xref: /linux/fs/hugetlbfs/inode.c (revision 4e4d9c72c946b77f0278988d0bf1207fa1b2cd0f)
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/falloc.h>
15 #include <linux/fs.h>
16 #include <linux/mount.h>
17 #include <linux/file.h>
18 #include <linux/kernel.h>
19 #include <linux/writeback.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/init.h>
23 #include <linux/string.h>
24 #include <linux/capability.h>
25 #include <linux/ctype.h>
26 #include <linux/backing-dev.h>
27 #include <linux/hugetlb.h>
28 #include <linux/pagevec.h>
29 #include <linux/fs_parser.h>
30 #include <linux/mman.h>
31 #include <linux/slab.h>
32 #include <linux/dnotify.h>
33 #include <linux/statfs.h>
34 #include <linux/security.h>
35 #include <linux/magic.h>
36 #include <linux/migrate.h>
37 #include <linux/uio.h>
38 
39 #include <linux/uaccess.h>
40 #include <linux/sched/mm.h>
41 
42 static const struct address_space_operations hugetlbfs_aops;
43 static const struct file_operations hugetlbfs_file_operations;
44 static const struct inode_operations hugetlbfs_dir_inode_operations;
45 static const struct inode_operations hugetlbfs_inode_operations;
46 
47 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
48 
49 struct hugetlbfs_fs_context {
50 	struct hstate		*hstate;
51 	unsigned long long	max_size_opt;
52 	unsigned long long	min_size_opt;
53 	long			max_hpages;
54 	long			nr_inodes;
55 	long			min_hpages;
56 	enum hugetlbfs_size_type max_val_type;
57 	enum hugetlbfs_size_type min_val_type;
58 	kuid_t			uid;
59 	kgid_t			gid;
60 	umode_t			mode;
61 };
62 
63 int sysctl_hugetlb_shm_group;
64 
65 enum hugetlb_param {
66 	Opt_gid,
67 	Opt_min_size,
68 	Opt_mode,
69 	Opt_nr_inodes,
70 	Opt_pagesize,
71 	Opt_size,
72 	Opt_uid,
73 };
74 
75 static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
76 	fsparam_gid   ("gid",		Opt_gid),
77 	fsparam_string("min_size",	Opt_min_size),
78 	fsparam_u32oct("mode",		Opt_mode),
79 	fsparam_string("nr_inodes",	Opt_nr_inodes),
80 	fsparam_string("pagesize",	Opt_pagesize),
81 	fsparam_string("size",		Opt_size),
82 	fsparam_uid   ("uid",		Opt_uid),
83 	{}
84 };
85 
86 /*
87  * Mask used when checking the page offset value passed in via system
88  * calls.  This value will be converted to a loff_t which is signed.
89  * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
90  * value.  The extra bit (- 1 in the shift value) is to take the sign
91  * bit into account.
92  */
93 #define PGOFF_LOFFT_MAX \
94 	(((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
95 
96 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
97 {
98 	struct inode *inode = file_inode(file);
99 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
100 	loff_t len, vma_len;
101 	int ret;
102 	struct hstate *h = hstate_file(file);
103 	vm_flags_t vm_flags;
104 
105 	/*
106 	 * vma address alignment (but not the pgoff alignment) has
107 	 * already been checked by prepare_hugepage_range.  If you add
108 	 * any error returns here, do so after setting VM_HUGETLB, so
109 	 * is_vm_hugetlb_page tests below unmap_region go the right
110 	 * way when do_mmap unwinds (may be important on powerpc
111 	 * and ia64).
112 	 */
113 	vm_flags_set(vma, VM_HUGETLB | VM_DONTEXPAND);
114 	vma->vm_ops = &hugetlb_vm_ops;
115 
116 	ret = seal_check_write(info->seals, vma);
117 	if (ret)
118 		return ret;
119 
120 	/*
121 	 * page based offset in vm_pgoff could be sufficiently large to
122 	 * overflow a loff_t when converted to byte offset.  This can
123 	 * only happen on architectures where sizeof(loff_t) ==
124 	 * sizeof(unsigned long).  So, only check in those instances.
125 	 */
126 	if (sizeof(unsigned long) == sizeof(loff_t)) {
127 		if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
128 			return -EINVAL;
129 	}
130 
131 	/* must be huge page aligned */
132 	if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
133 		return -EINVAL;
134 
135 	vma_len = (loff_t)(vma->vm_end - vma->vm_start);
136 	len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
137 	/* check for overflow */
138 	if (len < vma_len)
139 		return -EINVAL;
140 
141 	inode_lock(inode);
142 	file_accessed(file);
143 
144 	ret = -ENOMEM;
145 
146 	vm_flags = vma->vm_flags;
147 	/*
148 	 * for SHM_HUGETLB, the pages are reserved in the shmget() call so skip
149 	 * reserving here. Note: only for SHM hugetlbfs file, the inode
150 	 * flag S_PRIVATE is set.
151 	 */
152 	if (inode->i_flags & S_PRIVATE)
153 		vm_flags |= VM_NORESERVE;
154 
155 	if (!hugetlb_reserve_pages(inode,
156 				vma->vm_pgoff >> huge_page_order(h),
157 				len >> huge_page_shift(h), vma,
158 				vm_flags))
159 		goto out;
160 
161 	ret = 0;
162 	if (vma->vm_flags & VM_WRITE && inode->i_size < len)
163 		i_size_write(inode, len);
164 out:
165 	inode_unlock(inode);
166 
167 	return ret;
168 }
169 
170 /*
171  * Called under mmap_write_lock(mm).
172  */
173 
174 unsigned long
175 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
176 			    unsigned long len, unsigned long pgoff,
177 			    unsigned long flags)
178 {
179 	unsigned long addr0 = 0;
180 	struct hstate *h = hstate_file(file);
181 
182 	if (len & ~huge_page_mask(h))
183 		return -EINVAL;
184 	if (flags & MAP_FIXED) {
185 		if (addr & ~huge_page_mask(h))
186 			return -EINVAL;
187 		if (prepare_hugepage_range(file, addr, len))
188 			return -EINVAL;
189 	}
190 	if (addr)
191 		addr0 = ALIGN(addr, huge_page_size(h));
192 
193 	return mm_get_unmapped_area_vmflags(current->mm, file, addr0, len, pgoff,
194 					    flags, 0);
195 }
196 
197 /*
198  * Someone wants to read @bytes from a HWPOISON hugetlb @page from @offset.
199  * Returns the maximum number of bytes one can read without touching the 1st raw
200  * HWPOISON subpage.
201  *
202  * The implementation borrows the iteration logic from copy_page_to_iter*.
203  */
204 static size_t adjust_range_hwpoison(struct page *page, size_t offset, size_t bytes)
205 {
206 	size_t n = 0;
207 	size_t res = 0;
208 
209 	/* First subpage to start the loop. */
210 	page = nth_page(page, offset / PAGE_SIZE);
211 	offset %= PAGE_SIZE;
212 	while (1) {
213 		if (is_raw_hwpoison_page_in_hugepage(page))
214 			break;
215 
216 		/* Safe to read n bytes without touching HWPOISON subpage. */
217 		n = min(bytes, (size_t)PAGE_SIZE - offset);
218 		res += n;
219 		bytes -= n;
220 		if (!bytes || !n)
221 			break;
222 		offset += n;
223 		if (offset == PAGE_SIZE) {
224 			page = nth_page(page, 1);
225 			offset = 0;
226 		}
227 	}
228 
229 	return res;
230 }
231 
232 /*
233  * Support for read() - Find the page attached to f_mapping and copy out the
234  * data. This provides functionality similar to filemap_read().
235  */
236 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
237 {
238 	struct file *file = iocb->ki_filp;
239 	struct hstate *h = hstate_file(file);
240 	struct address_space *mapping = file->f_mapping;
241 	struct inode *inode = mapping->host;
242 	unsigned long index = iocb->ki_pos >> huge_page_shift(h);
243 	unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
244 	unsigned long end_index;
245 	loff_t isize;
246 	ssize_t retval = 0;
247 
248 	while (iov_iter_count(to)) {
249 		struct folio *folio;
250 		size_t nr, copied, want;
251 
252 		/* nr is the maximum number of bytes to copy from this page */
253 		nr = huge_page_size(h);
254 		isize = i_size_read(inode);
255 		if (!isize)
256 			break;
257 		end_index = (isize - 1) >> huge_page_shift(h);
258 		if (index > end_index)
259 			break;
260 		if (index == end_index) {
261 			nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
262 			if (nr <= offset)
263 				break;
264 		}
265 		nr = nr - offset;
266 
267 		/* Find the folio */
268 		folio = filemap_lock_hugetlb_folio(h, mapping, index);
269 		if (IS_ERR(folio)) {
270 			/*
271 			 * We have a HOLE, zero out the user-buffer for the
272 			 * length of the hole or request.
273 			 */
274 			copied = iov_iter_zero(nr, to);
275 		} else {
276 			folio_unlock(folio);
277 
278 			if (!folio_test_hwpoison(folio))
279 				want = nr;
280 			else {
281 				/*
282 				 * Adjust how many bytes safe to read without
283 				 * touching the 1st raw HWPOISON subpage after
284 				 * offset.
285 				 */
286 				want = adjust_range_hwpoison(&folio->page, offset, nr);
287 				if (want == 0) {
288 					folio_put(folio);
289 					retval = -EIO;
290 					break;
291 				}
292 			}
293 
294 			/*
295 			 * We have the folio, copy it to user space buffer.
296 			 */
297 			copied = copy_folio_to_iter(folio, offset, want, to);
298 			folio_put(folio);
299 		}
300 		offset += copied;
301 		retval += copied;
302 		if (copied != nr && iov_iter_count(to)) {
303 			if (!retval)
304 				retval = -EFAULT;
305 			break;
306 		}
307 		index += offset >> huge_page_shift(h);
308 		offset &= ~huge_page_mask(h);
309 	}
310 	iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
311 	return retval;
312 }
313 
314 static int hugetlbfs_write_begin(struct file *file,
315 			struct address_space *mapping,
316 			loff_t pos, unsigned len,
317 			struct folio **foliop, void **fsdata)
318 {
319 	return -EINVAL;
320 }
321 
322 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
323 			loff_t pos, unsigned len, unsigned copied,
324 			struct folio *folio, void *fsdata)
325 {
326 	BUG();
327 	return -EINVAL;
328 }
329 
330 static void hugetlb_delete_from_page_cache(struct folio *folio)
331 {
332 	folio_clear_dirty(folio);
333 	folio_clear_uptodate(folio);
334 	filemap_remove_folio(folio);
335 }
336 
337 /*
338  * Called with i_mmap_rwsem held for inode based vma maps.  This makes
339  * sure vma (and vm_mm) will not go away.  We also hold the hugetlb fault
340  * mutex for the page in the mapping.  So, we can not race with page being
341  * faulted into the vma.
342  */
343 static bool hugetlb_vma_maps_page(struct vm_area_struct *vma,
344 				unsigned long addr, struct page *page)
345 {
346 	pte_t *ptep, pte;
347 
348 	ptep = hugetlb_walk(vma, addr, huge_page_size(hstate_vma(vma)));
349 	if (!ptep)
350 		return false;
351 
352 	pte = huge_ptep_get(vma->vm_mm, addr, ptep);
353 	if (huge_pte_none(pte) || !pte_present(pte))
354 		return false;
355 
356 	if (pte_page(pte) == page)
357 		return true;
358 
359 	return false;
360 }
361 
362 /*
363  * Can vma_offset_start/vma_offset_end overflow on 32-bit arches?
364  * No, because the interval tree returns us only those vmas
365  * which overlap the truncated area starting at pgoff,
366  * and no vma on a 32-bit arch can span beyond the 4GB.
367  */
368 static unsigned long vma_offset_start(struct vm_area_struct *vma, pgoff_t start)
369 {
370 	unsigned long offset = 0;
371 
372 	if (vma->vm_pgoff < start)
373 		offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
374 
375 	return vma->vm_start + offset;
376 }
377 
378 static unsigned long vma_offset_end(struct vm_area_struct *vma, pgoff_t end)
379 {
380 	unsigned long t_end;
381 
382 	if (!end)
383 		return vma->vm_end;
384 
385 	t_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) + vma->vm_start;
386 	if (t_end > vma->vm_end)
387 		t_end = vma->vm_end;
388 	return t_end;
389 }
390 
391 /*
392  * Called with hugetlb fault mutex held.  Therefore, no more mappings to
393  * this folio can be created while executing the routine.
394  */
395 static void hugetlb_unmap_file_folio(struct hstate *h,
396 					struct address_space *mapping,
397 					struct folio *folio, pgoff_t index)
398 {
399 	struct rb_root_cached *root = &mapping->i_mmap;
400 	struct hugetlb_vma_lock *vma_lock;
401 	struct page *page = &folio->page;
402 	struct vm_area_struct *vma;
403 	unsigned long v_start;
404 	unsigned long v_end;
405 	pgoff_t start, end;
406 
407 	start = index * pages_per_huge_page(h);
408 	end = (index + 1) * pages_per_huge_page(h);
409 
410 	i_mmap_lock_write(mapping);
411 retry:
412 	vma_lock = NULL;
413 	vma_interval_tree_foreach(vma, root, start, end - 1) {
414 		v_start = vma_offset_start(vma, start);
415 		v_end = vma_offset_end(vma, end);
416 
417 		if (!hugetlb_vma_maps_page(vma, v_start, page))
418 			continue;
419 
420 		if (!hugetlb_vma_trylock_write(vma)) {
421 			vma_lock = vma->vm_private_data;
422 			/*
423 			 * If we can not get vma lock, we need to drop
424 			 * immap_sema and take locks in order.  First,
425 			 * take a ref on the vma_lock structure so that
426 			 * we can be guaranteed it will not go away when
427 			 * dropping immap_sema.
428 			 */
429 			kref_get(&vma_lock->refs);
430 			break;
431 		}
432 
433 		unmap_hugepage_range(vma, v_start, v_end, NULL,
434 				     ZAP_FLAG_DROP_MARKER);
435 		hugetlb_vma_unlock_write(vma);
436 	}
437 
438 	i_mmap_unlock_write(mapping);
439 
440 	if (vma_lock) {
441 		/*
442 		 * Wait on vma_lock.  We know it is still valid as we have
443 		 * a reference.  We must 'open code' vma locking as we do
444 		 * not know if vma_lock is still attached to vma.
445 		 */
446 		down_write(&vma_lock->rw_sema);
447 		i_mmap_lock_write(mapping);
448 
449 		vma = vma_lock->vma;
450 		if (!vma) {
451 			/*
452 			 * If lock is no longer attached to vma, then just
453 			 * unlock, drop our reference and retry looking for
454 			 * other vmas.
455 			 */
456 			up_write(&vma_lock->rw_sema);
457 			kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
458 			goto retry;
459 		}
460 
461 		/*
462 		 * vma_lock is still attached to vma.  Check to see if vma
463 		 * still maps page and if so, unmap.
464 		 */
465 		v_start = vma_offset_start(vma, start);
466 		v_end = vma_offset_end(vma, end);
467 		if (hugetlb_vma_maps_page(vma, v_start, page))
468 			unmap_hugepage_range(vma, v_start, v_end, NULL,
469 					     ZAP_FLAG_DROP_MARKER);
470 
471 		kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
472 		hugetlb_vma_unlock_write(vma);
473 
474 		goto retry;
475 	}
476 }
477 
478 static void
479 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end,
480 		      zap_flags_t zap_flags)
481 {
482 	struct vm_area_struct *vma;
483 
484 	/*
485 	 * end == 0 indicates that the entire range after start should be
486 	 * unmapped.  Note, end is exclusive, whereas the interval tree takes
487 	 * an inclusive "last".
488 	 */
489 	vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) {
490 		unsigned long v_start;
491 		unsigned long v_end;
492 
493 		if (!hugetlb_vma_trylock_write(vma))
494 			continue;
495 
496 		v_start = vma_offset_start(vma, start);
497 		v_end = vma_offset_end(vma, end);
498 
499 		unmap_hugepage_range(vma, v_start, v_end, NULL, zap_flags);
500 
501 		/*
502 		 * Note that vma lock only exists for shared/non-private
503 		 * vmas.  Therefore, lock is not held when calling
504 		 * unmap_hugepage_range for private vmas.
505 		 */
506 		hugetlb_vma_unlock_write(vma);
507 	}
508 }
509 
510 /*
511  * Called with hugetlb fault mutex held.
512  * Returns true if page was actually removed, false otherwise.
513  */
514 static bool remove_inode_single_folio(struct hstate *h, struct inode *inode,
515 					struct address_space *mapping,
516 					struct folio *folio, pgoff_t index,
517 					bool truncate_op)
518 {
519 	bool ret = false;
520 
521 	/*
522 	 * If folio is mapped, it was faulted in after being
523 	 * unmapped in caller.  Unmap (again) while holding
524 	 * the fault mutex.  The mutex will prevent faults
525 	 * until we finish removing the folio.
526 	 */
527 	if (unlikely(folio_mapped(folio)))
528 		hugetlb_unmap_file_folio(h, mapping, folio, index);
529 
530 	folio_lock(folio);
531 	/*
532 	 * We must remove the folio from page cache before removing
533 	 * the region/ reserve map (hugetlb_unreserve_pages).  In
534 	 * rare out of memory conditions, removal of the region/reserve
535 	 * map could fail.  Correspondingly, the subpool and global
536 	 * reserve usage count can need to be adjusted.
537 	 */
538 	VM_BUG_ON_FOLIO(folio_test_hugetlb_restore_reserve(folio), folio);
539 	hugetlb_delete_from_page_cache(folio);
540 	ret = true;
541 	if (!truncate_op) {
542 		if (unlikely(hugetlb_unreserve_pages(inode, index,
543 							index + 1, 1)))
544 			hugetlb_fix_reserve_counts(inode);
545 	}
546 
547 	folio_unlock(folio);
548 	return ret;
549 }
550 
551 /*
552  * remove_inode_hugepages handles two distinct cases: truncation and hole
553  * punch.  There are subtle differences in operation for each case.
554  *
555  * truncation is indicated by end of range being LLONG_MAX
556  *	In this case, we first scan the range and release found pages.
557  *	After releasing pages, hugetlb_unreserve_pages cleans up region/reserve
558  *	maps and global counts.  Page faults can race with truncation.
559  *	During faults, hugetlb_no_page() checks i_size before page allocation,
560  *	and again after obtaining page table lock.  It will 'back out'
561  *	allocations in the truncated range.
562  * hole punch is indicated if end is not LLONG_MAX
563  *	In the hole punch case we scan the range and release found pages.
564  *	Only when releasing a page is the associated region/reserve map
565  *	deleted.  The region/reserve map for ranges without associated
566  *	pages are not modified.  Page faults can race with hole punch.
567  *	This is indicated if we find a mapped page.
568  * Note: If the passed end of range value is beyond the end of file, but
569  * not LLONG_MAX this routine still performs a hole punch operation.
570  */
571 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
572 				   loff_t lend)
573 {
574 	struct hstate *h = hstate_inode(inode);
575 	struct address_space *mapping = &inode->i_data;
576 	const pgoff_t end = lend >> PAGE_SHIFT;
577 	struct folio_batch fbatch;
578 	pgoff_t next, index;
579 	int i, freed = 0;
580 	bool truncate_op = (lend == LLONG_MAX);
581 
582 	folio_batch_init(&fbatch);
583 	next = lstart >> PAGE_SHIFT;
584 	while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) {
585 		for (i = 0; i < folio_batch_count(&fbatch); ++i) {
586 			struct folio *folio = fbatch.folios[i];
587 			u32 hash = 0;
588 
589 			index = folio->index >> huge_page_order(h);
590 			hash = hugetlb_fault_mutex_hash(mapping, index);
591 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
592 
593 			/*
594 			 * Remove folio that was part of folio_batch.
595 			 */
596 			if (remove_inode_single_folio(h, inode, mapping, folio,
597 							index, truncate_op))
598 				freed++;
599 
600 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
601 		}
602 		folio_batch_release(&fbatch);
603 		cond_resched();
604 	}
605 
606 	if (truncate_op)
607 		(void)hugetlb_unreserve_pages(inode,
608 				lstart >> huge_page_shift(h),
609 				LONG_MAX, freed);
610 }
611 
612 static void hugetlbfs_evict_inode(struct inode *inode)
613 {
614 	struct resv_map *resv_map;
615 
616 	remove_inode_hugepages(inode, 0, LLONG_MAX);
617 
618 	/*
619 	 * Get the resv_map from the address space embedded in the inode.
620 	 * This is the address space which points to any resv_map allocated
621 	 * at inode creation time.  If this is a device special inode,
622 	 * i_mapping may not point to the original address space.
623 	 */
624 	resv_map = (struct resv_map *)(&inode->i_data)->i_private_data;
625 	/* Only regular and link inodes have associated reserve maps */
626 	if (resv_map)
627 		resv_map_release(&resv_map->refs);
628 	clear_inode(inode);
629 }
630 
631 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset)
632 {
633 	pgoff_t pgoff;
634 	struct address_space *mapping = inode->i_mapping;
635 	struct hstate *h = hstate_inode(inode);
636 
637 	BUG_ON(offset & ~huge_page_mask(h));
638 	pgoff = offset >> PAGE_SHIFT;
639 
640 	i_size_write(inode, offset);
641 	i_mmap_lock_write(mapping);
642 	if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
643 		hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0,
644 				      ZAP_FLAG_DROP_MARKER);
645 	i_mmap_unlock_write(mapping);
646 	remove_inode_hugepages(inode, offset, LLONG_MAX);
647 }
648 
649 static void hugetlbfs_zero_partial_page(struct hstate *h,
650 					struct address_space *mapping,
651 					loff_t start,
652 					loff_t end)
653 {
654 	pgoff_t idx = start >> huge_page_shift(h);
655 	struct folio *folio;
656 
657 	folio = filemap_lock_hugetlb_folio(h, mapping, idx);
658 	if (IS_ERR(folio))
659 		return;
660 
661 	start = start & ~huge_page_mask(h);
662 	end = end & ~huge_page_mask(h);
663 	if (!end)
664 		end = huge_page_size(h);
665 
666 	folio_zero_segment(folio, (size_t)start, (size_t)end);
667 
668 	folio_unlock(folio);
669 	folio_put(folio);
670 }
671 
672 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
673 {
674 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
675 	struct address_space *mapping = inode->i_mapping;
676 	struct hstate *h = hstate_inode(inode);
677 	loff_t hpage_size = huge_page_size(h);
678 	loff_t hole_start, hole_end;
679 
680 	/*
681 	 * hole_start and hole_end indicate the full pages within the hole.
682 	 */
683 	hole_start = round_up(offset, hpage_size);
684 	hole_end = round_down(offset + len, hpage_size);
685 
686 	inode_lock(inode);
687 
688 	/* protected by i_rwsem */
689 	if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
690 		inode_unlock(inode);
691 		return -EPERM;
692 	}
693 
694 	i_mmap_lock_write(mapping);
695 
696 	/* If range starts before first full page, zero partial page. */
697 	if (offset < hole_start)
698 		hugetlbfs_zero_partial_page(h, mapping,
699 				offset, min(offset + len, hole_start));
700 
701 	/* Unmap users of full pages in the hole. */
702 	if (hole_end > hole_start) {
703 		if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
704 			hugetlb_vmdelete_list(&mapping->i_mmap,
705 					      hole_start >> PAGE_SHIFT,
706 					      hole_end >> PAGE_SHIFT, 0);
707 	}
708 
709 	/* If range extends beyond last full page, zero partial page. */
710 	if ((offset + len) > hole_end && (offset + len) > hole_start)
711 		hugetlbfs_zero_partial_page(h, mapping,
712 				hole_end, offset + len);
713 
714 	i_mmap_unlock_write(mapping);
715 
716 	/* Remove full pages from the file. */
717 	if (hole_end > hole_start)
718 		remove_inode_hugepages(inode, hole_start, hole_end);
719 
720 	inode_unlock(inode);
721 
722 	return 0;
723 }
724 
725 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
726 				loff_t len)
727 {
728 	struct inode *inode = file_inode(file);
729 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
730 	struct address_space *mapping = inode->i_mapping;
731 	struct hstate *h = hstate_inode(inode);
732 	struct vm_area_struct pseudo_vma;
733 	struct mm_struct *mm = current->mm;
734 	loff_t hpage_size = huge_page_size(h);
735 	unsigned long hpage_shift = huge_page_shift(h);
736 	pgoff_t start, index, end;
737 	int error;
738 	u32 hash;
739 
740 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
741 		return -EOPNOTSUPP;
742 
743 	if (mode & FALLOC_FL_PUNCH_HOLE)
744 		return hugetlbfs_punch_hole(inode, offset, len);
745 
746 	/*
747 	 * Default preallocate case.
748 	 * For this range, start is rounded down and end is rounded up
749 	 * as well as being converted to page offsets.
750 	 */
751 	start = offset >> hpage_shift;
752 	end = (offset + len + hpage_size - 1) >> hpage_shift;
753 
754 	inode_lock(inode);
755 
756 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
757 	error = inode_newsize_ok(inode, offset + len);
758 	if (error)
759 		goto out;
760 
761 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
762 		error = -EPERM;
763 		goto out;
764 	}
765 
766 	/*
767 	 * Initialize a pseudo vma as this is required by the huge page
768 	 * allocation routines.
769 	 */
770 	vma_init(&pseudo_vma, mm);
771 	vm_flags_init(&pseudo_vma, VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
772 	pseudo_vma.vm_file = file;
773 
774 	for (index = start; index < end; index++) {
775 		/*
776 		 * This is supposed to be the vaddr where the page is being
777 		 * faulted in, but we have no vaddr here.
778 		 */
779 		struct folio *folio;
780 		unsigned long addr;
781 
782 		cond_resched();
783 
784 		/*
785 		 * fallocate(2) manpage permits EINTR; we may have been
786 		 * interrupted because we are using up too much memory.
787 		 */
788 		if (signal_pending(current)) {
789 			error = -EINTR;
790 			break;
791 		}
792 
793 		/* addr is the offset within the file (zero based) */
794 		addr = index * hpage_size;
795 
796 		/* mutex taken here, fault path and hole punch */
797 		hash = hugetlb_fault_mutex_hash(mapping, index);
798 		mutex_lock(&hugetlb_fault_mutex_table[hash]);
799 
800 		/* See if already present in mapping to avoid alloc/free */
801 		folio = filemap_get_folio(mapping, index << huge_page_order(h));
802 		if (!IS_ERR(folio)) {
803 			folio_put(folio);
804 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
805 			continue;
806 		}
807 
808 		/*
809 		 * Allocate folio without setting the avoid_reserve argument.
810 		 * There certainly are no reserves associated with the
811 		 * pseudo_vma.  However, there could be shared mappings with
812 		 * reserves for the file at the inode level.  If we fallocate
813 		 * folios in these areas, we need to consume the reserves
814 		 * to keep reservation accounting consistent.
815 		 */
816 		folio = alloc_hugetlb_folio(&pseudo_vma, addr, 0);
817 		if (IS_ERR(folio)) {
818 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
819 			error = PTR_ERR(folio);
820 			goto out;
821 		}
822 		folio_zero_user(folio, ALIGN_DOWN(addr, hpage_size));
823 		__folio_mark_uptodate(folio);
824 		error = hugetlb_add_to_page_cache(folio, mapping, index);
825 		if (unlikely(error)) {
826 			restore_reserve_on_error(h, &pseudo_vma, addr, folio);
827 			folio_put(folio);
828 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
829 			goto out;
830 		}
831 
832 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
833 
834 		folio_set_hugetlb_migratable(folio);
835 		/*
836 		 * folio_unlock because locked by hugetlb_add_to_page_cache()
837 		 * folio_put() due to reference from alloc_hugetlb_folio()
838 		 */
839 		folio_unlock(folio);
840 		folio_put(folio);
841 	}
842 
843 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
844 		i_size_write(inode, offset + len);
845 	inode_set_ctime_current(inode);
846 out:
847 	inode_unlock(inode);
848 	return error;
849 }
850 
851 static int hugetlbfs_setattr(struct mnt_idmap *idmap,
852 			     struct dentry *dentry, struct iattr *attr)
853 {
854 	struct inode *inode = d_inode(dentry);
855 	struct hstate *h = hstate_inode(inode);
856 	int error;
857 	unsigned int ia_valid = attr->ia_valid;
858 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
859 
860 	error = setattr_prepare(idmap, dentry, attr);
861 	if (error)
862 		return error;
863 
864 	if (ia_valid & ATTR_SIZE) {
865 		loff_t oldsize = inode->i_size;
866 		loff_t newsize = attr->ia_size;
867 
868 		if (newsize & ~huge_page_mask(h))
869 			return -EINVAL;
870 		/* protected by i_rwsem */
871 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
872 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
873 			return -EPERM;
874 		hugetlb_vmtruncate(inode, newsize);
875 	}
876 
877 	setattr_copy(idmap, inode, attr);
878 	mark_inode_dirty(inode);
879 	return 0;
880 }
881 
882 static struct inode *hugetlbfs_get_root(struct super_block *sb,
883 					struct hugetlbfs_fs_context *ctx)
884 {
885 	struct inode *inode;
886 
887 	inode = new_inode(sb);
888 	if (inode) {
889 		inode->i_ino = get_next_ino();
890 		inode->i_mode = S_IFDIR | ctx->mode;
891 		inode->i_uid = ctx->uid;
892 		inode->i_gid = ctx->gid;
893 		simple_inode_init_ts(inode);
894 		inode->i_op = &hugetlbfs_dir_inode_operations;
895 		inode->i_fop = &simple_dir_operations;
896 		/* directory inodes start off with i_nlink == 2 (for "." entry) */
897 		inc_nlink(inode);
898 		lockdep_annotate_inode_mutex_key(inode);
899 	}
900 	return inode;
901 }
902 
903 /*
904  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
905  * be taken from reclaim -- unlike regular filesystems. This needs an
906  * annotation because huge_pmd_share() does an allocation under hugetlb's
907  * i_mmap_rwsem.
908  */
909 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
910 
911 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
912 					struct mnt_idmap *idmap,
913 					struct inode *dir,
914 					umode_t mode, dev_t dev)
915 {
916 	struct inode *inode;
917 	struct resv_map *resv_map = NULL;
918 
919 	/*
920 	 * Reserve maps are only needed for inodes that can have associated
921 	 * page allocations.
922 	 */
923 	if (S_ISREG(mode) || S_ISLNK(mode)) {
924 		resv_map = resv_map_alloc();
925 		if (!resv_map)
926 			return NULL;
927 	}
928 
929 	inode = new_inode(sb);
930 	if (inode) {
931 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
932 
933 		inode->i_ino = get_next_ino();
934 		inode_init_owner(idmap, inode, dir, mode);
935 		lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
936 				&hugetlbfs_i_mmap_rwsem_key);
937 		inode->i_mapping->a_ops = &hugetlbfs_aops;
938 		simple_inode_init_ts(inode);
939 		inode->i_mapping->i_private_data = resv_map;
940 		info->seals = F_SEAL_SEAL;
941 		switch (mode & S_IFMT) {
942 		default:
943 			init_special_inode(inode, mode, dev);
944 			break;
945 		case S_IFREG:
946 			inode->i_op = &hugetlbfs_inode_operations;
947 			inode->i_fop = &hugetlbfs_file_operations;
948 			break;
949 		case S_IFDIR:
950 			inode->i_op = &hugetlbfs_dir_inode_operations;
951 			inode->i_fop = &simple_dir_operations;
952 
953 			/* directory inodes start off with i_nlink == 2 (for "." entry) */
954 			inc_nlink(inode);
955 			break;
956 		case S_IFLNK:
957 			inode->i_op = &page_symlink_inode_operations;
958 			inode_nohighmem(inode);
959 			break;
960 		}
961 		lockdep_annotate_inode_mutex_key(inode);
962 	} else {
963 		if (resv_map)
964 			kref_put(&resv_map->refs, resv_map_release);
965 	}
966 
967 	return inode;
968 }
969 
970 /*
971  * File creation. Allocate an inode, and we're done..
972  */
973 static int hugetlbfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
974 			   struct dentry *dentry, umode_t mode, dev_t dev)
975 {
976 	struct inode *inode;
977 
978 	inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, dev);
979 	if (!inode)
980 		return -ENOSPC;
981 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
982 	d_instantiate(dentry, inode);
983 	dget(dentry);/* Extra count - pin the dentry in core */
984 	return 0;
985 }
986 
987 static int hugetlbfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
988 			   struct dentry *dentry, umode_t mode)
989 {
990 	int retval = hugetlbfs_mknod(idmap, dir, dentry,
991 				     mode | S_IFDIR, 0);
992 	if (!retval)
993 		inc_nlink(dir);
994 	return retval;
995 }
996 
997 static int hugetlbfs_create(struct mnt_idmap *idmap,
998 			    struct inode *dir, struct dentry *dentry,
999 			    umode_t mode, bool excl)
1000 {
1001 	return hugetlbfs_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
1002 }
1003 
1004 static int hugetlbfs_tmpfile(struct mnt_idmap *idmap,
1005 			     struct inode *dir, struct file *file,
1006 			     umode_t mode)
1007 {
1008 	struct inode *inode;
1009 
1010 	inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode | S_IFREG, 0);
1011 	if (!inode)
1012 		return -ENOSPC;
1013 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
1014 	d_tmpfile(file, inode);
1015 	return finish_open_simple(file, 0);
1016 }
1017 
1018 static int hugetlbfs_symlink(struct mnt_idmap *idmap,
1019 			     struct inode *dir, struct dentry *dentry,
1020 			     const char *symname)
1021 {
1022 	const umode_t mode = S_IFLNK|S_IRWXUGO;
1023 	struct inode *inode;
1024 	int error = -ENOSPC;
1025 
1026 	inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, 0);
1027 	if (inode) {
1028 		int l = strlen(symname)+1;
1029 		error = page_symlink(inode, symname, l);
1030 		if (!error) {
1031 			d_instantiate(dentry, inode);
1032 			dget(dentry);
1033 		} else
1034 			iput(inode);
1035 	}
1036 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
1037 
1038 	return error;
1039 }
1040 
1041 #ifdef CONFIG_MIGRATION
1042 static int hugetlbfs_migrate_folio(struct address_space *mapping,
1043 				struct folio *dst, struct folio *src,
1044 				enum migrate_mode mode)
1045 {
1046 	int rc;
1047 
1048 	rc = migrate_huge_page_move_mapping(mapping, dst, src);
1049 	if (rc != MIGRATEPAGE_SUCCESS)
1050 		return rc;
1051 
1052 	if (hugetlb_folio_subpool(src)) {
1053 		hugetlb_set_folio_subpool(dst,
1054 					hugetlb_folio_subpool(src));
1055 		hugetlb_set_folio_subpool(src, NULL);
1056 	}
1057 
1058 	folio_migrate_flags(dst, src);
1059 
1060 	return MIGRATEPAGE_SUCCESS;
1061 }
1062 #else
1063 #define hugetlbfs_migrate_folio NULL
1064 #endif
1065 
1066 static int hugetlbfs_error_remove_folio(struct address_space *mapping,
1067 				struct folio *folio)
1068 {
1069 	return 0;
1070 }
1071 
1072 /*
1073  * Display the mount options in /proc/mounts.
1074  */
1075 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
1076 {
1077 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
1078 	struct hugepage_subpool *spool = sbinfo->spool;
1079 	unsigned long hpage_size = huge_page_size(sbinfo->hstate);
1080 	unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
1081 	char mod;
1082 
1083 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1084 		seq_printf(m, ",uid=%u",
1085 			   from_kuid_munged(&init_user_ns, sbinfo->uid));
1086 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1087 		seq_printf(m, ",gid=%u",
1088 			   from_kgid_munged(&init_user_ns, sbinfo->gid));
1089 	if (sbinfo->mode != 0755)
1090 		seq_printf(m, ",mode=%o", sbinfo->mode);
1091 	if (sbinfo->max_inodes != -1)
1092 		seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1093 
1094 	hpage_size /= 1024;
1095 	mod = 'K';
1096 	if (hpage_size >= 1024) {
1097 		hpage_size /= 1024;
1098 		mod = 'M';
1099 	}
1100 	seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1101 	if (spool) {
1102 		if (spool->max_hpages != -1)
1103 			seq_printf(m, ",size=%llu",
1104 				   (unsigned long long)spool->max_hpages << hpage_shift);
1105 		if (spool->min_hpages != -1)
1106 			seq_printf(m, ",min_size=%llu",
1107 				   (unsigned long long)spool->min_hpages << hpage_shift);
1108 	}
1109 	return 0;
1110 }
1111 
1112 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1113 {
1114 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
1115 	struct hstate *h = hstate_inode(d_inode(dentry));
1116 	u64 id = huge_encode_dev(dentry->d_sb->s_dev);
1117 
1118 	buf->f_fsid = u64_to_fsid(id);
1119 	buf->f_type = HUGETLBFS_MAGIC;
1120 	buf->f_bsize = huge_page_size(h);
1121 	if (sbinfo) {
1122 		spin_lock(&sbinfo->stat_lock);
1123 		/* If no limits set, just report 0 or -1 for max/free/used
1124 		 * blocks, like simple_statfs() */
1125 		if (sbinfo->spool) {
1126 			long free_pages;
1127 
1128 			spin_lock_irq(&sbinfo->spool->lock);
1129 			buf->f_blocks = sbinfo->spool->max_hpages;
1130 			free_pages = sbinfo->spool->max_hpages
1131 				- sbinfo->spool->used_hpages;
1132 			buf->f_bavail = buf->f_bfree = free_pages;
1133 			spin_unlock_irq(&sbinfo->spool->lock);
1134 			buf->f_files = sbinfo->max_inodes;
1135 			buf->f_ffree = sbinfo->free_inodes;
1136 		}
1137 		spin_unlock(&sbinfo->stat_lock);
1138 	}
1139 	buf->f_namelen = NAME_MAX;
1140 	return 0;
1141 }
1142 
1143 static void hugetlbfs_put_super(struct super_block *sb)
1144 {
1145 	struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1146 
1147 	if (sbi) {
1148 		sb->s_fs_info = NULL;
1149 
1150 		if (sbi->spool)
1151 			hugepage_put_subpool(sbi->spool);
1152 
1153 		kfree(sbi);
1154 	}
1155 }
1156 
1157 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1158 {
1159 	if (sbinfo->free_inodes >= 0) {
1160 		spin_lock(&sbinfo->stat_lock);
1161 		if (unlikely(!sbinfo->free_inodes)) {
1162 			spin_unlock(&sbinfo->stat_lock);
1163 			return 0;
1164 		}
1165 		sbinfo->free_inodes--;
1166 		spin_unlock(&sbinfo->stat_lock);
1167 	}
1168 
1169 	return 1;
1170 }
1171 
1172 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1173 {
1174 	if (sbinfo->free_inodes >= 0) {
1175 		spin_lock(&sbinfo->stat_lock);
1176 		sbinfo->free_inodes++;
1177 		spin_unlock(&sbinfo->stat_lock);
1178 	}
1179 }
1180 
1181 
1182 static struct kmem_cache *hugetlbfs_inode_cachep;
1183 
1184 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1185 {
1186 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1187 	struct hugetlbfs_inode_info *p;
1188 
1189 	if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1190 		return NULL;
1191 	p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL);
1192 	if (unlikely(!p)) {
1193 		hugetlbfs_inc_free_inodes(sbinfo);
1194 		return NULL;
1195 	}
1196 	return &p->vfs_inode;
1197 }
1198 
1199 static void hugetlbfs_free_inode(struct inode *inode)
1200 {
1201 	kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1202 }
1203 
1204 static void hugetlbfs_destroy_inode(struct inode *inode)
1205 {
1206 	hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1207 }
1208 
1209 static const struct address_space_operations hugetlbfs_aops = {
1210 	.write_begin	= hugetlbfs_write_begin,
1211 	.write_end	= hugetlbfs_write_end,
1212 	.dirty_folio	= noop_dirty_folio,
1213 	.migrate_folio  = hugetlbfs_migrate_folio,
1214 	.error_remove_folio	= hugetlbfs_error_remove_folio,
1215 };
1216 
1217 
1218 static void init_once(void *foo)
1219 {
1220 	struct hugetlbfs_inode_info *ei = foo;
1221 
1222 	inode_init_once(&ei->vfs_inode);
1223 }
1224 
1225 static const struct file_operations hugetlbfs_file_operations = {
1226 	.read_iter		= hugetlbfs_read_iter,
1227 	.mmap			= hugetlbfs_file_mmap,
1228 	.fsync			= noop_fsync,
1229 	.get_unmapped_area	= hugetlb_get_unmapped_area,
1230 	.llseek			= default_llseek,
1231 	.fallocate		= hugetlbfs_fallocate,
1232 	.fop_flags		= FOP_HUGE_PAGES,
1233 };
1234 
1235 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1236 	.create		= hugetlbfs_create,
1237 	.lookup		= simple_lookup,
1238 	.link		= simple_link,
1239 	.unlink		= simple_unlink,
1240 	.symlink	= hugetlbfs_symlink,
1241 	.mkdir		= hugetlbfs_mkdir,
1242 	.rmdir		= simple_rmdir,
1243 	.mknod		= hugetlbfs_mknod,
1244 	.rename		= simple_rename,
1245 	.setattr	= hugetlbfs_setattr,
1246 	.tmpfile	= hugetlbfs_tmpfile,
1247 };
1248 
1249 static const struct inode_operations hugetlbfs_inode_operations = {
1250 	.setattr	= hugetlbfs_setattr,
1251 };
1252 
1253 static const struct super_operations hugetlbfs_ops = {
1254 	.alloc_inode    = hugetlbfs_alloc_inode,
1255 	.free_inode     = hugetlbfs_free_inode,
1256 	.destroy_inode  = hugetlbfs_destroy_inode,
1257 	.evict_inode	= hugetlbfs_evict_inode,
1258 	.statfs		= hugetlbfs_statfs,
1259 	.put_super	= hugetlbfs_put_super,
1260 	.show_options	= hugetlbfs_show_options,
1261 };
1262 
1263 /*
1264  * Convert size option passed from command line to number of huge pages
1265  * in the pool specified by hstate.  Size option could be in bytes
1266  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1267  */
1268 static long
1269 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1270 			 enum hugetlbfs_size_type val_type)
1271 {
1272 	if (val_type == NO_SIZE)
1273 		return -1;
1274 
1275 	if (val_type == SIZE_PERCENT) {
1276 		size_opt <<= huge_page_shift(h);
1277 		size_opt *= h->max_huge_pages;
1278 		do_div(size_opt, 100);
1279 	}
1280 
1281 	size_opt >>= huge_page_shift(h);
1282 	return size_opt;
1283 }
1284 
1285 /*
1286  * Parse one mount parameter.
1287  */
1288 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1289 {
1290 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1291 	struct fs_parse_result result;
1292 	struct hstate *h;
1293 	char *rest;
1294 	unsigned long ps;
1295 	int opt;
1296 
1297 	opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1298 	if (opt < 0)
1299 		return opt;
1300 
1301 	switch (opt) {
1302 	case Opt_uid:
1303 		ctx->uid = result.uid;
1304 		return 0;
1305 
1306 	case Opt_gid:
1307 		ctx->gid = result.gid;
1308 		return 0;
1309 
1310 	case Opt_mode:
1311 		ctx->mode = result.uint_32 & 01777U;
1312 		return 0;
1313 
1314 	case Opt_size:
1315 		/* memparse() will accept a K/M/G without a digit */
1316 		if (!param->string || !isdigit(param->string[0]))
1317 			goto bad_val;
1318 		ctx->max_size_opt = memparse(param->string, &rest);
1319 		ctx->max_val_type = SIZE_STD;
1320 		if (*rest == '%')
1321 			ctx->max_val_type = SIZE_PERCENT;
1322 		return 0;
1323 
1324 	case Opt_nr_inodes:
1325 		/* memparse() will accept a K/M/G without a digit */
1326 		if (!param->string || !isdigit(param->string[0]))
1327 			goto bad_val;
1328 		ctx->nr_inodes = memparse(param->string, &rest);
1329 		return 0;
1330 
1331 	case Opt_pagesize:
1332 		ps = memparse(param->string, &rest);
1333 		h = size_to_hstate(ps);
1334 		if (!h) {
1335 			pr_err("Unsupported page size %lu MB\n", ps / SZ_1M);
1336 			return -EINVAL;
1337 		}
1338 		ctx->hstate = h;
1339 		return 0;
1340 
1341 	case Opt_min_size:
1342 		/* memparse() will accept a K/M/G without a digit */
1343 		if (!param->string || !isdigit(param->string[0]))
1344 			goto bad_val;
1345 		ctx->min_size_opt = memparse(param->string, &rest);
1346 		ctx->min_val_type = SIZE_STD;
1347 		if (*rest == '%')
1348 			ctx->min_val_type = SIZE_PERCENT;
1349 		return 0;
1350 
1351 	default:
1352 		return -EINVAL;
1353 	}
1354 
1355 bad_val:
1356 	return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1357 		      param->string, param->key);
1358 }
1359 
1360 /*
1361  * Validate the parsed options.
1362  */
1363 static int hugetlbfs_validate(struct fs_context *fc)
1364 {
1365 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1366 
1367 	/*
1368 	 * Use huge page pool size (in hstate) to convert the size
1369 	 * options to number of huge pages.  If NO_SIZE, -1 is returned.
1370 	 */
1371 	ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1372 						   ctx->max_size_opt,
1373 						   ctx->max_val_type);
1374 	ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1375 						   ctx->min_size_opt,
1376 						   ctx->min_val_type);
1377 
1378 	/*
1379 	 * If max_size was specified, then min_size must be smaller
1380 	 */
1381 	if (ctx->max_val_type > NO_SIZE &&
1382 	    ctx->min_hpages > ctx->max_hpages) {
1383 		pr_err("Minimum size can not be greater than maximum size\n");
1384 		return -EINVAL;
1385 	}
1386 
1387 	return 0;
1388 }
1389 
1390 static int
1391 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1392 {
1393 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1394 	struct hugetlbfs_sb_info *sbinfo;
1395 
1396 	sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1397 	if (!sbinfo)
1398 		return -ENOMEM;
1399 	sb->s_fs_info = sbinfo;
1400 	spin_lock_init(&sbinfo->stat_lock);
1401 	sbinfo->hstate		= ctx->hstate;
1402 	sbinfo->max_inodes	= ctx->nr_inodes;
1403 	sbinfo->free_inodes	= ctx->nr_inodes;
1404 	sbinfo->spool		= NULL;
1405 	sbinfo->uid		= ctx->uid;
1406 	sbinfo->gid		= ctx->gid;
1407 	sbinfo->mode		= ctx->mode;
1408 
1409 	/*
1410 	 * Allocate and initialize subpool if maximum or minimum size is
1411 	 * specified.  Any needed reservations (for minimum size) are taken
1412 	 * when the subpool is created.
1413 	 */
1414 	if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1415 		sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1416 						     ctx->max_hpages,
1417 						     ctx->min_hpages);
1418 		if (!sbinfo->spool)
1419 			goto out_free;
1420 	}
1421 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1422 	sb->s_blocksize = huge_page_size(ctx->hstate);
1423 	sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1424 	sb->s_magic = HUGETLBFS_MAGIC;
1425 	sb->s_op = &hugetlbfs_ops;
1426 	sb->s_time_gran = 1;
1427 
1428 	/*
1429 	 * Due to the special and limited functionality of hugetlbfs, it does
1430 	 * not work well as a stacking filesystem.
1431 	 */
1432 	sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
1433 	sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1434 	if (!sb->s_root)
1435 		goto out_free;
1436 	return 0;
1437 out_free:
1438 	kfree(sbinfo->spool);
1439 	kfree(sbinfo);
1440 	return -ENOMEM;
1441 }
1442 
1443 static int hugetlbfs_get_tree(struct fs_context *fc)
1444 {
1445 	int err = hugetlbfs_validate(fc);
1446 	if (err)
1447 		return err;
1448 	return get_tree_nodev(fc, hugetlbfs_fill_super);
1449 }
1450 
1451 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1452 {
1453 	kfree(fc->fs_private);
1454 }
1455 
1456 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1457 	.free		= hugetlbfs_fs_context_free,
1458 	.parse_param	= hugetlbfs_parse_param,
1459 	.get_tree	= hugetlbfs_get_tree,
1460 };
1461 
1462 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1463 {
1464 	struct hugetlbfs_fs_context *ctx;
1465 
1466 	ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1467 	if (!ctx)
1468 		return -ENOMEM;
1469 
1470 	ctx->max_hpages	= -1; /* No limit on size by default */
1471 	ctx->nr_inodes	= -1; /* No limit on number of inodes by default */
1472 	ctx->uid	= current_fsuid();
1473 	ctx->gid	= current_fsgid();
1474 	ctx->mode	= 0755;
1475 	ctx->hstate	= &default_hstate;
1476 	ctx->min_hpages	= -1; /* No default minimum size */
1477 	ctx->max_val_type = NO_SIZE;
1478 	ctx->min_val_type = NO_SIZE;
1479 	fc->fs_private = ctx;
1480 	fc->ops	= &hugetlbfs_fs_context_ops;
1481 	return 0;
1482 }
1483 
1484 static struct file_system_type hugetlbfs_fs_type = {
1485 	.name			= "hugetlbfs",
1486 	.init_fs_context	= hugetlbfs_init_fs_context,
1487 	.parameters		= hugetlb_fs_parameters,
1488 	.kill_sb		= kill_litter_super,
1489 	.fs_flags               = FS_ALLOW_IDMAP,
1490 };
1491 
1492 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1493 
1494 static int can_do_hugetlb_shm(void)
1495 {
1496 	kgid_t shm_group;
1497 	shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1498 	return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1499 }
1500 
1501 static int get_hstate_idx(int page_size_log)
1502 {
1503 	struct hstate *h = hstate_sizelog(page_size_log);
1504 
1505 	if (!h)
1506 		return -1;
1507 	return hstate_index(h);
1508 }
1509 
1510 /*
1511  * Note that size should be aligned to proper hugepage size in caller side,
1512  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1513  */
1514 struct file *hugetlb_file_setup(const char *name, size_t size,
1515 				vm_flags_t acctflag, int creat_flags,
1516 				int page_size_log)
1517 {
1518 	struct inode *inode;
1519 	struct vfsmount *mnt;
1520 	int hstate_idx;
1521 	struct file *file;
1522 
1523 	hstate_idx = get_hstate_idx(page_size_log);
1524 	if (hstate_idx < 0)
1525 		return ERR_PTR(-ENODEV);
1526 
1527 	mnt = hugetlbfs_vfsmount[hstate_idx];
1528 	if (!mnt)
1529 		return ERR_PTR(-ENOENT);
1530 
1531 	if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1532 		struct ucounts *ucounts = current_ucounts();
1533 
1534 		if (user_shm_lock(size, ucounts)) {
1535 			pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n",
1536 				current->comm, current->pid);
1537 			user_shm_unlock(size, ucounts);
1538 		}
1539 		return ERR_PTR(-EPERM);
1540 	}
1541 
1542 	file = ERR_PTR(-ENOSPC);
1543 	/* hugetlbfs_vfsmount[] mounts do not use idmapped mounts.  */
1544 	inode = hugetlbfs_get_inode(mnt->mnt_sb, &nop_mnt_idmap, NULL,
1545 				    S_IFREG | S_IRWXUGO, 0);
1546 	if (!inode)
1547 		goto out;
1548 	if (creat_flags == HUGETLB_SHMFS_INODE)
1549 		inode->i_flags |= S_PRIVATE;
1550 
1551 	inode->i_size = size;
1552 	clear_nlink(inode);
1553 
1554 	if (!hugetlb_reserve_pages(inode, 0,
1555 			size >> huge_page_shift(hstate_inode(inode)), NULL,
1556 			acctflag))
1557 		file = ERR_PTR(-ENOMEM);
1558 	else
1559 		file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1560 					&hugetlbfs_file_operations);
1561 	if (!IS_ERR(file))
1562 		return file;
1563 
1564 	iput(inode);
1565 out:
1566 	return file;
1567 }
1568 
1569 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1570 {
1571 	struct fs_context *fc;
1572 	struct vfsmount *mnt;
1573 
1574 	fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1575 	if (IS_ERR(fc)) {
1576 		mnt = ERR_CAST(fc);
1577 	} else {
1578 		struct hugetlbfs_fs_context *ctx = fc->fs_private;
1579 		ctx->hstate = h;
1580 		mnt = fc_mount(fc);
1581 		put_fs_context(fc);
1582 	}
1583 	if (IS_ERR(mnt))
1584 		pr_err("Cannot mount internal hugetlbfs for page size %luK",
1585 		       huge_page_size(h) / SZ_1K);
1586 	return mnt;
1587 }
1588 
1589 static int __init init_hugetlbfs_fs(void)
1590 {
1591 	struct vfsmount *mnt;
1592 	struct hstate *h;
1593 	int error;
1594 	int i;
1595 
1596 	if (!hugepages_supported()) {
1597 		pr_info("disabling because there are no supported hugepage sizes\n");
1598 		return -ENOTSUPP;
1599 	}
1600 
1601 	error = -ENOMEM;
1602 	hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1603 					sizeof(struct hugetlbfs_inode_info),
1604 					0, SLAB_ACCOUNT, init_once);
1605 	if (hugetlbfs_inode_cachep == NULL)
1606 		goto out;
1607 
1608 	error = register_filesystem(&hugetlbfs_fs_type);
1609 	if (error)
1610 		goto out_free;
1611 
1612 	/* default hstate mount is required */
1613 	mnt = mount_one_hugetlbfs(&default_hstate);
1614 	if (IS_ERR(mnt)) {
1615 		error = PTR_ERR(mnt);
1616 		goto out_unreg;
1617 	}
1618 	hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1619 
1620 	/* other hstates are optional */
1621 	i = 0;
1622 	for_each_hstate(h) {
1623 		if (i == default_hstate_idx) {
1624 			i++;
1625 			continue;
1626 		}
1627 
1628 		mnt = mount_one_hugetlbfs(h);
1629 		if (IS_ERR(mnt))
1630 			hugetlbfs_vfsmount[i] = NULL;
1631 		else
1632 			hugetlbfs_vfsmount[i] = mnt;
1633 		i++;
1634 	}
1635 
1636 	return 0;
1637 
1638  out_unreg:
1639 	(void)unregister_filesystem(&hugetlbfs_fs_type);
1640  out_free:
1641 	kmem_cache_destroy(hugetlbfs_inode_cachep);
1642  out:
1643 	return error;
1644 }
1645 fs_initcall(init_hugetlbfs_fs)
1646