1 /* 2 * hugetlbpage-backed filesystem. Based on ramfs. 3 * 4 * Nadia Yvette Chambers, 2002 5 * 6 * Copyright (C) 2002 Linus Torvalds. 7 * License: GPL 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/thread_info.h> 13 #include <asm/current.h> 14 #include <linux/falloc.h> 15 #include <linux/fs.h> 16 #include <linux/mount.h> 17 #include <linux/file.h> 18 #include <linux/kernel.h> 19 #include <linux/writeback.h> 20 #include <linux/pagemap.h> 21 #include <linux/highmem.h> 22 #include <linux/init.h> 23 #include <linux/string.h> 24 #include <linux/capability.h> 25 #include <linux/ctype.h> 26 #include <linux/backing-dev.h> 27 #include <linux/hugetlb.h> 28 #include <linux/pagevec.h> 29 #include <linux/fs_parser.h> 30 #include <linux/mman.h> 31 #include <linux/slab.h> 32 #include <linux/dnotify.h> 33 #include <linux/statfs.h> 34 #include <linux/security.h> 35 #include <linux/magic.h> 36 #include <linux/migrate.h> 37 #include <linux/uio.h> 38 39 #include <linux/uaccess.h> 40 #include <linux/sched/mm.h> 41 42 #define CREATE_TRACE_POINTS 43 #include <trace/events/hugetlbfs.h> 44 45 static const struct address_space_operations hugetlbfs_aops; 46 static const struct file_operations hugetlbfs_file_operations; 47 static const struct inode_operations hugetlbfs_dir_inode_operations; 48 static const struct inode_operations hugetlbfs_inode_operations; 49 50 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT }; 51 52 struct hugetlbfs_fs_context { 53 struct hstate *hstate; 54 unsigned long long max_size_opt; 55 unsigned long long min_size_opt; 56 long max_hpages; 57 long nr_inodes; 58 long min_hpages; 59 enum hugetlbfs_size_type max_val_type; 60 enum hugetlbfs_size_type min_val_type; 61 kuid_t uid; 62 kgid_t gid; 63 umode_t mode; 64 }; 65 66 int sysctl_hugetlb_shm_group; 67 68 enum hugetlb_param { 69 Opt_gid, 70 Opt_min_size, 71 Opt_mode, 72 Opt_nr_inodes, 73 Opt_pagesize, 74 Opt_size, 75 Opt_uid, 76 }; 77 78 static const struct fs_parameter_spec hugetlb_fs_parameters[] = { 79 fsparam_gid ("gid", Opt_gid), 80 fsparam_string("min_size", Opt_min_size), 81 fsparam_u32oct("mode", Opt_mode), 82 fsparam_string("nr_inodes", Opt_nr_inodes), 83 fsparam_string("pagesize", Opt_pagesize), 84 fsparam_string("size", Opt_size), 85 fsparam_uid ("uid", Opt_uid), 86 {} 87 }; 88 89 /* 90 * Mask used when checking the page offset value passed in via system 91 * calls. This value will be converted to a loff_t which is signed. 92 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the 93 * value. The extra bit (- 1 in the shift value) is to take the sign 94 * bit into account. 95 */ 96 #define PGOFF_LOFFT_MAX \ 97 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1))) 98 99 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma) 100 { 101 struct inode *inode = file_inode(file); 102 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 103 loff_t len, vma_len; 104 int ret; 105 struct hstate *h = hstate_file(file); 106 vm_flags_t vm_flags; 107 108 /* 109 * vma address alignment (but not the pgoff alignment) has 110 * already been checked by prepare_hugepage_range. If you add 111 * any error returns here, do so after setting VM_HUGETLB, so 112 * is_vm_hugetlb_page tests below unmap_region go the right 113 * way when do_mmap unwinds (may be important on powerpc 114 * and ia64). 115 */ 116 vm_flags_set(vma, VM_HUGETLB | VM_DONTEXPAND); 117 vma->vm_ops = &hugetlb_vm_ops; 118 119 ret = seal_check_write(info->seals, vma); 120 if (ret) 121 return ret; 122 123 /* 124 * page based offset in vm_pgoff could be sufficiently large to 125 * overflow a loff_t when converted to byte offset. This can 126 * only happen on architectures where sizeof(loff_t) == 127 * sizeof(unsigned long). So, only check in those instances. 128 */ 129 if (sizeof(unsigned long) == sizeof(loff_t)) { 130 if (vma->vm_pgoff & PGOFF_LOFFT_MAX) 131 return -EINVAL; 132 } 133 134 /* must be huge page aligned */ 135 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT)) 136 return -EINVAL; 137 138 vma_len = (loff_t)(vma->vm_end - vma->vm_start); 139 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 140 /* check for overflow */ 141 if (len < vma_len) 142 return -EINVAL; 143 144 inode_lock(inode); 145 file_accessed(file); 146 147 ret = -ENOMEM; 148 149 vm_flags = vma->vm_flags; 150 /* 151 * for SHM_HUGETLB, the pages are reserved in the shmget() call so skip 152 * reserving here. Note: only for SHM hugetlbfs file, the inode 153 * flag S_PRIVATE is set. 154 */ 155 if (inode->i_flags & S_PRIVATE) 156 vm_flags |= VM_NORESERVE; 157 158 if (!hugetlb_reserve_pages(inode, 159 vma->vm_pgoff >> huge_page_order(h), 160 len >> huge_page_shift(h), vma, 161 vm_flags)) 162 goto out; 163 164 ret = 0; 165 if (vma->vm_flags & VM_WRITE && inode->i_size < len) 166 i_size_write(inode, len); 167 out: 168 inode_unlock(inode); 169 170 return ret; 171 } 172 173 /* 174 * Called under mmap_write_lock(mm). 175 */ 176 177 static unsigned long 178 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr, 179 unsigned long len, unsigned long pgoff, unsigned long flags) 180 { 181 struct hstate *h = hstate_file(file); 182 struct vm_unmapped_area_info info = {}; 183 184 info.length = len; 185 info.low_limit = current->mm->mmap_base; 186 info.high_limit = arch_get_mmap_end(addr, len, flags); 187 info.align_mask = PAGE_MASK & ~huge_page_mask(h); 188 return vm_unmapped_area(&info); 189 } 190 191 static unsigned long 192 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr, 193 unsigned long len, unsigned long pgoff, unsigned long flags) 194 { 195 struct hstate *h = hstate_file(file); 196 struct vm_unmapped_area_info info = {}; 197 198 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 199 info.length = len; 200 info.low_limit = PAGE_SIZE; 201 info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base); 202 info.align_mask = PAGE_MASK & ~huge_page_mask(h); 203 addr = vm_unmapped_area(&info); 204 205 /* 206 * A failed mmap() very likely causes application failure, 207 * so fall back to the bottom-up function here. This scenario 208 * can happen with large stack limits and large mmap() 209 * allocations. 210 */ 211 if (unlikely(offset_in_page(addr))) { 212 VM_BUG_ON(addr != -ENOMEM); 213 info.flags = 0; 214 info.low_limit = current->mm->mmap_base; 215 info.high_limit = arch_get_mmap_end(addr, len, flags); 216 addr = vm_unmapped_area(&info); 217 } 218 219 return addr; 220 } 221 222 unsigned long 223 generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 224 unsigned long len, unsigned long pgoff, 225 unsigned long flags) 226 { 227 struct mm_struct *mm = current->mm; 228 struct vm_area_struct *vma, *prev; 229 struct hstate *h = hstate_file(file); 230 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); 231 232 if (len & ~huge_page_mask(h)) 233 return -EINVAL; 234 if (len > mmap_end - mmap_min_addr) 235 return -ENOMEM; 236 237 if (flags & MAP_FIXED) { 238 if (prepare_hugepage_range(file, addr, len)) 239 return -EINVAL; 240 return addr; 241 } 242 243 if (addr) { 244 addr = ALIGN(addr, huge_page_size(h)); 245 vma = find_vma_prev(mm, addr, &prev); 246 if (mmap_end - len >= addr && addr >= mmap_min_addr && 247 (!vma || addr + len <= vm_start_gap(vma)) && 248 (!prev || addr >= vm_end_gap(prev))) 249 return addr; 250 } 251 252 /* 253 * Use MMF_TOPDOWN flag as a hint to use topdown routine. 254 * If architectures have special needs, they should define their own 255 * version of hugetlb_get_unmapped_area. 256 */ 257 if (test_bit(MMF_TOPDOWN, &mm->flags)) 258 return hugetlb_get_unmapped_area_topdown(file, addr, len, 259 pgoff, flags); 260 return hugetlb_get_unmapped_area_bottomup(file, addr, len, 261 pgoff, flags); 262 } 263 264 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA 265 static unsigned long 266 hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 267 unsigned long len, unsigned long pgoff, 268 unsigned long flags) 269 { 270 return generic_hugetlb_get_unmapped_area(file, addr, len, pgoff, flags); 271 } 272 #endif 273 274 /* 275 * Someone wants to read @bytes from a HWPOISON hugetlb @page from @offset. 276 * Returns the maximum number of bytes one can read without touching the 1st raw 277 * HWPOISON subpage. 278 * 279 * The implementation borrows the iteration logic from copy_page_to_iter*. 280 */ 281 static size_t adjust_range_hwpoison(struct page *page, size_t offset, size_t bytes) 282 { 283 size_t n = 0; 284 size_t res = 0; 285 286 /* First subpage to start the loop. */ 287 page = nth_page(page, offset / PAGE_SIZE); 288 offset %= PAGE_SIZE; 289 while (1) { 290 if (is_raw_hwpoison_page_in_hugepage(page)) 291 break; 292 293 /* Safe to read n bytes without touching HWPOISON subpage. */ 294 n = min(bytes, (size_t)PAGE_SIZE - offset); 295 res += n; 296 bytes -= n; 297 if (!bytes || !n) 298 break; 299 offset += n; 300 if (offset == PAGE_SIZE) { 301 page = nth_page(page, 1); 302 offset = 0; 303 } 304 } 305 306 return res; 307 } 308 309 /* 310 * Support for read() - Find the page attached to f_mapping and copy out the 311 * data. This provides functionality similar to filemap_read(). 312 */ 313 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to) 314 { 315 struct file *file = iocb->ki_filp; 316 struct hstate *h = hstate_file(file); 317 struct address_space *mapping = file->f_mapping; 318 struct inode *inode = mapping->host; 319 unsigned long index = iocb->ki_pos >> huge_page_shift(h); 320 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h); 321 unsigned long end_index; 322 loff_t isize; 323 ssize_t retval = 0; 324 325 while (iov_iter_count(to)) { 326 struct folio *folio; 327 size_t nr, copied, want; 328 329 /* nr is the maximum number of bytes to copy from this page */ 330 nr = huge_page_size(h); 331 isize = i_size_read(inode); 332 if (!isize) 333 break; 334 end_index = (isize - 1) >> huge_page_shift(h); 335 if (index > end_index) 336 break; 337 if (index == end_index) { 338 nr = ((isize - 1) & ~huge_page_mask(h)) + 1; 339 if (nr <= offset) 340 break; 341 } 342 nr = nr - offset; 343 344 /* Find the folio */ 345 folio = filemap_lock_hugetlb_folio(h, mapping, index); 346 if (IS_ERR(folio)) { 347 /* 348 * We have a HOLE, zero out the user-buffer for the 349 * length of the hole or request. 350 */ 351 copied = iov_iter_zero(nr, to); 352 } else { 353 folio_unlock(folio); 354 355 if (!folio_test_hwpoison(folio)) 356 want = nr; 357 else { 358 /* 359 * Adjust how many bytes safe to read without 360 * touching the 1st raw HWPOISON subpage after 361 * offset. 362 */ 363 want = adjust_range_hwpoison(&folio->page, offset, nr); 364 if (want == 0) { 365 folio_put(folio); 366 retval = -EIO; 367 break; 368 } 369 } 370 371 /* 372 * We have the folio, copy it to user space buffer. 373 */ 374 copied = copy_folio_to_iter(folio, offset, want, to); 375 folio_put(folio); 376 } 377 offset += copied; 378 retval += copied; 379 if (copied != nr && iov_iter_count(to)) { 380 if (!retval) 381 retval = -EFAULT; 382 break; 383 } 384 index += offset >> huge_page_shift(h); 385 offset &= ~huge_page_mask(h); 386 } 387 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset; 388 return retval; 389 } 390 391 static int hugetlbfs_write_begin(struct file *file, 392 struct address_space *mapping, 393 loff_t pos, unsigned len, 394 struct folio **foliop, void **fsdata) 395 { 396 return -EINVAL; 397 } 398 399 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping, 400 loff_t pos, unsigned len, unsigned copied, 401 struct folio *folio, void *fsdata) 402 { 403 BUG(); 404 return -EINVAL; 405 } 406 407 static void hugetlb_delete_from_page_cache(struct folio *folio) 408 { 409 folio_clear_dirty(folio); 410 folio_clear_uptodate(folio); 411 filemap_remove_folio(folio); 412 } 413 414 /* 415 * Called with i_mmap_rwsem held for inode based vma maps. This makes 416 * sure vma (and vm_mm) will not go away. We also hold the hugetlb fault 417 * mutex for the page in the mapping. So, we can not race with page being 418 * faulted into the vma. 419 */ 420 static bool hugetlb_vma_maps_page(struct vm_area_struct *vma, 421 unsigned long addr, struct page *page) 422 { 423 pte_t *ptep, pte; 424 425 ptep = hugetlb_walk(vma, addr, huge_page_size(hstate_vma(vma))); 426 if (!ptep) 427 return false; 428 429 pte = huge_ptep_get(vma->vm_mm, addr, ptep); 430 if (huge_pte_none(pte) || !pte_present(pte)) 431 return false; 432 433 if (pte_page(pte) == page) 434 return true; 435 436 return false; 437 } 438 439 /* 440 * Can vma_offset_start/vma_offset_end overflow on 32-bit arches? 441 * No, because the interval tree returns us only those vmas 442 * which overlap the truncated area starting at pgoff, 443 * and no vma on a 32-bit arch can span beyond the 4GB. 444 */ 445 static unsigned long vma_offset_start(struct vm_area_struct *vma, pgoff_t start) 446 { 447 unsigned long offset = 0; 448 449 if (vma->vm_pgoff < start) 450 offset = (start - vma->vm_pgoff) << PAGE_SHIFT; 451 452 return vma->vm_start + offset; 453 } 454 455 static unsigned long vma_offset_end(struct vm_area_struct *vma, pgoff_t end) 456 { 457 unsigned long t_end; 458 459 if (!end) 460 return vma->vm_end; 461 462 t_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) + vma->vm_start; 463 if (t_end > vma->vm_end) 464 t_end = vma->vm_end; 465 return t_end; 466 } 467 468 /* 469 * Called with hugetlb fault mutex held. Therefore, no more mappings to 470 * this folio can be created while executing the routine. 471 */ 472 static void hugetlb_unmap_file_folio(struct hstate *h, 473 struct address_space *mapping, 474 struct folio *folio, pgoff_t index) 475 { 476 struct rb_root_cached *root = &mapping->i_mmap; 477 struct hugetlb_vma_lock *vma_lock; 478 struct page *page = &folio->page; 479 struct vm_area_struct *vma; 480 unsigned long v_start; 481 unsigned long v_end; 482 pgoff_t start, end; 483 484 start = index * pages_per_huge_page(h); 485 end = (index + 1) * pages_per_huge_page(h); 486 487 i_mmap_lock_write(mapping); 488 retry: 489 vma_lock = NULL; 490 vma_interval_tree_foreach(vma, root, start, end - 1) { 491 v_start = vma_offset_start(vma, start); 492 v_end = vma_offset_end(vma, end); 493 494 if (!hugetlb_vma_maps_page(vma, v_start, page)) 495 continue; 496 497 if (!hugetlb_vma_trylock_write(vma)) { 498 vma_lock = vma->vm_private_data; 499 /* 500 * If we can not get vma lock, we need to drop 501 * immap_sema and take locks in order. First, 502 * take a ref on the vma_lock structure so that 503 * we can be guaranteed it will not go away when 504 * dropping immap_sema. 505 */ 506 kref_get(&vma_lock->refs); 507 break; 508 } 509 510 unmap_hugepage_range(vma, v_start, v_end, NULL, 511 ZAP_FLAG_DROP_MARKER); 512 hugetlb_vma_unlock_write(vma); 513 } 514 515 i_mmap_unlock_write(mapping); 516 517 if (vma_lock) { 518 /* 519 * Wait on vma_lock. We know it is still valid as we have 520 * a reference. We must 'open code' vma locking as we do 521 * not know if vma_lock is still attached to vma. 522 */ 523 down_write(&vma_lock->rw_sema); 524 i_mmap_lock_write(mapping); 525 526 vma = vma_lock->vma; 527 if (!vma) { 528 /* 529 * If lock is no longer attached to vma, then just 530 * unlock, drop our reference and retry looking for 531 * other vmas. 532 */ 533 up_write(&vma_lock->rw_sema); 534 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 535 goto retry; 536 } 537 538 /* 539 * vma_lock is still attached to vma. Check to see if vma 540 * still maps page and if so, unmap. 541 */ 542 v_start = vma_offset_start(vma, start); 543 v_end = vma_offset_end(vma, end); 544 if (hugetlb_vma_maps_page(vma, v_start, page)) 545 unmap_hugepage_range(vma, v_start, v_end, NULL, 546 ZAP_FLAG_DROP_MARKER); 547 548 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 549 hugetlb_vma_unlock_write(vma); 550 551 goto retry; 552 } 553 } 554 555 static void 556 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end, 557 zap_flags_t zap_flags) 558 { 559 struct vm_area_struct *vma; 560 561 /* 562 * end == 0 indicates that the entire range after start should be 563 * unmapped. Note, end is exclusive, whereas the interval tree takes 564 * an inclusive "last". 565 */ 566 vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) { 567 unsigned long v_start; 568 unsigned long v_end; 569 570 if (!hugetlb_vma_trylock_write(vma)) 571 continue; 572 573 v_start = vma_offset_start(vma, start); 574 v_end = vma_offset_end(vma, end); 575 576 unmap_hugepage_range(vma, v_start, v_end, NULL, zap_flags); 577 578 /* 579 * Note that vma lock only exists for shared/non-private 580 * vmas. Therefore, lock is not held when calling 581 * unmap_hugepage_range for private vmas. 582 */ 583 hugetlb_vma_unlock_write(vma); 584 } 585 } 586 587 /* 588 * Called with hugetlb fault mutex held. 589 * Returns true if page was actually removed, false otherwise. 590 */ 591 static bool remove_inode_single_folio(struct hstate *h, struct inode *inode, 592 struct address_space *mapping, 593 struct folio *folio, pgoff_t index, 594 bool truncate_op) 595 { 596 bool ret = false; 597 598 /* 599 * If folio is mapped, it was faulted in after being 600 * unmapped in caller. Unmap (again) while holding 601 * the fault mutex. The mutex will prevent faults 602 * until we finish removing the folio. 603 */ 604 if (unlikely(folio_mapped(folio))) 605 hugetlb_unmap_file_folio(h, mapping, folio, index); 606 607 folio_lock(folio); 608 /* 609 * We must remove the folio from page cache before removing 610 * the region/ reserve map (hugetlb_unreserve_pages). In 611 * rare out of memory conditions, removal of the region/reserve 612 * map could fail. Correspondingly, the subpool and global 613 * reserve usage count can need to be adjusted. 614 */ 615 VM_BUG_ON_FOLIO(folio_test_hugetlb_restore_reserve(folio), folio); 616 hugetlb_delete_from_page_cache(folio); 617 ret = true; 618 if (!truncate_op) { 619 if (unlikely(hugetlb_unreserve_pages(inode, index, 620 index + 1, 1))) 621 hugetlb_fix_reserve_counts(inode); 622 } 623 624 folio_unlock(folio); 625 return ret; 626 } 627 628 /* 629 * remove_inode_hugepages handles two distinct cases: truncation and hole 630 * punch. There are subtle differences in operation for each case. 631 * 632 * truncation is indicated by end of range being LLONG_MAX 633 * In this case, we first scan the range and release found pages. 634 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserve 635 * maps and global counts. Page faults can race with truncation. 636 * During faults, hugetlb_no_page() checks i_size before page allocation, 637 * and again after obtaining page table lock. It will 'back out' 638 * allocations in the truncated range. 639 * hole punch is indicated if end is not LLONG_MAX 640 * In the hole punch case we scan the range and release found pages. 641 * Only when releasing a page is the associated region/reserve map 642 * deleted. The region/reserve map for ranges without associated 643 * pages are not modified. Page faults can race with hole punch. 644 * This is indicated if we find a mapped page. 645 * Note: If the passed end of range value is beyond the end of file, but 646 * not LLONG_MAX this routine still performs a hole punch operation. 647 */ 648 static void remove_inode_hugepages(struct inode *inode, loff_t lstart, 649 loff_t lend) 650 { 651 struct hstate *h = hstate_inode(inode); 652 struct address_space *mapping = &inode->i_data; 653 const pgoff_t end = lend >> PAGE_SHIFT; 654 struct folio_batch fbatch; 655 pgoff_t next, index; 656 int i, freed = 0; 657 bool truncate_op = (lend == LLONG_MAX); 658 659 folio_batch_init(&fbatch); 660 next = lstart >> PAGE_SHIFT; 661 while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) { 662 for (i = 0; i < folio_batch_count(&fbatch); ++i) { 663 struct folio *folio = fbatch.folios[i]; 664 u32 hash = 0; 665 666 index = folio->index >> huge_page_order(h); 667 hash = hugetlb_fault_mutex_hash(mapping, index); 668 mutex_lock(&hugetlb_fault_mutex_table[hash]); 669 670 /* 671 * Remove folio that was part of folio_batch. 672 */ 673 if (remove_inode_single_folio(h, inode, mapping, folio, 674 index, truncate_op)) 675 freed++; 676 677 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 678 } 679 folio_batch_release(&fbatch); 680 cond_resched(); 681 } 682 683 if (truncate_op) 684 (void)hugetlb_unreserve_pages(inode, 685 lstart >> huge_page_shift(h), 686 LONG_MAX, freed); 687 } 688 689 static void hugetlbfs_evict_inode(struct inode *inode) 690 { 691 struct resv_map *resv_map; 692 693 trace_hugetlbfs_evict_inode(inode); 694 remove_inode_hugepages(inode, 0, LLONG_MAX); 695 696 /* 697 * Get the resv_map from the address space embedded in the inode. 698 * This is the address space which points to any resv_map allocated 699 * at inode creation time. If this is a device special inode, 700 * i_mapping may not point to the original address space. 701 */ 702 resv_map = (struct resv_map *)(&inode->i_data)->i_private_data; 703 /* Only regular and link inodes have associated reserve maps */ 704 if (resv_map) 705 resv_map_release(&resv_map->refs); 706 clear_inode(inode); 707 } 708 709 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset) 710 { 711 pgoff_t pgoff; 712 struct address_space *mapping = inode->i_mapping; 713 struct hstate *h = hstate_inode(inode); 714 715 BUG_ON(offset & ~huge_page_mask(h)); 716 pgoff = offset >> PAGE_SHIFT; 717 718 i_size_write(inode, offset); 719 i_mmap_lock_write(mapping); 720 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 721 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0, 722 ZAP_FLAG_DROP_MARKER); 723 i_mmap_unlock_write(mapping); 724 remove_inode_hugepages(inode, offset, LLONG_MAX); 725 } 726 727 static void hugetlbfs_zero_partial_page(struct hstate *h, 728 struct address_space *mapping, 729 loff_t start, 730 loff_t end) 731 { 732 pgoff_t idx = start >> huge_page_shift(h); 733 struct folio *folio; 734 735 folio = filemap_lock_hugetlb_folio(h, mapping, idx); 736 if (IS_ERR(folio)) 737 return; 738 739 start = start & ~huge_page_mask(h); 740 end = end & ~huge_page_mask(h); 741 if (!end) 742 end = huge_page_size(h); 743 744 folio_zero_segment(folio, (size_t)start, (size_t)end); 745 746 folio_unlock(folio); 747 folio_put(folio); 748 } 749 750 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 751 { 752 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 753 struct address_space *mapping = inode->i_mapping; 754 struct hstate *h = hstate_inode(inode); 755 loff_t hpage_size = huge_page_size(h); 756 loff_t hole_start, hole_end; 757 758 /* 759 * hole_start and hole_end indicate the full pages within the hole. 760 */ 761 hole_start = round_up(offset, hpage_size); 762 hole_end = round_down(offset + len, hpage_size); 763 764 inode_lock(inode); 765 766 /* protected by i_rwsem */ 767 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 768 inode_unlock(inode); 769 return -EPERM; 770 } 771 772 i_mmap_lock_write(mapping); 773 774 /* If range starts before first full page, zero partial page. */ 775 if (offset < hole_start) 776 hugetlbfs_zero_partial_page(h, mapping, 777 offset, min(offset + len, hole_start)); 778 779 /* Unmap users of full pages in the hole. */ 780 if (hole_end > hole_start) { 781 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 782 hugetlb_vmdelete_list(&mapping->i_mmap, 783 hole_start >> PAGE_SHIFT, 784 hole_end >> PAGE_SHIFT, 0); 785 } 786 787 /* If range extends beyond last full page, zero partial page. */ 788 if ((offset + len) > hole_end && (offset + len) > hole_start) 789 hugetlbfs_zero_partial_page(h, mapping, 790 hole_end, offset + len); 791 792 i_mmap_unlock_write(mapping); 793 794 /* Remove full pages from the file. */ 795 if (hole_end > hole_start) 796 remove_inode_hugepages(inode, hole_start, hole_end); 797 798 inode_unlock(inode); 799 800 return 0; 801 } 802 803 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset, 804 loff_t len) 805 { 806 struct inode *inode = file_inode(file); 807 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 808 struct address_space *mapping = inode->i_mapping; 809 struct hstate *h = hstate_inode(inode); 810 struct vm_area_struct pseudo_vma; 811 struct mm_struct *mm = current->mm; 812 loff_t hpage_size = huge_page_size(h); 813 unsigned long hpage_shift = huge_page_shift(h); 814 pgoff_t start, index, end; 815 int error; 816 u32 hash; 817 818 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 819 return -EOPNOTSUPP; 820 821 if (mode & FALLOC_FL_PUNCH_HOLE) { 822 error = hugetlbfs_punch_hole(inode, offset, len); 823 goto out_nolock; 824 } 825 826 /* 827 * Default preallocate case. 828 * For this range, start is rounded down and end is rounded up 829 * as well as being converted to page offsets. 830 */ 831 start = offset >> hpage_shift; 832 end = (offset + len + hpage_size - 1) >> hpage_shift; 833 834 inode_lock(inode); 835 836 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 837 error = inode_newsize_ok(inode, offset + len); 838 if (error) 839 goto out; 840 841 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 842 error = -EPERM; 843 goto out; 844 } 845 846 /* 847 * Initialize a pseudo vma as this is required by the huge page 848 * allocation routines. 849 */ 850 vma_init(&pseudo_vma, mm); 851 vm_flags_init(&pseudo_vma, VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 852 pseudo_vma.vm_file = file; 853 854 for (index = start; index < end; index++) { 855 /* 856 * This is supposed to be the vaddr where the page is being 857 * faulted in, but we have no vaddr here. 858 */ 859 struct folio *folio; 860 unsigned long addr; 861 862 cond_resched(); 863 864 /* 865 * fallocate(2) manpage permits EINTR; we may have been 866 * interrupted because we are using up too much memory. 867 */ 868 if (signal_pending(current)) { 869 error = -EINTR; 870 break; 871 } 872 873 /* addr is the offset within the file (zero based) */ 874 addr = index * hpage_size; 875 876 /* mutex taken here, fault path and hole punch */ 877 hash = hugetlb_fault_mutex_hash(mapping, index); 878 mutex_lock(&hugetlb_fault_mutex_table[hash]); 879 880 /* See if already present in mapping to avoid alloc/free */ 881 folio = filemap_get_folio(mapping, index << huge_page_order(h)); 882 if (!IS_ERR(folio)) { 883 folio_put(folio); 884 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 885 continue; 886 } 887 888 /* 889 * Allocate folio without setting the avoid_reserve argument. 890 * There certainly are no reserves associated with the 891 * pseudo_vma. However, there could be shared mappings with 892 * reserves for the file at the inode level. If we fallocate 893 * folios in these areas, we need to consume the reserves 894 * to keep reservation accounting consistent. 895 */ 896 folio = alloc_hugetlb_folio(&pseudo_vma, addr, 0); 897 if (IS_ERR(folio)) { 898 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 899 error = PTR_ERR(folio); 900 goto out; 901 } 902 folio_zero_user(folio, ALIGN_DOWN(addr, hpage_size)); 903 __folio_mark_uptodate(folio); 904 error = hugetlb_add_to_page_cache(folio, mapping, index); 905 if (unlikely(error)) { 906 restore_reserve_on_error(h, &pseudo_vma, addr, folio); 907 folio_put(folio); 908 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 909 goto out; 910 } 911 912 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 913 914 folio_set_hugetlb_migratable(folio); 915 /* 916 * folio_unlock because locked by hugetlb_add_to_page_cache() 917 * folio_put() due to reference from alloc_hugetlb_folio() 918 */ 919 folio_unlock(folio); 920 folio_put(folio); 921 } 922 923 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 924 i_size_write(inode, offset + len); 925 inode_set_ctime_current(inode); 926 out: 927 inode_unlock(inode); 928 929 out_nolock: 930 trace_hugetlbfs_fallocate(inode, mode, offset, len, error); 931 return error; 932 } 933 934 static int hugetlbfs_setattr(struct mnt_idmap *idmap, 935 struct dentry *dentry, struct iattr *attr) 936 { 937 struct inode *inode = d_inode(dentry); 938 struct hstate *h = hstate_inode(inode); 939 int error; 940 unsigned int ia_valid = attr->ia_valid; 941 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 942 943 error = setattr_prepare(idmap, dentry, attr); 944 if (error) 945 return error; 946 947 trace_hugetlbfs_setattr(inode, dentry, attr); 948 949 if (ia_valid & ATTR_SIZE) { 950 loff_t oldsize = inode->i_size; 951 loff_t newsize = attr->ia_size; 952 953 if (newsize & ~huge_page_mask(h)) 954 return -EINVAL; 955 /* protected by i_rwsem */ 956 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 957 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 958 return -EPERM; 959 hugetlb_vmtruncate(inode, newsize); 960 } 961 962 setattr_copy(idmap, inode, attr); 963 mark_inode_dirty(inode); 964 return 0; 965 } 966 967 static struct inode *hugetlbfs_get_root(struct super_block *sb, 968 struct hugetlbfs_fs_context *ctx) 969 { 970 struct inode *inode; 971 972 inode = new_inode(sb); 973 if (inode) { 974 inode->i_ino = get_next_ino(); 975 inode->i_mode = S_IFDIR | ctx->mode; 976 inode->i_uid = ctx->uid; 977 inode->i_gid = ctx->gid; 978 simple_inode_init_ts(inode); 979 inode->i_op = &hugetlbfs_dir_inode_operations; 980 inode->i_fop = &simple_dir_operations; 981 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 982 inc_nlink(inode); 983 lockdep_annotate_inode_mutex_key(inode); 984 } 985 return inode; 986 } 987 988 /* 989 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never 990 * be taken from reclaim -- unlike regular filesystems. This needs an 991 * annotation because huge_pmd_share() does an allocation under hugetlb's 992 * i_mmap_rwsem. 993 */ 994 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key; 995 996 static struct inode *hugetlbfs_get_inode(struct super_block *sb, 997 struct mnt_idmap *idmap, 998 struct inode *dir, 999 umode_t mode, dev_t dev) 1000 { 1001 struct inode *inode; 1002 struct resv_map *resv_map = NULL; 1003 1004 /* 1005 * Reserve maps are only needed for inodes that can have associated 1006 * page allocations. 1007 */ 1008 if (S_ISREG(mode) || S_ISLNK(mode)) { 1009 resv_map = resv_map_alloc(); 1010 if (!resv_map) 1011 return NULL; 1012 } 1013 1014 inode = new_inode(sb); 1015 if (inode) { 1016 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 1017 1018 inode->i_ino = get_next_ino(); 1019 inode_init_owner(idmap, inode, dir, mode); 1020 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem, 1021 &hugetlbfs_i_mmap_rwsem_key); 1022 inode->i_mapping->a_ops = &hugetlbfs_aops; 1023 simple_inode_init_ts(inode); 1024 inode->i_mapping->i_private_data = resv_map; 1025 info->seals = F_SEAL_SEAL; 1026 switch (mode & S_IFMT) { 1027 default: 1028 init_special_inode(inode, mode, dev); 1029 break; 1030 case S_IFREG: 1031 inode->i_op = &hugetlbfs_inode_operations; 1032 inode->i_fop = &hugetlbfs_file_operations; 1033 break; 1034 case S_IFDIR: 1035 inode->i_op = &hugetlbfs_dir_inode_operations; 1036 inode->i_fop = &simple_dir_operations; 1037 1038 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 1039 inc_nlink(inode); 1040 break; 1041 case S_IFLNK: 1042 inode->i_op = &page_symlink_inode_operations; 1043 inode_nohighmem(inode); 1044 break; 1045 } 1046 lockdep_annotate_inode_mutex_key(inode); 1047 trace_hugetlbfs_alloc_inode(inode, dir, mode); 1048 } else { 1049 if (resv_map) 1050 kref_put(&resv_map->refs, resv_map_release); 1051 } 1052 1053 return inode; 1054 } 1055 1056 /* 1057 * File creation. Allocate an inode, and we're done.. 1058 */ 1059 static int hugetlbfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 1060 struct dentry *dentry, umode_t mode, dev_t dev) 1061 { 1062 struct inode *inode; 1063 1064 inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, dev); 1065 if (!inode) 1066 return -ENOSPC; 1067 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 1068 d_instantiate(dentry, inode); 1069 dget(dentry);/* Extra count - pin the dentry in core */ 1070 return 0; 1071 } 1072 1073 static int hugetlbfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 1074 struct dentry *dentry, umode_t mode) 1075 { 1076 int retval = hugetlbfs_mknod(idmap, dir, dentry, 1077 mode | S_IFDIR, 0); 1078 if (!retval) 1079 inc_nlink(dir); 1080 return retval; 1081 } 1082 1083 static int hugetlbfs_create(struct mnt_idmap *idmap, 1084 struct inode *dir, struct dentry *dentry, 1085 umode_t mode, bool excl) 1086 { 1087 return hugetlbfs_mknod(idmap, dir, dentry, mode | S_IFREG, 0); 1088 } 1089 1090 static int hugetlbfs_tmpfile(struct mnt_idmap *idmap, 1091 struct inode *dir, struct file *file, 1092 umode_t mode) 1093 { 1094 struct inode *inode; 1095 1096 inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode | S_IFREG, 0); 1097 if (!inode) 1098 return -ENOSPC; 1099 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 1100 d_tmpfile(file, inode); 1101 return finish_open_simple(file, 0); 1102 } 1103 1104 static int hugetlbfs_symlink(struct mnt_idmap *idmap, 1105 struct inode *dir, struct dentry *dentry, 1106 const char *symname) 1107 { 1108 const umode_t mode = S_IFLNK|S_IRWXUGO; 1109 struct inode *inode; 1110 int error = -ENOSPC; 1111 1112 inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, 0); 1113 if (inode) { 1114 int l = strlen(symname)+1; 1115 error = page_symlink(inode, symname, l); 1116 if (!error) { 1117 d_instantiate(dentry, inode); 1118 dget(dentry); 1119 } else 1120 iput(inode); 1121 } 1122 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 1123 1124 return error; 1125 } 1126 1127 #ifdef CONFIG_MIGRATION 1128 static int hugetlbfs_migrate_folio(struct address_space *mapping, 1129 struct folio *dst, struct folio *src, 1130 enum migrate_mode mode) 1131 { 1132 int rc; 1133 1134 rc = migrate_huge_page_move_mapping(mapping, dst, src); 1135 if (rc != MIGRATEPAGE_SUCCESS) 1136 return rc; 1137 1138 if (hugetlb_folio_subpool(src)) { 1139 hugetlb_set_folio_subpool(dst, 1140 hugetlb_folio_subpool(src)); 1141 hugetlb_set_folio_subpool(src, NULL); 1142 } 1143 1144 folio_migrate_flags(dst, src); 1145 1146 return MIGRATEPAGE_SUCCESS; 1147 } 1148 #else 1149 #define hugetlbfs_migrate_folio NULL 1150 #endif 1151 1152 static int hugetlbfs_error_remove_folio(struct address_space *mapping, 1153 struct folio *folio) 1154 { 1155 return 0; 1156 } 1157 1158 /* 1159 * Display the mount options in /proc/mounts. 1160 */ 1161 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root) 1162 { 1163 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb); 1164 struct hugepage_subpool *spool = sbinfo->spool; 1165 unsigned long hpage_size = huge_page_size(sbinfo->hstate); 1166 unsigned hpage_shift = huge_page_shift(sbinfo->hstate); 1167 char mod; 1168 1169 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 1170 seq_printf(m, ",uid=%u", 1171 from_kuid_munged(&init_user_ns, sbinfo->uid)); 1172 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 1173 seq_printf(m, ",gid=%u", 1174 from_kgid_munged(&init_user_ns, sbinfo->gid)); 1175 if (sbinfo->mode != 0755) 1176 seq_printf(m, ",mode=%o", sbinfo->mode); 1177 if (sbinfo->max_inodes != -1) 1178 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes); 1179 1180 hpage_size /= 1024; 1181 mod = 'K'; 1182 if (hpage_size >= 1024) { 1183 hpage_size /= 1024; 1184 mod = 'M'; 1185 } 1186 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod); 1187 if (spool) { 1188 if (spool->max_hpages != -1) 1189 seq_printf(m, ",size=%llu", 1190 (unsigned long long)spool->max_hpages << hpage_shift); 1191 if (spool->min_hpages != -1) 1192 seq_printf(m, ",min_size=%llu", 1193 (unsigned long long)spool->min_hpages << hpage_shift); 1194 } 1195 return 0; 1196 } 1197 1198 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf) 1199 { 1200 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb); 1201 struct hstate *h = hstate_inode(d_inode(dentry)); 1202 u64 id = huge_encode_dev(dentry->d_sb->s_dev); 1203 1204 buf->f_fsid = u64_to_fsid(id); 1205 buf->f_type = HUGETLBFS_MAGIC; 1206 buf->f_bsize = huge_page_size(h); 1207 if (sbinfo) { 1208 spin_lock(&sbinfo->stat_lock); 1209 /* If no limits set, just report 0 or -1 for max/free/used 1210 * blocks, like simple_statfs() */ 1211 if (sbinfo->spool) { 1212 long free_pages; 1213 1214 spin_lock_irq(&sbinfo->spool->lock); 1215 buf->f_blocks = sbinfo->spool->max_hpages; 1216 free_pages = sbinfo->spool->max_hpages 1217 - sbinfo->spool->used_hpages; 1218 buf->f_bavail = buf->f_bfree = free_pages; 1219 spin_unlock_irq(&sbinfo->spool->lock); 1220 buf->f_files = sbinfo->max_inodes; 1221 buf->f_ffree = sbinfo->free_inodes; 1222 } 1223 spin_unlock(&sbinfo->stat_lock); 1224 } 1225 buf->f_namelen = NAME_MAX; 1226 return 0; 1227 } 1228 1229 static void hugetlbfs_put_super(struct super_block *sb) 1230 { 1231 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb); 1232 1233 if (sbi) { 1234 sb->s_fs_info = NULL; 1235 1236 if (sbi->spool) 1237 hugepage_put_subpool(sbi->spool); 1238 1239 kfree(sbi); 1240 } 1241 } 1242 1243 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1244 { 1245 if (sbinfo->free_inodes >= 0) { 1246 spin_lock(&sbinfo->stat_lock); 1247 if (unlikely(!sbinfo->free_inodes)) { 1248 spin_unlock(&sbinfo->stat_lock); 1249 return 0; 1250 } 1251 sbinfo->free_inodes--; 1252 spin_unlock(&sbinfo->stat_lock); 1253 } 1254 1255 return 1; 1256 } 1257 1258 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1259 { 1260 if (sbinfo->free_inodes >= 0) { 1261 spin_lock(&sbinfo->stat_lock); 1262 sbinfo->free_inodes++; 1263 spin_unlock(&sbinfo->stat_lock); 1264 } 1265 } 1266 1267 1268 static struct kmem_cache *hugetlbfs_inode_cachep; 1269 1270 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb) 1271 { 1272 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb); 1273 struct hugetlbfs_inode_info *p; 1274 1275 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo))) 1276 return NULL; 1277 p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL); 1278 if (unlikely(!p)) { 1279 hugetlbfs_inc_free_inodes(sbinfo); 1280 return NULL; 1281 } 1282 return &p->vfs_inode; 1283 } 1284 1285 static void hugetlbfs_free_inode(struct inode *inode) 1286 { 1287 trace_hugetlbfs_free_inode(inode); 1288 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode)); 1289 } 1290 1291 static void hugetlbfs_destroy_inode(struct inode *inode) 1292 { 1293 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb)); 1294 } 1295 1296 static const struct address_space_operations hugetlbfs_aops = { 1297 .write_begin = hugetlbfs_write_begin, 1298 .write_end = hugetlbfs_write_end, 1299 .dirty_folio = noop_dirty_folio, 1300 .migrate_folio = hugetlbfs_migrate_folio, 1301 .error_remove_folio = hugetlbfs_error_remove_folio, 1302 }; 1303 1304 1305 static void init_once(void *foo) 1306 { 1307 struct hugetlbfs_inode_info *ei = foo; 1308 1309 inode_init_once(&ei->vfs_inode); 1310 } 1311 1312 static const struct file_operations hugetlbfs_file_operations = { 1313 .read_iter = hugetlbfs_read_iter, 1314 .mmap = hugetlbfs_file_mmap, 1315 .fsync = noop_fsync, 1316 .get_unmapped_area = hugetlb_get_unmapped_area, 1317 .llseek = default_llseek, 1318 .fallocate = hugetlbfs_fallocate, 1319 .fop_flags = FOP_HUGE_PAGES, 1320 }; 1321 1322 static const struct inode_operations hugetlbfs_dir_inode_operations = { 1323 .create = hugetlbfs_create, 1324 .lookup = simple_lookup, 1325 .link = simple_link, 1326 .unlink = simple_unlink, 1327 .symlink = hugetlbfs_symlink, 1328 .mkdir = hugetlbfs_mkdir, 1329 .rmdir = simple_rmdir, 1330 .mknod = hugetlbfs_mknod, 1331 .rename = simple_rename, 1332 .setattr = hugetlbfs_setattr, 1333 .tmpfile = hugetlbfs_tmpfile, 1334 }; 1335 1336 static const struct inode_operations hugetlbfs_inode_operations = { 1337 .setattr = hugetlbfs_setattr, 1338 }; 1339 1340 static const struct super_operations hugetlbfs_ops = { 1341 .alloc_inode = hugetlbfs_alloc_inode, 1342 .free_inode = hugetlbfs_free_inode, 1343 .destroy_inode = hugetlbfs_destroy_inode, 1344 .evict_inode = hugetlbfs_evict_inode, 1345 .statfs = hugetlbfs_statfs, 1346 .put_super = hugetlbfs_put_super, 1347 .show_options = hugetlbfs_show_options, 1348 }; 1349 1350 /* 1351 * Convert size option passed from command line to number of huge pages 1352 * in the pool specified by hstate. Size option could be in bytes 1353 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT). 1354 */ 1355 static long 1356 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt, 1357 enum hugetlbfs_size_type val_type) 1358 { 1359 if (val_type == NO_SIZE) 1360 return -1; 1361 1362 if (val_type == SIZE_PERCENT) { 1363 size_opt <<= huge_page_shift(h); 1364 size_opt *= h->max_huge_pages; 1365 do_div(size_opt, 100); 1366 } 1367 1368 size_opt >>= huge_page_shift(h); 1369 return size_opt; 1370 } 1371 1372 /* 1373 * Parse one mount parameter. 1374 */ 1375 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param) 1376 { 1377 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1378 struct fs_parse_result result; 1379 struct hstate *h; 1380 char *rest; 1381 unsigned long ps; 1382 int opt; 1383 1384 opt = fs_parse(fc, hugetlb_fs_parameters, param, &result); 1385 if (opt < 0) 1386 return opt; 1387 1388 switch (opt) { 1389 case Opt_uid: 1390 ctx->uid = result.uid; 1391 return 0; 1392 1393 case Opt_gid: 1394 ctx->gid = result.gid; 1395 return 0; 1396 1397 case Opt_mode: 1398 ctx->mode = result.uint_32 & 01777U; 1399 return 0; 1400 1401 case Opt_size: 1402 /* memparse() will accept a K/M/G without a digit */ 1403 if (!param->string || !isdigit(param->string[0])) 1404 goto bad_val; 1405 ctx->max_size_opt = memparse(param->string, &rest); 1406 ctx->max_val_type = SIZE_STD; 1407 if (*rest == '%') 1408 ctx->max_val_type = SIZE_PERCENT; 1409 return 0; 1410 1411 case Opt_nr_inodes: 1412 /* memparse() will accept a K/M/G without a digit */ 1413 if (!param->string || !isdigit(param->string[0])) 1414 goto bad_val; 1415 ctx->nr_inodes = memparse(param->string, &rest); 1416 return 0; 1417 1418 case Opt_pagesize: 1419 ps = memparse(param->string, &rest); 1420 h = size_to_hstate(ps); 1421 if (!h) { 1422 pr_err("Unsupported page size %lu MB\n", ps / SZ_1M); 1423 return -EINVAL; 1424 } 1425 ctx->hstate = h; 1426 return 0; 1427 1428 case Opt_min_size: 1429 /* memparse() will accept a K/M/G without a digit */ 1430 if (!param->string || !isdigit(param->string[0])) 1431 goto bad_val; 1432 ctx->min_size_opt = memparse(param->string, &rest); 1433 ctx->min_val_type = SIZE_STD; 1434 if (*rest == '%') 1435 ctx->min_val_type = SIZE_PERCENT; 1436 return 0; 1437 1438 default: 1439 return -EINVAL; 1440 } 1441 1442 bad_val: 1443 return invalfc(fc, "Bad value '%s' for mount option '%s'\n", 1444 param->string, param->key); 1445 } 1446 1447 /* 1448 * Validate the parsed options. 1449 */ 1450 static int hugetlbfs_validate(struct fs_context *fc) 1451 { 1452 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1453 1454 /* 1455 * Use huge page pool size (in hstate) to convert the size 1456 * options to number of huge pages. If NO_SIZE, -1 is returned. 1457 */ 1458 ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1459 ctx->max_size_opt, 1460 ctx->max_val_type); 1461 ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1462 ctx->min_size_opt, 1463 ctx->min_val_type); 1464 1465 /* 1466 * If max_size was specified, then min_size must be smaller 1467 */ 1468 if (ctx->max_val_type > NO_SIZE && 1469 ctx->min_hpages > ctx->max_hpages) { 1470 pr_err("Minimum size can not be greater than maximum size\n"); 1471 return -EINVAL; 1472 } 1473 1474 return 0; 1475 } 1476 1477 static int 1478 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc) 1479 { 1480 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1481 struct hugetlbfs_sb_info *sbinfo; 1482 1483 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL); 1484 if (!sbinfo) 1485 return -ENOMEM; 1486 sb->s_fs_info = sbinfo; 1487 spin_lock_init(&sbinfo->stat_lock); 1488 sbinfo->hstate = ctx->hstate; 1489 sbinfo->max_inodes = ctx->nr_inodes; 1490 sbinfo->free_inodes = ctx->nr_inodes; 1491 sbinfo->spool = NULL; 1492 sbinfo->uid = ctx->uid; 1493 sbinfo->gid = ctx->gid; 1494 sbinfo->mode = ctx->mode; 1495 1496 /* 1497 * Allocate and initialize subpool if maximum or minimum size is 1498 * specified. Any needed reservations (for minimum size) are taken 1499 * when the subpool is created. 1500 */ 1501 if (ctx->max_hpages != -1 || ctx->min_hpages != -1) { 1502 sbinfo->spool = hugepage_new_subpool(ctx->hstate, 1503 ctx->max_hpages, 1504 ctx->min_hpages); 1505 if (!sbinfo->spool) 1506 goto out_free; 1507 } 1508 sb->s_maxbytes = MAX_LFS_FILESIZE; 1509 sb->s_blocksize = huge_page_size(ctx->hstate); 1510 sb->s_blocksize_bits = huge_page_shift(ctx->hstate); 1511 sb->s_magic = HUGETLBFS_MAGIC; 1512 sb->s_op = &hugetlbfs_ops; 1513 sb->s_time_gran = 1; 1514 1515 /* 1516 * Due to the special and limited functionality of hugetlbfs, it does 1517 * not work well as a stacking filesystem. 1518 */ 1519 sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH; 1520 sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx)); 1521 if (!sb->s_root) 1522 goto out_free; 1523 return 0; 1524 out_free: 1525 kfree(sbinfo->spool); 1526 kfree(sbinfo); 1527 return -ENOMEM; 1528 } 1529 1530 static int hugetlbfs_get_tree(struct fs_context *fc) 1531 { 1532 int err = hugetlbfs_validate(fc); 1533 if (err) 1534 return err; 1535 return get_tree_nodev(fc, hugetlbfs_fill_super); 1536 } 1537 1538 static void hugetlbfs_fs_context_free(struct fs_context *fc) 1539 { 1540 kfree(fc->fs_private); 1541 } 1542 1543 static const struct fs_context_operations hugetlbfs_fs_context_ops = { 1544 .free = hugetlbfs_fs_context_free, 1545 .parse_param = hugetlbfs_parse_param, 1546 .get_tree = hugetlbfs_get_tree, 1547 }; 1548 1549 static int hugetlbfs_init_fs_context(struct fs_context *fc) 1550 { 1551 struct hugetlbfs_fs_context *ctx; 1552 1553 ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL); 1554 if (!ctx) 1555 return -ENOMEM; 1556 1557 ctx->max_hpages = -1; /* No limit on size by default */ 1558 ctx->nr_inodes = -1; /* No limit on number of inodes by default */ 1559 ctx->uid = current_fsuid(); 1560 ctx->gid = current_fsgid(); 1561 ctx->mode = 0755; 1562 ctx->hstate = &default_hstate; 1563 ctx->min_hpages = -1; /* No default minimum size */ 1564 ctx->max_val_type = NO_SIZE; 1565 ctx->min_val_type = NO_SIZE; 1566 fc->fs_private = ctx; 1567 fc->ops = &hugetlbfs_fs_context_ops; 1568 return 0; 1569 } 1570 1571 static struct file_system_type hugetlbfs_fs_type = { 1572 .name = "hugetlbfs", 1573 .init_fs_context = hugetlbfs_init_fs_context, 1574 .parameters = hugetlb_fs_parameters, 1575 .kill_sb = kill_litter_super, 1576 .fs_flags = FS_ALLOW_IDMAP, 1577 }; 1578 1579 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE]; 1580 1581 static int can_do_hugetlb_shm(void) 1582 { 1583 kgid_t shm_group; 1584 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group); 1585 return capable(CAP_IPC_LOCK) || in_group_p(shm_group); 1586 } 1587 1588 static int get_hstate_idx(int page_size_log) 1589 { 1590 struct hstate *h = hstate_sizelog(page_size_log); 1591 1592 if (!h) 1593 return -1; 1594 return hstate_index(h); 1595 } 1596 1597 /* 1598 * Note that size should be aligned to proper hugepage size in caller side, 1599 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended. 1600 */ 1601 struct file *hugetlb_file_setup(const char *name, size_t size, 1602 vm_flags_t acctflag, int creat_flags, 1603 int page_size_log) 1604 { 1605 struct inode *inode; 1606 struct vfsmount *mnt; 1607 int hstate_idx; 1608 struct file *file; 1609 1610 hstate_idx = get_hstate_idx(page_size_log); 1611 if (hstate_idx < 0) 1612 return ERR_PTR(-ENODEV); 1613 1614 mnt = hugetlbfs_vfsmount[hstate_idx]; 1615 if (!mnt) 1616 return ERR_PTR(-ENOENT); 1617 1618 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) { 1619 struct ucounts *ucounts = current_ucounts(); 1620 1621 if (user_shm_lock(size, ucounts)) { 1622 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n", 1623 current->comm, current->pid); 1624 user_shm_unlock(size, ucounts); 1625 } 1626 return ERR_PTR(-EPERM); 1627 } 1628 1629 file = ERR_PTR(-ENOSPC); 1630 /* hugetlbfs_vfsmount[] mounts do not use idmapped mounts. */ 1631 inode = hugetlbfs_get_inode(mnt->mnt_sb, &nop_mnt_idmap, NULL, 1632 S_IFREG | S_IRWXUGO, 0); 1633 if (!inode) 1634 goto out; 1635 if (creat_flags == HUGETLB_SHMFS_INODE) 1636 inode->i_flags |= S_PRIVATE; 1637 1638 inode->i_size = size; 1639 clear_nlink(inode); 1640 1641 if (!hugetlb_reserve_pages(inode, 0, 1642 size >> huge_page_shift(hstate_inode(inode)), NULL, 1643 acctflag)) 1644 file = ERR_PTR(-ENOMEM); 1645 else 1646 file = alloc_file_pseudo(inode, mnt, name, O_RDWR, 1647 &hugetlbfs_file_operations); 1648 if (!IS_ERR(file)) 1649 return file; 1650 1651 iput(inode); 1652 out: 1653 return file; 1654 } 1655 1656 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h) 1657 { 1658 struct fs_context *fc; 1659 struct vfsmount *mnt; 1660 1661 fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT); 1662 if (IS_ERR(fc)) { 1663 mnt = ERR_CAST(fc); 1664 } else { 1665 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1666 ctx->hstate = h; 1667 mnt = fc_mount(fc); 1668 put_fs_context(fc); 1669 } 1670 if (IS_ERR(mnt)) 1671 pr_err("Cannot mount internal hugetlbfs for page size %luK", 1672 huge_page_size(h) / SZ_1K); 1673 return mnt; 1674 } 1675 1676 static int __init init_hugetlbfs_fs(void) 1677 { 1678 struct vfsmount *mnt; 1679 struct hstate *h; 1680 int error; 1681 int i; 1682 1683 if (!hugepages_supported()) { 1684 pr_info("disabling because there are no supported hugepage sizes\n"); 1685 return -ENOTSUPP; 1686 } 1687 1688 error = -ENOMEM; 1689 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache", 1690 sizeof(struct hugetlbfs_inode_info), 1691 0, SLAB_ACCOUNT, init_once); 1692 if (hugetlbfs_inode_cachep == NULL) 1693 goto out; 1694 1695 error = register_filesystem(&hugetlbfs_fs_type); 1696 if (error) 1697 goto out_free; 1698 1699 /* default hstate mount is required */ 1700 mnt = mount_one_hugetlbfs(&default_hstate); 1701 if (IS_ERR(mnt)) { 1702 error = PTR_ERR(mnt); 1703 goto out_unreg; 1704 } 1705 hugetlbfs_vfsmount[default_hstate_idx] = mnt; 1706 1707 /* other hstates are optional */ 1708 i = 0; 1709 for_each_hstate(h) { 1710 if (i == default_hstate_idx) { 1711 i++; 1712 continue; 1713 } 1714 1715 mnt = mount_one_hugetlbfs(h); 1716 if (IS_ERR(mnt)) 1717 hugetlbfs_vfsmount[i] = NULL; 1718 else 1719 hugetlbfs_vfsmount[i] = mnt; 1720 i++; 1721 } 1722 1723 return 0; 1724 1725 out_unreg: 1726 (void)unregister_filesystem(&hugetlbfs_fs_type); 1727 out_free: 1728 kmem_cache_destroy(hugetlbfs_inode_cachep); 1729 out: 1730 return error; 1731 } 1732 fs_initcall(init_hugetlbfs_fs) 1733