
213 	page = nth_page(page, offset / PAGE_SIZE);
214 	offset %= PAGE_SIZE;
215 	while (1) {
216 		if (is_raw_hwpoison_page_in_hugepage(page))
217 			break;
218 
219 		/* Safe to read n bytes without touching HWPOISON subpage. */
220 		n = min(bytes, (size_t)PAGE_SIZE - offset);
221 		res += n;
222 		bytes -= n;
223 		if (!bytes || !n)
224 			break;
225 		offset += n;
226 		if (offset == PAGE_SIZE) {
227 			page = nth_page(page, 1);
228 			offset = 0;
229 		}
230 	}
231 
232 	return res;
233 }
234 
235 /*
236  * Support for read() - Find the page attached to f_mapping and copy out the
237  * data. This provides functionality similar to filemap_read().
238  */
239 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
240 {
241 	struct file *file = iocb->ki_filp;
242 	struct hstate *h = hstate_file(file);
243 	struct address_space *mapping = file->f_mapping;
244 	struct inode *inode = mapping->host;
245 	unsigned long index = iocb->ki_pos >> huge_page_shift(h);
246 	unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
247 	unsigned long end_index;
248 	loff_t isize;
249 	ssize_t retval = 0;
250 
251 	while (iov_iter_count(to)) {
252 		struct folio *folio;
253 		size_t nr, copied, want;
254 
255 		/* nr is the maximum number of bytes to copy from this page */
256 		nr = huge_page_size(h);
257 		isize = i_size_read(inode);
258 		if (!isize)
259 			break;
260 		end_index = (isize - 1) >> huge_page_shift(h);
261 		if (index > end_index)
262 			break;
263 		if (index == end_index) {
264 			nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
265 			if (nr <= offset)
266 				break;
267 		}
268 		nr = nr - offset;
269 
270 		/* Find the folio */
271 		folio = filemap_lock_hugetlb_folio(h, mapping, index);
272 		if (IS_ERR(folio)) {
273 			/*
274 			 * We have a HOLE, zero out the user-buffer for the
275 			 * length of the hole or request.
276 			 */
277 			copied = iov_iter_zero(nr, to);
278 		} else {
279 			folio_unlock(folio);
280 
281 			if (!folio_test_hwpoison(folio))
282 				want = nr;
283 			else {
284 				/*
285 				 * Adjust how many bytes safe to read without
286 				 * touching the 1st raw HWPOISON subpage after
287 				 * offset.
288 				 */
289 				want = adjust_range_hwpoison(&folio->page, offset, nr);
290 				if (want == 0) {
291 					folio_put(folio);
292 					retval = -EIO;
293 					break;
294 				}
295 			}
296 
297 			/*
298 			 * We have the folio, copy it to user space buffer.
299 			 */
300 			copied = copy_folio_to_iter(folio, offset, want, to);
301 			folio_put(folio);
302 		}
303 		offset += copied;
304 		retval += copied;
305 		if (copied != nr && iov_iter_count(to)) {
306 			if (!retval)
307 				retval = -EFAULT;
308 			break;
309 		}
310 		index += offset >> huge_page_shift(h);
311 		offset &= ~huge_page_mask(h);
312 	}
313 	iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
314 	return retval;
315 }
316 
317 static int hugetlbfs_write_begin(struct file *file,
318 			struct address_space *mapping,
319 			loff_t pos, unsigned len,
320 			struct folio **foliop, void **fsdata)
321 {
322 	return -EINVAL;
323 }
324 
325 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
326 			loff_t pos, unsigned len, unsigned copied,
327 			struct folio *folio, void *fsdata)
328 {
329 	BUG();
330 	return -EINVAL;
331 }
332 
333 static void hugetlb_delete_from_page_cache(struct folio *folio)
334 {
335 	folio_clear_dirty(folio);
336 	folio_clear_uptodate(folio);
337 	filemap_remove_folio(folio);
338 }
339 
340 /*
341  * Called with i_mmap_rwsem held for inode based vma maps.  This makes
342  * sure vma (and vm_mm) will not go away.  We also hold the hugetlb fault
343  * mutex for the page in the mapping.  So, we can not race with page being
344  * faulted into the vma.
345  */
346 static bool hugetlb_vma_maps_page(struct vm_area_struct *vma,
347 				unsigned long addr, struct page *page)
348 {
349 	pte_t *ptep, pte;
350 
351 	ptep = hugetlb_walk(vma, addr, huge_page_size(hstate_vma(vma)));
352 	if (!ptep)
353 		return false;
354 
355 	pte = huge_ptep_get(vma->vm_mm, addr, ptep);
356 	if (huge_pte_none(pte) || !pte_present(pte))
357 		return false;
358 
359 	if (pte_page(pte) == page)
360 		return true;
361 
362 	return false;
363 }
364 
365 /*
366  * Can vma_offset_start/vma_offset_end overflow on 32-bit arches?
367  * No, because the interval tree returns us only those vmas
368  * which overlap the truncated area starting at pgoff,
369  * and no vma on a 32-bit arch can span beyond the 4GB.
370  */
371 static unsigned long vma_offset_start(struct vm_area_struct *vma, pgoff_t start)
372 {
373 	unsigned long offset = 0;
374 
375 	if (vma->vm_pgoff < start)
376 		offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
377 
378 	return vma->vm_start + offset;
379 }
380 
381 static unsigned long vma_offset_end(struct vm_area_struct *vma, pgoff_t end)
382 {
383 	unsigned long t_end;
384 
385 	if (!end)
386 		return vma->vm_end;
387 
388 	t_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) + vma->vm_start;
389 	if (t_end > vma->vm_end)
390 		t_end = vma->vm_end;
391 	return t_end;
392 }
393 
394 /*
395  * Called with hugetlb fault mutex held.  Therefore, no more mappings to
396  * this folio can be created while executing the routine.
397  */
398 static void hugetlb_unmap_file_folio(struct hstate *h,
399 					struct address_space *mapping,
400 					struct folio *folio, pgoff_t index)
401 {
402 	struct rb_root_cached *root = &mapping->i_mmap;
403 	struct hugetlb_vma_lock *vma_lock;
404 	struct page *page = &folio->page;
405 	struct vm_area_struct *vma;
406 	unsigned long v_start;
407 	unsigned long v_end;
408 	pgoff_t start, end;
409 
410 	start = index * pages_per_huge_page(h);
411 	end = (index + 1) * pages_per_huge_page(h);
412 
413 	i_mmap_lock_write(mapping);
414 retry:
415 	vma_lock = NULL;
416 	vma_interval_tree_foreach(vma, root, start, end - 1) {
417 		v_start = vma_offset_start(vma, start);
418 		v_end = vma_offset_end(vma, end);
419 
420 		if (!hugetlb_vma_maps_page(vma, v_start, page))
421 			continue;
422 
423 		if (!hugetlb_vma_trylock_write(vma)) {
424 			vma_lock = vma->vm_private_data;
425 			/*
426 			 * If we can not get vma lock, we need to drop
427 			 * immap_sema and take locks in order.  First,
428 			 * take a ref on the vma_lock structure so that
429 			 * we can be guaranteed it will not go away when
430 			 * dropping immap_sema.
431 			 */
432 			kref_get(&vma_lock->refs);
433 			break;
434 		}
435 
436 		unmap_hugepage_range(vma, v_start, v_end, NULL,
437 				     ZAP_FLAG_DROP_MARKER);
438 		hugetlb_vma_unlock_write(vma);
439 	}
440 
441 	i_mmap_unlock_write(mapping);
442 
443 	if (vma_lock) {
444 		/*
445 		 * Wait on vma_lock.  We know it is still valid as we have
446 		 * a reference.  We must 'open code' vma locking as we do
447 		 * not know if vma_lock is still attached to vma.
448 		 */
449 		down_write(&vma_lock->rw_sema);
450 		i_mmap_lock_write(mapping);
451 
452 		vma = vma_lock->vma;
453 		if (!vma) {
454 			/*
455 			 * If lock is no longer attached to vma, then just
456 			 * unlock, drop our reference and retry looking for
457 			 * other vmas.
458 			 */
459 			up_write(&vma_lock->rw_sema);
460 			kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
461 			goto retry;
462 		}
463 
464 		/*
465 		 * vma_lock is still attached to vma.  Check to see if vma
466 		 * still maps page and if so, unmap.
467 		 */
468 		v_start = vma_offset_start(vma, start);
469 		v_end = vma_offset_end(vma, end);
470 		if (hugetlb_vma_maps_page(vma, v_start, page))
471 			unmap_hugepage_range(vma, v_start, v_end, NULL,
472 					     ZAP_FLAG_DROP_MARKER);
473 
474 		kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
475 		hugetlb_vma_unlock_write(vma);
476 
477 		goto retry;
478 	}
479 }
480 
481 static void
482 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end,
483 		      zap_flags_t zap_flags)
484 {
485 	struct vm_area_struct *vma;
486 
487 	/*
488 	 * end == 0 indicates that the entire range after start should be
489 	 * unmapped.  Note, end is exclusive, whereas the interval tree takes
490 	 * an inclusive "last".
491 	 */
492 	vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) {
493 		unsigned long v_start;
494 		unsigned long v_end;
495 
496 		if (!hugetlb_vma_trylock_write(vma))
497 			continue;
498 
499 		v_start = vma_offset_start(vma, start);
500 		v_end = vma_offset_end(vma, end);
501 
502 		unmap_hugepage_range(vma, v_start, v_end, NULL, zap_flags);
503 
504 		/*
505 		 * Note that vma lock only exists for shared/non-private
506 		 * vmas.  Therefore, lock is not held when calling
507 		 * unmap_hugepage_range for private vmas.
508 		 */
509 		hugetlb_vma_unlock_write(vma);
510 	}
511 }
512 
513 /*
514  * Called with hugetlb fault mutex held.
515  * Returns true if page was actually removed, false otherwise.
516  */
517 static bool remove_inode_single_folio(struct hstate *h, struct inode *inode,
518 					struct address_space *mapping,
519 					struct folio *folio, pgoff_t index,
520 					bool truncate_op)
521 {
522 	bool ret = false;
523 
524 	/*
525 	 * If folio is mapped, it was faulted in after being
526 	 * unmapped in caller.  Unmap (again) while holding
527 	 * the fault mutex.  The mutex will prevent faults
528 	 * until we finish removing the folio.
529 	 */
530 	if (unlikely(folio_mapped(folio)))
531 		hugetlb_unmap_file_folio(h, mapping, folio, index);
532 
533 	folio_lock(folio);
534 	/*
535 	 * We must remove the folio from page cache before removing
536 	 * the region/ reserve map (hugetlb_unreserve_pages).  In
537 	 * rare out of memory conditions, removal of the region/reserve
538 	 * map could fail.  Correspondingly, the subpool and global
539 	 * reserve usage count can need to be adjusted.
540 	 */
541 	VM_BUG_ON_FOLIO(folio_test_hugetlb_restore_reserve(folio), folio);
542 	hugetlb_delete_from_page_cache(folio);
543 	ret = true;
544 	if (!truncate_op) {
545 		if (unlikely(hugetlb_unreserve_pages(inode, index,
546 							index + 1, 1)))
547 			hugetlb_fix_reserve_counts(inode);
548 	}
549 
550 	folio_unlock(folio);
551 	return ret;
552 }
553 
554 /*
555  * remove_inode_hugepages handles two distinct cases: truncation and hole
556  * punch.  There are subtle differences in operation for each case.
557  *
558  * truncation is indicated by end of range being LLONG_MAX
559  *	In this case, we first scan the range and release found pages.
560  *	After releasing pages, hugetlb_unreserve_pages cleans up region/reserve
561  *	maps and global counts.  Page faults can race with truncation.
562  *	During faults, hugetlb_no_page() checks i_size before page allocation,
563  *	and again after obtaining page table lock.  It will 'back out'
564  *	allocations in the truncated range.
565  * hole punch is indicated if end is not LLONG_MAX
566  *	In the hole punch case we scan the range and release found pages.
567  *	Only when releasing a page is the associated region/reserve map
568  *	deleted.  The region/reserve map for ranges without associated
569  *	pages are not modified.  Page faults can race with hole punch.
570  *	This is indicated if we find a mapped page.
571  * Note: If the passed end of range value is beyond the end of file, but
572  * not LLONG_MAX this routine still performs a hole punch operation.
573  */
574 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
575 				   loff_t lend)
576 {
577 	struct hstate *h = hstate_inode(inode);
578 	struct address_space *mapping = &inode->i_data;
579 	const pgoff_t end = lend >> PAGE_SHIFT;
580 	struct folio_batch fbatch;
581 	pgoff_t next, index;
582 	int i, freed = 0;
583 	bool truncate_op = (lend == LLONG_MAX);
584 
585 	folio_batch_init(&fbatch);
586 	next = lstart >> PAGE_SHIFT;
587 	while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) {
588 		for (i = 0; i < folio_batch_count(&fbatch); ++i) {
589 			struct folio *folio = fbatch.folios[i];
590 			u32 hash = 0;
591 
592 			index = folio->index >> huge_page_order(h);
593 			hash = hugetlb_fault_mutex_hash(mapping, index);
594 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
595 
596 			/*
597 			 * Remove folio that was part of folio_batch.
598 			 */
599 			if (remove_inode_single_folio(h, inode, mapping, folio,
600 							index, truncate_op))
601 				freed++;
602 
603 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
604 		}
605 		folio_batch_release(&fbatch);
606 		cond_resched();
607 	}
608 
609 	if (truncate_op)
610 		(void)hugetlb_unreserve_pages(inode,
611 				lstart >> huge_page_shift(h),
612 				LONG_MAX, freed);
613 }
614 
615 static void hugetlbfs_evict_inode(struct inode *inode)
616 {
617 	struct resv_map *resv_map;
618 
619 	trace_hugetlbfs_evict_inode(inode);
620 	remove_inode_hugepages(inode, 0, LLONG_MAX);
621 
622 	/*
623 	 * Get the resv_map from the address space embedded in the inode.
624 	 * This is the address space which points to any resv_map allocated
625 	 * at inode creation time.  If this is a device special inode,
626 	 * i_mapping may not point to the original address space.
627 	 */
628 	resv_map = (struct resv_map *)(&inode->i_data)->i_private_data;
629 	/* Only regular and link inodes have associated reserve maps */
630 	if (resv_map)
631 		resv_map_release(&resv_map->refs);
632 	clear_inode(inode);
633 }
634 
635 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset)
636 {
637 	pgoff_t pgoff;
638 	struct address_space *mapping = inode->i_mapping;
639 	struct hstate *h = hstate_inode(inode);
640 
641 	BUG_ON(offset & ~huge_page_mask(h));
642 	pgoff = offset >> PAGE_SHIFT;
643 
644 	i_size_write(inode, offset);
645 	i_mmap_lock_write(mapping);
646 	if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
647 		hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0,
648 				      ZAP_FLAG_DROP_MARKER);
649 	i_mmap_unlock_write(mapping);
650 	remove_inode_hugepages(inode, offset, LLONG_MAX);
651 }
652 
653 static void hugetlbfs_zero_partial_page(struct hstate *h,
654 					struct address_space *mapping,
655 					loff_t start,
656 					loff_t end)
657 {
658 	pgoff_t idx = start >> huge_page_shift(h);
659 	struct folio *folio;
660 
661 	folio = filemap_lock_hugetlb_folio(h, mapping, idx);
662 	if (IS_ERR(folio))
663 		return;
664 
665 	start = start & ~huge_page_mask(h);
666 	end = end & ~huge_page_mask(h);
667 	if (!end)
668 		end = huge_page_size(h);
669 
670 	folio_zero_segment(folio, (size_t)start, (size_t)end);
671 
672 	folio_unlock(folio);
673 	folio_put(folio);
674 }
675 
676 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
677 {
678 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
679 	struct address_space *mapping = inode->i_mapping;
680 	struct hstate *h = hstate_inode(inode);
681 	loff_t hpage_size = huge_page_size(h);
682 	loff_t hole_start, hole_end;
683 
684 	/*
685 	 * hole_start and hole_end indicate the full pages within the hole.
686 	 */
687 	hole_start = round_up(offset, hpage_size);
688 	hole_end = round_down(offset + len, hpage_size);
689 
690 	inode_lock(inode);
691 
692 	/* protected by i_rwsem */
693 	if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
694 		inode_unlock(inode);
695 		return -EPERM;
696 	}
697 
698 	i_mmap_lock_write(mapping);
699 
700 	/* If range starts before first full page, zero partial page. */
701 	if (offset < hole_start)
702 		hugetlbfs_zero_partial_page(h, mapping,
703 				offset, min(offset + len, hole_start));
704 
705 	/* Unmap users of full pages in the hole. */
706 	if (hole_end > hole_start) {
707 		if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
708 			hugetlb_vmdelete_list(&mapping->i_mmap,
709 					      hole_start >> PAGE_SHIFT,
710 					      hole_end >> PAGE_SHIFT, 0);
711 	}
712 
713 	/* If range extends beyond last full page, zero partial page. */
714 	if ((offset + len) > hole_end && (offset + len) > hole_start)
715 		hugetlbfs_zero_partial_page(h, mapping,
716 				hole_end, offset + len);
717 
718 	i_mmap_unlock_write(mapping);
719 
720 	/* Remove full pages from the file. */
721 	if (hole_end > hole_start)
722 		remove_inode_hugepages(inode, hole_start, hole_end);
723 
724 	inode_unlock(inode);
725 
726 	return 0;
727 }
728 
729 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
730 				loff_t len)
731 {
732 	struct inode *inode = file_inode(file);
733 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
734 	struct address_space *mapping = inode->i_mapping;
735 	struct hstate *h = hstate_inode(inode);
736 	struct vm_area_struct pseudo_vma;
737 	struct mm_struct *mm = current->mm;
738 	loff_t hpage_size = huge_page_size(h);
739 	unsigned long hpage_shift = huge_page_shift(h);
740 	pgoff_t start, index, end;
741 	int error;
742 	u32 hash;
743 
744 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
745 		return -EOPNOTSUPP;
746 
747 	if (mode & FALLOC_FL_PUNCH_HOLE) {
748 		error = hugetlbfs_punch_hole(inode, offset, len);
749 		goto out_nolock;
750 	}
751 
752 	/*
753 	 * Default preallocate case.
754 	 * For this range, start is rounded down and end is rounded up
755 	 * as well as being converted to page offsets.
756 	 */
757 	start = offset >> hpage_shift;
758 	end = (offset + len + hpage_size - 1) >> hpage_shift;
759 
760 	inode_lock(inode);
761 
762 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
763 	error = inode_newsize_ok(inode, offset + len);
764 	if (error)
765 		goto out;
766 
767 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
768 		error = -EPERM;
769 		goto out;
770 	}
771 
772 	/*
773 	 * Initialize a pseudo vma as this is required by the huge page
774 	 * allocation routines.
775 	 */
776 	vma_init(&pseudo_vma, mm);
777 	vm_flags_init(&pseudo_vma, VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
778 	pseudo_vma.vm_file = file;
779 
780 	for (index = start; index < end; index++) {
781 		/*
782 		 * This is supposed to be the vaddr where the page is being
783 		 * faulted in, but we have no vaddr here.
784 		 */
785 		struct folio *folio;
786 		unsigned long addr;
787 
788 		cond_resched();
789 
790 		/*
791 		 * fallocate(2) manpage permits EINTR; we may have been
792 		 * interrupted because we are using up too much memory.
793 		 */
794 		if (signal_pending(current)) {
795 			error = -EINTR;
796 			break;
797 		}
798 
799 		/* addr is the offset within the file (zero based) */
800 		addr = index * hpage_size;
801 
802 		/* mutex taken here, fault path and hole punch */
803 		hash = hugetlb_fault_mutex_hash(mapping, index);
804 		mutex_lock(&hugetlb_fault_mutex_table[hash]);
805 
806 		/* See if already present in mapping to avoid alloc/free */
807 		folio = filemap_get_folio(mapping, index << huge_page_order(h));
808 		if (!IS_ERR(folio)) {
809 			folio_put(folio);
810 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
811 			continue;
812 		}
813 
814 		/*
815 		 * Allocate folio without setting the avoid_reserve argument.
816 		 * There certainly are no reserves associated with the
817 		 * pseudo_vma.  However, there could be shared mappings with
818 		 * reserves for the file at the inode level.  If we fallocate
819 		 * folios in these areas, we need to consume the reserves
820 		 * to keep reservation accounting consistent.
821 		 */
822 		folio = alloc_hugetlb_folio(&pseudo_vma, addr, 0);
823 		if (IS_ERR(folio)) {
824 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
825 			error = PTR_ERR(folio);
826 			goto out;
827 		}
828 		folio_zero_user(folio, ALIGN_DOWN(addr, hpage_size));
829 		__folio_mark_uptodate(folio);
830 		error = hugetlb_add_to_page_cache(folio, mapping, index);
831 		if (unlikely(error)) {
832 			restore_reserve_on_error(h, &pseudo_vma, addr, folio);
833 			folio_put(folio);
834 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
835 			goto out;
836 		}
837 
838 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
839 
840 		folio_set_hugetlb_migratable(folio);
841 		/*
842 		 * folio_unlock because locked by hugetlb_add_to_page_cache()
843 		 * folio_put() due to reference from alloc_hugetlb_folio()
844 		 */
845 		folio_unlock(folio);
846 		folio_put(folio);
847 	}
848 
849 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
850 		i_size_write(inode, offset + len);
851 	inode_set_ctime_current(inode);
852 out:
853 	inode_unlock(inode);
854 
855 out_nolock:
856 	trace_hugetlbfs_fallocate(inode, mode, offset, len, error);
857 	return error;
858 }
859 
860 static int hugetlbfs_setattr(struct mnt_idmap *idmap,
861 			     struct dentry *dentry, struct iattr *attr)
862 {
863 	struct inode *inode = d_inode(dentry);
864 	struct hstate *h = hstate_inode(inode);
865 	int error;
866 	unsigned int ia_valid = attr->ia_valid;
867 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
868 
869 	error = setattr_prepare(idmap, dentry, attr);
870 	if (error)
871 		return error;
872 
873 	trace_hugetlbfs_setattr(inode, dentry, attr);
874 
875 	if (ia_valid & ATTR_SIZE) {
876 		loff_t oldsize = inode->i_size;
877 		loff_t newsize = attr->ia_size;
878 
879 		if (newsize & ~huge_page_mask(h))
880 			return -EINVAL;
881 		/* protected by i_rwsem */
882 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
883 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
884 			return -EPERM;
885 		hugetlb_vmtruncate(inode, newsize);
886 	}
887 
888 	setattr_copy(idmap, inode, attr);
889 	mark_inode_dirty(inode);
890 	return 0;
891 }
892 
893 static struct inode *hugetlbfs_get_root(struct super_block *sb,
894 					struct hugetlbfs_fs_context *ctx)
895 {
896 	struct inode *inode;
897 
898 	inode = new_inode(sb);
899 	if (inode) {
900 		inode->i_ino = get_next_ino();
901 		inode->i_mode = S_IFDIR | ctx->mode;
902 		inode->i_uid = ctx->uid;
903 		inode->i_gid = ctx->gid;
904 		simple_inode_init_ts(inode);
905 		inode->i_op = &hugetlbfs_dir_inode_operations;
906 		inode->i_fop = &simple_dir_operations;
907 		/* directory inodes start off with i_nlink == 2 (for "." entry) */
908 		inc_nlink(inode);
909 		lockdep_annotate_inode_mutex_key(inode);
910 	}
911 	return inode;
912 }
913 
914 /*
915  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
916  * be taken from reclaim -- unlike regular filesystems. This needs an
917  * annotation because huge_pmd_share() does an allocation under hugetlb's
918  * i_mmap_rwsem.
919  */
920 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
921 
922 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
923 					struct mnt_idmap *idmap,
924 					struct inode *dir,
925 					umode_t mode, dev_t dev)
926 {
927 	struct inode *inode;
928 	struct resv_map *resv_map = NULL;
929 
930 	/*
931 	 * Reserve maps are only needed for inodes that can have associated
932 	 * page allocations.
933 	 */
934 	if (S_ISREG(mode) || S_ISLNK(mode)) {
935 		resv_map = resv_map_alloc();
936 		if (!resv_map)
937 			return NULL;
938 	}
939 
940 	inode = new_inode(sb);
941 	if (inode) {
942 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
943 
944 		inode->i_ino = get_next_ino();
945 		inode_init_owner(idmap, inode, dir, mode);
946 		lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
947 				&hugetlbfs_i_mmap_rwsem_key);
948 		inode->i_mapping->a_ops = &hugetlbfs_aops;
949 		simple_inode_init_ts(inode);
950 		inode->i_mapping->i_private_data = resv_map;
951 		info->seals = F_SEAL_SEAL;
952 		switch (mode & S_IFMT) {
953 		default:
954 			init_special_inode(inode, mode, dev);
955 			break;
956 		case S_IFREG:
957 			inode->i_op = &hugetlbfs_inode_operations;
958 			inode->i_fop = &hugetlbfs_file_operations;
959 			break;
960 		case S_IFDIR:
961 			inode->i_op = &hugetlbfs_dir_inode_operations;
962 			inode->i_fop = &simple_dir_operations;
963 
964 			/* directory inodes start off with i_nlink == 2 (for "." entry) */
965 			inc_nlink(inode);
966 			break;
967 		case S_IFLNK:
968 			inode->i_op = &page_symlink_inode_operations;
969 			inode_nohighmem(inode);
970 			break;
971 		}
972 		lockdep_annotate_inode_mutex_key(inode);
973 		trace_hugetlbfs_alloc_inode(inode, dir, mode);
974 	} else {
975 		if (resv_map)
976 			kref_put(&resv_map->refs, resv_map_release);
977 	}
978 
979 	return inode;
980 }
981 
982 /*
983  * File creation. Allocate an inode, and we're done..
984  */
985 static int hugetlbfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
986 			   struct dentry *dentry, umode_t mode, dev_t dev)
987 {
988 	struct inode *inode;
989 
990 	inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, dev);
991 	if (!inode)
992 		return -ENOSPC;
993 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
994 	d_instantiate(dentry, inode);
995 	dget(dentry);/* Extra count - pin the dentry in core */
996 	return 0;
997 }
998 
999 static int hugetlbfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
1000 			   struct dentry *dentry, umode_t mode)
1001 {
1002 	int retval = hugetlbfs_mknod(idmap, dir, dentry,
1003 				     mode | S_IFDIR, 0);
1004 	if (!retval)
1005 		inc_nlink(dir);
1006 	return retval;
1007 }
1008 
1009 static int hugetlbfs_create(struct mnt_idmap *idmap,
1010 			    struct inode *dir, struct dentry *dentry,
1011 			    umode_t mode, bool excl)
1012 {
1013 	return hugetlbfs_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
1014 }
1015 
1016 static int hugetlbfs_tmpfile(struct mnt_idmap *idmap,
1017 			     struct inode *dir, struct file *file,
1018 			     umode_t mode)
1019 {
1020 	struct inode *inode;
1021 
1022 	inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode | S_IFREG, 0);
1023 	if (!inode)
1024 		return -ENOSPC;
1025 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
1026 	d_tmpfile(file, inode);
1027 	return finish_open_simple(file, 0);
1028 }
1029 
1030 static int hugetlbfs_symlink(struct mnt_idmap *idmap,
1031 			     struct inode *dir, struct dentry *dentry,
1032 			     const char *symname)
1033 {
1034 	const umode_t mode = S_IFLNK|S_IRWXUGO;
1035 	struct inode *inode;
1036 	int error = -ENOSPC;
1037 
1038 	inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, 0);
1039 	if (inode) {
1040 		int l = strlen(symname)+1;
1041 		error = page_symlink(inode, symname, l);
1042 		if (!error) {
1043 			d_instantiate(dentry, inode);
1044 			dget(dentry);
1045 		} else
1046 			iput(inode);
1047 	}
1048 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
1049 
1050 	return error;
1051 }
1052 
1053 #ifdef CONFIG_MIGRATION
1054 static int hugetlbfs_migrate_folio(struct address_space *mapping,
1055 				struct folio *dst, struct folio *src,
1056 				enum migrate_mode mode)
1057 {
1058 	int rc;
1059 
1060 	rc = migrate_huge_page_move_mapping(mapping, dst, src);
1061 	if (rc != MIGRATEPAGE_SUCCESS)
1062 		return rc;
1063 
1064 	if (hugetlb_folio_subpool(src)) {
1065 		hugetlb_set_folio_subpool(dst,
1066 					hugetlb_folio_subpool(src));
1067 		hugetlb_set_folio_subpool(src, NULL);
1068 	}
1069 
1070 	folio_migrate_flags(dst, src);
1071 
1072 	return MIGRATEPAGE_SUCCESS;
1073 }
1074 #else
1075 #define hugetlbfs_migrate_folio NULL
1076 #endif
1077 
1078 static int hugetlbfs_error_remove_folio(struct address_space *mapping,
1079 				struct folio *folio)
1080 {
1081 	return 0;
1082 }
1083 
1084 /*
1085  * Display the mount options in /proc/mounts.
1086  */
1087 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
1088 {
1089 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
1090 	struct hugepage_subpool *spool = sbinfo->spool;
1091 	unsigned long hpage_size = huge_page_size(sbinfo->hstate);
1092 	unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
1093 	char mod;
1094 
1095 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1096 		seq_printf(m, ",uid=%u",
1097 			   from_kuid_munged(&init_user_ns, sbinfo->uid));
1098 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1099 		seq_printf(m, ",gid=%u",
1100 			   from_kgid_munged(&init_user_ns, sbinfo->gid));
1101 	if (sbinfo->mode != 0755)
1102 		seq_printf(m, ",mode=%o", sbinfo->mode);
1103 	if (sbinfo->max_inodes != -1)
1104 		seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1105 
1106 	hpage_size /= 1024;
1107 	mod = 'K';
1108 	if (hpage_size >= 1024) {
1109 		hpage_size /= 1024;
1110 		mod = 'M';
1111 	}
1112 	seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1113 	if (spool) {
1114 		if (spool->max_hpages != -1)
1115 			seq_printf(m, ",size=%llu",
1116 				   (unsigned long long)spool->max_hpages << hpage_shift);
1117 		if (spool->min_hpages != -1)
1118 			seq_printf(m, ",min_size=%llu",
1119 				   (unsigned long long)spool->min_hpages << hpage_shift);
1120 	}
1121 	return 0;
1122 }
1123 
1124 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1125 {
1126 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
1127 	struct hstate *h = hstate_inode(d_inode(dentry));
1128 	u64 id = huge_encode_dev(dentry->d_sb->s_dev);
1129 
1130 	buf->f_fsid = u64_to_fsid(id);
1131 	buf->f_type = HUGETLBFS_MAGIC;
1132 	buf->f_bsize = huge_page_size(h);
1133 	if (sbinfo) {
1134 		spin_lock(&sbinfo->stat_lock);
1135 		/* If no limits set, just report 0 or -1 for max/free/used
1136 		 * blocks, like simple_statfs() */
1137 		if (sbinfo->spool) {
1138 			long free_pages;
1139 
1140 			spin_lock_irq(&sbinfo->spool->lock);
1141 			buf->f_blocks = sbinfo->spool->max_hpages;
1142 			free_pages = sbinfo->spool->max_hpages
1143 				- sbinfo->spool->used_hpages;
1144 			buf->f_bavail = buf->f_bfree = free_pages;
1145 			spin_unlock_irq(&sbinfo->spool->lock);
1146 			buf->f_files = sbinfo->max_inodes;
1147 			buf->f_ffree = sbinfo->free_inodes;
1148 		}
1149 		spin_unlock(&sbinfo->stat_lock);
1150 	}
1151 	buf->f_namelen = NAME_MAX;
1152 	return 0;
1153 }
1154 
1155 static void hugetlbfs_put_super(struct super_block *sb)
1156 {
1157 	struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1158 
1159 	if (sbi) {
1160 		sb->s_fs_info = NULL;
1161 
1162 		if (sbi->spool)
1163 			hugepage_put_subpool(sbi->spool);
1164 
1165 		kfree(sbi);
1166 	}
1167 }
1168 
1169 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1170 {
1171 	if (sbinfo->free_inodes >= 0) {
1172 		spin_lock(&sbinfo->stat_lock);
1173 		if (unlikely(!sbinfo->free_inodes)) {
1174 			spin_unlock(&sbinfo->stat_lock);
1175 			return 0;
1176 		}
1177 		sbinfo->free_inodes--;
1178 		spin_unlock(&sbinfo->stat_lock);
1179 	}
1180 
1181 	return 1;
1182 }
1183 
1184 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1185 {
1186 	if (sbinfo->free_inodes >= 0) {
1187 		spin_lock(&sbinfo->stat_lock);
1188 		sbinfo->free_inodes++;
1189 		spin_unlock(&sbinfo->stat_lock);
1190 	}
1191 }
1192 
1193 
1194 static struct kmem_cache *hugetlbfs_inode_cachep;
1195 
1196 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1197 {
1198 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1199 	struct hugetlbfs_inode_info *p;
1200 
1201 	if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1202 		return NULL;
1203 	p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL);
1204 	if (unlikely(!p)) {
1205 		hugetlbfs_inc_free_inodes(sbinfo);
1206 		return NULL;
1207 	}
1208 	return &p->vfs_inode;
1209 }
1210 
1211 static void hugetlbfs_free_inode(struct inode *inode)
1212 {
1213 	trace_hugetlbfs_free_inode(inode);
1214 	kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1215 }
1216 
1217 static void hugetlbfs_destroy_inode(struct inode *inode)
1218 {
1219 	hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1220 }
1221 
1222 static const struct address_space_operations hugetlbfs_aops = {
1223 	.write_begin	= hugetlbfs_write_begin,
1224 	.write_end	= hugetlbfs_write_end,
1225 	.dirty_folio	= noop_dirty_folio,
1226 	.migrate_folio  = hugetlbfs_migrate_folio,
1227 	.error_remove_folio	= hugetlbfs_error_remove_folio,
1228 };
1229 
1230 
1231 static void init_once(void *foo)
1232 {
1233 	struct hugetlbfs_inode_info *ei = foo;
1234 
1235 	inode_init_once(&ei->vfs_inode);
1236 }
1237 
1238 static const struct file_operations hugetlbfs_file_operations = {
1239 	.read_iter		= hugetlbfs_read_iter,
1240 	.mmap			= hugetlbfs_file_mmap,
1241 	.fsync			= noop_fsync,
1242 	.get_unmapped_area	= hugetlb_get_unmapped_area,
1243 	.llseek			= default_llseek,
1244 	.fallocate		= hugetlbfs_fallocate,
1245 	.fop_flags		= FOP_HUGE_PAGES,
1246 };
1247 
1248 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1249 	.create		= hugetlbfs_create,
1250 	.lookup		= simple_lookup,
1251 	.link		= simple_link,
1252 	.unlink		= simple_unlink,
1253 	.symlink	= hugetlbfs_symlink,
1254 	.mkdir		= hugetlbfs_mkdir,
1255 	.rmdir		= simple_rmdir,
1256 	.mknod		= hugetlbfs_mknod,
1257 	.rename		= simple_rename,
1258 	.setattr	= hugetlbfs_setattr,
1259 	.tmpfile	= hugetlbfs_tmpfile,
1260 };
1261 
1262 static const struct inode_operations hugetlbfs_inode_operations = {
1263 	.setattr	= hugetlbfs_setattr,
1264 };
1265 
1266 static const struct super_operations hugetlbfs_ops = {
1267 	.alloc_inode    = hugetlbfs_alloc_inode,
1268 	.free_inode     = hugetlbfs_free_inode,
1269 	.destroy_inode  = hugetlbfs_destroy_inode,
1270 	.evict_inode	= hugetlbfs_evict_inode,
1271 	.statfs		= hugetlbfs_statfs,
1272 	.put_super	= hugetlbfs_put_super,
1273 	.show_options	= hugetlbfs_show_options,
1274 };
1275 
1276 /*
1277  * Convert size option passed from command line to number of huge pages
1278  * in the pool specified by hstate.  Size option could be in bytes
1279  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1280  */
1281 static long
1282 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1283 			 enum hugetlbfs_size_type val_type)
1284 {
1285 	if (val_type == NO_SIZE)
1286 		return -1;
1287 
1288 	if (val_type == SIZE_PERCENT) {
1289 		size_opt <<= huge_page_shift(h);
1290 		size_opt *= h->max_huge_pages;
1291 		do_div(size_opt, 100);
1292 	}
1293 
1294 	size_opt >>= huge_page_shift(h);
1295 	return size_opt;
1296 }
1297 
1298 /*
1299  * Parse one mount parameter.
1300  */
1301 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1302 {
1303 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1304 	struct fs_parse_result result;
1305 	struct hstate *h;
1306 	char *rest;
1307 	unsigned long ps;
1308 	int opt;
1309 
1310 	opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1311 	if (opt < 0)
1312 		return opt;
1313 
1314 	switch (opt) {
1315 	case Opt_uid:
1316 		ctx->uid = result.uid;
1317 		return 0;
1318 
1319 	case Opt_gid:
1320 		ctx->gid = result.gid;
1321 		return 0;
1322 
1323 	case Opt_mode:
1324 		ctx->mode = result.uint_32 & 01777U;
1325 		return 0;
1326 
1327 	case Opt_size:
1328 		/* memparse() will accept a K/M/G without a digit */
1329 		if (!param->string || !isdigit(param->string[0]))
1330 			goto bad_val;
1331 		ctx->max_size_opt = memparse(param->string, &rest);
1332 		ctx->max_val_type = SIZE_STD;
1333 		if (*rest == '%')
1334 			ctx->max_val_type = SIZE_PERCENT;
1335 		return 0;
1336 
1337 	case Opt_nr_inodes:
1338 		/* memparse() will accept a K/M/G without a digit */
1339 		if (!param->string || !isdigit(param->string[0]))
1340 			goto bad_val;
1341 		ctx->nr_inodes = memparse(param->string, &rest);
1342 		return 0;
1343 
1344 	case Opt_pagesize:
1345 		ps = memparse(param->string, &rest);
1346 		h = size_to_hstate(ps);
1347 		if (!h) {
1348 			pr_err("Unsupported page size %lu MB\n", ps / SZ_1M);
1349 			return -EINVAL;
1350 		}
1351 		ctx->hstate = h;
1352 		return 0;
1353 
1354 	case Opt_min_size:
1355 		/* memparse() will accept a K/M/G without a digit */
1356 		if (!param->string || !isdigit(param->string[0]))
1357 			goto bad_val;
1358 		ctx->min_size_opt = memparse(param->string, &rest);
1359 		ctx->min_val_type = SIZE_STD;
1360 		if (*rest == '%')
1361 			ctx->min_val_type = SIZE_PERCENT;
1362 		return 0;
1363 
1364 	default:
1365 		return -EINVAL;
1366 	}
1367 
1368 bad_val:
1369 	return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1370 		      param->string, param->key);
1371 }
1372 
1373 /*
1374  * Validate the parsed options.
1375  */
1376 static int hugetlbfs_validate(struct fs_context *fc)
1377 {
1378 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1379 
1380 	/*
1381 	 * Use huge page pool size (in hstate) to convert the size
1382 	 * options to number of huge pages.  If NO_SIZE, -1 is returned.
1383 	 */
1384 	ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1385 						   ctx->max_size_opt,
1386 						   ctx->max_val_type);
1387 	ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1388 						   ctx->min_size_opt,
1389 						   ctx->min_val_type);
1390 
1391 	/*
1392 	 * If max_size was specified, then min_size must be smaller
1393 	 */
1394 	if (ctx->max_val_type > NO_SIZE &&
1395 	    ctx->min_hpages > ctx->max_hpages) {
1396 		pr_err("Minimum size can not be greater than maximum size\n");
1397 		return -EINVAL;
1398 	}
1399 
1400 	return 0;
1401 }
1402 
1403 static int
1404 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1405 {
1406 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1407 	struct hugetlbfs_sb_info *sbinfo;
1408 
1409 	sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1410 	if (!sbinfo)
1411 		return -ENOMEM;
1412 	sb->s_fs_info = sbinfo;
1413 	spin_lock_init(&sbinfo->stat_lock);
1414 	sbinfo->hstate		= ctx->hstate;
1415 	sbinfo->max_inodes	= ctx->nr_inodes;
1416 	sbinfo->free_inodes	= ctx->nr_inodes;
1417 	sbinfo->spool		= NULL;
1418 	sbinfo->uid		= ctx->uid;
1419 	sbinfo->gid		= ctx->gid;
1420 	sbinfo->mode		= ctx->mode;
1421 
1422 	/*
1423 	 * Allocate and initialize subpool if maximum or minimum size is
1424 	 * specified.  Any needed reservations (for minimum size) are taken
1425 	 * when the subpool is created.
1426 	 */
1427 	if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1428 		sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1429 						     ctx->max_hpages,
1430 						     ctx->min_hpages);
1431 		if (!sbinfo->spool)
1432 			goto out_free;
1433 	}
1434 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1435 	sb->s_blocksize = huge_page_size(ctx->hstate);
1436 	sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1437 	sb->s_magic = HUGETLBFS_MAGIC;
1438 	sb->s_op = &hugetlbfs_ops;
1439 	sb->s_time_gran = 1;
1440 
1441 	/*
1442 	 * Due to the special and limited functionality of hugetlbfs, it does
1443 	 * not work well as a stacking filesystem.
1444 	 */
1445 	sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
1446 	sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1447 	if (!sb->s_root)
1448 		goto out_free;
1449 	return 0;
1450 out_free:
1451 	kfree(sbinfo->spool);
1452 	kfree(sbinfo);
1453 	return -ENOMEM;
1454 }
1455 
1456 static int hugetlbfs_get_tree(struct fs_context *fc)
1457 {
1458 	int err = hugetlbfs_validate(fc);
1459 	if (err)
1460 		return err;
1461 	return get_tree_nodev(fc, hugetlbfs_fill_super);
1462 }
1463 
1464 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1465 {
1466 	kfree(fc->fs_private);
1467 }
1468 
1469 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1470 	.free		= hugetlbfs_fs_context_free,
1471 	.parse_param	= hugetlbfs_parse_param,
1472 	.get_tree	= hugetlbfs_get_tree,
1473 };
1474 
1475 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1476 {
1477 	struct hugetlbfs_fs_context *ctx;
1478 
1479 	ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1480 	if (!ctx)
1481 		return -ENOMEM;
1482 
1483 	ctx->max_hpages	= -1; /* No limit on size by default */
1484 	ctx->nr_inodes	= -1; /* No limit on number of inodes by default */
1485 	ctx->uid	= current_fsuid();
1486 	ctx->gid	= current_fsgid();
1487 	ctx->mode	= 0755;
1488 	ctx->hstate	= &default_hstate;
1489 	ctx->min_hpages	= -1; /* No default minimum size */
1490 	ctx->max_val_type = NO_SIZE;
1491 	ctx->min_val_type = NO_SIZE;
1492 	fc->fs_private = ctx;
1493 	fc->ops	= &hugetlbfs_fs_context_ops;
1494 	return 0;
1495 }
1496 
1497 static struct file_system_type hugetlbfs_fs_type = {
1498 	.name			= "hugetlbfs",
1499 	.init_fs_context	= hugetlbfs_init_fs_context,
1500 	.parameters		= hugetlb_fs_parameters,
1501 	.kill_sb		= kill_litter_super,
1502 	.fs_flags               = FS_ALLOW_IDMAP,
1503 };
1504 
1505 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1506 
1507 static int can_do_hugetlb_shm(void)
1508 {
1509 	kgid_t shm_group;
1510 	shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1511 	return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1512 }
1513 
1514 static int get_hstate_idx(int page_size_log)
1515 {
1516 	struct hstate *h = hstate_sizelog(page_size_log);
1517 
1518 	if (!h)
1519 		return -1;
1520 	return hstate_index(h);
1521 }
1522 
1523 /*
1524  * Note that size should be aligned to proper hugepage size in caller side,
1525  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1526  */
1527 struct file *hugetlb_file_setup(const char *name, size_t size,
1528 				vm_flags_t acctflag, int creat_flags,
1529 				int page_size_log)
1530 {
1531 	struct inode *inode;
1532 	struct vfsmount *mnt;
1533 	int hstate_idx;
1534 	struct file *file;
1535 
1536 	hstate_idx = get_hstate_idx(page_size_log);
1537 	if (hstate_idx < 0)
1538 		return ERR_PTR(-ENODEV);
1539 
1540 	mnt = hugetlbfs_vfsmount[hstate_idx];
1541 	if (!mnt)
1542 		return ERR_PTR(-ENOENT);
1543 
1544 	if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1545 		struct ucounts *ucounts = current_ucounts();
1546 
1547 		if (user_shm_lock(size, ucounts)) {
1548 			pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n",
1549 				current->comm, current->pid);
1550 			user_shm_unlock(size, ucounts);
1551 		}
1552 		return ERR_PTR(-EPERM);
1553 	}
1554 
1555 	file = ERR_PTR(-ENOSPC);
1556 	/* hugetlbfs_vfsmount[] mounts do not use idmapped mounts.  */
1557 	inode = hugetlbfs_get_inode(mnt->mnt_sb, &nop_mnt_idmap, NULL,
1558 				    S_IFREG | S_IRWXUGO, 0);
1559 	if (!inode)
1560 		goto out;
1561 	if (creat_flags == HUGETLB_SHMFS_INODE)
1562 		inode->i_flags |= S_PRIVATE;
1563 
1564 	inode->i_size = size;
1565 	clear_nlink(inode);
1566 
1567 	if (!hugetlb_reserve_pages(inode, 0,
1568 			size >> huge_page_shift(hstate_inode(inode)), NULL,
1569 			acctflag))
1570 		file = ERR_PTR(-ENOMEM);
1571 	else
1572 		file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1573 					&hugetlbfs_file_operations);
1574 	if (!IS_ERR(file))
1575 		return file;
1576 
1577 	iput(inode);
1578 out:
1579 	return file;
1580 }
1581 
1582 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1583 {
1584 	struct fs_context *fc;
1585 	struct vfsmount *mnt;
1586 
1587 	fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1588 	if (IS_ERR(fc)) {
1589 		mnt = ERR_CAST(fc);
1590 	} else {
1591 		struct hugetlbfs_fs_context *ctx = fc->fs_private;
1592 		ctx->hstate = h;
1593 		mnt = fc_mount(fc);
1594 		put_fs_context(fc);
1595 	}
1596 	if (IS_ERR(mnt))
1597 		pr_err("Cannot mount internal hugetlbfs for page size %luK",
1598 		       huge_page_size(h) / SZ_1K);
1599 	return mnt;
1600 }
1601 
1602 static int __init init_hugetlbfs_fs(void)
1603 {
1604 	struct vfsmount *mnt;
1605 	struct hstate *h;
1606 	int error;
1607 	int i;
1608 
1609 	if (!hugepages_supported()) {
1610 		pr_info("disabling because there are no supported hugepage sizes\n");
1611 		return -ENOTSUPP;
1612 	}
1613 
1614 	error = -ENOMEM;
1615 	hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1616 					sizeof(struct hugetlbfs_inode_info),
1617 					0, SLAB_ACCOUNT, init_once);
1618 	if (hugetlbfs_inode_cachep == NULL)
1619 		goto out;
1620 
1621 	error = register_filesystem(&hugetlbfs_fs_type);
1622 	if (error)
1623 		goto out_free;
1624 
1625 	/* default hstate mount is required */
1626 	mnt = mount_one_hugetlbfs(&default_hstate);
1627 	if (IS_ERR(mnt)) {
1628 		error = PTR_ERR(mnt);
1629 		goto out_unreg;
1630 	}
1631 	hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1632 
1633 	/* other hstates are optional */
1634 	i = 0;
1635 	for_each_hstate(h) {
1636 		if (i == default_hstate_idx) {
1637 			i++;
1638 			continue;
1639 		}
1640 
1641 		mnt = mount_one_hugetlbfs(h);
1642 		if (IS_ERR(mnt))
1643 			hugetlbfs_vfsmount[i] = NULL;
1644 		else
1645 			hugetlbfs_vfsmount[i] = mnt;
1646 		i++;
1647 	}
1648 
1649 	return 0;
1650 
1651  out_unreg:
1652 	(void)unregister_filesystem(&hugetlbfs_fs_type);
1653  out_free:
1654 	kmem_cache_destroy(hugetlbfs_inode_cachep);
1655  out:
1656 	return error;
1657 }
1658 fs_initcall(init_hugetlbfs_fs)
1659