xref: /linux/fs/hugetlbfs/inode.c (revision 4e94ddfe2aab72139acb8d5372fac9e6c3f3e383)
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/falloc.h>
15 #include <linux/fs.h>
16 #include <linux/mount.h>
17 #include <linux/file.h>
18 #include <linux/kernel.h>
19 #include <linux/writeback.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/init.h>
23 #include <linux/string.h>
24 #include <linux/capability.h>
25 #include <linux/ctype.h>
26 #include <linux/backing-dev.h>
27 #include <linux/hugetlb.h>
28 #include <linux/pagevec.h>
29 #include <linux/fs_parser.h>
30 #include <linux/mman.h>
31 #include <linux/slab.h>
32 #include <linux/dnotify.h>
33 #include <linux/statfs.h>
34 #include <linux/security.h>
35 #include <linux/magic.h>
36 #include <linux/migrate.h>
37 #include <linux/uio.h>
38 
39 #include <linux/uaccess.h>
40 #include <linux/sched/mm.h>
41 
42 static const struct address_space_operations hugetlbfs_aops;
43 const struct file_operations hugetlbfs_file_operations;
44 static const struct inode_operations hugetlbfs_dir_inode_operations;
45 static const struct inode_operations hugetlbfs_inode_operations;
46 
47 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
48 
49 struct hugetlbfs_fs_context {
50 	struct hstate		*hstate;
51 	unsigned long long	max_size_opt;
52 	unsigned long long	min_size_opt;
53 	long			max_hpages;
54 	long			nr_inodes;
55 	long			min_hpages;
56 	enum hugetlbfs_size_type max_val_type;
57 	enum hugetlbfs_size_type min_val_type;
58 	kuid_t			uid;
59 	kgid_t			gid;
60 	umode_t			mode;
61 };
62 
63 int sysctl_hugetlb_shm_group;
64 
65 enum hugetlb_param {
66 	Opt_gid,
67 	Opt_min_size,
68 	Opt_mode,
69 	Opt_nr_inodes,
70 	Opt_pagesize,
71 	Opt_size,
72 	Opt_uid,
73 };
74 
75 static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
76 	fsparam_u32   ("gid",		Opt_gid),
77 	fsparam_string("min_size",	Opt_min_size),
78 	fsparam_u32oct("mode",		Opt_mode),
79 	fsparam_string("nr_inodes",	Opt_nr_inodes),
80 	fsparam_string("pagesize",	Opt_pagesize),
81 	fsparam_string("size",		Opt_size),
82 	fsparam_u32   ("uid",		Opt_uid),
83 	{}
84 };
85 
86 /*
87  * Mask used when checking the page offset value passed in via system
88  * calls.  This value will be converted to a loff_t which is signed.
89  * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
90  * value.  The extra bit (- 1 in the shift value) is to take the sign
91  * bit into account.
92  */
93 #define PGOFF_LOFFT_MAX \
94 	(((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
95 
96 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
97 {
98 	struct inode *inode = file_inode(file);
99 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
100 	loff_t len, vma_len;
101 	int ret;
102 	struct hstate *h = hstate_file(file);
103 
104 	/*
105 	 * vma address alignment (but not the pgoff alignment) has
106 	 * already been checked by prepare_hugepage_range.  If you add
107 	 * any error returns here, do so after setting VM_HUGETLB, so
108 	 * is_vm_hugetlb_page tests below unmap_region go the right
109 	 * way when do_mmap unwinds (may be important on powerpc
110 	 * and ia64).
111 	 */
112 	vm_flags_set(vma, VM_HUGETLB | VM_DONTEXPAND);
113 	vma->vm_ops = &hugetlb_vm_ops;
114 
115 	ret = seal_check_write(info->seals, vma);
116 	if (ret)
117 		return ret;
118 
119 	/*
120 	 * page based offset in vm_pgoff could be sufficiently large to
121 	 * overflow a loff_t when converted to byte offset.  This can
122 	 * only happen on architectures where sizeof(loff_t) ==
123 	 * sizeof(unsigned long).  So, only check in those instances.
124 	 */
125 	if (sizeof(unsigned long) == sizeof(loff_t)) {
126 		if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
127 			return -EINVAL;
128 	}
129 
130 	/* must be huge page aligned */
131 	if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
132 		return -EINVAL;
133 
134 	vma_len = (loff_t)(vma->vm_end - vma->vm_start);
135 	len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
136 	/* check for overflow */
137 	if (len < vma_len)
138 		return -EINVAL;
139 
140 	inode_lock(inode);
141 	file_accessed(file);
142 
143 	ret = -ENOMEM;
144 	if (!hugetlb_reserve_pages(inode,
145 				vma->vm_pgoff >> huge_page_order(h),
146 				len >> huge_page_shift(h), vma,
147 				vma->vm_flags))
148 		goto out;
149 
150 	ret = 0;
151 	if (vma->vm_flags & VM_WRITE && inode->i_size < len)
152 		i_size_write(inode, len);
153 out:
154 	inode_unlock(inode);
155 
156 	return ret;
157 }
158 
159 /*
160  * Called under mmap_write_lock(mm).
161  */
162 
163 static unsigned long
164 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr,
165 		unsigned long len, unsigned long pgoff, unsigned long flags)
166 {
167 	struct hstate *h = hstate_file(file);
168 	struct vm_unmapped_area_info info;
169 
170 	info.flags = 0;
171 	info.length = len;
172 	info.low_limit = current->mm->mmap_base;
173 	info.high_limit = arch_get_mmap_end(addr, len, flags);
174 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
175 	info.align_offset = 0;
176 	return vm_unmapped_area(&info);
177 }
178 
179 static unsigned long
180 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr,
181 		unsigned long len, unsigned long pgoff, unsigned long flags)
182 {
183 	struct hstate *h = hstate_file(file);
184 	struct vm_unmapped_area_info info;
185 
186 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
187 	info.length = len;
188 	info.low_limit = PAGE_SIZE;
189 	info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base);
190 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
191 	info.align_offset = 0;
192 	addr = vm_unmapped_area(&info);
193 
194 	/*
195 	 * A failed mmap() very likely causes application failure,
196 	 * so fall back to the bottom-up function here. This scenario
197 	 * can happen with large stack limits and large mmap()
198 	 * allocations.
199 	 */
200 	if (unlikely(offset_in_page(addr))) {
201 		VM_BUG_ON(addr != -ENOMEM);
202 		info.flags = 0;
203 		info.low_limit = current->mm->mmap_base;
204 		info.high_limit = arch_get_mmap_end(addr, len, flags);
205 		addr = vm_unmapped_area(&info);
206 	}
207 
208 	return addr;
209 }
210 
211 unsigned long
212 generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
213 				  unsigned long len, unsigned long pgoff,
214 				  unsigned long flags)
215 {
216 	struct mm_struct *mm = current->mm;
217 	struct vm_area_struct *vma;
218 	struct hstate *h = hstate_file(file);
219 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
220 
221 	if (len & ~huge_page_mask(h))
222 		return -EINVAL;
223 	if (len > TASK_SIZE)
224 		return -ENOMEM;
225 
226 	if (flags & MAP_FIXED) {
227 		if (prepare_hugepage_range(file, addr, len))
228 			return -EINVAL;
229 		return addr;
230 	}
231 
232 	if (addr) {
233 		addr = ALIGN(addr, huge_page_size(h));
234 		vma = find_vma(mm, addr);
235 		if (mmap_end - len >= addr &&
236 		    (!vma || addr + len <= vm_start_gap(vma)))
237 			return addr;
238 	}
239 
240 	/*
241 	 * Use mm->get_unmapped_area value as a hint to use topdown routine.
242 	 * If architectures have special needs, they should define their own
243 	 * version of hugetlb_get_unmapped_area.
244 	 */
245 	if (mm->get_unmapped_area == arch_get_unmapped_area_topdown)
246 		return hugetlb_get_unmapped_area_topdown(file, addr, len,
247 				pgoff, flags);
248 	return hugetlb_get_unmapped_area_bottomup(file, addr, len,
249 			pgoff, flags);
250 }
251 
252 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
253 static unsigned long
254 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
255 			  unsigned long len, unsigned long pgoff,
256 			  unsigned long flags)
257 {
258 	return generic_hugetlb_get_unmapped_area(file, addr, len, pgoff, flags);
259 }
260 #endif
261 
262 /*
263  * Someone wants to read @bytes from a HWPOISON hugetlb @page from @offset.
264  * Returns the maximum number of bytes one can read without touching the 1st raw
265  * HWPOISON subpage.
266  *
267  * The implementation borrows the iteration logic from copy_page_to_iter*.
268  */
269 static size_t adjust_range_hwpoison(struct page *page, size_t offset, size_t bytes)
270 {
271 	size_t n = 0;
272 	size_t res = 0;
273 
274 	/* First subpage to start the loop. */
275 	page = nth_page(page, offset / PAGE_SIZE);
276 	offset %= PAGE_SIZE;
277 	while (1) {
278 		if (is_raw_hwpoison_page_in_hugepage(page))
279 			break;
280 
281 		/* Safe to read n bytes without touching HWPOISON subpage. */
282 		n = min(bytes, (size_t)PAGE_SIZE - offset);
283 		res += n;
284 		bytes -= n;
285 		if (!bytes || !n)
286 			break;
287 		offset += n;
288 		if (offset == PAGE_SIZE) {
289 			page = nth_page(page, 1);
290 			offset = 0;
291 		}
292 	}
293 
294 	return res;
295 }
296 
297 /*
298  * Support for read() - Find the page attached to f_mapping and copy out the
299  * data. This provides functionality similar to filemap_read().
300  */
301 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
302 {
303 	struct file *file = iocb->ki_filp;
304 	struct hstate *h = hstate_file(file);
305 	struct address_space *mapping = file->f_mapping;
306 	struct inode *inode = mapping->host;
307 	unsigned long index = iocb->ki_pos >> huge_page_shift(h);
308 	unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
309 	unsigned long end_index;
310 	loff_t isize;
311 	ssize_t retval = 0;
312 
313 	while (iov_iter_count(to)) {
314 		struct folio *folio;
315 		size_t nr, copied, want;
316 
317 		/* nr is the maximum number of bytes to copy from this page */
318 		nr = huge_page_size(h);
319 		isize = i_size_read(inode);
320 		if (!isize)
321 			break;
322 		end_index = (isize - 1) >> huge_page_shift(h);
323 		if (index > end_index)
324 			break;
325 		if (index == end_index) {
326 			nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
327 			if (nr <= offset)
328 				break;
329 		}
330 		nr = nr - offset;
331 
332 		/* Find the folio */
333 		folio = filemap_lock_hugetlb_folio(h, mapping, index);
334 		if (IS_ERR(folio)) {
335 			/*
336 			 * We have a HOLE, zero out the user-buffer for the
337 			 * length of the hole or request.
338 			 */
339 			copied = iov_iter_zero(nr, to);
340 		} else {
341 			folio_unlock(folio);
342 
343 			if (!folio_test_has_hwpoisoned(folio))
344 				want = nr;
345 			else {
346 				/*
347 				 * Adjust how many bytes safe to read without
348 				 * touching the 1st raw HWPOISON subpage after
349 				 * offset.
350 				 */
351 				want = adjust_range_hwpoison(&folio->page, offset, nr);
352 				if (want == 0) {
353 					folio_put(folio);
354 					retval = -EIO;
355 					break;
356 				}
357 			}
358 
359 			/*
360 			 * We have the folio, copy it to user space buffer.
361 			 */
362 			copied = copy_folio_to_iter(folio, offset, want, to);
363 			folio_put(folio);
364 		}
365 		offset += copied;
366 		retval += copied;
367 		if (copied != nr && iov_iter_count(to)) {
368 			if (!retval)
369 				retval = -EFAULT;
370 			break;
371 		}
372 		index += offset >> huge_page_shift(h);
373 		offset &= ~huge_page_mask(h);
374 	}
375 	iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
376 	return retval;
377 }
378 
379 static int hugetlbfs_write_begin(struct file *file,
380 			struct address_space *mapping,
381 			loff_t pos, unsigned len,
382 			struct page **pagep, void **fsdata)
383 {
384 	return -EINVAL;
385 }
386 
387 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
388 			loff_t pos, unsigned len, unsigned copied,
389 			struct page *page, void *fsdata)
390 {
391 	BUG();
392 	return -EINVAL;
393 }
394 
395 static void hugetlb_delete_from_page_cache(struct folio *folio)
396 {
397 	folio_clear_dirty(folio);
398 	folio_clear_uptodate(folio);
399 	filemap_remove_folio(folio);
400 }
401 
402 /*
403  * Called with i_mmap_rwsem held for inode based vma maps.  This makes
404  * sure vma (and vm_mm) will not go away.  We also hold the hugetlb fault
405  * mutex for the page in the mapping.  So, we can not race with page being
406  * faulted into the vma.
407  */
408 static bool hugetlb_vma_maps_page(struct vm_area_struct *vma,
409 				unsigned long addr, struct page *page)
410 {
411 	pte_t *ptep, pte;
412 
413 	ptep = hugetlb_walk(vma, addr, huge_page_size(hstate_vma(vma)));
414 	if (!ptep)
415 		return false;
416 
417 	pte = huge_ptep_get(ptep);
418 	if (huge_pte_none(pte) || !pte_present(pte))
419 		return false;
420 
421 	if (pte_page(pte) == page)
422 		return true;
423 
424 	return false;
425 }
426 
427 /*
428  * Can vma_offset_start/vma_offset_end overflow on 32-bit arches?
429  * No, because the interval tree returns us only those vmas
430  * which overlap the truncated area starting at pgoff,
431  * and no vma on a 32-bit arch can span beyond the 4GB.
432  */
433 static unsigned long vma_offset_start(struct vm_area_struct *vma, pgoff_t start)
434 {
435 	unsigned long offset = 0;
436 
437 	if (vma->vm_pgoff < start)
438 		offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
439 
440 	return vma->vm_start + offset;
441 }
442 
443 static unsigned long vma_offset_end(struct vm_area_struct *vma, pgoff_t end)
444 {
445 	unsigned long t_end;
446 
447 	if (!end)
448 		return vma->vm_end;
449 
450 	t_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) + vma->vm_start;
451 	if (t_end > vma->vm_end)
452 		t_end = vma->vm_end;
453 	return t_end;
454 }
455 
456 /*
457  * Called with hugetlb fault mutex held.  Therefore, no more mappings to
458  * this folio can be created while executing the routine.
459  */
460 static void hugetlb_unmap_file_folio(struct hstate *h,
461 					struct address_space *mapping,
462 					struct folio *folio, pgoff_t index)
463 {
464 	struct rb_root_cached *root = &mapping->i_mmap;
465 	struct hugetlb_vma_lock *vma_lock;
466 	struct page *page = &folio->page;
467 	struct vm_area_struct *vma;
468 	unsigned long v_start;
469 	unsigned long v_end;
470 	pgoff_t start, end;
471 
472 	start = index * pages_per_huge_page(h);
473 	end = (index + 1) * pages_per_huge_page(h);
474 
475 	i_mmap_lock_write(mapping);
476 retry:
477 	vma_lock = NULL;
478 	vma_interval_tree_foreach(vma, root, start, end - 1) {
479 		v_start = vma_offset_start(vma, start);
480 		v_end = vma_offset_end(vma, end);
481 
482 		if (!hugetlb_vma_maps_page(vma, v_start, page))
483 			continue;
484 
485 		if (!hugetlb_vma_trylock_write(vma)) {
486 			vma_lock = vma->vm_private_data;
487 			/*
488 			 * If we can not get vma lock, we need to drop
489 			 * immap_sema and take locks in order.  First,
490 			 * take a ref on the vma_lock structure so that
491 			 * we can be guaranteed it will not go away when
492 			 * dropping immap_sema.
493 			 */
494 			kref_get(&vma_lock->refs);
495 			break;
496 		}
497 
498 		unmap_hugepage_range(vma, v_start, v_end, NULL,
499 				     ZAP_FLAG_DROP_MARKER);
500 		hugetlb_vma_unlock_write(vma);
501 	}
502 
503 	i_mmap_unlock_write(mapping);
504 
505 	if (vma_lock) {
506 		/*
507 		 * Wait on vma_lock.  We know it is still valid as we have
508 		 * a reference.  We must 'open code' vma locking as we do
509 		 * not know if vma_lock is still attached to vma.
510 		 */
511 		down_write(&vma_lock->rw_sema);
512 		i_mmap_lock_write(mapping);
513 
514 		vma = vma_lock->vma;
515 		if (!vma) {
516 			/*
517 			 * If lock is no longer attached to vma, then just
518 			 * unlock, drop our reference and retry looking for
519 			 * other vmas.
520 			 */
521 			up_write(&vma_lock->rw_sema);
522 			kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
523 			goto retry;
524 		}
525 
526 		/*
527 		 * vma_lock is still attached to vma.  Check to see if vma
528 		 * still maps page and if so, unmap.
529 		 */
530 		v_start = vma_offset_start(vma, start);
531 		v_end = vma_offset_end(vma, end);
532 		if (hugetlb_vma_maps_page(vma, v_start, page))
533 			unmap_hugepage_range(vma, v_start, v_end, NULL,
534 					     ZAP_FLAG_DROP_MARKER);
535 
536 		kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
537 		hugetlb_vma_unlock_write(vma);
538 
539 		goto retry;
540 	}
541 }
542 
543 static void
544 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end,
545 		      zap_flags_t zap_flags)
546 {
547 	struct vm_area_struct *vma;
548 
549 	/*
550 	 * end == 0 indicates that the entire range after start should be
551 	 * unmapped.  Note, end is exclusive, whereas the interval tree takes
552 	 * an inclusive "last".
553 	 */
554 	vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) {
555 		unsigned long v_start;
556 		unsigned long v_end;
557 
558 		if (!hugetlb_vma_trylock_write(vma))
559 			continue;
560 
561 		v_start = vma_offset_start(vma, start);
562 		v_end = vma_offset_end(vma, end);
563 
564 		unmap_hugepage_range(vma, v_start, v_end, NULL, zap_flags);
565 
566 		/*
567 		 * Note that vma lock only exists for shared/non-private
568 		 * vmas.  Therefore, lock is not held when calling
569 		 * unmap_hugepage_range for private vmas.
570 		 */
571 		hugetlb_vma_unlock_write(vma);
572 	}
573 }
574 
575 /*
576  * Called with hugetlb fault mutex held.
577  * Returns true if page was actually removed, false otherwise.
578  */
579 static bool remove_inode_single_folio(struct hstate *h, struct inode *inode,
580 					struct address_space *mapping,
581 					struct folio *folio, pgoff_t index,
582 					bool truncate_op)
583 {
584 	bool ret = false;
585 
586 	/*
587 	 * If folio is mapped, it was faulted in after being
588 	 * unmapped in caller.  Unmap (again) while holding
589 	 * the fault mutex.  The mutex will prevent faults
590 	 * until we finish removing the folio.
591 	 */
592 	if (unlikely(folio_mapped(folio)))
593 		hugetlb_unmap_file_folio(h, mapping, folio, index);
594 
595 	folio_lock(folio);
596 	/*
597 	 * We must remove the folio from page cache before removing
598 	 * the region/ reserve map (hugetlb_unreserve_pages).  In
599 	 * rare out of memory conditions, removal of the region/reserve
600 	 * map could fail.  Correspondingly, the subpool and global
601 	 * reserve usage count can need to be adjusted.
602 	 */
603 	VM_BUG_ON_FOLIO(folio_test_hugetlb_restore_reserve(folio), folio);
604 	hugetlb_delete_from_page_cache(folio);
605 	ret = true;
606 	if (!truncate_op) {
607 		if (unlikely(hugetlb_unreserve_pages(inode, index,
608 							index + 1, 1)))
609 			hugetlb_fix_reserve_counts(inode);
610 	}
611 
612 	folio_unlock(folio);
613 	return ret;
614 }
615 
616 /*
617  * remove_inode_hugepages handles two distinct cases: truncation and hole
618  * punch.  There are subtle differences in operation for each case.
619  *
620  * truncation is indicated by end of range being LLONG_MAX
621  *	In this case, we first scan the range and release found pages.
622  *	After releasing pages, hugetlb_unreserve_pages cleans up region/reserve
623  *	maps and global counts.  Page faults can race with truncation.
624  *	During faults, hugetlb_no_page() checks i_size before page allocation,
625  *	and again after obtaining page table lock.  It will 'back out'
626  *	allocations in the truncated range.
627  * hole punch is indicated if end is not LLONG_MAX
628  *	In the hole punch case we scan the range and release found pages.
629  *	Only when releasing a page is the associated region/reserve map
630  *	deleted.  The region/reserve map for ranges without associated
631  *	pages are not modified.  Page faults can race with hole punch.
632  *	This is indicated if we find a mapped page.
633  * Note: If the passed end of range value is beyond the end of file, but
634  * not LLONG_MAX this routine still performs a hole punch operation.
635  */
636 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
637 				   loff_t lend)
638 {
639 	struct hstate *h = hstate_inode(inode);
640 	struct address_space *mapping = &inode->i_data;
641 	const pgoff_t end = lend >> PAGE_SHIFT;
642 	struct folio_batch fbatch;
643 	pgoff_t next, index;
644 	int i, freed = 0;
645 	bool truncate_op = (lend == LLONG_MAX);
646 
647 	folio_batch_init(&fbatch);
648 	next = lstart >> PAGE_SHIFT;
649 	while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) {
650 		for (i = 0; i < folio_batch_count(&fbatch); ++i) {
651 			struct folio *folio = fbatch.folios[i];
652 			u32 hash = 0;
653 
654 			index = folio->index >> huge_page_order(h);
655 			hash = hugetlb_fault_mutex_hash(mapping, index);
656 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
657 
658 			/*
659 			 * Remove folio that was part of folio_batch.
660 			 */
661 			if (remove_inode_single_folio(h, inode, mapping, folio,
662 							index, truncate_op))
663 				freed++;
664 
665 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
666 		}
667 		folio_batch_release(&fbatch);
668 		cond_resched();
669 	}
670 
671 	if (truncate_op)
672 		(void)hugetlb_unreserve_pages(inode,
673 				lstart >> huge_page_shift(h),
674 				LONG_MAX, freed);
675 }
676 
677 static void hugetlbfs_evict_inode(struct inode *inode)
678 {
679 	struct resv_map *resv_map;
680 
681 	remove_inode_hugepages(inode, 0, LLONG_MAX);
682 
683 	/*
684 	 * Get the resv_map from the address space embedded in the inode.
685 	 * This is the address space which points to any resv_map allocated
686 	 * at inode creation time.  If this is a device special inode,
687 	 * i_mapping may not point to the original address space.
688 	 */
689 	resv_map = (struct resv_map *)(&inode->i_data)->private_data;
690 	/* Only regular and link inodes have associated reserve maps */
691 	if (resv_map)
692 		resv_map_release(&resv_map->refs);
693 	clear_inode(inode);
694 }
695 
696 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset)
697 {
698 	pgoff_t pgoff;
699 	struct address_space *mapping = inode->i_mapping;
700 	struct hstate *h = hstate_inode(inode);
701 
702 	BUG_ON(offset & ~huge_page_mask(h));
703 	pgoff = offset >> PAGE_SHIFT;
704 
705 	i_size_write(inode, offset);
706 	i_mmap_lock_write(mapping);
707 	if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
708 		hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0,
709 				      ZAP_FLAG_DROP_MARKER);
710 	i_mmap_unlock_write(mapping);
711 	remove_inode_hugepages(inode, offset, LLONG_MAX);
712 }
713 
714 static void hugetlbfs_zero_partial_page(struct hstate *h,
715 					struct address_space *mapping,
716 					loff_t start,
717 					loff_t end)
718 {
719 	pgoff_t idx = start >> huge_page_shift(h);
720 	struct folio *folio;
721 
722 	folio = filemap_lock_hugetlb_folio(h, mapping, idx);
723 	if (IS_ERR(folio))
724 		return;
725 
726 	start = start & ~huge_page_mask(h);
727 	end = end & ~huge_page_mask(h);
728 	if (!end)
729 		end = huge_page_size(h);
730 
731 	folio_zero_segment(folio, (size_t)start, (size_t)end);
732 
733 	folio_unlock(folio);
734 	folio_put(folio);
735 }
736 
737 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
738 {
739 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
740 	struct address_space *mapping = inode->i_mapping;
741 	struct hstate *h = hstate_inode(inode);
742 	loff_t hpage_size = huge_page_size(h);
743 	loff_t hole_start, hole_end;
744 
745 	/*
746 	 * hole_start and hole_end indicate the full pages within the hole.
747 	 */
748 	hole_start = round_up(offset, hpage_size);
749 	hole_end = round_down(offset + len, hpage_size);
750 
751 	inode_lock(inode);
752 
753 	/* protected by i_rwsem */
754 	if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
755 		inode_unlock(inode);
756 		return -EPERM;
757 	}
758 
759 	i_mmap_lock_write(mapping);
760 
761 	/* If range starts before first full page, zero partial page. */
762 	if (offset < hole_start)
763 		hugetlbfs_zero_partial_page(h, mapping,
764 				offset, min(offset + len, hole_start));
765 
766 	/* Unmap users of full pages in the hole. */
767 	if (hole_end > hole_start) {
768 		if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
769 			hugetlb_vmdelete_list(&mapping->i_mmap,
770 					      hole_start >> PAGE_SHIFT,
771 					      hole_end >> PAGE_SHIFT, 0);
772 	}
773 
774 	/* If range extends beyond last full page, zero partial page. */
775 	if ((offset + len) > hole_end && (offset + len) > hole_start)
776 		hugetlbfs_zero_partial_page(h, mapping,
777 				hole_end, offset + len);
778 
779 	i_mmap_unlock_write(mapping);
780 
781 	/* Remove full pages from the file. */
782 	if (hole_end > hole_start)
783 		remove_inode_hugepages(inode, hole_start, hole_end);
784 
785 	inode_unlock(inode);
786 
787 	return 0;
788 }
789 
790 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
791 				loff_t len)
792 {
793 	struct inode *inode = file_inode(file);
794 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
795 	struct address_space *mapping = inode->i_mapping;
796 	struct hstate *h = hstate_inode(inode);
797 	struct vm_area_struct pseudo_vma;
798 	struct mm_struct *mm = current->mm;
799 	loff_t hpage_size = huge_page_size(h);
800 	unsigned long hpage_shift = huge_page_shift(h);
801 	pgoff_t start, index, end;
802 	int error;
803 	u32 hash;
804 
805 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
806 		return -EOPNOTSUPP;
807 
808 	if (mode & FALLOC_FL_PUNCH_HOLE)
809 		return hugetlbfs_punch_hole(inode, offset, len);
810 
811 	/*
812 	 * Default preallocate case.
813 	 * For this range, start is rounded down and end is rounded up
814 	 * as well as being converted to page offsets.
815 	 */
816 	start = offset >> hpage_shift;
817 	end = (offset + len + hpage_size - 1) >> hpage_shift;
818 
819 	inode_lock(inode);
820 
821 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
822 	error = inode_newsize_ok(inode, offset + len);
823 	if (error)
824 		goto out;
825 
826 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
827 		error = -EPERM;
828 		goto out;
829 	}
830 
831 	/*
832 	 * Initialize a pseudo vma as this is required by the huge page
833 	 * allocation routines.
834 	 */
835 	vma_init(&pseudo_vma, mm);
836 	vm_flags_init(&pseudo_vma, VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
837 	pseudo_vma.vm_file = file;
838 
839 	for (index = start; index < end; index++) {
840 		/*
841 		 * This is supposed to be the vaddr where the page is being
842 		 * faulted in, but we have no vaddr here.
843 		 */
844 		struct folio *folio;
845 		unsigned long addr;
846 
847 		cond_resched();
848 
849 		/*
850 		 * fallocate(2) manpage permits EINTR; we may have been
851 		 * interrupted because we are using up too much memory.
852 		 */
853 		if (signal_pending(current)) {
854 			error = -EINTR;
855 			break;
856 		}
857 
858 		/* addr is the offset within the file (zero based) */
859 		addr = index * hpage_size;
860 
861 		/* mutex taken here, fault path and hole punch */
862 		hash = hugetlb_fault_mutex_hash(mapping, index);
863 		mutex_lock(&hugetlb_fault_mutex_table[hash]);
864 
865 		/* See if already present in mapping to avoid alloc/free */
866 		folio = filemap_get_folio(mapping, index << huge_page_order(h));
867 		if (!IS_ERR(folio)) {
868 			folio_put(folio);
869 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
870 			continue;
871 		}
872 
873 		/*
874 		 * Allocate folio without setting the avoid_reserve argument.
875 		 * There certainly are no reserves associated with the
876 		 * pseudo_vma.  However, there could be shared mappings with
877 		 * reserves for the file at the inode level.  If we fallocate
878 		 * folios in these areas, we need to consume the reserves
879 		 * to keep reservation accounting consistent.
880 		 */
881 		folio = alloc_hugetlb_folio(&pseudo_vma, addr, 0);
882 		if (IS_ERR(folio)) {
883 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
884 			error = PTR_ERR(folio);
885 			goto out;
886 		}
887 		clear_huge_page(&folio->page, addr, pages_per_huge_page(h));
888 		__folio_mark_uptodate(folio);
889 		error = hugetlb_add_to_page_cache(folio, mapping, index);
890 		if (unlikely(error)) {
891 			restore_reserve_on_error(h, &pseudo_vma, addr, folio);
892 			folio_put(folio);
893 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
894 			goto out;
895 		}
896 
897 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
898 
899 		folio_set_hugetlb_migratable(folio);
900 		/*
901 		 * folio_unlock because locked by hugetlb_add_to_page_cache()
902 		 * folio_put() due to reference from alloc_hugetlb_folio()
903 		 */
904 		folio_unlock(folio);
905 		folio_put(folio);
906 	}
907 
908 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
909 		i_size_write(inode, offset + len);
910 	inode_set_ctime_current(inode);
911 out:
912 	inode_unlock(inode);
913 	return error;
914 }
915 
916 static int hugetlbfs_setattr(struct mnt_idmap *idmap,
917 			     struct dentry *dentry, struct iattr *attr)
918 {
919 	struct inode *inode = d_inode(dentry);
920 	struct hstate *h = hstate_inode(inode);
921 	int error;
922 	unsigned int ia_valid = attr->ia_valid;
923 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
924 
925 	error = setattr_prepare(&nop_mnt_idmap, dentry, attr);
926 	if (error)
927 		return error;
928 
929 	if (ia_valid & ATTR_SIZE) {
930 		loff_t oldsize = inode->i_size;
931 		loff_t newsize = attr->ia_size;
932 
933 		if (newsize & ~huge_page_mask(h))
934 			return -EINVAL;
935 		/* protected by i_rwsem */
936 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
937 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
938 			return -EPERM;
939 		hugetlb_vmtruncate(inode, newsize);
940 	}
941 
942 	setattr_copy(&nop_mnt_idmap, inode, attr);
943 	mark_inode_dirty(inode);
944 	return 0;
945 }
946 
947 static struct inode *hugetlbfs_get_root(struct super_block *sb,
948 					struct hugetlbfs_fs_context *ctx)
949 {
950 	struct inode *inode;
951 
952 	inode = new_inode(sb);
953 	if (inode) {
954 		inode->i_ino = get_next_ino();
955 		inode->i_mode = S_IFDIR | ctx->mode;
956 		inode->i_uid = ctx->uid;
957 		inode->i_gid = ctx->gid;
958 		simple_inode_init_ts(inode);
959 		inode->i_op = &hugetlbfs_dir_inode_operations;
960 		inode->i_fop = &simple_dir_operations;
961 		/* directory inodes start off with i_nlink == 2 (for "." entry) */
962 		inc_nlink(inode);
963 		lockdep_annotate_inode_mutex_key(inode);
964 	}
965 	return inode;
966 }
967 
968 /*
969  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
970  * be taken from reclaim -- unlike regular filesystems. This needs an
971  * annotation because huge_pmd_share() does an allocation under hugetlb's
972  * i_mmap_rwsem.
973  */
974 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
975 
976 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
977 					struct inode *dir,
978 					umode_t mode, dev_t dev)
979 {
980 	struct inode *inode;
981 	struct resv_map *resv_map = NULL;
982 
983 	/*
984 	 * Reserve maps are only needed for inodes that can have associated
985 	 * page allocations.
986 	 */
987 	if (S_ISREG(mode) || S_ISLNK(mode)) {
988 		resv_map = resv_map_alloc();
989 		if (!resv_map)
990 			return NULL;
991 	}
992 
993 	inode = new_inode(sb);
994 	if (inode) {
995 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
996 
997 		inode->i_ino = get_next_ino();
998 		inode_init_owner(&nop_mnt_idmap, inode, dir, mode);
999 		lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
1000 				&hugetlbfs_i_mmap_rwsem_key);
1001 		inode->i_mapping->a_ops = &hugetlbfs_aops;
1002 		simple_inode_init_ts(inode);
1003 		inode->i_mapping->private_data = resv_map;
1004 		info->seals = F_SEAL_SEAL;
1005 		switch (mode & S_IFMT) {
1006 		default:
1007 			init_special_inode(inode, mode, dev);
1008 			break;
1009 		case S_IFREG:
1010 			inode->i_op = &hugetlbfs_inode_operations;
1011 			inode->i_fop = &hugetlbfs_file_operations;
1012 			break;
1013 		case S_IFDIR:
1014 			inode->i_op = &hugetlbfs_dir_inode_operations;
1015 			inode->i_fop = &simple_dir_operations;
1016 
1017 			/* directory inodes start off with i_nlink == 2 (for "." entry) */
1018 			inc_nlink(inode);
1019 			break;
1020 		case S_IFLNK:
1021 			inode->i_op = &page_symlink_inode_operations;
1022 			inode_nohighmem(inode);
1023 			break;
1024 		}
1025 		lockdep_annotate_inode_mutex_key(inode);
1026 	} else {
1027 		if (resv_map)
1028 			kref_put(&resv_map->refs, resv_map_release);
1029 	}
1030 
1031 	return inode;
1032 }
1033 
1034 /*
1035  * File creation. Allocate an inode, and we're done..
1036  */
1037 static int hugetlbfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
1038 			   struct dentry *dentry, umode_t mode, dev_t dev)
1039 {
1040 	struct inode *inode;
1041 
1042 	inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
1043 	if (!inode)
1044 		return -ENOSPC;
1045 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
1046 	d_instantiate(dentry, inode);
1047 	dget(dentry);/* Extra count - pin the dentry in core */
1048 	return 0;
1049 }
1050 
1051 static int hugetlbfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
1052 			   struct dentry *dentry, umode_t mode)
1053 {
1054 	int retval = hugetlbfs_mknod(&nop_mnt_idmap, dir, dentry,
1055 				     mode | S_IFDIR, 0);
1056 	if (!retval)
1057 		inc_nlink(dir);
1058 	return retval;
1059 }
1060 
1061 static int hugetlbfs_create(struct mnt_idmap *idmap,
1062 			    struct inode *dir, struct dentry *dentry,
1063 			    umode_t mode, bool excl)
1064 {
1065 	return hugetlbfs_mknod(&nop_mnt_idmap, dir, dentry, mode | S_IFREG, 0);
1066 }
1067 
1068 static int hugetlbfs_tmpfile(struct mnt_idmap *idmap,
1069 			     struct inode *dir, struct file *file,
1070 			     umode_t mode)
1071 {
1072 	struct inode *inode;
1073 
1074 	inode = hugetlbfs_get_inode(dir->i_sb, dir, mode | S_IFREG, 0);
1075 	if (!inode)
1076 		return -ENOSPC;
1077 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
1078 	d_tmpfile(file, inode);
1079 	return finish_open_simple(file, 0);
1080 }
1081 
1082 static int hugetlbfs_symlink(struct mnt_idmap *idmap,
1083 			     struct inode *dir, struct dentry *dentry,
1084 			     const char *symname)
1085 {
1086 	struct inode *inode;
1087 	int error = -ENOSPC;
1088 
1089 	inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
1090 	if (inode) {
1091 		int l = strlen(symname)+1;
1092 		error = page_symlink(inode, symname, l);
1093 		if (!error) {
1094 			d_instantiate(dentry, inode);
1095 			dget(dentry);
1096 		} else
1097 			iput(inode);
1098 	}
1099 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
1100 
1101 	return error;
1102 }
1103 
1104 #ifdef CONFIG_MIGRATION
1105 static int hugetlbfs_migrate_folio(struct address_space *mapping,
1106 				struct folio *dst, struct folio *src,
1107 				enum migrate_mode mode)
1108 {
1109 	int rc;
1110 
1111 	rc = migrate_huge_page_move_mapping(mapping, dst, src);
1112 	if (rc != MIGRATEPAGE_SUCCESS)
1113 		return rc;
1114 
1115 	if (hugetlb_folio_subpool(src)) {
1116 		hugetlb_set_folio_subpool(dst,
1117 					hugetlb_folio_subpool(src));
1118 		hugetlb_set_folio_subpool(src, NULL);
1119 	}
1120 
1121 	if (mode != MIGRATE_SYNC_NO_COPY)
1122 		folio_migrate_copy(dst, src);
1123 	else
1124 		folio_migrate_flags(dst, src);
1125 
1126 	return MIGRATEPAGE_SUCCESS;
1127 }
1128 #else
1129 #define hugetlbfs_migrate_folio NULL
1130 #endif
1131 
1132 static int hugetlbfs_error_remove_page(struct address_space *mapping,
1133 				struct page *page)
1134 {
1135 	return 0;
1136 }
1137 
1138 /*
1139  * Display the mount options in /proc/mounts.
1140  */
1141 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
1142 {
1143 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
1144 	struct hugepage_subpool *spool = sbinfo->spool;
1145 	unsigned long hpage_size = huge_page_size(sbinfo->hstate);
1146 	unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
1147 	char mod;
1148 
1149 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1150 		seq_printf(m, ",uid=%u",
1151 			   from_kuid_munged(&init_user_ns, sbinfo->uid));
1152 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1153 		seq_printf(m, ",gid=%u",
1154 			   from_kgid_munged(&init_user_ns, sbinfo->gid));
1155 	if (sbinfo->mode != 0755)
1156 		seq_printf(m, ",mode=%o", sbinfo->mode);
1157 	if (sbinfo->max_inodes != -1)
1158 		seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1159 
1160 	hpage_size /= 1024;
1161 	mod = 'K';
1162 	if (hpage_size >= 1024) {
1163 		hpage_size /= 1024;
1164 		mod = 'M';
1165 	}
1166 	seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1167 	if (spool) {
1168 		if (spool->max_hpages != -1)
1169 			seq_printf(m, ",size=%llu",
1170 				   (unsigned long long)spool->max_hpages << hpage_shift);
1171 		if (spool->min_hpages != -1)
1172 			seq_printf(m, ",min_size=%llu",
1173 				   (unsigned long long)spool->min_hpages << hpage_shift);
1174 	}
1175 	return 0;
1176 }
1177 
1178 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1179 {
1180 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
1181 	struct hstate *h = hstate_inode(d_inode(dentry));
1182 	u64 id = huge_encode_dev(dentry->d_sb->s_dev);
1183 
1184 	buf->f_fsid = u64_to_fsid(id);
1185 	buf->f_type = HUGETLBFS_MAGIC;
1186 	buf->f_bsize = huge_page_size(h);
1187 	if (sbinfo) {
1188 		spin_lock(&sbinfo->stat_lock);
1189 		/* If no limits set, just report 0 or -1 for max/free/used
1190 		 * blocks, like simple_statfs() */
1191 		if (sbinfo->spool) {
1192 			long free_pages;
1193 
1194 			spin_lock_irq(&sbinfo->spool->lock);
1195 			buf->f_blocks = sbinfo->spool->max_hpages;
1196 			free_pages = sbinfo->spool->max_hpages
1197 				- sbinfo->spool->used_hpages;
1198 			buf->f_bavail = buf->f_bfree = free_pages;
1199 			spin_unlock_irq(&sbinfo->spool->lock);
1200 			buf->f_files = sbinfo->max_inodes;
1201 			buf->f_ffree = sbinfo->free_inodes;
1202 		}
1203 		spin_unlock(&sbinfo->stat_lock);
1204 	}
1205 	buf->f_namelen = NAME_MAX;
1206 	return 0;
1207 }
1208 
1209 static void hugetlbfs_put_super(struct super_block *sb)
1210 {
1211 	struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1212 
1213 	if (sbi) {
1214 		sb->s_fs_info = NULL;
1215 
1216 		if (sbi->spool)
1217 			hugepage_put_subpool(sbi->spool);
1218 
1219 		kfree(sbi);
1220 	}
1221 }
1222 
1223 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1224 {
1225 	if (sbinfo->free_inodes >= 0) {
1226 		spin_lock(&sbinfo->stat_lock);
1227 		if (unlikely(!sbinfo->free_inodes)) {
1228 			spin_unlock(&sbinfo->stat_lock);
1229 			return 0;
1230 		}
1231 		sbinfo->free_inodes--;
1232 		spin_unlock(&sbinfo->stat_lock);
1233 	}
1234 
1235 	return 1;
1236 }
1237 
1238 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1239 {
1240 	if (sbinfo->free_inodes >= 0) {
1241 		spin_lock(&sbinfo->stat_lock);
1242 		sbinfo->free_inodes++;
1243 		spin_unlock(&sbinfo->stat_lock);
1244 	}
1245 }
1246 
1247 
1248 static struct kmem_cache *hugetlbfs_inode_cachep;
1249 
1250 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1251 {
1252 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1253 	struct hugetlbfs_inode_info *p;
1254 
1255 	if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1256 		return NULL;
1257 	p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL);
1258 	if (unlikely(!p)) {
1259 		hugetlbfs_inc_free_inodes(sbinfo);
1260 		return NULL;
1261 	}
1262 	return &p->vfs_inode;
1263 }
1264 
1265 static void hugetlbfs_free_inode(struct inode *inode)
1266 {
1267 	kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1268 }
1269 
1270 static void hugetlbfs_destroy_inode(struct inode *inode)
1271 {
1272 	hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1273 }
1274 
1275 static const struct address_space_operations hugetlbfs_aops = {
1276 	.write_begin	= hugetlbfs_write_begin,
1277 	.write_end	= hugetlbfs_write_end,
1278 	.dirty_folio	= noop_dirty_folio,
1279 	.migrate_folio  = hugetlbfs_migrate_folio,
1280 	.error_remove_page	= hugetlbfs_error_remove_page,
1281 };
1282 
1283 
1284 static void init_once(void *foo)
1285 {
1286 	struct hugetlbfs_inode_info *ei = foo;
1287 
1288 	inode_init_once(&ei->vfs_inode);
1289 }
1290 
1291 const struct file_operations hugetlbfs_file_operations = {
1292 	.read_iter		= hugetlbfs_read_iter,
1293 	.mmap			= hugetlbfs_file_mmap,
1294 	.fsync			= noop_fsync,
1295 	.get_unmapped_area	= hugetlb_get_unmapped_area,
1296 	.llseek			= default_llseek,
1297 	.fallocate		= hugetlbfs_fallocate,
1298 };
1299 
1300 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1301 	.create		= hugetlbfs_create,
1302 	.lookup		= simple_lookup,
1303 	.link		= simple_link,
1304 	.unlink		= simple_unlink,
1305 	.symlink	= hugetlbfs_symlink,
1306 	.mkdir		= hugetlbfs_mkdir,
1307 	.rmdir		= simple_rmdir,
1308 	.mknod		= hugetlbfs_mknod,
1309 	.rename		= simple_rename,
1310 	.setattr	= hugetlbfs_setattr,
1311 	.tmpfile	= hugetlbfs_tmpfile,
1312 };
1313 
1314 static const struct inode_operations hugetlbfs_inode_operations = {
1315 	.setattr	= hugetlbfs_setattr,
1316 };
1317 
1318 static const struct super_operations hugetlbfs_ops = {
1319 	.alloc_inode    = hugetlbfs_alloc_inode,
1320 	.free_inode     = hugetlbfs_free_inode,
1321 	.destroy_inode  = hugetlbfs_destroy_inode,
1322 	.evict_inode	= hugetlbfs_evict_inode,
1323 	.statfs		= hugetlbfs_statfs,
1324 	.put_super	= hugetlbfs_put_super,
1325 	.show_options	= hugetlbfs_show_options,
1326 };
1327 
1328 /*
1329  * Convert size option passed from command line to number of huge pages
1330  * in the pool specified by hstate.  Size option could be in bytes
1331  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1332  */
1333 static long
1334 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1335 			 enum hugetlbfs_size_type val_type)
1336 {
1337 	if (val_type == NO_SIZE)
1338 		return -1;
1339 
1340 	if (val_type == SIZE_PERCENT) {
1341 		size_opt <<= huge_page_shift(h);
1342 		size_opt *= h->max_huge_pages;
1343 		do_div(size_opt, 100);
1344 	}
1345 
1346 	size_opt >>= huge_page_shift(h);
1347 	return size_opt;
1348 }
1349 
1350 /*
1351  * Parse one mount parameter.
1352  */
1353 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1354 {
1355 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1356 	struct fs_parse_result result;
1357 	char *rest;
1358 	unsigned long ps;
1359 	int opt;
1360 
1361 	opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1362 	if (opt < 0)
1363 		return opt;
1364 
1365 	switch (opt) {
1366 	case Opt_uid:
1367 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
1368 		if (!uid_valid(ctx->uid))
1369 			goto bad_val;
1370 		return 0;
1371 
1372 	case Opt_gid:
1373 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
1374 		if (!gid_valid(ctx->gid))
1375 			goto bad_val;
1376 		return 0;
1377 
1378 	case Opt_mode:
1379 		ctx->mode = result.uint_32 & 01777U;
1380 		return 0;
1381 
1382 	case Opt_size:
1383 		/* memparse() will accept a K/M/G without a digit */
1384 		if (!param->string || !isdigit(param->string[0]))
1385 			goto bad_val;
1386 		ctx->max_size_opt = memparse(param->string, &rest);
1387 		ctx->max_val_type = SIZE_STD;
1388 		if (*rest == '%')
1389 			ctx->max_val_type = SIZE_PERCENT;
1390 		return 0;
1391 
1392 	case Opt_nr_inodes:
1393 		/* memparse() will accept a K/M/G without a digit */
1394 		if (!param->string || !isdigit(param->string[0]))
1395 			goto bad_val;
1396 		ctx->nr_inodes = memparse(param->string, &rest);
1397 		return 0;
1398 
1399 	case Opt_pagesize:
1400 		ps = memparse(param->string, &rest);
1401 		ctx->hstate = size_to_hstate(ps);
1402 		if (!ctx->hstate) {
1403 			pr_err("Unsupported page size %lu MB\n", ps / SZ_1M);
1404 			return -EINVAL;
1405 		}
1406 		return 0;
1407 
1408 	case Opt_min_size:
1409 		/* memparse() will accept a K/M/G without a digit */
1410 		if (!param->string || !isdigit(param->string[0]))
1411 			goto bad_val;
1412 		ctx->min_size_opt = memparse(param->string, &rest);
1413 		ctx->min_val_type = SIZE_STD;
1414 		if (*rest == '%')
1415 			ctx->min_val_type = SIZE_PERCENT;
1416 		return 0;
1417 
1418 	default:
1419 		return -EINVAL;
1420 	}
1421 
1422 bad_val:
1423 	return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1424 		      param->string, param->key);
1425 }
1426 
1427 /*
1428  * Validate the parsed options.
1429  */
1430 static int hugetlbfs_validate(struct fs_context *fc)
1431 {
1432 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1433 
1434 	/*
1435 	 * Use huge page pool size (in hstate) to convert the size
1436 	 * options to number of huge pages.  If NO_SIZE, -1 is returned.
1437 	 */
1438 	ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1439 						   ctx->max_size_opt,
1440 						   ctx->max_val_type);
1441 	ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1442 						   ctx->min_size_opt,
1443 						   ctx->min_val_type);
1444 
1445 	/*
1446 	 * If max_size was specified, then min_size must be smaller
1447 	 */
1448 	if (ctx->max_val_type > NO_SIZE &&
1449 	    ctx->min_hpages > ctx->max_hpages) {
1450 		pr_err("Minimum size can not be greater than maximum size\n");
1451 		return -EINVAL;
1452 	}
1453 
1454 	return 0;
1455 }
1456 
1457 static int
1458 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1459 {
1460 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1461 	struct hugetlbfs_sb_info *sbinfo;
1462 
1463 	sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1464 	if (!sbinfo)
1465 		return -ENOMEM;
1466 	sb->s_fs_info = sbinfo;
1467 	spin_lock_init(&sbinfo->stat_lock);
1468 	sbinfo->hstate		= ctx->hstate;
1469 	sbinfo->max_inodes	= ctx->nr_inodes;
1470 	sbinfo->free_inodes	= ctx->nr_inodes;
1471 	sbinfo->spool		= NULL;
1472 	sbinfo->uid		= ctx->uid;
1473 	sbinfo->gid		= ctx->gid;
1474 	sbinfo->mode		= ctx->mode;
1475 
1476 	/*
1477 	 * Allocate and initialize subpool if maximum or minimum size is
1478 	 * specified.  Any needed reservations (for minimum size) are taken
1479 	 * when the subpool is created.
1480 	 */
1481 	if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1482 		sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1483 						     ctx->max_hpages,
1484 						     ctx->min_hpages);
1485 		if (!sbinfo->spool)
1486 			goto out_free;
1487 	}
1488 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1489 	sb->s_blocksize = huge_page_size(ctx->hstate);
1490 	sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1491 	sb->s_magic = HUGETLBFS_MAGIC;
1492 	sb->s_op = &hugetlbfs_ops;
1493 	sb->s_time_gran = 1;
1494 
1495 	/*
1496 	 * Due to the special and limited functionality of hugetlbfs, it does
1497 	 * not work well as a stacking filesystem.
1498 	 */
1499 	sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
1500 	sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1501 	if (!sb->s_root)
1502 		goto out_free;
1503 	return 0;
1504 out_free:
1505 	kfree(sbinfo->spool);
1506 	kfree(sbinfo);
1507 	return -ENOMEM;
1508 }
1509 
1510 static int hugetlbfs_get_tree(struct fs_context *fc)
1511 {
1512 	int err = hugetlbfs_validate(fc);
1513 	if (err)
1514 		return err;
1515 	return get_tree_nodev(fc, hugetlbfs_fill_super);
1516 }
1517 
1518 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1519 {
1520 	kfree(fc->fs_private);
1521 }
1522 
1523 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1524 	.free		= hugetlbfs_fs_context_free,
1525 	.parse_param	= hugetlbfs_parse_param,
1526 	.get_tree	= hugetlbfs_get_tree,
1527 };
1528 
1529 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1530 {
1531 	struct hugetlbfs_fs_context *ctx;
1532 
1533 	ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1534 	if (!ctx)
1535 		return -ENOMEM;
1536 
1537 	ctx->max_hpages	= -1; /* No limit on size by default */
1538 	ctx->nr_inodes	= -1; /* No limit on number of inodes by default */
1539 	ctx->uid	= current_fsuid();
1540 	ctx->gid	= current_fsgid();
1541 	ctx->mode	= 0755;
1542 	ctx->hstate	= &default_hstate;
1543 	ctx->min_hpages	= -1; /* No default minimum size */
1544 	ctx->max_val_type = NO_SIZE;
1545 	ctx->min_val_type = NO_SIZE;
1546 	fc->fs_private = ctx;
1547 	fc->ops	= &hugetlbfs_fs_context_ops;
1548 	return 0;
1549 }
1550 
1551 static struct file_system_type hugetlbfs_fs_type = {
1552 	.name			= "hugetlbfs",
1553 	.init_fs_context	= hugetlbfs_init_fs_context,
1554 	.parameters		= hugetlb_fs_parameters,
1555 	.kill_sb		= kill_litter_super,
1556 };
1557 
1558 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1559 
1560 static int can_do_hugetlb_shm(void)
1561 {
1562 	kgid_t shm_group;
1563 	shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1564 	return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1565 }
1566 
1567 static int get_hstate_idx(int page_size_log)
1568 {
1569 	struct hstate *h = hstate_sizelog(page_size_log);
1570 
1571 	if (!h)
1572 		return -1;
1573 	return hstate_index(h);
1574 }
1575 
1576 /*
1577  * Note that size should be aligned to proper hugepage size in caller side,
1578  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1579  */
1580 struct file *hugetlb_file_setup(const char *name, size_t size,
1581 				vm_flags_t acctflag, int creat_flags,
1582 				int page_size_log)
1583 {
1584 	struct inode *inode;
1585 	struct vfsmount *mnt;
1586 	int hstate_idx;
1587 	struct file *file;
1588 
1589 	hstate_idx = get_hstate_idx(page_size_log);
1590 	if (hstate_idx < 0)
1591 		return ERR_PTR(-ENODEV);
1592 
1593 	mnt = hugetlbfs_vfsmount[hstate_idx];
1594 	if (!mnt)
1595 		return ERR_PTR(-ENOENT);
1596 
1597 	if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1598 		struct ucounts *ucounts = current_ucounts();
1599 
1600 		if (user_shm_lock(size, ucounts)) {
1601 			pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n",
1602 				current->comm, current->pid);
1603 			user_shm_unlock(size, ucounts);
1604 		}
1605 		return ERR_PTR(-EPERM);
1606 	}
1607 
1608 	file = ERR_PTR(-ENOSPC);
1609 	inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
1610 	if (!inode)
1611 		goto out;
1612 	if (creat_flags == HUGETLB_SHMFS_INODE)
1613 		inode->i_flags |= S_PRIVATE;
1614 
1615 	inode->i_size = size;
1616 	clear_nlink(inode);
1617 
1618 	if (!hugetlb_reserve_pages(inode, 0,
1619 			size >> huge_page_shift(hstate_inode(inode)), NULL,
1620 			acctflag))
1621 		file = ERR_PTR(-ENOMEM);
1622 	else
1623 		file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1624 					&hugetlbfs_file_operations);
1625 	if (!IS_ERR(file))
1626 		return file;
1627 
1628 	iput(inode);
1629 out:
1630 	return file;
1631 }
1632 
1633 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1634 {
1635 	struct fs_context *fc;
1636 	struct vfsmount *mnt;
1637 
1638 	fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1639 	if (IS_ERR(fc)) {
1640 		mnt = ERR_CAST(fc);
1641 	} else {
1642 		struct hugetlbfs_fs_context *ctx = fc->fs_private;
1643 		ctx->hstate = h;
1644 		mnt = fc_mount(fc);
1645 		put_fs_context(fc);
1646 	}
1647 	if (IS_ERR(mnt))
1648 		pr_err("Cannot mount internal hugetlbfs for page size %luK",
1649 		       huge_page_size(h) / SZ_1K);
1650 	return mnt;
1651 }
1652 
1653 static int __init init_hugetlbfs_fs(void)
1654 {
1655 	struct vfsmount *mnt;
1656 	struct hstate *h;
1657 	int error;
1658 	int i;
1659 
1660 	if (!hugepages_supported()) {
1661 		pr_info("disabling because there are no supported hugepage sizes\n");
1662 		return -ENOTSUPP;
1663 	}
1664 
1665 	error = -ENOMEM;
1666 	hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1667 					sizeof(struct hugetlbfs_inode_info),
1668 					0, SLAB_ACCOUNT, init_once);
1669 	if (hugetlbfs_inode_cachep == NULL)
1670 		goto out;
1671 
1672 	error = register_filesystem(&hugetlbfs_fs_type);
1673 	if (error)
1674 		goto out_free;
1675 
1676 	/* default hstate mount is required */
1677 	mnt = mount_one_hugetlbfs(&default_hstate);
1678 	if (IS_ERR(mnt)) {
1679 		error = PTR_ERR(mnt);
1680 		goto out_unreg;
1681 	}
1682 	hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1683 
1684 	/* other hstates are optional */
1685 	i = 0;
1686 	for_each_hstate(h) {
1687 		if (i == default_hstate_idx) {
1688 			i++;
1689 			continue;
1690 		}
1691 
1692 		mnt = mount_one_hugetlbfs(h);
1693 		if (IS_ERR(mnt))
1694 			hugetlbfs_vfsmount[i] = NULL;
1695 		else
1696 			hugetlbfs_vfsmount[i] = mnt;
1697 		i++;
1698 	}
1699 
1700 	return 0;
1701 
1702  out_unreg:
1703 	(void)unregister_filesystem(&hugetlbfs_fs_type);
1704  out_free:
1705 	kmem_cache_destroy(hugetlbfs_inode_cachep);
1706  out:
1707 	return error;
1708 }
1709 fs_initcall(init_hugetlbfs_fs)
1710