1 /* 2 * hugetlbpage-backed filesystem. Based on ramfs. 3 * 4 * Nadia Yvette Chambers, 2002 5 * 6 * Copyright (C) 2002 Linus Torvalds. 7 * License: GPL 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/thread_info.h> 13 #include <asm/current.h> 14 #include <linux/falloc.h> 15 #include <linux/fs.h> 16 #include <linux/mount.h> 17 #include <linux/file.h> 18 #include <linux/kernel.h> 19 #include <linux/writeback.h> 20 #include <linux/pagemap.h> 21 #include <linux/highmem.h> 22 #include <linux/init.h> 23 #include <linux/string.h> 24 #include <linux/capability.h> 25 #include <linux/ctype.h> 26 #include <linux/backing-dev.h> 27 #include <linux/hugetlb.h> 28 #include <linux/pagevec.h> 29 #include <linux/fs_parser.h> 30 #include <linux/mman.h> 31 #include <linux/slab.h> 32 #include <linux/dnotify.h> 33 #include <linux/statfs.h> 34 #include <linux/security.h> 35 #include <linux/magic.h> 36 #include <linux/migrate.h> 37 #include <linux/uio.h> 38 39 #include <linux/uaccess.h> 40 #include <linux/sched/mm.h> 41 42 #define CREATE_TRACE_POINTS 43 #include <trace/events/hugetlbfs.h> 44 45 static const struct address_space_operations hugetlbfs_aops; 46 static const struct file_operations hugetlbfs_file_operations; 47 static const struct inode_operations hugetlbfs_dir_inode_operations; 48 static const struct inode_operations hugetlbfs_inode_operations; 49 50 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT }; 51 52 struct hugetlbfs_fs_context { 53 struct hstate *hstate; 54 unsigned long long max_size_opt; 55 unsigned long long min_size_opt; 56 long max_hpages; 57 long nr_inodes; 58 long min_hpages; 59 enum hugetlbfs_size_type max_val_type; 60 enum hugetlbfs_size_type min_val_type; 61 kuid_t uid; 62 kgid_t gid; 63 umode_t mode; 64 }; 65 66 int sysctl_hugetlb_shm_group; 67 68 enum hugetlb_param { 69 Opt_gid, 70 Opt_min_size, 71 Opt_mode, 72 Opt_nr_inodes, 73 Opt_pagesize, 74 Opt_size, 75 Opt_uid, 76 }; 77 78 static const struct fs_parameter_spec hugetlb_fs_parameters[] = { 79 fsparam_gid ("gid", Opt_gid), 80 fsparam_string("min_size", Opt_min_size), 81 fsparam_u32oct("mode", Opt_mode), 82 fsparam_string("nr_inodes", Opt_nr_inodes), 83 fsparam_string("pagesize", Opt_pagesize), 84 fsparam_string("size", Opt_size), 85 fsparam_uid ("uid", Opt_uid), 86 {} 87 }; 88 89 /* 90 * Mask used when checking the page offset value passed in via system 91 * calls. This value will be converted to a loff_t which is signed. 92 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the 93 * value. The extra bit (- 1 in the shift value) is to take the sign 94 * bit into account. 95 */ 96 #define PGOFF_LOFFT_MAX \ 97 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1))) 98 99 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma) 100 { 101 struct inode *inode = file_inode(file); 102 loff_t len, vma_len; 103 int ret; 104 struct hstate *h = hstate_file(file); 105 vm_flags_t vm_flags; 106 107 /* 108 * vma address alignment (but not the pgoff alignment) has 109 * already been checked by prepare_hugepage_range. If you add 110 * any error returns here, do so after setting VM_HUGETLB, so 111 * is_vm_hugetlb_page tests below unmap_region go the right 112 * way when do_mmap unwinds (may be important on powerpc 113 * and ia64). 114 */ 115 vm_flags_set(vma, VM_HUGETLB | VM_DONTEXPAND); 116 vma->vm_ops = &hugetlb_vm_ops; 117 118 /* 119 * page based offset in vm_pgoff could be sufficiently large to 120 * overflow a loff_t when converted to byte offset. This can 121 * only happen on architectures where sizeof(loff_t) == 122 * sizeof(unsigned long). So, only check in those instances. 123 */ 124 if (sizeof(unsigned long) == sizeof(loff_t)) { 125 if (vma->vm_pgoff & PGOFF_LOFFT_MAX) 126 return -EINVAL; 127 } 128 129 /* must be huge page aligned */ 130 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT)) 131 return -EINVAL; 132 133 vma_len = (loff_t)(vma->vm_end - vma->vm_start); 134 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 135 /* check for overflow */ 136 if (len < vma_len) 137 return -EINVAL; 138 139 inode_lock(inode); 140 file_accessed(file); 141 142 ret = -ENOMEM; 143 144 vm_flags = vma->vm_flags; 145 /* 146 * for SHM_HUGETLB, the pages are reserved in the shmget() call so skip 147 * reserving here. Note: only for SHM hugetlbfs file, the inode 148 * flag S_PRIVATE is set. 149 */ 150 if (inode->i_flags & S_PRIVATE) 151 vm_flags |= VM_NORESERVE; 152 153 if (hugetlb_reserve_pages(inode, 154 vma->vm_pgoff >> huge_page_order(h), 155 len >> huge_page_shift(h), vma, 156 vm_flags) < 0) 157 goto out; 158 159 ret = 0; 160 if (vma->vm_flags & VM_WRITE && inode->i_size < len) 161 i_size_write(inode, len); 162 out: 163 inode_unlock(inode); 164 165 return ret; 166 } 167 168 /* 169 * Called under mmap_write_lock(mm). 170 */ 171 172 unsigned long 173 hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 174 unsigned long len, unsigned long pgoff, 175 unsigned long flags) 176 { 177 unsigned long addr0 = 0; 178 struct hstate *h = hstate_file(file); 179 180 if (len & ~huge_page_mask(h)) 181 return -EINVAL; 182 if ((flags & MAP_FIXED) && (addr & ~huge_page_mask(h))) 183 return -EINVAL; 184 if (addr) 185 addr0 = ALIGN(addr, huge_page_size(h)); 186 187 return mm_get_unmapped_area_vmflags(current->mm, file, addr0, len, pgoff, 188 flags, 0); 189 } 190 191 /* 192 * Someone wants to read @bytes from a HWPOISON hugetlb @folio from @offset. 193 * Returns the maximum number of bytes one can read without touching the 1st raw 194 * HWPOISON page. 195 */ 196 static size_t adjust_range_hwpoison(struct folio *folio, size_t offset, 197 size_t bytes) 198 { 199 struct page *page = folio_page(folio, offset / PAGE_SIZE); 200 size_t safe_bytes; 201 202 if (is_raw_hwpoison_page_in_hugepage(page)) 203 return 0; 204 /* Safe to read the remaining bytes in this page. */ 205 safe_bytes = PAGE_SIZE - (offset % PAGE_SIZE); 206 page++; 207 208 /* Check each remaining page as long as we are not done yet. */ 209 for (; safe_bytes < bytes; safe_bytes += PAGE_SIZE, page++) 210 if (is_raw_hwpoison_page_in_hugepage(page)) 211 break; 212 213 return min(safe_bytes, bytes); 214 } 215 216 /* 217 * Support for read() - Find the page attached to f_mapping and copy out the 218 * data. This provides functionality similar to filemap_read(). 219 */ 220 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to) 221 { 222 struct file *file = iocb->ki_filp; 223 struct hstate *h = hstate_file(file); 224 struct address_space *mapping = file->f_mapping; 225 struct inode *inode = mapping->host; 226 unsigned long index = iocb->ki_pos >> huge_page_shift(h); 227 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h); 228 unsigned long end_index; 229 loff_t isize; 230 ssize_t retval = 0; 231 232 while (iov_iter_count(to)) { 233 struct folio *folio; 234 size_t nr, copied, want; 235 236 /* nr is the maximum number of bytes to copy from this page */ 237 nr = huge_page_size(h); 238 isize = i_size_read(inode); 239 if (!isize) 240 break; 241 end_index = (isize - 1) >> huge_page_shift(h); 242 if (index > end_index) 243 break; 244 if (index == end_index) { 245 nr = ((isize - 1) & ~huge_page_mask(h)) + 1; 246 if (nr <= offset) 247 break; 248 } 249 nr = nr - offset; 250 251 /* Find the folio */ 252 folio = filemap_lock_hugetlb_folio(h, mapping, index); 253 if (IS_ERR(folio)) { 254 /* 255 * We have a HOLE, zero out the user-buffer for the 256 * length of the hole or request. 257 */ 258 copied = iov_iter_zero(nr, to); 259 } else { 260 folio_unlock(folio); 261 262 if (!folio_test_hwpoison(folio)) 263 want = nr; 264 else { 265 /* 266 * Adjust how many bytes safe to read without 267 * touching the 1st raw HWPOISON page after 268 * offset. 269 */ 270 want = adjust_range_hwpoison(folio, offset, nr); 271 if (want == 0) { 272 folio_put(folio); 273 retval = -EIO; 274 break; 275 } 276 } 277 278 /* 279 * We have the folio, copy it to user space buffer. 280 */ 281 copied = copy_folio_to_iter(folio, offset, want, to); 282 folio_put(folio); 283 } 284 offset += copied; 285 retval += copied; 286 if (copied != nr && iov_iter_count(to)) { 287 if (!retval) 288 retval = -EFAULT; 289 break; 290 } 291 index += offset >> huge_page_shift(h); 292 offset &= ~huge_page_mask(h); 293 } 294 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset; 295 return retval; 296 } 297 298 static int hugetlbfs_write_begin(const struct kiocb *iocb, 299 struct address_space *mapping, 300 loff_t pos, unsigned len, 301 struct folio **foliop, void **fsdata) 302 { 303 return -EINVAL; 304 } 305 306 static int hugetlbfs_write_end(const struct kiocb *iocb, 307 struct address_space *mapping, 308 loff_t pos, unsigned len, unsigned copied, 309 struct folio *folio, void *fsdata) 310 { 311 BUG(); 312 return -EINVAL; 313 } 314 315 static void hugetlb_delete_from_page_cache(struct folio *folio) 316 { 317 folio_clear_dirty(folio); 318 folio_clear_uptodate(folio); 319 filemap_remove_folio(folio); 320 } 321 322 /* 323 * Called with i_mmap_rwsem held for inode based vma maps. This makes 324 * sure vma (and vm_mm) will not go away. We also hold the hugetlb fault 325 * mutex for the page in the mapping. So, we can not race with page being 326 * faulted into the vma. 327 */ 328 static bool hugetlb_vma_maps_pfn(struct vm_area_struct *vma, 329 unsigned long addr, unsigned long pfn) 330 { 331 pte_t *ptep, pte; 332 333 ptep = hugetlb_walk(vma, addr, huge_page_size(hstate_vma(vma))); 334 if (!ptep) 335 return false; 336 337 pte = huge_ptep_get(vma->vm_mm, addr, ptep); 338 if (huge_pte_none(pte) || !pte_present(pte)) 339 return false; 340 341 if (pte_pfn(pte) == pfn) 342 return true; 343 344 return false; 345 } 346 347 /* 348 * Can vma_offset_start/vma_offset_end overflow on 32-bit arches? 349 * No, because the interval tree returns us only those vmas 350 * which overlap the truncated area starting at pgoff, 351 * and no vma on a 32-bit arch can span beyond the 4GB. 352 */ 353 static unsigned long vma_offset_start(struct vm_area_struct *vma, pgoff_t start) 354 { 355 unsigned long offset = 0; 356 357 if (vma->vm_pgoff < start) 358 offset = (start - vma->vm_pgoff) << PAGE_SHIFT; 359 360 return vma->vm_start + offset; 361 } 362 363 static unsigned long vma_offset_end(struct vm_area_struct *vma, pgoff_t end) 364 { 365 unsigned long t_end; 366 367 if (!end) 368 return vma->vm_end; 369 370 t_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) + vma->vm_start; 371 if (t_end > vma->vm_end) 372 t_end = vma->vm_end; 373 return t_end; 374 } 375 376 /* 377 * Called with hugetlb fault mutex held. Therefore, no more mappings to 378 * this folio can be created while executing the routine. 379 */ 380 static void hugetlb_unmap_file_folio(struct hstate *h, 381 struct address_space *mapping, 382 struct folio *folio, pgoff_t index) 383 { 384 struct rb_root_cached *root = &mapping->i_mmap; 385 struct hugetlb_vma_lock *vma_lock; 386 unsigned long pfn = folio_pfn(folio); 387 struct vm_area_struct *vma; 388 unsigned long v_start; 389 unsigned long v_end; 390 pgoff_t start, end; 391 392 start = index * pages_per_huge_page(h); 393 end = (index + 1) * pages_per_huge_page(h); 394 395 i_mmap_lock_write(mapping); 396 retry: 397 vma_lock = NULL; 398 vma_interval_tree_foreach(vma, root, start, end - 1) { 399 v_start = vma_offset_start(vma, start); 400 v_end = vma_offset_end(vma, end); 401 402 if (!hugetlb_vma_maps_pfn(vma, v_start, pfn)) 403 continue; 404 405 if (!hugetlb_vma_trylock_write(vma)) { 406 vma_lock = vma->vm_private_data; 407 /* 408 * If we can not get vma lock, we need to drop 409 * immap_sema and take locks in order. First, 410 * take a ref on the vma_lock structure so that 411 * we can be guaranteed it will not go away when 412 * dropping immap_sema. 413 */ 414 kref_get(&vma_lock->refs); 415 break; 416 } 417 418 unmap_hugepage_range(vma, v_start, v_end, NULL, 419 ZAP_FLAG_DROP_MARKER); 420 hugetlb_vma_unlock_write(vma); 421 } 422 423 i_mmap_unlock_write(mapping); 424 425 if (vma_lock) { 426 /* 427 * Wait on vma_lock. We know it is still valid as we have 428 * a reference. We must 'open code' vma locking as we do 429 * not know if vma_lock is still attached to vma. 430 */ 431 down_write(&vma_lock->rw_sema); 432 i_mmap_lock_write(mapping); 433 434 vma = vma_lock->vma; 435 if (!vma) { 436 /* 437 * If lock is no longer attached to vma, then just 438 * unlock, drop our reference and retry looking for 439 * other vmas. 440 */ 441 up_write(&vma_lock->rw_sema); 442 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 443 goto retry; 444 } 445 446 /* 447 * vma_lock is still attached to vma. Check to see if vma 448 * still maps page and if so, unmap. 449 */ 450 v_start = vma_offset_start(vma, start); 451 v_end = vma_offset_end(vma, end); 452 if (hugetlb_vma_maps_pfn(vma, v_start, pfn)) 453 unmap_hugepage_range(vma, v_start, v_end, NULL, 454 ZAP_FLAG_DROP_MARKER); 455 456 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 457 hugetlb_vma_unlock_write(vma); 458 459 goto retry; 460 } 461 } 462 463 static void 464 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end, 465 zap_flags_t zap_flags) 466 { 467 struct vm_area_struct *vma; 468 469 /* 470 * end == 0 indicates that the entire range after start should be 471 * unmapped. Note, end is exclusive, whereas the interval tree takes 472 * an inclusive "last". 473 */ 474 vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) { 475 unsigned long v_start; 476 unsigned long v_end; 477 478 if (!hugetlb_vma_trylock_write(vma)) 479 continue; 480 481 /* 482 * Skip VMAs without shareable locks. Per the design in commit 483 * 40549ba8f8e0, these will be handled by remove_inode_hugepages() 484 * called after this function with proper locking. 485 */ 486 if (!__vma_shareable_lock(vma)) 487 goto skip; 488 489 v_start = vma_offset_start(vma, start); 490 v_end = vma_offset_end(vma, end); 491 492 unmap_hugepage_range(vma, v_start, v_end, NULL, zap_flags); 493 494 /* 495 * Note that vma lock only exists for shared/non-private 496 * vmas. Therefore, lock is not held when calling 497 * unmap_hugepage_range for private vmas. 498 */ 499 skip: 500 hugetlb_vma_unlock_write(vma); 501 } 502 } 503 504 /* 505 * Called with hugetlb fault mutex held. 506 * Returns true if page was actually removed, false otherwise. 507 */ 508 static bool remove_inode_single_folio(struct hstate *h, struct inode *inode, 509 struct address_space *mapping, 510 struct folio *folio, pgoff_t index, 511 bool truncate_op) 512 { 513 bool ret = false; 514 515 /* 516 * If folio is mapped, it was faulted in after being 517 * unmapped in caller or hugetlb_vmdelete_list() skips 518 * unmapping it due to fail to grab lock. Unmap (again) 519 * while holding the fault mutex. The mutex will prevent 520 * faults until we finish removing the folio. Hold folio 521 * lock to guarantee no concurrent migration. 522 */ 523 folio_lock(folio); 524 if (unlikely(folio_mapped(folio))) 525 hugetlb_unmap_file_folio(h, mapping, folio, index); 526 527 /* 528 * We must remove the folio from page cache before removing 529 * the region/ reserve map (hugetlb_unreserve_pages). In 530 * rare out of memory conditions, removal of the region/reserve 531 * map could fail. Correspondingly, the subpool and global 532 * reserve usage count can need to be adjusted. 533 */ 534 VM_BUG_ON_FOLIO(folio_test_hugetlb_restore_reserve(folio), folio); 535 hugetlb_delete_from_page_cache(folio); 536 ret = true; 537 if (!truncate_op) { 538 if (unlikely(hugetlb_unreserve_pages(inode, index, 539 index + 1, 1))) 540 hugetlb_fix_reserve_counts(inode); 541 } 542 543 folio_unlock(folio); 544 return ret; 545 } 546 547 /* 548 * remove_inode_hugepages handles two distinct cases: truncation and hole 549 * punch. There are subtle differences in operation for each case. 550 * 551 * truncation is indicated by end of range being LLONG_MAX 552 * In this case, we first scan the range and release found pages. 553 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserve 554 * maps and global counts. Page faults can race with truncation. 555 * During faults, hugetlb_no_page() checks i_size before page allocation, 556 * and again after obtaining page table lock. It will 'back out' 557 * allocations in the truncated range. 558 * hole punch is indicated if end is not LLONG_MAX 559 * In the hole punch case we scan the range and release found pages. 560 * Only when releasing a page is the associated region/reserve map 561 * deleted. The region/reserve map for ranges without associated 562 * pages are not modified. Page faults can race with hole punch. 563 * This is indicated if we find a mapped page. 564 * Note: If the passed end of range value is beyond the end of file, but 565 * not LLONG_MAX this routine still performs a hole punch operation. 566 */ 567 static void remove_inode_hugepages(struct inode *inode, loff_t lstart, 568 loff_t lend) 569 { 570 struct hstate *h = hstate_inode(inode); 571 struct address_space *mapping = &inode->i_data; 572 const pgoff_t end = lend >> PAGE_SHIFT; 573 struct folio_batch fbatch; 574 pgoff_t next, index; 575 int i, freed = 0; 576 bool truncate_op = (lend == LLONG_MAX); 577 578 folio_batch_init(&fbatch); 579 next = lstart >> PAGE_SHIFT; 580 while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) { 581 for (i = 0; i < folio_batch_count(&fbatch); ++i) { 582 struct folio *folio = fbatch.folios[i]; 583 u32 hash = 0; 584 585 index = folio->index >> huge_page_order(h); 586 hash = hugetlb_fault_mutex_hash(mapping, index); 587 mutex_lock(&hugetlb_fault_mutex_table[hash]); 588 589 /* 590 * Remove folio that was part of folio_batch. 591 */ 592 if (remove_inode_single_folio(h, inode, mapping, folio, 593 index, truncate_op)) 594 freed++; 595 596 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 597 } 598 folio_batch_release(&fbatch); 599 cond_resched(); 600 } 601 602 if (truncate_op) 603 (void)hugetlb_unreserve_pages(inode, 604 lstart >> huge_page_shift(h), 605 LONG_MAX, freed); 606 } 607 608 static void hugetlbfs_evict_inode(struct inode *inode) 609 { 610 struct resv_map *resv_map; 611 612 trace_hugetlbfs_evict_inode(inode); 613 remove_inode_hugepages(inode, 0, LLONG_MAX); 614 615 /* 616 * Get the resv_map from the address space embedded in the inode. 617 * This is the address space which points to any resv_map allocated 618 * at inode creation time. If this is a device special inode, 619 * i_mapping may not point to the original address space. 620 */ 621 resv_map = (struct resv_map *)(&inode->i_data)->i_private_data; 622 /* Only regular and link inodes have associated reserve maps */ 623 if (resv_map) 624 resv_map_release(&resv_map->refs); 625 clear_inode(inode); 626 } 627 628 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset) 629 { 630 pgoff_t pgoff; 631 struct address_space *mapping = inode->i_mapping; 632 struct hstate *h = hstate_inode(inode); 633 634 BUG_ON(offset & ~huge_page_mask(h)); 635 pgoff = offset >> PAGE_SHIFT; 636 637 i_size_write(inode, offset); 638 i_mmap_lock_write(mapping); 639 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 640 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0, 641 ZAP_FLAG_DROP_MARKER); 642 i_mmap_unlock_write(mapping); 643 remove_inode_hugepages(inode, offset, LLONG_MAX); 644 } 645 646 static void hugetlbfs_zero_partial_page(struct hstate *h, 647 struct address_space *mapping, 648 loff_t start, 649 loff_t end) 650 { 651 pgoff_t idx = start >> huge_page_shift(h); 652 struct folio *folio; 653 654 folio = filemap_lock_hugetlb_folio(h, mapping, idx); 655 if (IS_ERR(folio)) 656 return; 657 658 start = start & ~huge_page_mask(h); 659 end = end & ~huge_page_mask(h); 660 if (!end) 661 end = huge_page_size(h); 662 663 folio_zero_segment(folio, (size_t)start, (size_t)end); 664 665 folio_unlock(folio); 666 folio_put(folio); 667 } 668 669 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 670 { 671 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 672 struct address_space *mapping = inode->i_mapping; 673 struct hstate *h = hstate_inode(inode); 674 loff_t hpage_size = huge_page_size(h); 675 loff_t hole_start, hole_end; 676 677 /* 678 * hole_start and hole_end indicate the full pages within the hole. 679 */ 680 hole_start = round_up(offset, hpage_size); 681 hole_end = round_down(offset + len, hpage_size); 682 683 inode_lock(inode); 684 685 /* protected by i_rwsem */ 686 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 687 inode_unlock(inode); 688 return -EPERM; 689 } 690 691 i_mmap_lock_write(mapping); 692 693 /* If range starts before first full page, zero partial page. */ 694 if (offset < hole_start) 695 hugetlbfs_zero_partial_page(h, mapping, 696 offset, min(offset + len, hole_start)); 697 698 /* Unmap users of full pages in the hole. */ 699 if (hole_end > hole_start) { 700 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 701 hugetlb_vmdelete_list(&mapping->i_mmap, 702 hole_start >> PAGE_SHIFT, 703 hole_end >> PAGE_SHIFT, 0); 704 } 705 706 /* If range extends beyond last full page, zero partial page. */ 707 if ((offset + len) > hole_end && (offset + len) > hole_start) 708 hugetlbfs_zero_partial_page(h, mapping, 709 hole_end, offset + len); 710 711 i_mmap_unlock_write(mapping); 712 713 /* Remove full pages from the file. */ 714 if (hole_end > hole_start) 715 remove_inode_hugepages(inode, hole_start, hole_end); 716 717 inode_unlock(inode); 718 719 return 0; 720 } 721 722 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset, 723 loff_t len) 724 { 725 struct inode *inode = file_inode(file); 726 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 727 struct address_space *mapping = inode->i_mapping; 728 struct hstate *h = hstate_inode(inode); 729 struct vm_area_struct pseudo_vma; 730 struct mm_struct *mm = current->mm; 731 loff_t hpage_size = huge_page_size(h); 732 unsigned long hpage_shift = huge_page_shift(h); 733 pgoff_t start, index, end; 734 int error; 735 u32 hash; 736 737 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 738 return -EOPNOTSUPP; 739 740 if (mode & FALLOC_FL_PUNCH_HOLE) { 741 error = hugetlbfs_punch_hole(inode, offset, len); 742 goto out_nolock; 743 } 744 745 /* 746 * Default preallocate case. 747 * For this range, start is rounded down and end is rounded up 748 * as well as being converted to page offsets. 749 */ 750 start = offset >> hpage_shift; 751 end = (offset + len + hpage_size - 1) >> hpage_shift; 752 753 inode_lock(inode); 754 755 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 756 error = inode_newsize_ok(inode, offset + len); 757 if (error) 758 goto out; 759 760 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 761 error = -EPERM; 762 goto out; 763 } 764 765 /* 766 * Initialize a pseudo vma as this is required by the huge page 767 * allocation routines. 768 */ 769 vma_init(&pseudo_vma, mm); 770 vm_flags_init(&pseudo_vma, VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 771 pseudo_vma.vm_file = file; 772 773 for (index = start; index < end; index++) { 774 /* 775 * This is supposed to be the vaddr where the page is being 776 * faulted in, but we have no vaddr here. 777 */ 778 struct folio *folio; 779 unsigned long addr; 780 781 cond_resched(); 782 783 /* 784 * fallocate(2) manpage permits EINTR; we may have been 785 * interrupted because we are using up too much memory. 786 */ 787 if (signal_pending(current)) { 788 error = -EINTR; 789 break; 790 } 791 792 /* addr is the offset within the file (zero based) */ 793 addr = index * hpage_size; 794 795 /* mutex taken here, fault path and hole punch */ 796 hash = hugetlb_fault_mutex_hash(mapping, index); 797 mutex_lock(&hugetlb_fault_mutex_table[hash]); 798 799 /* See if already present in mapping to avoid alloc/free */ 800 folio = filemap_get_folio(mapping, index << huge_page_order(h)); 801 if (!IS_ERR(folio)) { 802 folio_put(folio); 803 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 804 continue; 805 } 806 807 /* 808 * Allocate folio without setting the avoid_reserve argument. 809 * There certainly are no reserves associated with the 810 * pseudo_vma. However, there could be shared mappings with 811 * reserves for the file at the inode level. If we fallocate 812 * folios in these areas, we need to consume the reserves 813 * to keep reservation accounting consistent. 814 */ 815 folio = alloc_hugetlb_folio(&pseudo_vma, addr, false); 816 if (IS_ERR(folio)) { 817 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 818 error = PTR_ERR(folio); 819 goto out; 820 } 821 folio_zero_user(folio, addr); 822 __folio_mark_uptodate(folio); 823 error = hugetlb_add_to_page_cache(folio, mapping, index); 824 if (unlikely(error)) { 825 restore_reserve_on_error(h, &pseudo_vma, addr, folio); 826 folio_put(folio); 827 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 828 goto out; 829 } 830 831 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 832 833 folio_set_hugetlb_migratable(folio); 834 /* 835 * folio_unlock because locked by hugetlb_add_to_page_cache() 836 * folio_put() due to reference from alloc_hugetlb_folio() 837 */ 838 folio_unlock(folio); 839 folio_put(folio); 840 } 841 842 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 843 i_size_write(inode, offset + len); 844 inode_set_ctime_current(inode); 845 out: 846 inode_unlock(inode); 847 848 out_nolock: 849 trace_hugetlbfs_fallocate(inode, mode, offset, len, error); 850 return error; 851 } 852 853 static int hugetlbfs_setattr(struct mnt_idmap *idmap, 854 struct dentry *dentry, struct iattr *attr) 855 { 856 struct inode *inode = d_inode(dentry); 857 struct hstate *h = hstate_inode(inode); 858 int error; 859 unsigned int ia_valid = attr->ia_valid; 860 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 861 862 error = setattr_prepare(idmap, dentry, attr); 863 if (error) 864 return error; 865 866 trace_hugetlbfs_setattr(inode, dentry, attr); 867 868 if (ia_valid & ATTR_SIZE) { 869 loff_t oldsize = inode->i_size; 870 loff_t newsize = attr->ia_size; 871 872 if (newsize & ~huge_page_mask(h)) 873 return -EINVAL; 874 /* protected by i_rwsem */ 875 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 876 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 877 return -EPERM; 878 hugetlb_vmtruncate(inode, newsize); 879 } 880 881 setattr_copy(idmap, inode, attr); 882 mark_inode_dirty(inode); 883 return 0; 884 } 885 886 static struct inode *hugetlbfs_get_root(struct super_block *sb, 887 struct hugetlbfs_fs_context *ctx) 888 { 889 struct inode *inode; 890 891 inode = new_inode(sb); 892 if (inode) { 893 inode->i_ino = get_next_ino(); 894 inode->i_mode = S_IFDIR | ctx->mode; 895 inode->i_uid = ctx->uid; 896 inode->i_gid = ctx->gid; 897 simple_inode_init_ts(inode); 898 inode->i_op = &hugetlbfs_dir_inode_operations; 899 inode->i_fop = &simple_dir_operations; 900 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 901 inc_nlink(inode); 902 lockdep_annotate_inode_mutex_key(inode); 903 } 904 return inode; 905 } 906 907 /* 908 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never 909 * be taken from reclaim -- unlike regular filesystems. This needs an 910 * annotation because huge_pmd_share() does an allocation under hugetlb's 911 * i_mmap_rwsem. 912 */ 913 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key; 914 915 static struct inode *hugetlbfs_get_inode(struct super_block *sb, 916 struct mnt_idmap *idmap, 917 struct inode *dir, 918 umode_t mode, dev_t dev) 919 { 920 struct inode *inode; 921 struct resv_map *resv_map = NULL; 922 923 /* 924 * Reserve maps are only needed for inodes that can have associated 925 * page allocations. 926 */ 927 if (S_ISREG(mode) || S_ISLNK(mode)) { 928 resv_map = resv_map_alloc(); 929 if (!resv_map) 930 return NULL; 931 } 932 933 inode = new_inode(sb); 934 if (inode) { 935 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 936 937 inode->i_ino = get_next_ino(); 938 inode_init_owner(idmap, inode, dir, mode); 939 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem, 940 &hugetlbfs_i_mmap_rwsem_key); 941 inode->i_mapping->a_ops = &hugetlbfs_aops; 942 simple_inode_init_ts(inode); 943 inode->i_mapping->i_private_data = resv_map; 944 info->seals = F_SEAL_SEAL; 945 switch (mode & S_IFMT) { 946 default: 947 init_special_inode(inode, mode, dev); 948 break; 949 case S_IFREG: 950 inode->i_op = &hugetlbfs_inode_operations; 951 inode->i_fop = &hugetlbfs_file_operations; 952 break; 953 case S_IFDIR: 954 inode->i_op = &hugetlbfs_dir_inode_operations; 955 inode->i_fop = &simple_dir_operations; 956 957 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 958 inc_nlink(inode); 959 break; 960 case S_IFLNK: 961 inode->i_op = &page_symlink_inode_operations; 962 inode_nohighmem(inode); 963 break; 964 } 965 lockdep_annotate_inode_mutex_key(inode); 966 trace_hugetlbfs_alloc_inode(inode, dir, mode); 967 } else { 968 if (resv_map) 969 kref_put(&resv_map->refs, resv_map_release); 970 } 971 972 return inode; 973 } 974 975 /* 976 * File creation. Allocate an inode, and we're done.. 977 */ 978 static int hugetlbfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 979 struct dentry *dentry, umode_t mode, dev_t dev) 980 { 981 struct inode *inode; 982 983 inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, dev); 984 if (!inode) 985 return -ENOSPC; 986 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 987 d_instantiate(dentry, inode); 988 dget(dentry);/* Extra count - pin the dentry in core */ 989 return 0; 990 } 991 992 static struct dentry *hugetlbfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 993 struct dentry *dentry, umode_t mode) 994 { 995 int retval = hugetlbfs_mknod(idmap, dir, dentry, 996 mode | S_IFDIR, 0); 997 if (!retval) 998 inc_nlink(dir); 999 return ERR_PTR(retval); 1000 } 1001 1002 static int hugetlbfs_create(struct mnt_idmap *idmap, 1003 struct inode *dir, struct dentry *dentry, 1004 umode_t mode, bool excl) 1005 { 1006 return hugetlbfs_mknod(idmap, dir, dentry, mode | S_IFREG, 0); 1007 } 1008 1009 static int hugetlbfs_tmpfile(struct mnt_idmap *idmap, 1010 struct inode *dir, struct file *file, 1011 umode_t mode) 1012 { 1013 struct inode *inode; 1014 1015 inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode | S_IFREG, 0); 1016 if (!inode) 1017 return -ENOSPC; 1018 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 1019 d_tmpfile(file, inode); 1020 return finish_open_simple(file, 0); 1021 } 1022 1023 static int hugetlbfs_symlink(struct mnt_idmap *idmap, 1024 struct inode *dir, struct dentry *dentry, 1025 const char *symname) 1026 { 1027 const umode_t mode = S_IFLNK|S_IRWXUGO; 1028 struct inode *inode; 1029 int error = -ENOSPC; 1030 1031 inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, 0); 1032 if (inode) { 1033 int l = strlen(symname)+1; 1034 error = page_symlink(inode, symname, l); 1035 if (!error) { 1036 d_instantiate(dentry, inode); 1037 dget(dentry); 1038 } else 1039 iput(inode); 1040 } 1041 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 1042 1043 return error; 1044 } 1045 1046 #ifdef CONFIG_MIGRATION 1047 static int hugetlbfs_migrate_folio(struct address_space *mapping, 1048 struct folio *dst, struct folio *src, 1049 enum migrate_mode mode) 1050 { 1051 int rc; 1052 1053 rc = migrate_huge_page_move_mapping(mapping, dst, src); 1054 if (rc) 1055 return rc; 1056 1057 if (hugetlb_folio_subpool(src)) { 1058 hugetlb_set_folio_subpool(dst, 1059 hugetlb_folio_subpool(src)); 1060 hugetlb_set_folio_subpool(src, NULL); 1061 } 1062 1063 folio_migrate_flags(dst, src); 1064 1065 return 0; 1066 } 1067 #else 1068 #define hugetlbfs_migrate_folio NULL 1069 #endif 1070 1071 static int hugetlbfs_error_remove_folio(struct address_space *mapping, 1072 struct folio *folio) 1073 { 1074 return 0; 1075 } 1076 1077 /* 1078 * Display the mount options in /proc/mounts. 1079 */ 1080 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root) 1081 { 1082 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb); 1083 struct hugepage_subpool *spool = sbinfo->spool; 1084 unsigned long hpage_size = huge_page_size(sbinfo->hstate); 1085 unsigned hpage_shift = huge_page_shift(sbinfo->hstate); 1086 char mod; 1087 1088 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 1089 seq_printf(m, ",uid=%u", 1090 from_kuid_munged(&init_user_ns, sbinfo->uid)); 1091 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 1092 seq_printf(m, ",gid=%u", 1093 from_kgid_munged(&init_user_ns, sbinfo->gid)); 1094 if (sbinfo->mode != 0755) 1095 seq_printf(m, ",mode=%o", sbinfo->mode); 1096 if (sbinfo->max_inodes != -1) 1097 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes); 1098 1099 hpage_size /= 1024; 1100 mod = 'K'; 1101 if (hpage_size >= 1024) { 1102 hpage_size /= 1024; 1103 mod = 'M'; 1104 } 1105 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod); 1106 if (spool) { 1107 if (spool->max_hpages != -1) 1108 seq_printf(m, ",size=%llu", 1109 (unsigned long long)spool->max_hpages << hpage_shift); 1110 if (spool->min_hpages != -1) 1111 seq_printf(m, ",min_size=%llu", 1112 (unsigned long long)spool->min_hpages << hpage_shift); 1113 } 1114 return 0; 1115 } 1116 1117 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf) 1118 { 1119 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb); 1120 struct hstate *h = hstate_inode(d_inode(dentry)); 1121 u64 id = huge_encode_dev(dentry->d_sb->s_dev); 1122 1123 buf->f_fsid = u64_to_fsid(id); 1124 buf->f_type = HUGETLBFS_MAGIC; 1125 buf->f_bsize = huge_page_size(h); 1126 if (sbinfo) { 1127 spin_lock(&sbinfo->stat_lock); 1128 /* If no limits set, just report 0 or -1 for max/free/used 1129 * blocks, like simple_statfs() */ 1130 if (sbinfo->spool) { 1131 long free_pages; 1132 1133 spin_lock_irq(&sbinfo->spool->lock); 1134 buf->f_blocks = sbinfo->spool->max_hpages; 1135 free_pages = sbinfo->spool->max_hpages 1136 - sbinfo->spool->used_hpages; 1137 buf->f_bavail = buf->f_bfree = free_pages; 1138 spin_unlock_irq(&sbinfo->spool->lock); 1139 buf->f_files = sbinfo->max_inodes; 1140 buf->f_ffree = sbinfo->free_inodes; 1141 } 1142 spin_unlock(&sbinfo->stat_lock); 1143 } 1144 buf->f_namelen = NAME_MAX; 1145 return 0; 1146 } 1147 1148 static void hugetlbfs_put_super(struct super_block *sb) 1149 { 1150 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb); 1151 1152 if (sbi) { 1153 sb->s_fs_info = NULL; 1154 1155 if (sbi->spool) 1156 hugepage_put_subpool(sbi->spool); 1157 1158 kfree(sbi); 1159 } 1160 } 1161 1162 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1163 { 1164 if (sbinfo->free_inodes >= 0) { 1165 spin_lock(&sbinfo->stat_lock); 1166 if (unlikely(!sbinfo->free_inodes)) { 1167 spin_unlock(&sbinfo->stat_lock); 1168 return 0; 1169 } 1170 sbinfo->free_inodes--; 1171 spin_unlock(&sbinfo->stat_lock); 1172 } 1173 1174 return 1; 1175 } 1176 1177 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1178 { 1179 if (sbinfo->free_inodes >= 0) { 1180 spin_lock(&sbinfo->stat_lock); 1181 sbinfo->free_inodes++; 1182 spin_unlock(&sbinfo->stat_lock); 1183 } 1184 } 1185 1186 1187 static struct kmem_cache *hugetlbfs_inode_cachep; 1188 1189 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb) 1190 { 1191 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb); 1192 struct hugetlbfs_inode_info *p; 1193 1194 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo))) 1195 return NULL; 1196 p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL); 1197 if (unlikely(!p)) { 1198 hugetlbfs_inc_free_inodes(sbinfo); 1199 return NULL; 1200 } 1201 return &p->vfs_inode; 1202 } 1203 1204 static void hugetlbfs_free_inode(struct inode *inode) 1205 { 1206 trace_hugetlbfs_free_inode(inode); 1207 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode)); 1208 } 1209 1210 static void hugetlbfs_destroy_inode(struct inode *inode) 1211 { 1212 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb)); 1213 } 1214 1215 static const struct address_space_operations hugetlbfs_aops = { 1216 .write_begin = hugetlbfs_write_begin, 1217 .write_end = hugetlbfs_write_end, 1218 .dirty_folio = noop_dirty_folio, 1219 .migrate_folio = hugetlbfs_migrate_folio, 1220 .error_remove_folio = hugetlbfs_error_remove_folio, 1221 }; 1222 1223 1224 static void init_once(void *foo) 1225 { 1226 struct hugetlbfs_inode_info *ei = foo; 1227 1228 inode_init_once(&ei->vfs_inode); 1229 } 1230 1231 static const struct file_operations hugetlbfs_file_operations = { 1232 .read_iter = hugetlbfs_read_iter, 1233 .mmap = hugetlbfs_file_mmap, 1234 .fsync = noop_fsync, 1235 .get_unmapped_area = hugetlb_get_unmapped_area, 1236 .llseek = default_llseek, 1237 .fallocate = hugetlbfs_fallocate, 1238 .fop_flags = FOP_HUGE_PAGES, 1239 }; 1240 1241 static const struct inode_operations hugetlbfs_dir_inode_operations = { 1242 .create = hugetlbfs_create, 1243 .lookup = simple_lookup, 1244 .link = simple_link, 1245 .unlink = simple_unlink, 1246 .symlink = hugetlbfs_symlink, 1247 .mkdir = hugetlbfs_mkdir, 1248 .rmdir = simple_rmdir, 1249 .mknod = hugetlbfs_mknod, 1250 .rename = simple_rename, 1251 .setattr = hugetlbfs_setattr, 1252 .tmpfile = hugetlbfs_tmpfile, 1253 }; 1254 1255 static const struct inode_operations hugetlbfs_inode_operations = { 1256 .setattr = hugetlbfs_setattr, 1257 }; 1258 1259 static const struct super_operations hugetlbfs_ops = { 1260 .alloc_inode = hugetlbfs_alloc_inode, 1261 .free_inode = hugetlbfs_free_inode, 1262 .destroy_inode = hugetlbfs_destroy_inode, 1263 .evict_inode = hugetlbfs_evict_inode, 1264 .statfs = hugetlbfs_statfs, 1265 .put_super = hugetlbfs_put_super, 1266 .show_options = hugetlbfs_show_options, 1267 }; 1268 1269 /* 1270 * Convert size option passed from command line to number of huge pages 1271 * in the pool specified by hstate. Size option could be in bytes 1272 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT). 1273 */ 1274 static long 1275 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt, 1276 enum hugetlbfs_size_type val_type) 1277 { 1278 if (val_type == NO_SIZE) 1279 return -1; 1280 1281 if (val_type == SIZE_PERCENT) { 1282 size_opt <<= huge_page_shift(h); 1283 size_opt *= h->max_huge_pages; 1284 do_div(size_opt, 100); 1285 } 1286 1287 size_opt >>= huge_page_shift(h); 1288 return size_opt; 1289 } 1290 1291 /* 1292 * Parse one mount parameter. 1293 */ 1294 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param) 1295 { 1296 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1297 struct fs_parse_result result; 1298 struct hstate *h; 1299 char *rest; 1300 unsigned long ps; 1301 int opt; 1302 1303 opt = fs_parse(fc, hugetlb_fs_parameters, param, &result); 1304 if (opt < 0) 1305 return opt; 1306 1307 switch (opt) { 1308 case Opt_uid: 1309 ctx->uid = result.uid; 1310 return 0; 1311 1312 case Opt_gid: 1313 ctx->gid = result.gid; 1314 return 0; 1315 1316 case Opt_mode: 1317 ctx->mode = result.uint_32 & 01777U; 1318 return 0; 1319 1320 case Opt_size: 1321 /* memparse() will accept a K/M/G without a digit */ 1322 if (!param->string || !isdigit(param->string[0])) 1323 goto bad_val; 1324 ctx->max_size_opt = memparse(param->string, &rest); 1325 ctx->max_val_type = SIZE_STD; 1326 if (*rest == '%') 1327 ctx->max_val_type = SIZE_PERCENT; 1328 return 0; 1329 1330 case Opt_nr_inodes: 1331 /* memparse() will accept a K/M/G without a digit */ 1332 if (!param->string || !isdigit(param->string[0])) 1333 goto bad_val; 1334 ctx->nr_inodes = memparse(param->string, &rest); 1335 return 0; 1336 1337 case Opt_pagesize: 1338 ps = memparse(param->string, &rest); 1339 h = size_to_hstate(ps); 1340 if (!h) { 1341 pr_err("Unsupported page size %lu MB\n", ps / SZ_1M); 1342 return -EINVAL; 1343 } 1344 ctx->hstate = h; 1345 return 0; 1346 1347 case Opt_min_size: 1348 /* memparse() will accept a K/M/G without a digit */ 1349 if (!param->string || !isdigit(param->string[0])) 1350 goto bad_val; 1351 ctx->min_size_opt = memparse(param->string, &rest); 1352 ctx->min_val_type = SIZE_STD; 1353 if (*rest == '%') 1354 ctx->min_val_type = SIZE_PERCENT; 1355 return 0; 1356 1357 default: 1358 return -EINVAL; 1359 } 1360 1361 bad_val: 1362 return invalfc(fc, "Bad value '%s' for mount option '%s'\n", 1363 param->string, param->key); 1364 } 1365 1366 /* 1367 * Validate the parsed options. 1368 */ 1369 static int hugetlbfs_validate(struct fs_context *fc) 1370 { 1371 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1372 1373 /* 1374 * Use huge page pool size (in hstate) to convert the size 1375 * options to number of huge pages. If NO_SIZE, -1 is returned. 1376 */ 1377 ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1378 ctx->max_size_opt, 1379 ctx->max_val_type); 1380 ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1381 ctx->min_size_opt, 1382 ctx->min_val_type); 1383 1384 /* 1385 * If max_size was specified, then min_size must be smaller 1386 */ 1387 if (ctx->max_val_type > NO_SIZE && 1388 ctx->min_hpages > ctx->max_hpages) { 1389 pr_err("Minimum size can not be greater than maximum size\n"); 1390 return -EINVAL; 1391 } 1392 1393 return 0; 1394 } 1395 1396 static int 1397 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc) 1398 { 1399 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1400 struct hugetlbfs_sb_info *sbinfo; 1401 1402 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL); 1403 if (!sbinfo) 1404 return -ENOMEM; 1405 sb->s_fs_info = sbinfo; 1406 spin_lock_init(&sbinfo->stat_lock); 1407 sbinfo->hstate = ctx->hstate; 1408 sbinfo->max_inodes = ctx->nr_inodes; 1409 sbinfo->free_inodes = ctx->nr_inodes; 1410 sbinfo->spool = NULL; 1411 sbinfo->uid = ctx->uid; 1412 sbinfo->gid = ctx->gid; 1413 sbinfo->mode = ctx->mode; 1414 1415 /* 1416 * Allocate and initialize subpool if maximum or minimum size is 1417 * specified. Any needed reservations (for minimum size) are taken 1418 * when the subpool is created. 1419 */ 1420 if (ctx->max_hpages != -1 || ctx->min_hpages != -1) { 1421 sbinfo->spool = hugepage_new_subpool(ctx->hstate, 1422 ctx->max_hpages, 1423 ctx->min_hpages); 1424 if (!sbinfo->spool) 1425 goto out_free; 1426 } 1427 sb->s_maxbytes = MAX_LFS_FILESIZE; 1428 sb->s_blocksize = huge_page_size(ctx->hstate); 1429 sb->s_blocksize_bits = huge_page_shift(ctx->hstate); 1430 sb->s_magic = HUGETLBFS_MAGIC; 1431 sb->s_op = &hugetlbfs_ops; 1432 sb->s_d_flags = DCACHE_DONTCACHE; 1433 sb->s_time_gran = 1; 1434 1435 /* 1436 * Due to the special and limited functionality of hugetlbfs, it does 1437 * not work well as a stacking filesystem. 1438 */ 1439 sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH; 1440 sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx)); 1441 if (!sb->s_root) 1442 goto out_free; 1443 return 0; 1444 out_free: 1445 kfree(sbinfo->spool); 1446 kfree(sbinfo); 1447 return -ENOMEM; 1448 } 1449 1450 static int hugetlbfs_get_tree(struct fs_context *fc) 1451 { 1452 int err = hugetlbfs_validate(fc); 1453 if (err) 1454 return err; 1455 return get_tree_nodev(fc, hugetlbfs_fill_super); 1456 } 1457 1458 static void hugetlbfs_fs_context_free(struct fs_context *fc) 1459 { 1460 kfree(fc->fs_private); 1461 } 1462 1463 static const struct fs_context_operations hugetlbfs_fs_context_ops = { 1464 .free = hugetlbfs_fs_context_free, 1465 .parse_param = hugetlbfs_parse_param, 1466 .get_tree = hugetlbfs_get_tree, 1467 }; 1468 1469 static int hugetlbfs_init_fs_context(struct fs_context *fc) 1470 { 1471 struct hugetlbfs_fs_context *ctx; 1472 1473 ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL); 1474 if (!ctx) 1475 return -ENOMEM; 1476 1477 ctx->max_hpages = -1; /* No limit on size by default */ 1478 ctx->nr_inodes = -1; /* No limit on number of inodes by default */ 1479 ctx->uid = current_fsuid(); 1480 ctx->gid = current_fsgid(); 1481 ctx->mode = 0755; 1482 ctx->hstate = &default_hstate; 1483 ctx->min_hpages = -1; /* No default minimum size */ 1484 ctx->max_val_type = NO_SIZE; 1485 ctx->min_val_type = NO_SIZE; 1486 fc->fs_private = ctx; 1487 fc->ops = &hugetlbfs_fs_context_ops; 1488 return 0; 1489 } 1490 1491 static struct file_system_type hugetlbfs_fs_type = { 1492 .name = "hugetlbfs", 1493 .init_fs_context = hugetlbfs_init_fs_context, 1494 .parameters = hugetlb_fs_parameters, 1495 .kill_sb = kill_litter_super, 1496 .fs_flags = FS_ALLOW_IDMAP, 1497 }; 1498 1499 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE]; 1500 1501 static int can_do_hugetlb_shm(void) 1502 { 1503 kgid_t shm_group; 1504 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group); 1505 return capable(CAP_IPC_LOCK) || in_group_p(shm_group); 1506 } 1507 1508 static int get_hstate_idx(int page_size_log) 1509 { 1510 struct hstate *h = hstate_sizelog(page_size_log); 1511 1512 if (!h) 1513 return -1; 1514 return hstate_index(h); 1515 } 1516 1517 /* 1518 * Note that size should be aligned to proper hugepage size in caller side, 1519 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended. 1520 */ 1521 struct file *hugetlb_file_setup(const char *name, size_t size, 1522 vm_flags_t acctflag, int creat_flags, 1523 int page_size_log) 1524 { 1525 struct inode *inode; 1526 struct vfsmount *mnt; 1527 int hstate_idx; 1528 struct file *file; 1529 1530 hstate_idx = get_hstate_idx(page_size_log); 1531 if (hstate_idx < 0) 1532 return ERR_PTR(-ENODEV); 1533 1534 mnt = hugetlbfs_vfsmount[hstate_idx]; 1535 if (!mnt) 1536 return ERR_PTR(-ENOENT); 1537 1538 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) { 1539 struct ucounts *ucounts = current_ucounts(); 1540 1541 if (user_shm_lock(size, ucounts)) { 1542 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n", 1543 current->comm, current->pid); 1544 user_shm_unlock(size, ucounts); 1545 } 1546 return ERR_PTR(-EPERM); 1547 } 1548 1549 file = ERR_PTR(-ENOSPC); 1550 /* hugetlbfs_vfsmount[] mounts do not use idmapped mounts. */ 1551 inode = hugetlbfs_get_inode(mnt->mnt_sb, &nop_mnt_idmap, NULL, 1552 S_IFREG | S_IRWXUGO, 0); 1553 if (!inode) 1554 goto out; 1555 if (creat_flags == HUGETLB_SHMFS_INODE) 1556 inode->i_flags |= S_PRIVATE; 1557 1558 inode->i_size = size; 1559 clear_nlink(inode); 1560 1561 if (hugetlb_reserve_pages(inode, 0, 1562 size >> huge_page_shift(hstate_inode(inode)), NULL, 1563 acctflag) < 0) 1564 file = ERR_PTR(-ENOMEM); 1565 else 1566 file = alloc_file_pseudo(inode, mnt, name, O_RDWR, 1567 &hugetlbfs_file_operations); 1568 if (!IS_ERR(file)) 1569 return file; 1570 1571 iput(inode); 1572 out: 1573 return file; 1574 } 1575 1576 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h) 1577 { 1578 struct fs_context *fc; 1579 struct vfsmount *mnt; 1580 1581 fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT); 1582 if (IS_ERR(fc)) { 1583 mnt = ERR_CAST(fc); 1584 } else { 1585 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1586 ctx->hstate = h; 1587 mnt = fc_mount_longterm(fc); 1588 put_fs_context(fc); 1589 } 1590 if (IS_ERR(mnt)) 1591 pr_err("Cannot mount internal hugetlbfs for page size %luK", 1592 huge_page_size(h) / SZ_1K); 1593 return mnt; 1594 } 1595 1596 static int __init init_hugetlbfs_fs(void) 1597 { 1598 struct vfsmount *mnt; 1599 struct hstate *h; 1600 int error; 1601 int i; 1602 1603 if (!hugepages_supported()) { 1604 pr_info("disabling because there are no supported hugepage sizes\n"); 1605 return -ENOTSUPP; 1606 } 1607 1608 error = -ENOMEM; 1609 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache", 1610 sizeof(struct hugetlbfs_inode_info), 1611 0, SLAB_ACCOUNT, init_once); 1612 if (hugetlbfs_inode_cachep == NULL) 1613 goto out; 1614 1615 error = register_filesystem(&hugetlbfs_fs_type); 1616 if (error) 1617 goto out_free; 1618 1619 /* default hstate mount is required */ 1620 mnt = mount_one_hugetlbfs(&default_hstate); 1621 if (IS_ERR(mnt)) { 1622 error = PTR_ERR(mnt); 1623 goto out_unreg; 1624 } 1625 hugetlbfs_vfsmount[default_hstate_idx] = mnt; 1626 1627 /* other hstates are optional */ 1628 i = 0; 1629 for_each_hstate(h) { 1630 if (i == default_hstate_idx) { 1631 i++; 1632 continue; 1633 } 1634 1635 mnt = mount_one_hugetlbfs(h); 1636 if (IS_ERR(mnt)) 1637 hugetlbfs_vfsmount[i] = NULL; 1638 else 1639 hugetlbfs_vfsmount[i] = mnt; 1640 i++; 1641 } 1642 1643 return 0; 1644 1645 out_unreg: 1646 (void)unregister_filesystem(&hugetlbfs_fs_type); 1647 out_free: 1648 kmem_cache_destroy(hugetlbfs_inode_cachep); 1649 out: 1650 return error; 1651 } 1652 fs_initcall(init_hugetlbfs_fs) 1653