1 /* 2 * hugetlbpage-backed filesystem. Based on ramfs. 3 * 4 * Nadia Yvette Chambers, 2002 5 * 6 * Copyright (C) 2002 Linus Torvalds. 7 * License: GPL 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/thread_info.h> 13 #include <asm/current.h> 14 #include <linux/falloc.h> 15 #include <linux/fs.h> 16 #include <linux/mount.h> 17 #include <linux/file.h> 18 #include <linux/kernel.h> 19 #include <linux/writeback.h> 20 #include <linux/pagemap.h> 21 #include <linux/highmem.h> 22 #include <linux/init.h> 23 #include <linux/string.h> 24 #include <linux/capability.h> 25 #include <linux/ctype.h> 26 #include <linux/backing-dev.h> 27 #include <linux/hugetlb.h> 28 #include <linux/pagevec.h> 29 #include <linux/fs_parser.h> 30 #include <linux/mman.h> 31 #include <linux/slab.h> 32 #include <linux/dnotify.h> 33 #include <linux/statfs.h> 34 #include <linux/security.h> 35 #include <linux/magic.h> 36 #include <linux/migrate.h> 37 #include <linux/uio.h> 38 39 #include <linux/uaccess.h> 40 #include <linux/sched/mm.h> 41 42 static const struct address_space_operations hugetlbfs_aops; 43 static const struct file_operations hugetlbfs_file_operations; 44 static const struct inode_operations hugetlbfs_dir_inode_operations; 45 static const struct inode_operations hugetlbfs_inode_operations; 46 47 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT }; 48 49 struct hugetlbfs_fs_context { 50 struct hstate *hstate; 51 unsigned long long max_size_opt; 52 unsigned long long min_size_opt; 53 long max_hpages; 54 long nr_inodes; 55 long min_hpages; 56 enum hugetlbfs_size_type max_val_type; 57 enum hugetlbfs_size_type min_val_type; 58 kuid_t uid; 59 kgid_t gid; 60 umode_t mode; 61 }; 62 63 int sysctl_hugetlb_shm_group; 64 65 enum hugetlb_param { 66 Opt_gid, 67 Opt_min_size, 68 Opt_mode, 69 Opt_nr_inodes, 70 Opt_pagesize, 71 Opt_size, 72 Opt_uid, 73 }; 74 75 static const struct fs_parameter_spec hugetlb_fs_parameters[] = { 76 fsparam_gid ("gid", Opt_gid), 77 fsparam_string("min_size", Opt_min_size), 78 fsparam_u32oct("mode", Opt_mode), 79 fsparam_string("nr_inodes", Opt_nr_inodes), 80 fsparam_string("pagesize", Opt_pagesize), 81 fsparam_string("size", Opt_size), 82 fsparam_uid ("uid", Opt_uid), 83 {} 84 }; 85 86 /* 87 * Mask used when checking the page offset value passed in via system 88 * calls. This value will be converted to a loff_t which is signed. 89 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the 90 * value. The extra bit (- 1 in the shift value) is to take the sign 91 * bit into account. 92 */ 93 #define PGOFF_LOFFT_MAX \ 94 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1))) 95 96 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma) 97 { 98 struct inode *inode = file_inode(file); 99 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 100 loff_t len, vma_len; 101 int ret; 102 struct hstate *h = hstate_file(file); 103 vm_flags_t vm_flags; 104 105 /* 106 * vma address alignment (but not the pgoff alignment) has 107 * already been checked by prepare_hugepage_range. If you add 108 * any error returns here, do so after setting VM_HUGETLB, so 109 * is_vm_hugetlb_page tests below unmap_region go the right 110 * way when do_mmap unwinds (may be important on powerpc 111 * and ia64). 112 */ 113 vm_flags_set(vma, VM_HUGETLB | VM_DONTEXPAND); 114 vma->vm_ops = &hugetlb_vm_ops; 115 116 ret = seal_check_write(info->seals, vma); 117 if (ret) 118 return ret; 119 120 /* 121 * page based offset in vm_pgoff could be sufficiently large to 122 * overflow a loff_t when converted to byte offset. This can 123 * only happen on architectures where sizeof(loff_t) == 124 * sizeof(unsigned long). So, only check in those instances. 125 */ 126 if (sizeof(unsigned long) == sizeof(loff_t)) { 127 if (vma->vm_pgoff & PGOFF_LOFFT_MAX) 128 return -EINVAL; 129 } 130 131 /* must be huge page aligned */ 132 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT)) 133 return -EINVAL; 134 135 vma_len = (loff_t)(vma->vm_end - vma->vm_start); 136 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 137 /* check for overflow */ 138 if (len < vma_len) 139 return -EINVAL; 140 141 inode_lock(inode); 142 file_accessed(file); 143 144 ret = -ENOMEM; 145 146 vm_flags = vma->vm_flags; 147 /* 148 * for SHM_HUGETLB, the pages are reserved in the shmget() call so skip 149 * reserving here. Note: only for SHM hugetlbfs file, the inode 150 * flag S_PRIVATE is set. 151 */ 152 if (inode->i_flags & S_PRIVATE) 153 vm_flags |= VM_NORESERVE; 154 155 if (!hugetlb_reserve_pages(inode, 156 vma->vm_pgoff >> huge_page_order(h), 157 len >> huge_page_shift(h), vma, 158 vm_flags)) 159 goto out; 160 161 ret = 0; 162 if (vma->vm_flags & VM_WRITE && inode->i_size < len) 163 i_size_write(inode, len); 164 out: 165 inode_unlock(inode); 166 167 return ret; 168 } 169 170 /* 171 * Called under mmap_write_lock(mm). 172 */ 173 174 static unsigned long 175 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr, 176 unsigned long len, unsigned long pgoff, unsigned long flags) 177 { 178 struct hstate *h = hstate_file(file); 179 struct vm_unmapped_area_info info = {}; 180 181 info.length = len; 182 info.low_limit = current->mm->mmap_base; 183 info.high_limit = arch_get_mmap_end(addr, len, flags); 184 info.align_mask = PAGE_MASK & ~huge_page_mask(h); 185 return vm_unmapped_area(&info); 186 } 187 188 static unsigned long 189 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr, 190 unsigned long len, unsigned long pgoff, unsigned long flags) 191 { 192 struct hstate *h = hstate_file(file); 193 struct vm_unmapped_area_info info = {}; 194 195 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 196 info.length = len; 197 info.low_limit = PAGE_SIZE; 198 info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base); 199 info.align_mask = PAGE_MASK & ~huge_page_mask(h); 200 addr = vm_unmapped_area(&info); 201 202 /* 203 * A failed mmap() very likely causes application failure, 204 * so fall back to the bottom-up function here. This scenario 205 * can happen with large stack limits and large mmap() 206 * allocations. 207 */ 208 if (unlikely(offset_in_page(addr))) { 209 VM_BUG_ON(addr != -ENOMEM); 210 info.flags = 0; 211 info.low_limit = current->mm->mmap_base; 212 info.high_limit = arch_get_mmap_end(addr, len, flags); 213 addr = vm_unmapped_area(&info); 214 } 215 216 return addr; 217 } 218 219 unsigned long 220 generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 221 unsigned long len, unsigned long pgoff, 222 unsigned long flags) 223 { 224 struct mm_struct *mm = current->mm; 225 struct vm_area_struct *vma, *prev; 226 struct hstate *h = hstate_file(file); 227 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); 228 229 if (len & ~huge_page_mask(h)) 230 return -EINVAL; 231 if (len > mmap_end - mmap_min_addr) 232 return -ENOMEM; 233 234 if (flags & MAP_FIXED) { 235 if (prepare_hugepage_range(file, addr, len)) 236 return -EINVAL; 237 return addr; 238 } 239 240 if (addr) { 241 addr = ALIGN(addr, huge_page_size(h)); 242 vma = find_vma_prev(mm, addr, &prev); 243 if (mmap_end - len >= addr && addr >= mmap_min_addr && 244 (!vma || addr + len <= vm_start_gap(vma)) && 245 (!prev || addr >= vm_end_gap(prev))) 246 return addr; 247 } 248 249 /* 250 * Use MMF_TOPDOWN flag as a hint to use topdown routine. 251 * If architectures have special needs, they should define their own 252 * version of hugetlb_get_unmapped_area. 253 */ 254 if (test_bit(MMF_TOPDOWN, &mm->flags)) 255 return hugetlb_get_unmapped_area_topdown(file, addr, len, 256 pgoff, flags); 257 return hugetlb_get_unmapped_area_bottomup(file, addr, len, 258 pgoff, flags); 259 } 260 261 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA 262 static unsigned long 263 hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 264 unsigned long len, unsigned long pgoff, 265 unsigned long flags) 266 { 267 return generic_hugetlb_get_unmapped_area(file, addr, len, pgoff, flags); 268 } 269 #endif 270 271 /* 272 * Someone wants to read @bytes from a HWPOISON hugetlb @page from @offset. 273 * Returns the maximum number of bytes one can read without touching the 1st raw 274 * HWPOISON subpage. 275 * 276 * The implementation borrows the iteration logic from copy_page_to_iter*. 277 */ 278 static size_t adjust_range_hwpoison(struct page *page, size_t offset, size_t bytes) 279 { 280 size_t n = 0; 281 size_t res = 0; 282 283 /* First subpage to start the loop. */ 284 page = nth_page(page, offset / PAGE_SIZE); 285 offset %= PAGE_SIZE; 286 while (1) { 287 if (is_raw_hwpoison_page_in_hugepage(page)) 288 break; 289 290 /* Safe to read n bytes without touching HWPOISON subpage. */ 291 n = min(bytes, (size_t)PAGE_SIZE - offset); 292 res += n; 293 bytes -= n; 294 if (!bytes || !n) 295 break; 296 offset += n; 297 if (offset == PAGE_SIZE) { 298 page = nth_page(page, 1); 299 offset = 0; 300 } 301 } 302 303 return res; 304 } 305 306 /* 307 * Support for read() - Find the page attached to f_mapping and copy out the 308 * data. This provides functionality similar to filemap_read(). 309 */ 310 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to) 311 { 312 struct file *file = iocb->ki_filp; 313 struct hstate *h = hstate_file(file); 314 struct address_space *mapping = file->f_mapping; 315 struct inode *inode = mapping->host; 316 unsigned long index = iocb->ki_pos >> huge_page_shift(h); 317 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h); 318 unsigned long end_index; 319 loff_t isize; 320 ssize_t retval = 0; 321 322 while (iov_iter_count(to)) { 323 struct folio *folio; 324 size_t nr, copied, want; 325 326 /* nr is the maximum number of bytes to copy from this page */ 327 nr = huge_page_size(h); 328 isize = i_size_read(inode); 329 if (!isize) 330 break; 331 end_index = (isize - 1) >> huge_page_shift(h); 332 if (index > end_index) 333 break; 334 if (index == end_index) { 335 nr = ((isize - 1) & ~huge_page_mask(h)) + 1; 336 if (nr <= offset) 337 break; 338 } 339 nr = nr - offset; 340 341 /* Find the folio */ 342 folio = filemap_lock_hugetlb_folio(h, mapping, index); 343 if (IS_ERR(folio)) { 344 /* 345 * We have a HOLE, zero out the user-buffer for the 346 * length of the hole or request. 347 */ 348 copied = iov_iter_zero(nr, to); 349 } else { 350 folio_unlock(folio); 351 352 if (!folio_test_hwpoison(folio)) 353 want = nr; 354 else { 355 /* 356 * Adjust how many bytes safe to read without 357 * touching the 1st raw HWPOISON subpage after 358 * offset. 359 */ 360 want = adjust_range_hwpoison(&folio->page, offset, nr); 361 if (want == 0) { 362 folio_put(folio); 363 retval = -EIO; 364 break; 365 } 366 } 367 368 /* 369 * We have the folio, copy it to user space buffer. 370 */ 371 copied = copy_folio_to_iter(folio, offset, want, to); 372 folio_put(folio); 373 } 374 offset += copied; 375 retval += copied; 376 if (copied != nr && iov_iter_count(to)) { 377 if (!retval) 378 retval = -EFAULT; 379 break; 380 } 381 index += offset >> huge_page_shift(h); 382 offset &= ~huge_page_mask(h); 383 } 384 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset; 385 return retval; 386 } 387 388 static int hugetlbfs_write_begin(struct file *file, 389 struct address_space *mapping, 390 loff_t pos, unsigned len, 391 struct folio **foliop, void **fsdata) 392 { 393 return -EINVAL; 394 } 395 396 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping, 397 loff_t pos, unsigned len, unsigned copied, 398 struct folio *folio, void *fsdata) 399 { 400 BUG(); 401 return -EINVAL; 402 } 403 404 static void hugetlb_delete_from_page_cache(struct folio *folio) 405 { 406 folio_clear_dirty(folio); 407 folio_clear_uptodate(folio); 408 filemap_remove_folio(folio); 409 } 410 411 /* 412 * Called with i_mmap_rwsem held for inode based vma maps. This makes 413 * sure vma (and vm_mm) will not go away. We also hold the hugetlb fault 414 * mutex for the page in the mapping. So, we can not race with page being 415 * faulted into the vma. 416 */ 417 static bool hugetlb_vma_maps_page(struct vm_area_struct *vma, 418 unsigned long addr, struct page *page) 419 { 420 pte_t *ptep, pte; 421 422 ptep = hugetlb_walk(vma, addr, huge_page_size(hstate_vma(vma))); 423 if (!ptep) 424 return false; 425 426 pte = huge_ptep_get(vma->vm_mm, addr, ptep); 427 if (huge_pte_none(pte) || !pte_present(pte)) 428 return false; 429 430 if (pte_page(pte) == page) 431 return true; 432 433 return false; 434 } 435 436 /* 437 * Can vma_offset_start/vma_offset_end overflow on 32-bit arches? 438 * No, because the interval tree returns us only those vmas 439 * which overlap the truncated area starting at pgoff, 440 * and no vma on a 32-bit arch can span beyond the 4GB. 441 */ 442 static unsigned long vma_offset_start(struct vm_area_struct *vma, pgoff_t start) 443 { 444 unsigned long offset = 0; 445 446 if (vma->vm_pgoff < start) 447 offset = (start - vma->vm_pgoff) << PAGE_SHIFT; 448 449 return vma->vm_start + offset; 450 } 451 452 static unsigned long vma_offset_end(struct vm_area_struct *vma, pgoff_t end) 453 { 454 unsigned long t_end; 455 456 if (!end) 457 return vma->vm_end; 458 459 t_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) + vma->vm_start; 460 if (t_end > vma->vm_end) 461 t_end = vma->vm_end; 462 return t_end; 463 } 464 465 /* 466 * Called with hugetlb fault mutex held. Therefore, no more mappings to 467 * this folio can be created while executing the routine. 468 */ 469 static void hugetlb_unmap_file_folio(struct hstate *h, 470 struct address_space *mapping, 471 struct folio *folio, pgoff_t index) 472 { 473 struct rb_root_cached *root = &mapping->i_mmap; 474 struct hugetlb_vma_lock *vma_lock; 475 struct page *page = &folio->page; 476 struct vm_area_struct *vma; 477 unsigned long v_start; 478 unsigned long v_end; 479 pgoff_t start, end; 480 481 start = index * pages_per_huge_page(h); 482 end = (index + 1) * pages_per_huge_page(h); 483 484 i_mmap_lock_write(mapping); 485 retry: 486 vma_lock = NULL; 487 vma_interval_tree_foreach(vma, root, start, end - 1) { 488 v_start = vma_offset_start(vma, start); 489 v_end = vma_offset_end(vma, end); 490 491 if (!hugetlb_vma_maps_page(vma, v_start, page)) 492 continue; 493 494 if (!hugetlb_vma_trylock_write(vma)) { 495 vma_lock = vma->vm_private_data; 496 /* 497 * If we can not get vma lock, we need to drop 498 * immap_sema and take locks in order. First, 499 * take a ref on the vma_lock structure so that 500 * we can be guaranteed it will not go away when 501 * dropping immap_sema. 502 */ 503 kref_get(&vma_lock->refs); 504 break; 505 } 506 507 unmap_hugepage_range(vma, v_start, v_end, NULL, 508 ZAP_FLAG_DROP_MARKER); 509 hugetlb_vma_unlock_write(vma); 510 } 511 512 i_mmap_unlock_write(mapping); 513 514 if (vma_lock) { 515 /* 516 * Wait on vma_lock. We know it is still valid as we have 517 * a reference. We must 'open code' vma locking as we do 518 * not know if vma_lock is still attached to vma. 519 */ 520 down_write(&vma_lock->rw_sema); 521 i_mmap_lock_write(mapping); 522 523 vma = vma_lock->vma; 524 if (!vma) { 525 /* 526 * If lock is no longer attached to vma, then just 527 * unlock, drop our reference and retry looking for 528 * other vmas. 529 */ 530 up_write(&vma_lock->rw_sema); 531 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 532 goto retry; 533 } 534 535 /* 536 * vma_lock is still attached to vma. Check to see if vma 537 * still maps page and if so, unmap. 538 */ 539 v_start = vma_offset_start(vma, start); 540 v_end = vma_offset_end(vma, end); 541 if (hugetlb_vma_maps_page(vma, v_start, page)) 542 unmap_hugepage_range(vma, v_start, v_end, NULL, 543 ZAP_FLAG_DROP_MARKER); 544 545 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 546 hugetlb_vma_unlock_write(vma); 547 548 goto retry; 549 } 550 } 551 552 static void 553 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end, 554 zap_flags_t zap_flags) 555 { 556 struct vm_area_struct *vma; 557 558 /* 559 * end == 0 indicates that the entire range after start should be 560 * unmapped. Note, end is exclusive, whereas the interval tree takes 561 * an inclusive "last". 562 */ 563 vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) { 564 unsigned long v_start; 565 unsigned long v_end; 566 567 if (!hugetlb_vma_trylock_write(vma)) 568 continue; 569 570 v_start = vma_offset_start(vma, start); 571 v_end = vma_offset_end(vma, end); 572 573 unmap_hugepage_range(vma, v_start, v_end, NULL, zap_flags); 574 575 /* 576 * Note that vma lock only exists for shared/non-private 577 * vmas. Therefore, lock is not held when calling 578 * unmap_hugepage_range for private vmas. 579 */ 580 hugetlb_vma_unlock_write(vma); 581 } 582 } 583 584 /* 585 * Called with hugetlb fault mutex held. 586 * Returns true if page was actually removed, false otherwise. 587 */ 588 static bool remove_inode_single_folio(struct hstate *h, struct inode *inode, 589 struct address_space *mapping, 590 struct folio *folio, pgoff_t index, 591 bool truncate_op) 592 { 593 bool ret = false; 594 595 /* 596 * If folio is mapped, it was faulted in after being 597 * unmapped in caller. Unmap (again) while holding 598 * the fault mutex. The mutex will prevent faults 599 * until we finish removing the folio. 600 */ 601 if (unlikely(folio_mapped(folio))) 602 hugetlb_unmap_file_folio(h, mapping, folio, index); 603 604 folio_lock(folio); 605 /* 606 * We must remove the folio from page cache before removing 607 * the region/ reserve map (hugetlb_unreserve_pages). In 608 * rare out of memory conditions, removal of the region/reserve 609 * map could fail. Correspondingly, the subpool and global 610 * reserve usage count can need to be adjusted. 611 */ 612 VM_BUG_ON_FOLIO(folio_test_hugetlb_restore_reserve(folio), folio); 613 hugetlb_delete_from_page_cache(folio); 614 ret = true; 615 if (!truncate_op) { 616 if (unlikely(hugetlb_unreserve_pages(inode, index, 617 index + 1, 1))) 618 hugetlb_fix_reserve_counts(inode); 619 } 620 621 folio_unlock(folio); 622 return ret; 623 } 624 625 /* 626 * remove_inode_hugepages handles two distinct cases: truncation and hole 627 * punch. There are subtle differences in operation for each case. 628 * 629 * truncation is indicated by end of range being LLONG_MAX 630 * In this case, we first scan the range and release found pages. 631 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserve 632 * maps and global counts. Page faults can race with truncation. 633 * During faults, hugetlb_no_page() checks i_size before page allocation, 634 * and again after obtaining page table lock. It will 'back out' 635 * allocations in the truncated range. 636 * hole punch is indicated if end is not LLONG_MAX 637 * In the hole punch case we scan the range and release found pages. 638 * Only when releasing a page is the associated region/reserve map 639 * deleted. The region/reserve map for ranges without associated 640 * pages are not modified. Page faults can race with hole punch. 641 * This is indicated if we find a mapped page. 642 * Note: If the passed end of range value is beyond the end of file, but 643 * not LLONG_MAX this routine still performs a hole punch operation. 644 */ 645 static void remove_inode_hugepages(struct inode *inode, loff_t lstart, 646 loff_t lend) 647 { 648 struct hstate *h = hstate_inode(inode); 649 struct address_space *mapping = &inode->i_data; 650 const pgoff_t end = lend >> PAGE_SHIFT; 651 struct folio_batch fbatch; 652 pgoff_t next, index; 653 int i, freed = 0; 654 bool truncate_op = (lend == LLONG_MAX); 655 656 folio_batch_init(&fbatch); 657 next = lstart >> PAGE_SHIFT; 658 while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) { 659 for (i = 0; i < folio_batch_count(&fbatch); ++i) { 660 struct folio *folio = fbatch.folios[i]; 661 u32 hash = 0; 662 663 index = folio->index >> huge_page_order(h); 664 hash = hugetlb_fault_mutex_hash(mapping, index); 665 mutex_lock(&hugetlb_fault_mutex_table[hash]); 666 667 /* 668 * Remove folio that was part of folio_batch. 669 */ 670 if (remove_inode_single_folio(h, inode, mapping, folio, 671 index, truncate_op)) 672 freed++; 673 674 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 675 } 676 folio_batch_release(&fbatch); 677 cond_resched(); 678 } 679 680 if (truncate_op) 681 (void)hugetlb_unreserve_pages(inode, 682 lstart >> huge_page_shift(h), 683 LONG_MAX, freed); 684 } 685 686 static void hugetlbfs_evict_inode(struct inode *inode) 687 { 688 struct resv_map *resv_map; 689 690 remove_inode_hugepages(inode, 0, LLONG_MAX); 691 692 /* 693 * Get the resv_map from the address space embedded in the inode. 694 * This is the address space which points to any resv_map allocated 695 * at inode creation time. If this is a device special inode, 696 * i_mapping may not point to the original address space. 697 */ 698 resv_map = (struct resv_map *)(&inode->i_data)->i_private_data; 699 /* Only regular and link inodes have associated reserve maps */ 700 if (resv_map) 701 resv_map_release(&resv_map->refs); 702 clear_inode(inode); 703 } 704 705 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset) 706 { 707 pgoff_t pgoff; 708 struct address_space *mapping = inode->i_mapping; 709 struct hstate *h = hstate_inode(inode); 710 711 BUG_ON(offset & ~huge_page_mask(h)); 712 pgoff = offset >> PAGE_SHIFT; 713 714 i_size_write(inode, offset); 715 i_mmap_lock_write(mapping); 716 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 717 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0, 718 ZAP_FLAG_DROP_MARKER); 719 i_mmap_unlock_write(mapping); 720 remove_inode_hugepages(inode, offset, LLONG_MAX); 721 } 722 723 static void hugetlbfs_zero_partial_page(struct hstate *h, 724 struct address_space *mapping, 725 loff_t start, 726 loff_t end) 727 { 728 pgoff_t idx = start >> huge_page_shift(h); 729 struct folio *folio; 730 731 folio = filemap_lock_hugetlb_folio(h, mapping, idx); 732 if (IS_ERR(folio)) 733 return; 734 735 start = start & ~huge_page_mask(h); 736 end = end & ~huge_page_mask(h); 737 if (!end) 738 end = huge_page_size(h); 739 740 folio_zero_segment(folio, (size_t)start, (size_t)end); 741 742 folio_unlock(folio); 743 folio_put(folio); 744 } 745 746 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 747 { 748 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 749 struct address_space *mapping = inode->i_mapping; 750 struct hstate *h = hstate_inode(inode); 751 loff_t hpage_size = huge_page_size(h); 752 loff_t hole_start, hole_end; 753 754 /* 755 * hole_start and hole_end indicate the full pages within the hole. 756 */ 757 hole_start = round_up(offset, hpage_size); 758 hole_end = round_down(offset + len, hpage_size); 759 760 inode_lock(inode); 761 762 /* protected by i_rwsem */ 763 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 764 inode_unlock(inode); 765 return -EPERM; 766 } 767 768 i_mmap_lock_write(mapping); 769 770 /* If range starts before first full page, zero partial page. */ 771 if (offset < hole_start) 772 hugetlbfs_zero_partial_page(h, mapping, 773 offset, min(offset + len, hole_start)); 774 775 /* Unmap users of full pages in the hole. */ 776 if (hole_end > hole_start) { 777 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 778 hugetlb_vmdelete_list(&mapping->i_mmap, 779 hole_start >> PAGE_SHIFT, 780 hole_end >> PAGE_SHIFT, 0); 781 } 782 783 /* If range extends beyond last full page, zero partial page. */ 784 if ((offset + len) > hole_end && (offset + len) > hole_start) 785 hugetlbfs_zero_partial_page(h, mapping, 786 hole_end, offset + len); 787 788 i_mmap_unlock_write(mapping); 789 790 /* Remove full pages from the file. */ 791 if (hole_end > hole_start) 792 remove_inode_hugepages(inode, hole_start, hole_end); 793 794 inode_unlock(inode); 795 796 return 0; 797 } 798 799 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset, 800 loff_t len) 801 { 802 struct inode *inode = file_inode(file); 803 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 804 struct address_space *mapping = inode->i_mapping; 805 struct hstate *h = hstate_inode(inode); 806 struct vm_area_struct pseudo_vma; 807 struct mm_struct *mm = current->mm; 808 loff_t hpage_size = huge_page_size(h); 809 unsigned long hpage_shift = huge_page_shift(h); 810 pgoff_t start, index, end; 811 int error; 812 u32 hash; 813 814 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 815 return -EOPNOTSUPP; 816 817 if (mode & FALLOC_FL_PUNCH_HOLE) 818 return hugetlbfs_punch_hole(inode, offset, len); 819 820 /* 821 * Default preallocate case. 822 * For this range, start is rounded down and end is rounded up 823 * as well as being converted to page offsets. 824 */ 825 start = offset >> hpage_shift; 826 end = (offset + len + hpage_size - 1) >> hpage_shift; 827 828 inode_lock(inode); 829 830 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 831 error = inode_newsize_ok(inode, offset + len); 832 if (error) 833 goto out; 834 835 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 836 error = -EPERM; 837 goto out; 838 } 839 840 /* 841 * Initialize a pseudo vma as this is required by the huge page 842 * allocation routines. 843 */ 844 vma_init(&pseudo_vma, mm); 845 vm_flags_init(&pseudo_vma, VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 846 pseudo_vma.vm_file = file; 847 848 for (index = start; index < end; index++) { 849 /* 850 * This is supposed to be the vaddr where the page is being 851 * faulted in, but we have no vaddr here. 852 */ 853 struct folio *folio; 854 unsigned long addr; 855 856 cond_resched(); 857 858 /* 859 * fallocate(2) manpage permits EINTR; we may have been 860 * interrupted because we are using up too much memory. 861 */ 862 if (signal_pending(current)) { 863 error = -EINTR; 864 break; 865 } 866 867 /* addr is the offset within the file (zero based) */ 868 addr = index * hpage_size; 869 870 /* mutex taken here, fault path and hole punch */ 871 hash = hugetlb_fault_mutex_hash(mapping, index); 872 mutex_lock(&hugetlb_fault_mutex_table[hash]); 873 874 /* See if already present in mapping to avoid alloc/free */ 875 folio = filemap_get_folio(mapping, index << huge_page_order(h)); 876 if (!IS_ERR(folio)) { 877 folio_put(folio); 878 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 879 continue; 880 } 881 882 /* 883 * Allocate folio without setting the avoid_reserve argument. 884 * There certainly are no reserves associated with the 885 * pseudo_vma. However, there could be shared mappings with 886 * reserves for the file at the inode level. If we fallocate 887 * folios in these areas, we need to consume the reserves 888 * to keep reservation accounting consistent. 889 */ 890 folio = alloc_hugetlb_folio(&pseudo_vma, addr, 0); 891 if (IS_ERR(folio)) { 892 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 893 error = PTR_ERR(folio); 894 goto out; 895 } 896 folio_zero_user(folio, ALIGN_DOWN(addr, hpage_size)); 897 __folio_mark_uptodate(folio); 898 error = hugetlb_add_to_page_cache(folio, mapping, index); 899 if (unlikely(error)) { 900 restore_reserve_on_error(h, &pseudo_vma, addr, folio); 901 folio_put(folio); 902 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 903 goto out; 904 } 905 906 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 907 908 folio_set_hugetlb_migratable(folio); 909 /* 910 * folio_unlock because locked by hugetlb_add_to_page_cache() 911 * folio_put() due to reference from alloc_hugetlb_folio() 912 */ 913 folio_unlock(folio); 914 folio_put(folio); 915 } 916 917 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 918 i_size_write(inode, offset + len); 919 inode_set_ctime_current(inode); 920 out: 921 inode_unlock(inode); 922 return error; 923 } 924 925 static int hugetlbfs_setattr(struct mnt_idmap *idmap, 926 struct dentry *dentry, struct iattr *attr) 927 { 928 struct inode *inode = d_inode(dentry); 929 struct hstate *h = hstate_inode(inode); 930 int error; 931 unsigned int ia_valid = attr->ia_valid; 932 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 933 934 error = setattr_prepare(idmap, dentry, attr); 935 if (error) 936 return error; 937 938 if (ia_valid & ATTR_SIZE) { 939 loff_t oldsize = inode->i_size; 940 loff_t newsize = attr->ia_size; 941 942 if (newsize & ~huge_page_mask(h)) 943 return -EINVAL; 944 /* protected by i_rwsem */ 945 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 946 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 947 return -EPERM; 948 hugetlb_vmtruncate(inode, newsize); 949 } 950 951 setattr_copy(idmap, inode, attr); 952 mark_inode_dirty(inode); 953 return 0; 954 } 955 956 static struct inode *hugetlbfs_get_root(struct super_block *sb, 957 struct hugetlbfs_fs_context *ctx) 958 { 959 struct inode *inode; 960 961 inode = new_inode(sb); 962 if (inode) { 963 inode->i_ino = get_next_ino(); 964 inode->i_mode = S_IFDIR | ctx->mode; 965 inode->i_uid = ctx->uid; 966 inode->i_gid = ctx->gid; 967 simple_inode_init_ts(inode); 968 inode->i_op = &hugetlbfs_dir_inode_operations; 969 inode->i_fop = &simple_dir_operations; 970 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 971 inc_nlink(inode); 972 lockdep_annotate_inode_mutex_key(inode); 973 } 974 return inode; 975 } 976 977 /* 978 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never 979 * be taken from reclaim -- unlike regular filesystems. This needs an 980 * annotation because huge_pmd_share() does an allocation under hugetlb's 981 * i_mmap_rwsem. 982 */ 983 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key; 984 985 static struct inode *hugetlbfs_get_inode(struct super_block *sb, 986 struct mnt_idmap *idmap, 987 struct inode *dir, 988 umode_t mode, dev_t dev) 989 { 990 struct inode *inode; 991 struct resv_map *resv_map = NULL; 992 993 /* 994 * Reserve maps are only needed for inodes that can have associated 995 * page allocations. 996 */ 997 if (S_ISREG(mode) || S_ISLNK(mode)) { 998 resv_map = resv_map_alloc(); 999 if (!resv_map) 1000 return NULL; 1001 } 1002 1003 inode = new_inode(sb); 1004 if (inode) { 1005 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 1006 1007 inode->i_ino = get_next_ino(); 1008 inode_init_owner(idmap, inode, dir, mode); 1009 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem, 1010 &hugetlbfs_i_mmap_rwsem_key); 1011 inode->i_mapping->a_ops = &hugetlbfs_aops; 1012 simple_inode_init_ts(inode); 1013 inode->i_mapping->i_private_data = resv_map; 1014 info->seals = F_SEAL_SEAL; 1015 switch (mode & S_IFMT) { 1016 default: 1017 init_special_inode(inode, mode, dev); 1018 break; 1019 case S_IFREG: 1020 inode->i_op = &hugetlbfs_inode_operations; 1021 inode->i_fop = &hugetlbfs_file_operations; 1022 break; 1023 case S_IFDIR: 1024 inode->i_op = &hugetlbfs_dir_inode_operations; 1025 inode->i_fop = &simple_dir_operations; 1026 1027 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 1028 inc_nlink(inode); 1029 break; 1030 case S_IFLNK: 1031 inode->i_op = &page_symlink_inode_operations; 1032 inode_nohighmem(inode); 1033 break; 1034 } 1035 lockdep_annotate_inode_mutex_key(inode); 1036 } else { 1037 if (resv_map) 1038 kref_put(&resv_map->refs, resv_map_release); 1039 } 1040 1041 return inode; 1042 } 1043 1044 /* 1045 * File creation. Allocate an inode, and we're done.. 1046 */ 1047 static int hugetlbfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 1048 struct dentry *dentry, umode_t mode, dev_t dev) 1049 { 1050 struct inode *inode; 1051 1052 inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, dev); 1053 if (!inode) 1054 return -ENOSPC; 1055 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 1056 d_instantiate(dentry, inode); 1057 dget(dentry);/* Extra count - pin the dentry in core */ 1058 return 0; 1059 } 1060 1061 static int hugetlbfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 1062 struct dentry *dentry, umode_t mode) 1063 { 1064 int retval = hugetlbfs_mknod(idmap, dir, dentry, 1065 mode | S_IFDIR, 0); 1066 if (!retval) 1067 inc_nlink(dir); 1068 return retval; 1069 } 1070 1071 static int hugetlbfs_create(struct mnt_idmap *idmap, 1072 struct inode *dir, struct dentry *dentry, 1073 umode_t mode, bool excl) 1074 { 1075 return hugetlbfs_mknod(idmap, dir, dentry, mode | S_IFREG, 0); 1076 } 1077 1078 static int hugetlbfs_tmpfile(struct mnt_idmap *idmap, 1079 struct inode *dir, struct file *file, 1080 umode_t mode) 1081 { 1082 struct inode *inode; 1083 1084 inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode | S_IFREG, 0); 1085 if (!inode) 1086 return -ENOSPC; 1087 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 1088 d_tmpfile(file, inode); 1089 return finish_open_simple(file, 0); 1090 } 1091 1092 static int hugetlbfs_symlink(struct mnt_idmap *idmap, 1093 struct inode *dir, struct dentry *dentry, 1094 const char *symname) 1095 { 1096 const umode_t mode = S_IFLNK|S_IRWXUGO; 1097 struct inode *inode; 1098 int error = -ENOSPC; 1099 1100 inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, 0); 1101 if (inode) { 1102 int l = strlen(symname)+1; 1103 error = page_symlink(inode, symname, l); 1104 if (!error) { 1105 d_instantiate(dentry, inode); 1106 dget(dentry); 1107 } else 1108 iput(inode); 1109 } 1110 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 1111 1112 return error; 1113 } 1114 1115 #ifdef CONFIG_MIGRATION 1116 static int hugetlbfs_migrate_folio(struct address_space *mapping, 1117 struct folio *dst, struct folio *src, 1118 enum migrate_mode mode) 1119 { 1120 int rc; 1121 1122 rc = migrate_huge_page_move_mapping(mapping, dst, src); 1123 if (rc != MIGRATEPAGE_SUCCESS) 1124 return rc; 1125 1126 if (hugetlb_folio_subpool(src)) { 1127 hugetlb_set_folio_subpool(dst, 1128 hugetlb_folio_subpool(src)); 1129 hugetlb_set_folio_subpool(src, NULL); 1130 } 1131 1132 folio_migrate_flags(dst, src); 1133 1134 return MIGRATEPAGE_SUCCESS; 1135 } 1136 #else 1137 #define hugetlbfs_migrate_folio NULL 1138 #endif 1139 1140 static int hugetlbfs_error_remove_folio(struct address_space *mapping, 1141 struct folio *folio) 1142 { 1143 return 0; 1144 } 1145 1146 /* 1147 * Display the mount options in /proc/mounts. 1148 */ 1149 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root) 1150 { 1151 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb); 1152 struct hugepage_subpool *spool = sbinfo->spool; 1153 unsigned long hpage_size = huge_page_size(sbinfo->hstate); 1154 unsigned hpage_shift = huge_page_shift(sbinfo->hstate); 1155 char mod; 1156 1157 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 1158 seq_printf(m, ",uid=%u", 1159 from_kuid_munged(&init_user_ns, sbinfo->uid)); 1160 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 1161 seq_printf(m, ",gid=%u", 1162 from_kgid_munged(&init_user_ns, sbinfo->gid)); 1163 if (sbinfo->mode != 0755) 1164 seq_printf(m, ",mode=%o", sbinfo->mode); 1165 if (sbinfo->max_inodes != -1) 1166 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes); 1167 1168 hpage_size /= 1024; 1169 mod = 'K'; 1170 if (hpage_size >= 1024) { 1171 hpage_size /= 1024; 1172 mod = 'M'; 1173 } 1174 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod); 1175 if (spool) { 1176 if (spool->max_hpages != -1) 1177 seq_printf(m, ",size=%llu", 1178 (unsigned long long)spool->max_hpages << hpage_shift); 1179 if (spool->min_hpages != -1) 1180 seq_printf(m, ",min_size=%llu", 1181 (unsigned long long)spool->min_hpages << hpage_shift); 1182 } 1183 return 0; 1184 } 1185 1186 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf) 1187 { 1188 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb); 1189 struct hstate *h = hstate_inode(d_inode(dentry)); 1190 u64 id = huge_encode_dev(dentry->d_sb->s_dev); 1191 1192 buf->f_fsid = u64_to_fsid(id); 1193 buf->f_type = HUGETLBFS_MAGIC; 1194 buf->f_bsize = huge_page_size(h); 1195 if (sbinfo) { 1196 spin_lock(&sbinfo->stat_lock); 1197 /* If no limits set, just report 0 or -1 for max/free/used 1198 * blocks, like simple_statfs() */ 1199 if (sbinfo->spool) { 1200 long free_pages; 1201 1202 spin_lock_irq(&sbinfo->spool->lock); 1203 buf->f_blocks = sbinfo->spool->max_hpages; 1204 free_pages = sbinfo->spool->max_hpages 1205 - sbinfo->spool->used_hpages; 1206 buf->f_bavail = buf->f_bfree = free_pages; 1207 spin_unlock_irq(&sbinfo->spool->lock); 1208 buf->f_files = sbinfo->max_inodes; 1209 buf->f_ffree = sbinfo->free_inodes; 1210 } 1211 spin_unlock(&sbinfo->stat_lock); 1212 } 1213 buf->f_namelen = NAME_MAX; 1214 return 0; 1215 } 1216 1217 static void hugetlbfs_put_super(struct super_block *sb) 1218 { 1219 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb); 1220 1221 if (sbi) { 1222 sb->s_fs_info = NULL; 1223 1224 if (sbi->spool) 1225 hugepage_put_subpool(sbi->spool); 1226 1227 kfree(sbi); 1228 } 1229 } 1230 1231 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1232 { 1233 if (sbinfo->free_inodes >= 0) { 1234 spin_lock(&sbinfo->stat_lock); 1235 if (unlikely(!sbinfo->free_inodes)) { 1236 spin_unlock(&sbinfo->stat_lock); 1237 return 0; 1238 } 1239 sbinfo->free_inodes--; 1240 spin_unlock(&sbinfo->stat_lock); 1241 } 1242 1243 return 1; 1244 } 1245 1246 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1247 { 1248 if (sbinfo->free_inodes >= 0) { 1249 spin_lock(&sbinfo->stat_lock); 1250 sbinfo->free_inodes++; 1251 spin_unlock(&sbinfo->stat_lock); 1252 } 1253 } 1254 1255 1256 static struct kmem_cache *hugetlbfs_inode_cachep; 1257 1258 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb) 1259 { 1260 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb); 1261 struct hugetlbfs_inode_info *p; 1262 1263 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo))) 1264 return NULL; 1265 p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL); 1266 if (unlikely(!p)) { 1267 hugetlbfs_inc_free_inodes(sbinfo); 1268 return NULL; 1269 } 1270 return &p->vfs_inode; 1271 } 1272 1273 static void hugetlbfs_free_inode(struct inode *inode) 1274 { 1275 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode)); 1276 } 1277 1278 static void hugetlbfs_destroy_inode(struct inode *inode) 1279 { 1280 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb)); 1281 } 1282 1283 static const struct address_space_operations hugetlbfs_aops = { 1284 .write_begin = hugetlbfs_write_begin, 1285 .write_end = hugetlbfs_write_end, 1286 .dirty_folio = noop_dirty_folio, 1287 .migrate_folio = hugetlbfs_migrate_folio, 1288 .error_remove_folio = hugetlbfs_error_remove_folio, 1289 }; 1290 1291 1292 static void init_once(void *foo) 1293 { 1294 struct hugetlbfs_inode_info *ei = foo; 1295 1296 inode_init_once(&ei->vfs_inode); 1297 } 1298 1299 static const struct file_operations hugetlbfs_file_operations = { 1300 .read_iter = hugetlbfs_read_iter, 1301 .mmap = hugetlbfs_file_mmap, 1302 .fsync = noop_fsync, 1303 .get_unmapped_area = hugetlb_get_unmapped_area, 1304 .llseek = default_llseek, 1305 .fallocate = hugetlbfs_fallocate, 1306 .fop_flags = FOP_HUGE_PAGES, 1307 }; 1308 1309 static const struct inode_operations hugetlbfs_dir_inode_operations = { 1310 .create = hugetlbfs_create, 1311 .lookup = simple_lookup, 1312 .link = simple_link, 1313 .unlink = simple_unlink, 1314 .symlink = hugetlbfs_symlink, 1315 .mkdir = hugetlbfs_mkdir, 1316 .rmdir = simple_rmdir, 1317 .mknod = hugetlbfs_mknod, 1318 .rename = simple_rename, 1319 .setattr = hugetlbfs_setattr, 1320 .tmpfile = hugetlbfs_tmpfile, 1321 }; 1322 1323 static const struct inode_operations hugetlbfs_inode_operations = { 1324 .setattr = hugetlbfs_setattr, 1325 }; 1326 1327 static const struct super_operations hugetlbfs_ops = { 1328 .alloc_inode = hugetlbfs_alloc_inode, 1329 .free_inode = hugetlbfs_free_inode, 1330 .destroy_inode = hugetlbfs_destroy_inode, 1331 .evict_inode = hugetlbfs_evict_inode, 1332 .statfs = hugetlbfs_statfs, 1333 .put_super = hugetlbfs_put_super, 1334 .show_options = hugetlbfs_show_options, 1335 }; 1336 1337 /* 1338 * Convert size option passed from command line to number of huge pages 1339 * in the pool specified by hstate. Size option could be in bytes 1340 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT). 1341 */ 1342 static long 1343 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt, 1344 enum hugetlbfs_size_type val_type) 1345 { 1346 if (val_type == NO_SIZE) 1347 return -1; 1348 1349 if (val_type == SIZE_PERCENT) { 1350 size_opt <<= huge_page_shift(h); 1351 size_opt *= h->max_huge_pages; 1352 do_div(size_opt, 100); 1353 } 1354 1355 size_opt >>= huge_page_shift(h); 1356 return size_opt; 1357 } 1358 1359 /* 1360 * Parse one mount parameter. 1361 */ 1362 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param) 1363 { 1364 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1365 struct fs_parse_result result; 1366 struct hstate *h; 1367 char *rest; 1368 unsigned long ps; 1369 int opt; 1370 1371 opt = fs_parse(fc, hugetlb_fs_parameters, param, &result); 1372 if (opt < 0) 1373 return opt; 1374 1375 switch (opt) { 1376 case Opt_uid: 1377 ctx->uid = result.uid; 1378 return 0; 1379 1380 case Opt_gid: 1381 ctx->gid = result.gid; 1382 return 0; 1383 1384 case Opt_mode: 1385 ctx->mode = result.uint_32 & 01777U; 1386 return 0; 1387 1388 case Opt_size: 1389 /* memparse() will accept a K/M/G without a digit */ 1390 if (!param->string || !isdigit(param->string[0])) 1391 goto bad_val; 1392 ctx->max_size_opt = memparse(param->string, &rest); 1393 ctx->max_val_type = SIZE_STD; 1394 if (*rest == '%') 1395 ctx->max_val_type = SIZE_PERCENT; 1396 return 0; 1397 1398 case Opt_nr_inodes: 1399 /* memparse() will accept a K/M/G without a digit */ 1400 if (!param->string || !isdigit(param->string[0])) 1401 goto bad_val; 1402 ctx->nr_inodes = memparse(param->string, &rest); 1403 return 0; 1404 1405 case Opt_pagesize: 1406 ps = memparse(param->string, &rest); 1407 h = size_to_hstate(ps); 1408 if (!h) { 1409 pr_err("Unsupported page size %lu MB\n", ps / SZ_1M); 1410 return -EINVAL; 1411 } 1412 ctx->hstate = h; 1413 return 0; 1414 1415 case Opt_min_size: 1416 /* memparse() will accept a K/M/G without a digit */ 1417 if (!param->string || !isdigit(param->string[0])) 1418 goto bad_val; 1419 ctx->min_size_opt = memparse(param->string, &rest); 1420 ctx->min_val_type = SIZE_STD; 1421 if (*rest == '%') 1422 ctx->min_val_type = SIZE_PERCENT; 1423 return 0; 1424 1425 default: 1426 return -EINVAL; 1427 } 1428 1429 bad_val: 1430 return invalfc(fc, "Bad value '%s' for mount option '%s'\n", 1431 param->string, param->key); 1432 } 1433 1434 /* 1435 * Validate the parsed options. 1436 */ 1437 static int hugetlbfs_validate(struct fs_context *fc) 1438 { 1439 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1440 1441 /* 1442 * Use huge page pool size (in hstate) to convert the size 1443 * options to number of huge pages. If NO_SIZE, -1 is returned. 1444 */ 1445 ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1446 ctx->max_size_opt, 1447 ctx->max_val_type); 1448 ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1449 ctx->min_size_opt, 1450 ctx->min_val_type); 1451 1452 /* 1453 * If max_size was specified, then min_size must be smaller 1454 */ 1455 if (ctx->max_val_type > NO_SIZE && 1456 ctx->min_hpages > ctx->max_hpages) { 1457 pr_err("Minimum size can not be greater than maximum size\n"); 1458 return -EINVAL; 1459 } 1460 1461 return 0; 1462 } 1463 1464 static int 1465 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc) 1466 { 1467 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1468 struct hugetlbfs_sb_info *sbinfo; 1469 1470 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL); 1471 if (!sbinfo) 1472 return -ENOMEM; 1473 sb->s_fs_info = sbinfo; 1474 spin_lock_init(&sbinfo->stat_lock); 1475 sbinfo->hstate = ctx->hstate; 1476 sbinfo->max_inodes = ctx->nr_inodes; 1477 sbinfo->free_inodes = ctx->nr_inodes; 1478 sbinfo->spool = NULL; 1479 sbinfo->uid = ctx->uid; 1480 sbinfo->gid = ctx->gid; 1481 sbinfo->mode = ctx->mode; 1482 1483 /* 1484 * Allocate and initialize subpool if maximum or minimum size is 1485 * specified. Any needed reservations (for minimum size) are taken 1486 * when the subpool is created. 1487 */ 1488 if (ctx->max_hpages != -1 || ctx->min_hpages != -1) { 1489 sbinfo->spool = hugepage_new_subpool(ctx->hstate, 1490 ctx->max_hpages, 1491 ctx->min_hpages); 1492 if (!sbinfo->spool) 1493 goto out_free; 1494 } 1495 sb->s_maxbytes = MAX_LFS_FILESIZE; 1496 sb->s_blocksize = huge_page_size(ctx->hstate); 1497 sb->s_blocksize_bits = huge_page_shift(ctx->hstate); 1498 sb->s_magic = HUGETLBFS_MAGIC; 1499 sb->s_op = &hugetlbfs_ops; 1500 sb->s_time_gran = 1; 1501 1502 /* 1503 * Due to the special and limited functionality of hugetlbfs, it does 1504 * not work well as a stacking filesystem. 1505 */ 1506 sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH; 1507 sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx)); 1508 if (!sb->s_root) 1509 goto out_free; 1510 return 0; 1511 out_free: 1512 kfree(sbinfo->spool); 1513 kfree(sbinfo); 1514 return -ENOMEM; 1515 } 1516 1517 static int hugetlbfs_get_tree(struct fs_context *fc) 1518 { 1519 int err = hugetlbfs_validate(fc); 1520 if (err) 1521 return err; 1522 return get_tree_nodev(fc, hugetlbfs_fill_super); 1523 } 1524 1525 static void hugetlbfs_fs_context_free(struct fs_context *fc) 1526 { 1527 kfree(fc->fs_private); 1528 } 1529 1530 static const struct fs_context_operations hugetlbfs_fs_context_ops = { 1531 .free = hugetlbfs_fs_context_free, 1532 .parse_param = hugetlbfs_parse_param, 1533 .get_tree = hugetlbfs_get_tree, 1534 }; 1535 1536 static int hugetlbfs_init_fs_context(struct fs_context *fc) 1537 { 1538 struct hugetlbfs_fs_context *ctx; 1539 1540 ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL); 1541 if (!ctx) 1542 return -ENOMEM; 1543 1544 ctx->max_hpages = -1; /* No limit on size by default */ 1545 ctx->nr_inodes = -1; /* No limit on number of inodes by default */ 1546 ctx->uid = current_fsuid(); 1547 ctx->gid = current_fsgid(); 1548 ctx->mode = 0755; 1549 ctx->hstate = &default_hstate; 1550 ctx->min_hpages = -1; /* No default minimum size */ 1551 ctx->max_val_type = NO_SIZE; 1552 ctx->min_val_type = NO_SIZE; 1553 fc->fs_private = ctx; 1554 fc->ops = &hugetlbfs_fs_context_ops; 1555 return 0; 1556 } 1557 1558 static struct file_system_type hugetlbfs_fs_type = { 1559 .name = "hugetlbfs", 1560 .init_fs_context = hugetlbfs_init_fs_context, 1561 .parameters = hugetlb_fs_parameters, 1562 .kill_sb = kill_litter_super, 1563 .fs_flags = FS_ALLOW_IDMAP, 1564 }; 1565 1566 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE]; 1567 1568 static int can_do_hugetlb_shm(void) 1569 { 1570 kgid_t shm_group; 1571 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group); 1572 return capable(CAP_IPC_LOCK) || in_group_p(shm_group); 1573 } 1574 1575 static int get_hstate_idx(int page_size_log) 1576 { 1577 struct hstate *h = hstate_sizelog(page_size_log); 1578 1579 if (!h) 1580 return -1; 1581 return hstate_index(h); 1582 } 1583 1584 /* 1585 * Note that size should be aligned to proper hugepage size in caller side, 1586 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended. 1587 */ 1588 struct file *hugetlb_file_setup(const char *name, size_t size, 1589 vm_flags_t acctflag, int creat_flags, 1590 int page_size_log) 1591 { 1592 struct inode *inode; 1593 struct vfsmount *mnt; 1594 int hstate_idx; 1595 struct file *file; 1596 1597 hstate_idx = get_hstate_idx(page_size_log); 1598 if (hstate_idx < 0) 1599 return ERR_PTR(-ENODEV); 1600 1601 mnt = hugetlbfs_vfsmount[hstate_idx]; 1602 if (!mnt) 1603 return ERR_PTR(-ENOENT); 1604 1605 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) { 1606 struct ucounts *ucounts = current_ucounts(); 1607 1608 if (user_shm_lock(size, ucounts)) { 1609 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n", 1610 current->comm, current->pid); 1611 user_shm_unlock(size, ucounts); 1612 } 1613 return ERR_PTR(-EPERM); 1614 } 1615 1616 file = ERR_PTR(-ENOSPC); 1617 /* hugetlbfs_vfsmount[] mounts do not use idmapped mounts. */ 1618 inode = hugetlbfs_get_inode(mnt->mnt_sb, &nop_mnt_idmap, NULL, 1619 S_IFREG | S_IRWXUGO, 0); 1620 if (!inode) 1621 goto out; 1622 if (creat_flags == HUGETLB_SHMFS_INODE) 1623 inode->i_flags |= S_PRIVATE; 1624 1625 inode->i_size = size; 1626 clear_nlink(inode); 1627 1628 if (!hugetlb_reserve_pages(inode, 0, 1629 size >> huge_page_shift(hstate_inode(inode)), NULL, 1630 acctflag)) 1631 file = ERR_PTR(-ENOMEM); 1632 else 1633 file = alloc_file_pseudo(inode, mnt, name, O_RDWR, 1634 &hugetlbfs_file_operations); 1635 if (!IS_ERR(file)) 1636 return file; 1637 1638 iput(inode); 1639 out: 1640 return file; 1641 } 1642 1643 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h) 1644 { 1645 struct fs_context *fc; 1646 struct vfsmount *mnt; 1647 1648 fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT); 1649 if (IS_ERR(fc)) { 1650 mnt = ERR_CAST(fc); 1651 } else { 1652 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1653 ctx->hstate = h; 1654 mnt = fc_mount(fc); 1655 put_fs_context(fc); 1656 } 1657 if (IS_ERR(mnt)) 1658 pr_err("Cannot mount internal hugetlbfs for page size %luK", 1659 huge_page_size(h) / SZ_1K); 1660 return mnt; 1661 } 1662 1663 static int __init init_hugetlbfs_fs(void) 1664 { 1665 struct vfsmount *mnt; 1666 struct hstate *h; 1667 int error; 1668 int i; 1669 1670 if (!hugepages_supported()) { 1671 pr_info("disabling because there are no supported hugepage sizes\n"); 1672 return -ENOTSUPP; 1673 } 1674 1675 error = -ENOMEM; 1676 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache", 1677 sizeof(struct hugetlbfs_inode_info), 1678 0, SLAB_ACCOUNT, init_once); 1679 if (hugetlbfs_inode_cachep == NULL) 1680 goto out; 1681 1682 error = register_filesystem(&hugetlbfs_fs_type); 1683 if (error) 1684 goto out_free; 1685 1686 /* default hstate mount is required */ 1687 mnt = mount_one_hugetlbfs(&default_hstate); 1688 if (IS_ERR(mnt)) { 1689 error = PTR_ERR(mnt); 1690 goto out_unreg; 1691 } 1692 hugetlbfs_vfsmount[default_hstate_idx] = mnt; 1693 1694 /* other hstates are optional */ 1695 i = 0; 1696 for_each_hstate(h) { 1697 if (i == default_hstate_idx) { 1698 i++; 1699 continue; 1700 } 1701 1702 mnt = mount_one_hugetlbfs(h); 1703 if (IS_ERR(mnt)) 1704 hugetlbfs_vfsmount[i] = NULL; 1705 else 1706 hugetlbfs_vfsmount[i] = mnt; 1707 i++; 1708 } 1709 1710 return 0; 1711 1712 out_unreg: 1713 (void)unregister_filesystem(&hugetlbfs_fs_type); 1714 out_free: 1715 kmem_cache_destroy(hugetlbfs_inode_cachep); 1716 out: 1717 return error; 1718 } 1719 fs_initcall(init_hugetlbfs_fs) 1720