xref: /linux/fs/hugetlbfs/inode.c (revision 527a0f2bdcfe77fce22f006b97e42e4da3137c86)
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/falloc.h>
15 #include <linux/fs.h>
16 #include <linux/mount.h>
17 #include <linux/file.h>
18 #include <linux/kernel.h>
19 #include <linux/writeback.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/init.h>
23 #include <linux/string.h>
24 #include <linux/capability.h>
25 #include <linux/ctype.h>
26 #include <linux/backing-dev.h>
27 #include <linux/hugetlb.h>
28 #include <linux/pagevec.h>
29 #include <linux/fs_parser.h>
30 #include <linux/mman.h>
31 #include <linux/slab.h>
32 #include <linux/dnotify.h>
33 #include <linux/statfs.h>
34 #include <linux/security.h>
35 #include <linux/magic.h>
36 #include <linux/migrate.h>
37 #include <linux/uio.h>
38 
39 #include <linux/uaccess.h>
40 #include <linux/sched/mm.h>
41 
42 static const struct address_space_operations hugetlbfs_aops;
43 static const struct file_operations hugetlbfs_file_operations;
44 static const struct inode_operations hugetlbfs_dir_inode_operations;
45 static const struct inode_operations hugetlbfs_inode_operations;
46 
47 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
48 
49 struct hugetlbfs_fs_context {
50 	struct hstate		*hstate;
51 	unsigned long long	max_size_opt;
52 	unsigned long long	min_size_opt;
53 	long			max_hpages;
54 	long			nr_inodes;
55 	long			min_hpages;
56 	enum hugetlbfs_size_type max_val_type;
57 	enum hugetlbfs_size_type min_val_type;
58 	kuid_t			uid;
59 	kgid_t			gid;
60 	umode_t			mode;
61 };
62 
63 int sysctl_hugetlb_shm_group;
64 
65 enum hugetlb_param {
66 	Opt_gid,
67 	Opt_min_size,
68 	Opt_mode,
69 	Opt_nr_inodes,
70 	Opt_pagesize,
71 	Opt_size,
72 	Opt_uid,
73 };
74 
75 static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
76 	fsparam_gid   ("gid",		Opt_gid),
77 	fsparam_string("min_size",	Opt_min_size),
78 	fsparam_u32oct("mode",		Opt_mode),
79 	fsparam_string("nr_inodes",	Opt_nr_inodes),
80 	fsparam_string("pagesize",	Opt_pagesize),
81 	fsparam_string("size",		Opt_size),
82 	fsparam_uid   ("uid",		Opt_uid),
83 	{}
84 };
85 
86 /*
87  * Mask used when checking the page offset value passed in via system
88  * calls.  This value will be converted to a loff_t which is signed.
89  * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
90  * value.  The extra bit (- 1 in the shift value) is to take the sign
91  * bit into account.
92  */
93 #define PGOFF_LOFFT_MAX \
94 	(((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
95 
96 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
97 {
98 	struct inode *inode = file_inode(file);
99 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
100 	loff_t len, vma_len;
101 	int ret;
102 	struct hstate *h = hstate_file(file);
103 	vm_flags_t vm_flags;
104 
105 	/*
106 	 * vma address alignment (but not the pgoff alignment) has
107 	 * already been checked by prepare_hugepage_range.  If you add
108 	 * any error returns here, do so after setting VM_HUGETLB, so
109 	 * is_vm_hugetlb_page tests below unmap_region go the right
110 	 * way when do_mmap unwinds (may be important on powerpc
111 	 * and ia64).
112 	 */
113 	vm_flags_set(vma, VM_HUGETLB | VM_DONTEXPAND);
114 	vma->vm_ops = &hugetlb_vm_ops;
115 
116 	ret = seal_check_write(info->seals, vma);
117 	if (ret)
118 		return ret;
119 
120 	/*
121 	 * page based offset in vm_pgoff could be sufficiently large to
122 	 * overflow a loff_t when converted to byte offset.  This can
123 	 * only happen on architectures where sizeof(loff_t) ==
124 	 * sizeof(unsigned long).  So, only check in those instances.
125 	 */
126 	if (sizeof(unsigned long) == sizeof(loff_t)) {
127 		if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
128 			return -EINVAL;
129 	}
130 
131 	/* must be huge page aligned */
132 	if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
133 		return -EINVAL;
134 
135 	vma_len = (loff_t)(vma->vm_end - vma->vm_start);
136 	len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
137 	/* check for overflow */
138 	if (len < vma_len)
139 		return -EINVAL;
140 
141 	inode_lock(inode);
142 	file_accessed(file);
143 
144 	ret = -ENOMEM;
145 
146 	vm_flags = vma->vm_flags;
147 	/*
148 	 * for SHM_HUGETLB, the pages are reserved in the shmget() call so skip
149 	 * reserving here. Note: only for SHM hugetlbfs file, the inode
150 	 * flag S_PRIVATE is set.
151 	 */
152 	if (inode->i_flags & S_PRIVATE)
153 		vm_flags |= VM_NORESERVE;
154 
155 	if (!hugetlb_reserve_pages(inode,
156 				vma->vm_pgoff >> huge_page_order(h),
157 				len >> huge_page_shift(h), vma,
158 				vm_flags))
159 		goto out;
160 
161 	ret = 0;
162 	if (vma->vm_flags & VM_WRITE && inode->i_size < len)
163 		i_size_write(inode, len);
164 out:
165 	inode_unlock(inode);
166 
167 	return ret;
168 }
169 
170 /*
171  * Called under mmap_write_lock(mm).
172  */
173 
174 static unsigned long
175 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr,
176 		unsigned long len, unsigned long pgoff, unsigned long flags)
177 {
178 	struct hstate *h = hstate_file(file);
179 	struct vm_unmapped_area_info info = {};
180 
181 	info.length = len;
182 	info.low_limit = current->mm->mmap_base;
183 	info.high_limit = arch_get_mmap_end(addr, len, flags);
184 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
185 	return vm_unmapped_area(&info);
186 }
187 
188 static unsigned long
189 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr,
190 		unsigned long len, unsigned long pgoff, unsigned long flags)
191 {
192 	struct hstate *h = hstate_file(file);
193 	struct vm_unmapped_area_info info = {};
194 
195 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
196 	info.length = len;
197 	info.low_limit = PAGE_SIZE;
198 	info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base);
199 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
200 	addr = vm_unmapped_area(&info);
201 
202 	/*
203 	 * A failed mmap() very likely causes application failure,
204 	 * so fall back to the bottom-up function here. This scenario
205 	 * can happen with large stack limits and large mmap()
206 	 * allocations.
207 	 */
208 	if (unlikely(offset_in_page(addr))) {
209 		VM_BUG_ON(addr != -ENOMEM);
210 		info.flags = 0;
211 		info.low_limit = current->mm->mmap_base;
212 		info.high_limit = arch_get_mmap_end(addr, len, flags);
213 		addr = vm_unmapped_area(&info);
214 	}
215 
216 	return addr;
217 }
218 
219 unsigned long
220 generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
221 				  unsigned long len, unsigned long pgoff,
222 				  unsigned long flags)
223 {
224 	struct mm_struct *mm = current->mm;
225 	struct vm_area_struct *vma, *prev;
226 	struct hstate *h = hstate_file(file);
227 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
228 
229 	if (len & ~huge_page_mask(h))
230 		return -EINVAL;
231 	if (len > mmap_end - mmap_min_addr)
232 		return -ENOMEM;
233 
234 	if (flags & MAP_FIXED) {
235 		if (prepare_hugepage_range(file, addr, len))
236 			return -EINVAL;
237 		return addr;
238 	}
239 
240 	if (addr) {
241 		addr = ALIGN(addr, huge_page_size(h));
242 		vma = find_vma_prev(mm, addr, &prev);
243 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
244 		    (!vma || addr + len <= vm_start_gap(vma)) &&
245 		    (!prev || addr >= vm_end_gap(prev)))
246 			return addr;
247 	}
248 
249 	/*
250 	 * Use MMF_TOPDOWN flag as a hint to use topdown routine.
251 	 * If architectures have special needs, they should define their own
252 	 * version of hugetlb_get_unmapped_area.
253 	 */
254 	if (test_bit(MMF_TOPDOWN, &mm->flags))
255 		return hugetlb_get_unmapped_area_topdown(file, addr, len,
256 				pgoff, flags);
257 	return hugetlb_get_unmapped_area_bottomup(file, addr, len,
258 			pgoff, flags);
259 }
260 
261 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
262 static unsigned long
263 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
264 			  unsigned long len, unsigned long pgoff,
265 			  unsigned long flags)
266 {
267 	return generic_hugetlb_get_unmapped_area(file, addr, len, pgoff, flags);
268 }
269 #endif
270 
271 /*
272  * Someone wants to read @bytes from a HWPOISON hugetlb @page from @offset.
273  * Returns the maximum number of bytes one can read without touching the 1st raw
274  * HWPOISON subpage.
275  *
276  * The implementation borrows the iteration logic from copy_page_to_iter*.
277  */
278 static size_t adjust_range_hwpoison(struct page *page, size_t offset, size_t bytes)
279 {
280 	size_t n = 0;
281 	size_t res = 0;
282 
283 	/* First subpage to start the loop. */
284 	page = nth_page(page, offset / PAGE_SIZE);
285 	offset %= PAGE_SIZE;
286 	while (1) {
287 		if (is_raw_hwpoison_page_in_hugepage(page))
288 			break;
289 
290 		/* Safe to read n bytes without touching HWPOISON subpage. */
291 		n = min(bytes, (size_t)PAGE_SIZE - offset);
292 		res += n;
293 		bytes -= n;
294 		if (!bytes || !n)
295 			break;
296 		offset += n;
297 		if (offset == PAGE_SIZE) {
298 			page = nth_page(page, 1);
299 			offset = 0;
300 		}
301 	}
302 
303 	return res;
304 }
305 
306 /*
307  * Support for read() - Find the page attached to f_mapping and copy out the
308  * data. This provides functionality similar to filemap_read().
309  */
310 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
311 {
312 	struct file *file = iocb->ki_filp;
313 	struct hstate *h = hstate_file(file);
314 	struct address_space *mapping = file->f_mapping;
315 	struct inode *inode = mapping->host;
316 	unsigned long index = iocb->ki_pos >> huge_page_shift(h);
317 	unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
318 	unsigned long end_index;
319 	loff_t isize;
320 	ssize_t retval = 0;
321 
322 	while (iov_iter_count(to)) {
323 		struct folio *folio;
324 		size_t nr, copied, want;
325 
326 		/* nr is the maximum number of bytes to copy from this page */
327 		nr = huge_page_size(h);
328 		isize = i_size_read(inode);
329 		if (!isize)
330 			break;
331 		end_index = (isize - 1) >> huge_page_shift(h);
332 		if (index > end_index)
333 			break;
334 		if (index == end_index) {
335 			nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
336 			if (nr <= offset)
337 				break;
338 		}
339 		nr = nr - offset;
340 
341 		/* Find the folio */
342 		folio = filemap_lock_hugetlb_folio(h, mapping, index);
343 		if (IS_ERR(folio)) {
344 			/*
345 			 * We have a HOLE, zero out the user-buffer for the
346 			 * length of the hole or request.
347 			 */
348 			copied = iov_iter_zero(nr, to);
349 		} else {
350 			folio_unlock(folio);
351 
352 			if (!folio_test_hwpoison(folio))
353 				want = nr;
354 			else {
355 				/*
356 				 * Adjust how many bytes safe to read without
357 				 * touching the 1st raw HWPOISON subpage after
358 				 * offset.
359 				 */
360 				want = adjust_range_hwpoison(&folio->page, offset, nr);
361 				if (want == 0) {
362 					folio_put(folio);
363 					retval = -EIO;
364 					break;
365 				}
366 			}
367 
368 			/*
369 			 * We have the folio, copy it to user space buffer.
370 			 */
371 			copied = copy_folio_to_iter(folio, offset, want, to);
372 			folio_put(folio);
373 		}
374 		offset += copied;
375 		retval += copied;
376 		if (copied != nr && iov_iter_count(to)) {
377 			if (!retval)
378 				retval = -EFAULT;
379 			break;
380 		}
381 		index += offset >> huge_page_shift(h);
382 		offset &= ~huge_page_mask(h);
383 	}
384 	iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
385 	return retval;
386 }
387 
388 static int hugetlbfs_write_begin(struct file *file,
389 			struct address_space *mapping,
390 			loff_t pos, unsigned len,
391 			struct page **pagep, void **fsdata)
392 {
393 	return -EINVAL;
394 }
395 
396 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
397 			loff_t pos, unsigned len, unsigned copied,
398 			struct page *page, void *fsdata)
399 {
400 	BUG();
401 	return -EINVAL;
402 }
403 
404 static void hugetlb_delete_from_page_cache(struct folio *folio)
405 {
406 	folio_clear_dirty(folio);
407 	folio_clear_uptodate(folio);
408 	filemap_remove_folio(folio);
409 }
410 
411 /*
412  * Called with i_mmap_rwsem held for inode based vma maps.  This makes
413  * sure vma (and vm_mm) will not go away.  We also hold the hugetlb fault
414  * mutex for the page in the mapping.  So, we can not race with page being
415  * faulted into the vma.
416  */
417 static bool hugetlb_vma_maps_page(struct vm_area_struct *vma,
418 				unsigned long addr, struct page *page)
419 {
420 	pte_t *ptep, pte;
421 
422 	ptep = hugetlb_walk(vma, addr, huge_page_size(hstate_vma(vma)));
423 	if (!ptep)
424 		return false;
425 
426 	pte = huge_ptep_get(vma->vm_mm, addr, ptep);
427 	if (huge_pte_none(pte) || !pte_present(pte))
428 		return false;
429 
430 	if (pte_page(pte) == page)
431 		return true;
432 
433 	return false;
434 }
435 
436 /*
437  * Can vma_offset_start/vma_offset_end overflow on 32-bit arches?
438  * No, because the interval tree returns us only those vmas
439  * which overlap the truncated area starting at pgoff,
440  * and no vma on a 32-bit arch can span beyond the 4GB.
441  */
442 static unsigned long vma_offset_start(struct vm_area_struct *vma, pgoff_t start)
443 {
444 	unsigned long offset = 0;
445 
446 	if (vma->vm_pgoff < start)
447 		offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
448 
449 	return vma->vm_start + offset;
450 }
451 
452 static unsigned long vma_offset_end(struct vm_area_struct *vma, pgoff_t end)
453 {
454 	unsigned long t_end;
455 
456 	if (!end)
457 		return vma->vm_end;
458 
459 	t_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) + vma->vm_start;
460 	if (t_end > vma->vm_end)
461 		t_end = vma->vm_end;
462 	return t_end;
463 }
464 
465 /*
466  * Called with hugetlb fault mutex held.  Therefore, no more mappings to
467  * this folio can be created while executing the routine.
468  */
469 static void hugetlb_unmap_file_folio(struct hstate *h,
470 					struct address_space *mapping,
471 					struct folio *folio, pgoff_t index)
472 {
473 	struct rb_root_cached *root = &mapping->i_mmap;
474 	struct hugetlb_vma_lock *vma_lock;
475 	struct page *page = &folio->page;
476 	struct vm_area_struct *vma;
477 	unsigned long v_start;
478 	unsigned long v_end;
479 	pgoff_t start, end;
480 
481 	start = index * pages_per_huge_page(h);
482 	end = (index + 1) * pages_per_huge_page(h);
483 
484 	i_mmap_lock_write(mapping);
485 retry:
486 	vma_lock = NULL;
487 	vma_interval_tree_foreach(vma, root, start, end - 1) {
488 		v_start = vma_offset_start(vma, start);
489 		v_end = vma_offset_end(vma, end);
490 
491 		if (!hugetlb_vma_maps_page(vma, v_start, page))
492 			continue;
493 
494 		if (!hugetlb_vma_trylock_write(vma)) {
495 			vma_lock = vma->vm_private_data;
496 			/*
497 			 * If we can not get vma lock, we need to drop
498 			 * immap_sema and take locks in order.  First,
499 			 * take a ref on the vma_lock structure so that
500 			 * we can be guaranteed it will not go away when
501 			 * dropping immap_sema.
502 			 */
503 			kref_get(&vma_lock->refs);
504 			break;
505 		}
506 
507 		unmap_hugepage_range(vma, v_start, v_end, NULL,
508 				     ZAP_FLAG_DROP_MARKER);
509 		hugetlb_vma_unlock_write(vma);
510 	}
511 
512 	i_mmap_unlock_write(mapping);
513 
514 	if (vma_lock) {
515 		/*
516 		 * Wait on vma_lock.  We know it is still valid as we have
517 		 * a reference.  We must 'open code' vma locking as we do
518 		 * not know if vma_lock is still attached to vma.
519 		 */
520 		down_write(&vma_lock->rw_sema);
521 		i_mmap_lock_write(mapping);
522 
523 		vma = vma_lock->vma;
524 		if (!vma) {
525 			/*
526 			 * If lock is no longer attached to vma, then just
527 			 * unlock, drop our reference and retry looking for
528 			 * other vmas.
529 			 */
530 			up_write(&vma_lock->rw_sema);
531 			kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
532 			goto retry;
533 		}
534 
535 		/*
536 		 * vma_lock is still attached to vma.  Check to see if vma
537 		 * still maps page and if so, unmap.
538 		 */
539 		v_start = vma_offset_start(vma, start);
540 		v_end = vma_offset_end(vma, end);
541 		if (hugetlb_vma_maps_page(vma, v_start, page))
542 			unmap_hugepage_range(vma, v_start, v_end, NULL,
543 					     ZAP_FLAG_DROP_MARKER);
544 
545 		kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
546 		hugetlb_vma_unlock_write(vma);
547 
548 		goto retry;
549 	}
550 }
551 
552 static void
553 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end,
554 		      zap_flags_t zap_flags)
555 {
556 	struct vm_area_struct *vma;
557 
558 	/*
559 	 * end == 0 indicates that the entire range after start should be
560 	 * unmapped.  Note, end is exclusive, whereas the interval tree takes
561 	 * an inclusive "last".
562 	 */
563 	vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) {
564 		unsigned long v_start;
565 		unsigned long v_end;
566 
567 		if (!hugetlb_vma_trylock_write(vma))
568 			continue;
569 
570 		v_start = vma_offset_start(vma, start);
571 		v_end = vma_offset_end(vma, end);
572 
573 		unmap_hugepage_range(vma, v_start, v_end, NULL, zap_flags);
574 
575 		/*
576 		 * Note that vma lock only exists for shared/non-private
577 		 * vmas.  Therefore, lock is not held when calling
578 		 * unmap_hugepage_range for private vmas.
579 		 */
580 		hugetlb_vma_unlock_write(vma);
581 	}
582 }
583 
584 /*
585  * Called with hugetlb fault mutex held.
586  * Returns true if page was actually removed, false otherwise.
587  */
588 static bool remove_inode_single_folio(struct hstate *h, struct inode *inode,
589 					struct address_space *mapping,
590 					struct folio *folio, pgoff_t index,
591 					bool truncate_op)
592 {
593 	bool ret = false;
594 
595 	/*
596 	 * If folio is mapped, it was faulted in after being
597 	 * unmapped in caller.  Unmap (again) while holding
598 	 * the fault mutex.  The mutex will prevent faults
599 	 * until we finish removing the folio.
600 	 */
601 	if (unlikely(folio_mapped(folio)))
602 		hugetlb_unmap_file_folio(h, mapping, folio, index);
603 
604 	folio_lock(folio);
605 	/*
606 	 * We must remove the folio from page cache before removing
607 	 * the region/ reserve map (hugetlb_unreserve_pages).  In
608 	 * rare out of memory conditions, removal of the region/reserve
609 	 * map could fail.  Correspondingly, the subpool and global
610 	 * reserve usage count can need to be adjusted.
611 	 */
612 	VM_BUG_ON_FOLIO(folio_test_hugetlb_restore_reserve(folio), folio);
613 	hugetlb_delete_from_page_cache(folio);
614 	ret = true;
615 	if (!truncate_op) {
616 		if (unlikely(hugetlb_unreserve_pages(inode, index,
617 							index + 1, 1)))
618 			hugetlb_fix_reserve_counts(inode);
619 	}
620 
621 	folio_unlock(folio);
622 	return ret;
623 }
624 
625 /*
626  * remove_inode_hugepages handles two distinct cases: truncation and hole
627  * punch.  There are subtle differences in operation for each case.
628  *
629  * truncation is indicated by end of range being LLONG_MAX
630  *	In this case, we first scan the range and release found pages.
631  *	After releasing pages, hugetlb_unreserve_pages cleans up region/reserve
632  *	maps and global counts.  Page faults can race with truncation.
633  *	During faults, hugetlb_no_page() checks i_size before page allocation,
634  *	and again after obtaining page table lock.  It will 'back out'
635  *	allocations in the truncated range.
636  * hole punch is indicated if end is not LLONG_MAX
637  *	In the hole punch case we scan the range and release found pages.
638  *	Only when releasing a page is the associated region/reserve map
639  *	deleted.  The region/reserve map for ranges without associated
640  *	pages are not modified.  Page faults can race with hole punch.
641  *	This is indicated if we find a mapped page.
642  * Note: If the passed end of range value is beyond the end of file, but
643  * not LLONG_MAX this routine still performs a hole punch operation.
644  */
645 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
646 				   loff_t lend)
647 {
648 	struct hstate *h = hstate_inode(inode);
649 	struct address_space *mapping = &inode->i_data;
650 	const pgoff_t end = lend >> PAGE_SHIFT;
651 	struct folio_batch fbatch;
652 	pgoff_t next, index;
653 	int i, freed = 0;
654 	bool truncate_op = (lend == LLONG_MAX);
655 
656 	folio_batch_init(&fbatch);
657 	next = lstart >> PAGE_SHIFT;
658 	while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) {
659 		for (i = 0; i < folio_batch_count(&fbatch); ++i) {
660 			struct folio *folio = fbatch.folios[i];
661 			u32 hash = 0;
662 
663 			index = folio->index >> huge_page_order(h);
664 			hash = hugetlb_fault_mutex_hash(mapping, index);
665 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
666 
667 			/*
668 			 * Remove folio that was part of folio_batch.
669 			 */
670 			if (remove_inode_single_folio(h, inode, mapping, folio,
671 							index, truncate_op))
672 				freed++;
673 
674 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
675 		}
676 		folio_batch_release(&fbatch);
677 		cond_resched();
678 	}
679 
680 	if (truncate_op)
681 		(void)hugetlb_unreserve_pages(inode,
682 				lstart >> huge_page_shift(h),
683 				LONG_MAX, freed);
684 }
685 
686 static void hugetlbfs_evict_inode(struct inode *inode)
687 {
688 	struct resv_map *resv_map;
689 
690 	remove_inode_hugepages(inode, 0, LLONG_MAX);
691 
692 	/*
693 	 * Get the resv_map from the address space embedded in the inode.
694 	 * This is the address space which points to any resv_map allocated
695 	 * at inode creation time.  If this is a device special inode,
696 	 * i_mapping may not point to the original address space.
697 	 */
698 	resv_map = (struct resv_map *)(&inode->i_data)->i_private_data;
699 	/* Only regular and link inodes have associated reserve maps */
700 	if (resv_map)
701 		resv_map_release(&resv_map->refs);
702 	clear_inode(inode);
703 }
704 
705 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset)
706 {
707 	pgoff_t pgoff;
708 	struct address_space *mapping = inode->i_mapping;
709 	struct hstate *h = hstate_inode(inode);
710 
711 	BUG_ON(offset & ~huge_page_mask(h));
712 	pgoff = offset >> PAGE_SHIFT;
713 
714 	i_size_write(inode, offset);
715 	i_mmap_lock_write(mapping);
716 	if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
717 		hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0,
718 				      ZAP_FLAG_DROP_MARKER);
719 	i_mmap_unlock_write(mapping);
720 	remove_inode_hugepages(inode, offset, LLONG_MAX);
721 }
722 
723 static void hugetlbfs_zero_partial_page(struct hstate *h,
724 					struct address_space *mapping,
725 					loff_t start,
726 					loff_t end)
727 {
728 	pgoff_t idx = start >> huge_page_shift(h);
729 	struct folio *folio;
730 
731 	folio = filemap_lock_hugetlb_folio(h, mapping, idx);
732 	if (IS_ERR(folio))
733 		return;
734 
735 	start = start & ~huge_page_mask(h);
736 	end = end & ~huge_page_mask(h);
737 	if (!end)
738 		end = huge_page_size(h);
739 
740 	folio_zero_segment(folio, (size_t)start, (size_t)end);
741 
742 	folio_unlock(folio);
743 	folio_put(folio);
744 }
745 
746 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
747 {
748 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
749 	struct address_space *mapping = inode->i_mapping;
750 	struct hstate *h = hstate_inode(inode);
751 	loff_t hpage_size = huge_page_size(h);
752 	loff_t hole_start, hole_end;
753 
754 	/*
755 	 * hole_start and hole_end indicate the full pages within the hole.
756 	 */
757 	hole_start = round_up(offset, hpage_size);
758 	hole_end = round_down(offset + len, hpage_size);
759 
760 	inode_lock(inode);
761 
762 	/* protected by i_rwsem */
763 	if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
764 		inode_unlock(inode);
765 		return -EPERM;
766 	}
767 
768 	i_mmap_lock_write(mapping);
769 
770 	/* If range starts before first full page, zero partial page. */
771 	if (offset < hole_start)
772 		hugetlbfs_zero_partial_page(h, mapping,
773 				offset, min(offset + len, hole_start));
774 
775 	/* Unmap users of full pages in the hole. */
776 	if (hole_end > hole_start) {
777 		if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
778 			hugetlb_vmdelete_list(&mapping->i_mmap,
779 					      hole_start >> PAGE_SHIFT,
780 					      hole_end >> PAGE_SHIFT, 0);
781 	}
782 
783 	/* If range extends beyond last full page, zero partial page. */
784 	if ((offset + len) > hole_end && (offset + len) > hole_start)
785 		hugetlbfs_zero_partial_page(h, mapping,
786 				hole_end, offset + len);
787 
788 	i_mmap_unlock_write(mapping);
789 
790 	/* Remove full pages from the file. */
791 	if (hole_end > hole_start)
792 		remove_inode_hugepages(inode, hole_start, hole_end);
793 
794 	inode_unlock(inode);
795 
796 	return 0;
797 }
798 
799 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
800 				loff_t len)
801 {
802 	struct inode *inode = file_inode(file);
803 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
804 	struct address_space *mapping = inode->i_mapping;
805 	struct hstate *h = hstate_inode(inode);
806 	struct vm_area_struct pseudo_vma;
807 	struct mm_struct *mm = current->mm;
808 	loff_t hpage_size = huge_page_size(h);
809 	unsigned long hpage_shift = huge_page_shift(h);
810 	pgoff_t start, index, end;
811 	int error;
812 	u32 hash;
813 
814 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
815 		return -EOPNOTSUPP;
816 
817 	if (mode & FALLOC_FL_PUNCH_HOLE)
818 		return hugetlbfs_punch_hole(inode, offset, len);
819 
820 	/*
821 	 * Default preallocate case.
822 	 * For this range, start is rounded down and end is rounded up
823 	 * as well as being converted to page offsets.
824 	 */
825 	start = offset >> hpage_shift;
826 	end = (offset + len + hpage_size - 1) >> hpage_shift;
827 
828 	inode_lock(inode);
829 
830 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
831 	error = inode_newsize_ok(inode, offset + len);
832 	if (error)
833 		goto out;
834 
835 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
836 		error = -EPERM;
837 		goto out;
838 	}
839 
840 	/*
841 	 * Initialize a pseudo vma as this is required by the huge page
842 	 * allocation routines.
843 	 */
844 	vma_init(&pseudo_vma, mm);
845 	vm_flags_init(&pseudo_vma, VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
846 	pseudo_vma.vm_file = file;
847 
848 	for (index = start; index < end; index++) {
849 		/*
850 		 * This is supposed to be the vaddr where the page is being
851 		 * faulted in, but we have no vaddr here.
852 		 */
853 		struct folio *folio;
854 		unsigned long addr;
855 
856 		cond_resched();
857 
858 		/*
859 		 * fallocate(2) manpage permits EINTR; we may have been
860 		 * interrupted because we are using up too much memory.
861 		 */
862 		if (signal_pending(current)) {
863 			error = -EINTR;
864 			break;
865 		}
866 
867 		/* addr is the offset within the file (zero based) */
868 		addr = index * hpage_size;
869 
870 		/* mutex taken here, fault path and hole punch */
871 		hash = hugetlb_fault_mutex_hash(mapping, index);
872 		mutex_lock(&hugetlb_fault_mutex_table[hash]);
873 
874 		/* See if already present in mapping to avoid alloc/free */
875 		folio = filemap_get_folio(mapping, index << huge_page_order(h));
876 		if (!IS_ERR(folio)) {
877 			folio_put(folio);
878 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
879 			continue;
880 		}
881 
882 		/*
883 		 * Allocate folio without setting the avoid_reserve argument.
884 		 * There certainly are no reserves associated with the
885 		 * pseudo_vma.  However, there could be shared mappings with
886 		 * reserves for the file at the inode level.  If we fallocate
887 		 * folios in these areas, we need to consume the reserves
888 		 * to keep reservation accounting consistent.
889 		 */
890 		folio = alloc_hugetlb_folio(&pseudo_vma, addr, 0);
891 		if (IS_ERR(folio)) {
892 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
893 			error = PTR_ERR(folio);
894 			goto out;
895 		}
896 		folio_zero_user(folio, ALIGN_DOWN(addr, hpage_size));
897 		__folio_mark_uptodate(folio);
898 		error = hugetlb_add_to_page_cache(folio, mapping, index);
899 		if (unlikely(error)) {
900 			restore_reserve_on_error(h, &pseudo_vma, addr, folio);
901 			folio_put(folio);
902 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
903 			goto out;
904 		}
905 
906 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
907 
908 		folio_set_hugetlb_migratable(folio);
909 		/*
910 		 * folio_unlock because locked by hugetlb_add_to_page_cache()
911 		 * folio_put() due to reference from alloc_hugetlb_folio()
912 		 */
913 		folio_unlock(folio);
914 		folio_put(folio);
915 	}
916 
917 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
918 		i_size_write(inode, offset + len);
919 	inode_set_ctime_current(inode);
920 out:
921 	inode_unlock(inode);
922 	return error;
923 }
924 
925 static int hugetlbfs_setattr(struct mnt_idmap *idmap,
926 			     struct dentry *dentry, struct iattr *attr)
927 {
928 	struct inode *inode = d_inode(dentry);
929 	struct hstate *h = hstate_inode(inode);
930 	int error;
931 	unsigned int ia_valid = attr->ia_valid;
932 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
933 
934 	error = setattr_prepare(idmap, dentry, attr);
935 	if (error)
936 		return error;
937 
938 	if (ia_valid & ATTR_SIZE) {
939 		loff_t oldsize = inode->i_size;
940 		loff_t newsize = attr->ia_size;
941 
942 		if (newsize & ~huge_page_mask(h))
943 			return -EINVAL;
944 		/* protected by i_rwsem */
945 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
946 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
947 			return -EPERM;
948 		hugetlb_vmtruncate(inode, newsize);
949 	}
950 
951 	setattr_copy(idmap, inode, attr);
952 	mark_inode_dirty(inode);
953 	return 0;
954 }
955 
956 static struct inode *hugetlbfs_get_root(struct super_block *sb,
957 					struct hugetlbfs_fs_context *ctx)
958 {
959 	struct inode *inode;
960 
961 	inode = new_inode(sb);
962 	if (inode) {
963 		inode->i_ino = get_next_ino();
964 		inode->i_mode = S_IFDIR | ctx->mode;
965 		inode->i_uid = ctx->uid;
966 		inode->i_gid = ctx->gid;
967 		simple_inode_init_ts(inode);
968 		inode->i_op = &hugetlbfs_dir_inode_operations;
969 		inode->i_fop = &simple_dir_operations;
970 		/* directory inodes start off with i_nlink == 2 (for "." entry) */
971 		inc_nlink(inode);
972 		lockdep_annotate_inode_mutex_key(inode);
973 	}
974 	return inode;
975 }
976 
977 /*
978  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
979  * be taken from reclaim -- unlike regular filesystems. This needs an
980  * annotation because huge_pmd_share() does an allocation under hugetlb's
981  * i_mmap_rwsem.
982  */
983 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
984 
985 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
986 					struct mnt_idmap *idmap,
987 					struct inode *dir,
988 					umode_t mode, dev_t dev)
989 {
990 	struct inode *inode;
991 	struct resv_map *resv_map = NULL;
992 
993 	/*
994 	 * Reserve maps are only needed for inodes that can have associated
995 	 * page allocations.
996 	 */
997 	if (S_ISREG(mode) || S_ISLNK(mode)) {
998 		resv_map = resv_map_alloc();
999 		if (!resv_map)
1000 			return NULL;
1001 	}
1002 
1003 	inode = new_inode(sb);
1004 	if (inode) {
1005 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
1006 
1007 		inode->i_ino = get_next_ino();
1008 		inode_init_owner(idmap, inode, dir, mode);
1009 		lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
1010 				&hugetlbfs_i_mmap_rwsem_key);
1011 		inode->i_mapping->a_ops = &hugetlbfs_aops;
1012 		simple_inode_init_ts(inode);
1013 		inode->i_mapping->i_private_data = resv_map;
1014 		info->seals = F_SEAL_SEAL;
1015 		switch (mode & S_IFMT) {
1016 		default:
1017 			init_special_inode(inode, mode, dev);
1018 			break;
1019 		case S_IFREG:
1020 			inode->i_op = &hugetlbfs_inode_operations;
1021 			inode->i_fop = &hugetlbfs_file_operations;
1022 			break;
1023 		case S_IFDIR:
1024 			inode->i_op = &hugetlbfs_dir_inode_operations;
1025 			inode->i_fop = &simple_dir_operations;
1026 
1027 			/* directory inodes start off with i_nlink == 2 (for "." entry) */
1028 			inc_nlink(inode);
1029 			break;
1030 		case S_IFLNK:
1031 			inode->i_op = &page_symlink_inode_operations;
1032 			inode_nohighmem(inode);
1033 			break;
1034 		}
1035 		lockdep_annotate_inode_mutex_key(inode);
1036 	} else {
1037 		if (resv_map)
1038 			kref_put(&resv_map->refs, resv_map_release);
1039 	}
1040 
1041 	return inode;
1042 }
1043 
1044 /*
1045  * File creation. Allocate an inode, and we're done..
1046  */
1047 static int hugetlbfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
1048 			   struct dentry *dentry, umode_t mode, dev_t dev)
1049 {
1050 	struct inode *inode;
1051 
1052 	inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, dev);
1053 	if (!inode)
1054 		return -ENOSPC;
1055 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
1056 	d_instantiate(dentry, inode);
1057 	dget(dentry);/* Extra count - pin the dentry in core */
1058 	return 0;
1059 }
1060 
1061 static int hugetlbfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
1062 			   struct dentry *dentry, umode_t mode)
1063 {
1064 	int retval = hugetlbfs_mknod(idmap, dir, dentry,
1065 				     mode | S_IFDIR, 0);
1066 	if (!retval)
1067 		inc_nlink(dir);
1068 	return retval;
1069 }
1070 
1071 static int hugetlbfs_create(struct mnt_idmap *idmap,
1072 			    struct inode *dir, struct dentry *dentry,
1073 			    umode_t mode, bool excl)
1074 {
1075 	return hugetlbfs_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
1076 }
1077 
1078 static int hugetlbfs_tmpfile(struct mnt_idmap *idmap,
1079 			     struct inode *dir, struct file *file,
1080 			     umode_t mode)
1081 {
1082 	struct inode *inode;
1083 
1084 	inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode | S_IFREG, 0);
1085 	if (!inode)
1086 		return -ENOSPC;
1087 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
1088 	d_tmpfile(file, inode);
1089 	return finish_open_simple(file, 0);
1090 }
1091 
1092 static int hugetlbfs_symlink(struct mnt_idmap *idmap,
1093 			     struct inode *dir, struct dentry *dentry,
1094 			     const char *symname)
1095 {
1096 	const umode_t mode = S_IFLNK|S_IRWXUGO;
1097 	struct inode *inode;
1098 	int error = -ENOSPC;
1099 
1100 	inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, 0);
1101 	if (inode) {
1102 		int l = strlen(symname)+1;
1103 		error = page_symlink(inode, symname, l);
1104 		if (!error) {
1105 			d_instantiate(dentry, inode);
1106 			dget(dentry);
1107 		} else
1108 			iput(inode);
1109 	}
1110 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
1111 
1112 	return error;
1113 }
1114 
1115 #ifdef CONFIG_MIGRATION
1116 static int hugetlbfs_migrate_folio(struct address_space *mapping,
1117 				struct folio *dst, struct folio *src,
1118 				enum migrate_mode mode)
1119 {
1120 	int rc;
1121 
1122 	rc = migrate_huge_page_move_mapping(mapping, dst, src);
1123 	if (rc != MIGRATEPAGE_SUCCESS)
1124 		return rc;
1125 
1126 	if (hugetlb_folio_subpool(src)) {
1127 		hugetlb_set_folio_subpool(dst,
1128 					hugetlb_folio_subpool(src));
1129 		hugetlb_set_folio_subpool(src, NULL);
1130 	}
1131 
1132 	folio_migrate_flags(dst, src);
1133 
1134 	return MIGRATEPAGE_SUCCESS;
1135 }
1136 #else
1137 #define hugetlbfs_migrate_folio NULL
1138 #endif
1139 
1140 static int hugetlbfs_error_remove_folio(struct address_space *mapping,
1141 				struct folio *folio)
1142 {
1143 	return 0;
1144 }
1145 
1146 /*
1147  * Display the mount options in /proc/mounts.
1148  */
1149 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
1150 {
1151 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
1152 	struct hugepage_subpool *spool = sbinfo->spool;
1153 	unsigned long hpage_size = huge_page_size(sbinfo->hstate);
1154 	unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
1155 	char mod;
1156 
1157 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1158 		seq_printf(m, ",uid=%u",
1159 			   from_kuid_munged(&init_user_ns, sbinfo->uid));
1160 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1161 		seq_printf(m, ",gid=%u",
1162 			   from_kgid_munged(&init_user_ns, sbinfo->gid));
1163 	if (sbinfo->mode != 0755)
1164 		seq_printf(m, ",mode=%o", sbinfo->mode);
1165 	if (sbinfo->max_inodes != -1)
1166 		seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1167 
1168 	hpage_size /= 1024;
1169 	mod = 'K';
1170 	if (hpage_size >= 1024) {
1171 		hpage_size /= 1024;
1172 		mod = 'M';
1173 	}
1174 	seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1175 	if (spool) {
1176 		if (spool->max_hpages != -1)
1177 			seq_printf(m, ",size=%llu",
1178 				   (unsigned long long)spool->max_hpages << hpage_shift);
1179 		if (spool->min_hpages != -1)
1180 			seq_printf(m, ",min_size=%llu",
1181 				   (unsigned long long)spool->min_hpages << hpage_shift);
1182 	}
1183 	return 0;
1184 }
1185 
1186 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1187 {
1188 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
1189 	struct hstate *h = hstate_inode(d_inode(dentry));
1190 	u64 id = huge_encode_dev(dentry->d_sb->s_dev);
1191 
1192 	buf->f_fsid = u64_to_fsid(id);
1193 	buf->f_type = HUGETLBFS_MAGIC;
1194 	buf->f_bsize = huge_page_size(h);
1195 	if (sbinfo) {
1196 		spin_lock(&sbinfo->stat_lock);
1197 		/* If no limits set, just report 0 or -1 for max/free/used
1198 		 * blocks, like simple_statfs() */
1199 		if (sbinfo->spool) {
1200 			long free_pages;
1201 
1202 			spin_lock_irq(&sbinfo->spool->lock);
1203 			buf->f_blocks = sbinfo->spool->max_hpages;
1204 			free_pages = sbinfo->spool->max_hpages
1205 				- sbinfo->spool->used_hpages;
1206 			buf->f_bavail = buf->f_bfree = free_pages;
1207 			spin_unlock_irq(&sbinfo->spool->lock);
1208 			buf->f_files = sbinfo->max_inodes;
1209 			buf->f_ffree = sbinfo->free_inodes;
1210 		}
1211 		spin_unlock(&sbinfo->stat_lock);
1212 	}
1213 	buf->f_namelen = NAME_MAX;
1214 	return 0;
1215 }
1216 
1217 static void hugetlbfs_put_super(struct super_block *sb)
1218 {
1219 	struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1220 
1221 	if (sbi) {
1222 		sb->s_fs_info = NULL;
1223 
1224 		if (sbi->spool)
1225 			hugepage_put_subpool(sbi->spool);
1226 
1227 		kfree(sbi);
1228 	}
1229 }
1230 
1231 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1232 {
1233 	if (sbinfo->free_inodes >= 0) {
1234 		spin_lock(&sbinfo->stat_lock);
1235 		if (unlikely(!sbinfo->free_inodes)) {
1236 			spin_unlock(&sbinfo->stat_lock);
1237 			return 0;
1238 		}
1239 		sbinfo->free_inodes--;
1240 		spin_unlock(&sbinfo->stat_lock);
1241 	}
1242 
1243 	return 1;
1244 }
1245 
1246 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1247 {
1248 	if (sbinfo->free_inodes >= 0) {
1249 		spin_lock(&sbinfo->stat_lock);
1250 		sbinfo->free_inodes++;
1251 		spin_unlock(&sbinfo->stat_lock);
1252 	}
1253 }
1254 
1255 
1256 static struct kmem_cache *hugetlbfs_inode_cachep;
1257 
1258 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1259 {
1260 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1261 	struct hugetlbfs_inode_info *p;
1262 
1263 	if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1264 		return NULL;
1265 	p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL);
1266 	if (unlikely(!p)) {
1267 		hugetlbfs_inc_free_inodes(sbinfo);
1268 		return NULL;
1269 	}
1270 	return &p->vfs_inode;
1271 }
1272 
1273 static void hugetlbfs_free_inode(struct inode *inode)
1274 {
1275 	kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1276 }
1277 
1278 static void hugetlbfs_destroy_inode(struct inode *inode)
1279 {
1280 	hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1281 }
1282 
1283 static const struct address_space_operations hugetlbfs_aops = {
1284 	.write_begin	= hugetlbfs_write_begin,
1285 	.write_end	= hugetlbfs_write_end,
1286 	.dirty_folio	= noop_dirty_folio,
1287 	.migrate_folio  = hugetlbfs_migrate_folio,
1288 	.error_remove_folio	= hugetlbfs_error_remove_folio,
1289 };
1290 
1291 
1292 static void init_once(void *foo)
1293 {
1294 	struct hugetlbfs_inode_info *ei = foo;
1295 
1296 	inode_init_once(&ei->vfs_inode);
1297 }
1298 
1299 static const struct file_operations hugetlbfs_file_operations = {
1300 	.read_iter		= hugetlbfs_read_iter,
1301 	.mmap			= hugetlbfs_file_mmap,
1302 	.fsync			= noop_fsync,
1303 	.get_unmapped_area	= hugetlb_get_unmapped_area,
1304 	.llseek			= default_llseek,
1305 	.fallocate		= hugetlbfs_fallocate,
1306 	.fop_flags		= FOP_HUGE_PAGES,
1307 };
1308 
1309 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1310 	.create		= hugetlbfs_create,
1311 	.lookup		= simple_lookup,
1312 	.link		= simple_link,
1313 	.unlink		= simple_unlink,
1314 	.symlink	= hugetlbfs_symlink,
1315 	.mkdir		= hugetlbfs_mkdir,
1316 	.rmdir		= simple_rmdir,
1317 	.mknod		= hugetlbfs_mknod,
1318 	.rename		= simple_rename,
1319 	.setattr	= hugetlbfs_setattr,
1320 	.tmpfile	= hugetlbfs_tmpfile,
1321 };
1322 
1323 static const struct inode_operations hugetlbfs_inode_operations = {
1324 	.setattr	= hugetlbfs_setattr,
1325 };
1326 
1327 static const struct super_operations hugetlbfs_ops = {
1328 	.alloc_inode    = hugetlbfs_alloc_inode,
1329 	.free_inode     = hugetlbfs_free_inode,
1330 	.destroy_inode  = hugetlbfs_destroy_inode,
1331 	.evict_inode	= hugetlbfs_evict_inode,
1332 	.statfs		= hugetlbfs_statfs,
1333 	.put_super	= hugetlbfs_put_super,
1334 	.show_options	= hugetlbfs_show_options,
1335 };
1336 
1337 /*
1338  * Convert size option passed from command line to number of huge pages
1339  * in the pool specified by hstate.  Size option could be in bytes
1340  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1341  */
1342 static long
1343 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1344 			 enum hugetlbfs_size_type val_type)
1345 {
1346 	if (val_type == NO_SIZE)
1347 		return -1;
1348 
1349 	if (val_type == SIZE_PERCENT) {
1350 		size_opt <<= huge_page_shift(h);
1351 		size_opt *= h->max_huge_pages;
1352 		do_div(size_opt, 100);
1353 	}
1354 
1355 	size_opt >>= huge_page_shift(h);
1356 	return size_opt;
1357 }
1358 
1359 /*
1360  * Parse one mount parameter.
1361  */
1362 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1363 {
1364 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1365 	struct fs_parse_result result;
1366 	struct hstate *h;
1367 	char *rest;
1368 	unsigned long ps;
1369 	int opt;
1370 
1371 	opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1372 	if (opt < 0)
1373 		return opt;
1374 
1375 	switch (opt) {
1376 	case Opt_uid:
1377 		ctx->uid = result.uid;
1378 		return 0;
1379 
1380 	case Opt_gid:
1381 		ctx->gid = result.gid;
1382 		return 0;
1383 
1384 	case Opt_mode:
1385 		ctx->mode = result.uint_32 & 01777U;
1386 		return 0;
1387 
1388 	case Opt_size:
1389 		/* memparse() will accept a K/M/G without a digit */
1390 		if (!param->string || !isdigit(param->string[0]))
1391 			goto bad_val;
1392 		ctx->max_size_opt = memparse(param->string, &rest);
1393 		ctx->max_val_type = SIZE_STD;
1394 		if (*rest == '%')
1395 			ctx->max_val_type = SIZE_PERCENT;
1396 		return 0;
1397 
1398 	case Opt_nr_inodes:
1399 		/* memparse() will accept a K/M/G without a digit */
1400 		if (!param->string || !isdigit(param->string[0]))
1401 			goto bad_val;
1402 		ctx->nr_inodes = memparse(param->string, &rest);
1403 		return 0;
1404 
1405 	case Opt_pagesize:
1406 		ps = memparse(param->string, &rest);
1407 		h = size_to_hstate(ps);
1408 		if (!h) {
1409 			pr_err("Unsupported page size %lu MB\n", ps / SZ_1M);
1410 			return -EINVAL;
1411 		}
1412 		ctx->hstate = h;
1413 		return 0;
1414 
1415 	case Opt_min_size:
1416 		/* memparse() will accept a K/M/G without a digit */
1417 		if (!param->string || !isdigit(param->string[0]))
1418 			goto bad_val;
1419 		ctx->min_size_opt = memparse(param->string, &rest);
1420 		ctx->min_val_type = SIZE_STD;
1421 		if (*rest == '%')
1422 			ctx->min_val_type = SIZE_PERCENT;
1423 		return 0;
1424 
1425 	default:
1426 		return -EINVAL;
1427 	}
1428 
1429 bad_val:
1430 	return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1431 		      param->string, param->key);
1432 }
1433 
1434 /*
1435  * Validate the parsed options.
1436  */
1437 static int hugetlbfs_validate(struct fs_context *fc)
1438 {
1439 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1440 
1441 	/*
1442 	 * Use huge page pool size (in hstate) to convert the size
1443 	 * options to number of huge pages.  If NO_SIZE, -1 is returned.
1444 	 */
1445 	ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1446 						   ctx->max_size_opt,
1447 						   ctx->max_val_type);
1448 	ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1449 						   ctx->min_size_opt,
1450 						   ctx->min_val_type);
1451 
1452 	/*
1453 	 * If max_size was specified, then min_size must be smaller
1454 	 */
1455 	if (ctx->max_val_type > NO_SIZE &&
1456 	    ctx->min_hpages > ctx->max_hpages) {
1457 		pr_err("Minimum size can not be greater than maximum size\n");
1458 		return -EINVAL;
1459 	}
1460 
1461 	return 0;
1462 }
1463 
1464 static int
1465 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1466 {
1467 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1468 	struct hugetlbfs_sb_info *sbinfo;
1469 
1470 	sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1471 	if (!sbinfo)
1472 		return -ENOMEM;
1473 	sb->s_fs_info = sbinfo;
1474 	spin_lock_init(&sbinfo->stat_lock);
1475 	sbinfo->hstate		= ctx->hstate;
1476 	sbinfo->max_inodes	= ctx->nr_inodes;
1477 	sbinfo->free_inodes	= ctx->nr_inodes;
1478 	sbinfo->spool		= NULL;
1479 	sbinfo->uid		= ctx->uid;
1480 	sbinfo->gid		= ctx->gid;
1481 	sbinfo->mode		= ctx->mode;
1482 
1483 	/*
1484 	 * Allocate and initialize subpool if maximum or minimum size is
1485 	 * specified.  Any needed reservations (for minimum size) are taken
1486 	 * when the subpool is created.
1487 	 */
1488 	if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1489 		sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1490 						     ctx->max_hpages,
1491 						     ctx->min_hpages);
1492 		if (!sbinfo->spool)
1493 			goto out_free;
1494 	}
1495 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1496 	sb->s_blocksize = huge_page_size(ctx->hstate);
1497 	sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1498 	sb->s_magic = HUGETLBFS_MAGIC;
1499 	sb->s_op = &hugetlbfs_ops;
1500 	sb->s_time_gran = 1;
1501 
1502 	/*
1503 	 * Due to the special and limited functionality of hugetlbfs, it does
1504 	 * not work well as a stacking filesystem.
1505 	 */
1506 	sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
1507 	sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1508 	if (!sb->s_root)
1509 		goto out_free;
1510 	return 0;
1511 out_free:
1512 	kfree(sbinfo->spool);
1513 	kfree(sbinfo);
1514 	return -ENOMEM;
1515 }
1516 
1517 static int hugetlbfs_get_tree(struct fs_context *fc)
1518 {
1519 	int err = hugetlbfs_validate(fc);
1520 	if (err)
1521 		return err;
1522 	return get_tree_nodev(fc, hugetlbfs_fill_super);
1523 }
1524 
1525 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1526 {
1527 	kfree(fc->fs_private);
1528 }
1529 
1530 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1531 	.free		= hugetlbfs_fs_context_free,
1532 	.parse_param	= hugetlbfs_parse_param,
1533 	.get_tree	= hugetlbfs_get_tree,
1534 };
1535 
1536 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1537 {
1538 	struct hugetlbfs_fs_context *ctx;
1539 
1540 	ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1541 	if (!ctx)
1542 		return -ENOMEM;
1543 
1544 	ctx->max_hpages	= -1; /* No limit on size by default */
1545 	ctx->nr_inodes	= -1; /* No limit on number of inodes by default */
1546 	ctx->uid	= current_fsuid();
1547 	ctx->gid	= current_fsgid();
1548 	ctx->mode	= 0755;
1549 	ctx->hstate	= &default_hstate;
1550 	ctx->min_hpages	= -1; /* No default minimum size */
1551 	ctx->max_val_type = NO_SIZE;
1552 	ctx->min_val_type = NO_SIZE;
1553 	fc->fs_private = ctx;
1554 	fc->ops	= &hugetlbfs_fs_context_ops;
1555 	return 0;
1556 }
1557 
1558 static struct file_system_type hugetlbfs_fs_type = {
1559 	.name			= "hugetlbfs",
1560 	.init_fs_context	= hugetlbfs_init_fs_context,
1561 	.parameters		= hugetlb_fs_parameters,
1562 	.kill_sb		= kill_litter_super,
1563 	.fs_flags               = FS_ALLOW_IDMAP,
1564 };
1565 
1566 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1567 
1568 static int can_do_hugetlb_shm(void)
1569 {
1570 	kgid_t shm_group;
1571 	shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1572 	return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1573 }
1574 
1575 static int get_hstate_idx(int page_size_log)
1576 {
1577 	struct hstate *h = hstate_sizelog(page_size_log);
1578 
1579 	if (!h)
1580 		return -1;
1581 	return hstate_index(h);
1582 }
1583 
1584 /*
1585  * Note that size should be aligned to proper hugepage size in caller side,
1586  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1587  */
1588 struct file *hugetlb_file_setup(const char *name, size_t size,
1589 				vm_flags_t acctflag, int creat_flags,
1590 				int page_size_log)
1591 {
1592 	struct inode *inode;
1593 	struct vfsmount *mnt;
1594 	int hstate_idx;
1595 	struct file *file;
1596 
1597 	hstate_idx = get_hstate_idx(page_size_log);
1598 	if (hstate_idx < 0)
1599 		return ERR_PTR(-ENODEV);
1600 
1601 	mnt = hugetlbfs_vfsmount[hstate_idx];
1602 	if (!mnt)
1603 		return ERR_PTR(-ENOENT);
1604 
1605 	if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1606 		struct ucounts *ucounts = current_ucounts();
1607 
1608 		if (user_shm_lock(size, ucounts)) {
1609 			pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n",
1610 				current->comm, current->pid);
1611 			user_shm_unlock(size, ucounts);
1612 		}
1613 		return ERR_PTR(-EPERM);
1614 	}
1615 
1616 	file = ERR_PTR(-ENOSPC);
1617 	/* hugetlbfs_vfsmount[] mounts do not use idmapped mounts.  */
1618 	inode = hugetlbfs_get_inode(mnt->mnt_sb, &nop_mnt_idmap, NULL,
1619 				    S_IFREG | S_IRWXUGO, 0);
1620 	if (!inode)
1621 		goto out;
1622 	if (creat_flags == HUGETLB_SHMFS_INODE)
1623 		inode->i_flags |= S_PRIVATE;
1624 
1625 	inode->i_size = size;
1626 	clear_nlink(inode);
1627 
1628 	if (!hugetlb_reserve_pages(inode, 0,
1629 			size >> huge_page_shift(hstate_inode(inode)), NULL,
1630 			acctflag))
1631 		file = ERR_PTR(-ENOMEM);
1632 	else
1633 		file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1634 					&hugetlbfs_file_operations);
1635 	if (!IS_ERR(file))
1636 		return file;
1637 
1638 	iput(inode);
1639 out:
1640 	return file;
1641 }
1642 
1643 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1644 {
1645 	struct fs_context *fc;
1646 	struct vfsmount *mnt;
1647 
1648 	fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1649 	if (IS_ERR(fc)) {
1650 		mnt = ERR_CAST(fc);
1651 	} else {
1652 		struct hugetlbfs_fs_context *ctx = fc->fs_private;
1653 		ctx->hstate = h;
1654 		mnt = fc_mount(fc);
1655 		put_fs_context(fc);
1656 	}
1657 	if (IS_ERR(mnt))
1658 		pr_err("Cannot mount internal hugetlbfs for page size %luK",
1659 		       huge_page_size(h) / SZ_1K);
1660 	return mnt;
1661 }
1662 
1663 static int __init init_hugetlbfs_fs(void)
1664 {
1665 	struct vfsmount *mnt;
1666 	struct hstate *h;
1667 	int error;
1668 	int i;
1669 
1670 	if (!hugepages_supported()) {
1671 		pr_info("disabling because there are no supported hugepage sizes\n");
1672 		return -ENOTSUPP;
1673 	}
1674 
1675 	error = -ENOMEM;
1676 	hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1677 					sizeof(struct hugetlbfs_inode_info),
1678 					0, SLAB_ACCOUNT, init_once);
1679 	if (hugetlbfs_inode_cachep == NULL)
1680 		goto out;
1681 
1682 	error = register_filesystem(&hugetlbfs_fs_type);
1683 	if (error)
1684 		goto out_free;
1685 
1686 	/* default hstate mount is required */
1687 	mnt = mount_one_hugetlbfs(&default_hstate);
1688 	if (IS_ERR(mnt)) {
1689 		error = PTR_ERR(mnt);
1690 		goto out_unreg;
1691 	}
1692 	hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1693 
1694 	/* other hstates are optional */
1695 	i = 0;
1696 	for_each_hstate(h) {
1697 		if (i == default_hstate_idx) {
1698 			i++;
1699 			continue;
1700 		}
1701 
1702 		mnt = mount_one_hugetlbfs(h);
1703 		if (IS_ERR(mnt))
1704 			hugetlbfs_vfsmount[i] = NULL;
1705 		else
1706 			hugetlbfs_vfsmount[i] = mnt;
1707 		i++;
1708 	}
1709 
1710 	return 0;
1711 
1712  out_unreg:
1713 	(void)unregister_filesystem(&hugetlbfs_fs_type);
1714  out_free:
1715 	kmem_cache_destroy(hugetlbfs_inode_cachep);
1716  out:
1717 	return error;
1718 }
1719 fs_initcall(init_hugetlbfs_fs)
1720