1 /* 2 * hugetlbpage-backed filesystem. Based on ramfs. 3 * 4 * Nadia Yvette Chambers, 2002 5 * 6 * Copyright (C) 2002 Linus Torvalds. 7 * License: GPL 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/thread_info.h> 13 #include <asm/current.h> 14 #include <linux/falloc.h> 15 #include <linux/fs.h> 16 #include <linux/mount.h> 17 #include <linux/file.h> 18 #include <linux/kernel.h> 19 #include <linux/writeback.h> 20 #include <linux/pagemap.h> 21 #include <linux/highmem.h> 22 #include <linux/init.h> 23 #include <linux/string.h> 24 #include <linux/capability.h> 25 #include <linux/ctype.h> 26 #include <linux/backing-dev.h> 27 #include <linux/hugetlb.h> 28 #include <linux/pagevec.h> 29 #include <linux/fs_parser.h> 30 #include <linux/mman.h> 31 #include <linux/slab.h> 32 #include <linux/dnotify.h> 33 #include <linux/statfs.h> 34 #include <linux/security.h> 35 #include <linux/magic.h> 36 #include <linux/migrate.h> 37 #include <linux/uio.h> 38 39 #include <linux/uaccess.h> 40 #include <linux/sched/mm.h> 41 42 static const struct address_space_operations hugetlbfs_aops; 43 static const struct file_operations hugetlbfs_file_operations; 44 static const struct inode_operations hugetlbfs_dir_inode_operations; 45 static const struct inode_operations hugetlbfs_inode_operations; 46 47 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT }; 48 49 struct hugetlbfs_fs_context { 50 struct hstate *hstate; 51 unsigned long long max_size_opt; 52 unsigned long long min_size_opt; 53 long max_hpages; 54 long nr_inodes; 55 long min_hpages; 56 enum hugetlbfs_size_type max_val_type; 57 enum hugetlbfs_size_type min_val_type; 58 kuid_t uid; 59 kgid_t gid; 60 umode_t mode; 61 }; 62 63 int sysctl_hugetlb_shm_group; 64 65 enum hugetlb_param { 66 Opt_gid, 67 Opt_min_size, 68 Opt_mode, 69 Opt_nr_inodes, 70 Opt_pagesize, 71 Opt_size, 72 Opt_uid, 73 }; 74 75 static const struct fs_parameter_spec hugetlb_fs_parameters[] = { 76 fsparam_gid ("gid", Opt_gid), 77 fsparam_string("min_size", Opt_min_size), 78 fsparam_u32oct("mode", Opt_mode), 79 fsparam_string("nr_inodes", Opt_nr_inodes), 80 fsparam_string("pagesize", Opt_pagesize), 81 fsparam_string("size", Opt_size), 82 fsparam_uid ("uid", Opt_uid), 83 {} 84 }; 85 86 /* 87 * Mask used when checking the page offset value passed in via system 88 * calls. This value will be converted to a loff_t which is signed. 89 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the 90 * value. The extra bit (- 1 in the shift value) is to take the sign 91 * bit into account. 92 */ 93 #define PGOFF_LOFFT_MAX \ 94 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1))) 95 96 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma) 97 { 98 struct inode *inode = file_inode(file); 99 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 100 loff_t len, vma_len; 101 int ret; 102 struct hstate *h = hstate_file(file); 103 vm_flags_t vm_flags; 104 105 /* 106 * vma address alignment (but not the pgoff alignment) has 107 * already been checked by prepare_hugepage_range. If you add 108 * any error returns here, do so after setting VM_HUGETLB, so 109 * is_vm_hugetlb_page tests below unmap_region go the right 110 * way when do_mmap unwinds (may be important on powerpc 111 * and ia64). 112 */ 113 vm_flags_set(vma, VM_HUGETLB | VM_DONTEXPAND); 114 vma->vm_ops = &hugetlb_vm_ops; 115 116 ret = seal_check_write(info->seals, vma); 117 if (ret) 118 return ret; 119 120 /* 121 * page based offset in vm_pgoff could be sufficiently large to 122 * overflow a loff_t when converted to byte offset. This can 123 * only happen on architectures where sizeof(loff_t) == 124 * sizeof(unsigned long). So, only check in those instances. 125 */ 126 if (sizeof(unsigned long) == sizeof(loff_t)) { 127 if (vma->vm_pgoff & PGOFF_LOFFT_MAX) 128 return -EINVAL; 129 } 130 131 /* must be huge page aligned */ 132 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT)) 133 return -EINVAL; 134 135 vma_len = (loff_t)(vma->vm_end - vma->vm_start); 136 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 137 /* check for overflow */ 138 if (len < vma_len) 139 return -EINVAL; 140 141 inode_lock(inode); 142 file_accessed(file); 143 144 ret = -ENOMEM; 145 146 vm_flags = vma->vm_flags; 147 /* 148 * for SHM_HUGETLB, the pages are reserved in the shmget() call so skip 149 * reserving here. Note: only for SHM hugetlbfs file, the inode 150 * flag S_PRIVATE is set. 151 */ 152 if (inode->i_flags & S_PRIVATE) 153 vm_flags |= VM_NORESERVE; 154 155 if (!hugetlb_reserve_pages(inode, 156 vma->vm_pgoff >> huge_page_order(h), 157 len >> huge_page_shift(h), vma, 158 vm_flags)) 159 goto out; 160 161 ret = 0; 162 if (vma->vm_flags & VM_WRITE && inode->i_size < len) 163 i_size_write(inode, len); 164 out: 165 inode_unlock(inode); 166 167 return ret; 168 } 169 170 /* 171 * Called under mmap_write_lock(mm). 172 */ 173 174 unsigned long 175 hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 176 unsigned long len, unsigned long pgoff, 177 unsigned long flags) 178 { 179 unsigned long addr0 = 0; 180 struct hstate *h = hstate_file(file); 181 182 if (len & ~huge_page_mask(h)) 183 return -EINVAL; 184 if (flags & MAP_FIXED) { 185 if (addr & ~huge_page_mask(h)) 186 return -EINVAL; 187 if (prepare_hugepage_range(file, addr, len)) 188 return -EINVAL; 189 } 190 if (addr) 191 addr0 = ALIGN(addr, huge_page_size(h)); 192 193 return mm_get_unmapped_area_vmflags(current->mm, file, addr0, len, pgoff, 194 flags, 0); 195 } 196 197 /* 198 * Someone wants to read @bytes from a HWPOISON hugetlb @page from @offset. 199 * Returns the maximum number of bytes one can read without touching the 1st raw 200 * HWPOISON subpage. 201 * 202 * The implementation borrows the iteration logic from copy_page_to_iter*. 203 */ 204 static size_t adjust_range_hwpoison(struct page *page, size_t offset, size_t bytes) 205 { 206 size_t n = 0; 207 size_t res = 0; 208 209 /* First subpage to start the loop. */ 210 page = nth_page(page, offset / PAGE_SIZE); 211 offset %= PAGE_SIZE; 212 while (1) { 213 if (is_raw_hwpoison_page_in_hugepage(page)) 214 break; 215 216 /* Safe to read n bytes without touching HWPOISON subpage. */ 217 n = min(bytes, (size_t)PAGE_SIZE - offset); 218 res += n; 219 bytes -= n; 220 if (!bytes || !n) 221 break; 222 offset += n; 223 if (offset == PAGE_SIZE) { 224 page = nth_page(page, 1); 225 offset = 0; 226 } 227 } 228 229 return res; 230 } 231 232 /* 233 * Support for read() - Find the page attached to f_mapping and copy out the 234 * data. This provides functionality similar to filemap_read(). 235 */ 236 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to) 237 { 238 struct file *file = iocb->ki_filp; 239 struct hstate *h = hstate_file(file); 240 struct address_space *mapping = file->f_mapping; 241 struct inode *inode = mapping->host; 242 unsigned long index = iocb->ki_pos >> huge_page_shift(h); 243 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h); 244 unsigned long end_index; 245 loff_t isize; 246 ssize_t retval = 0; 247 248 while (iov_iter_count(to)) { 249 struct folio *folio; 250 size_t nr, copied, want; 251 252 /* nr is the maximum number of bytes to copy from this page */ 253 nr = huge_page_size(h); 254 isize = i_size_read(inode); 255 if (!isize) 256 break; 257 end_index = (isize - 1) >> huge_page_shift(h); 258 if (index > end_index) 259 break; 260 if (index == end_index) { 261 nr = ((isize - 1) & ~huge_page_mask(h)) + 1; 262 if (nr <= offset) 263 break; 264 } 265 nr = nr - offset; 266 267 /* Find the folio */ 268 folio = filemap_lock_hugetlb_folio(h, mapping, index); 269 if (IS_ERR(folio)) { 270 /* 271 * We have a HOLE, zero out the user-buffer for the 272 * length of the hole or request. 273 */ 274 copied = iov_iter_zero(nr, to); 275 } else { 276 folio_unlock(folio); 277 278 if (!folio_test_hwpoison(folio)) 279 want = nr; 280 else { 281 /* 282 * Adjust how many bytes safe to read without 283 * touching the 1st raw HWPOISON subpage after 284 * offset. 285 */ 286 want = adjust_range_hwpoison(&folio->page, offset, nr); 287 if (want == 0) { 288 folio_put(folio); 289 retval = -EIO; 290 break; 291 } 292 } 293 294 /* 295 * We have the folio, copy it to user space buffer. 296 */ 297 copied = copy_folio_to_iter(folio, offset, want, to); 298 folio_put(folio); 299 } 300 offset += copied; 301 retval += copied; 302 if (copied != nr && iov_iter_count(to)) { 303 if (!retval) 304 retval = -EFAULT; 305 break; 306 } 307 index += offset >> huge_page_shift(h); 308 offset &= ~huge_page_mask(h); 309 } 310 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset; 311 return retval; 312 } 313 314 static int hugetlbfs_write_begin(struct file *file, 315 struct address_space *mapping, 316 loff_t pos, unsigned len, 317 struct folio **foliop, void **fsdata) 318 { 319 return -EINVAL; 320 } 321 322 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping, 323 loff_t pos, unsigned len, unsigned copied, 324 struct folio *folio, void *fsdata) 325 { 326 BUG(); 327 return -EINVAL; 328 } 329 330 static void hugetlb_delete_from_page_cache(struct folio *folio) 331 { 332 folio_clear_dirty(folio); 333 folio_clear_uptodate(folio); 334 filemap_remove_folio(folio); 335 } 336 337 /* 338 * Called with i_mmap_rwsem held for inode based vma maps. This makes 339 * sure vma (and vm_mm) will not go away. We also hold the hugetlb fault 340 * mutex for the page in the mapping. So, we can not race with page being 341 * faulted into the vma. 342 */ 343 static bool hugetlb_vma_maps_page(struct vm_area_struct *vma, 344 unsigned long addr, struct page *page) 345 { 346 pte_t *ptep, pte; 347 348 ptep = hugetlb_walk(vma, addr, huge_page_size(hstate_vma(vma))); 349 if (!ptep) 350 return false; 351 352 pte = huge_ptep_get(vma->vm_mm, addr, ptep); 353 if (huge_pte_none(pte) || !pte_present(pte)) 354 return false; 355 356 if (pte_page(pte) == page) 357 return true; 358 359 return false; 360 } 361 362 /* 363 * Can vma_offset_start/vma_offset_end overflow on 32-bit arches? 364 * No, because the interval tree returns us only those vmas 365 * which overlap the truncated area starting at pgoff, 366 * and no vma on a 32-bit arch can span beyond the 4GB. 367 */ 368 static unsigned long vma_offset_start(struct vm_area_struct *vma, pgoff_t start) 369 { 370 unsigned long offset = 0; 371 372 if (vma->vm_pgoff < start) 373 offset = (start - vma->vm_pgoff) << PAGE_SHIFT; 374 375 return vma->vm_start + offset; 376 } 377 378 static unsigned long vma_offset_end(struct vm_area_struct *vma, pgoff_t end) 379 { 380 unsigned long t_end; 381 382 if (!end) 383 return vma->vm_end; 384 385 t_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) + vma->vm_start; 386 if (t_end > vma->vm_end) 387 t_end = vma->vm_end; 388 return t_end; 389 } 390 391 /* 392 * Called with hugetlb fault mutex held. Therefore, no more mappings to 393 * this folio can be created while executing the routine. 394 */ 395 static void hugetlb_unmap_file_folio(struct hstate *h, 396 struct address_space *mapping, 397 struct folio *folio, pgoff_t index) 398 { 399 struct rb_root_cached *root = &mapping->i_mmap; 400 struct hugetlb_vma_lock *vma_lock; 401 struct page *page = &folio->page; 402 struct vm_area_struct *vma; 403 unsigned long v_start; 404 unsigned long v_end; 405 pgoff_t start, end; 406 407 start = index * pages_per_huge_page(h); 408 end = (index + 1) * pages_per_huge_page(h); 409 410 i_mmap_lock_write(mapping); 411 retry: 412 vma_lock = NULL; 413 vma_interval_tree_foreach(vma, root, start, end - 1) { 414 v_start = vma_offset_start(vma, start); 415 v_end = vma_offset_end(vma, end); 416 417 if (!hugetlb_vma_maps_page(vma, v_start, page)) 418 continue; 419 420 if (!hugetlb_vma_trylock_write(vma)) { 421 vma_lock = vma->vm_private_data; 422 /* 423 * If we can not get vma lock, we need to drop 424 * immap_sema and take locks in order. First, 425 * take a ref on the vma_lock structure so that 426 * we can be guaranteed it will not go away when 427 * dropping immap_sema. 428 */ 429 kref_get(&vma_lock->refs); 430 break; 431 } 432 433 unmap_hugepage_range(vma, v_start, v_end, NULL, 434 ZAP_FLAG_DROP_MARKER); 435 hugetlb_vma_unlock_write(vma); 436 } 437 438 i_mmap_unlock_write(mapping); 439 440 if (vma_lock) { 441 /* 442 * Wait on vma_lock. We know it is still valid as we have 443 * a reference. We must 'open code' vma locking as we do 444 * not know if vma_lock is still attached to vma. 445 */ 446 down_write(&vma_lock->rw_sema); 447 i_mmap_lock_write(mapping); 448 449 vma = vma_lock->vma; 450 if (!vma) { 451 /* 452 * If lock is no longer attached to vma, then just 453 * unlock, drop our reference and retry looking for 454 * other vmas. 455 */ 456 up_write(&vma_lock->rw_sema); 457 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 458 goto retry; 459 } 460 461 /* 462 * vma_lock is still attached to vma. Check to see if vma 463 * still maps page and if so, unmap. 464 */ 465 v_start = vma_offset_start(vma, start); 466 v_end = vma_offset_end(vma, end); 467 if (hugetlb_vma_maps_page(vma, v_start, page)) 468 unmap_hugepage_range(vma, v_start, v_end, NULL, 469 ZAP_FLAG_DROP_MARKER); 470 471 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 472 hugetlb_vma_unlock_write(vma); 473 474 goto retry; 475 } 476 } 477 478 static void 479 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end, 480 zap_flags_t zap_flags) 481 { 482 struct vm_area_struct *vma; 483 484 /* 485 * end == 0 indicates that the entire range after start should be 486 * unmapped. Note, end is exclusive, whereas the interval tree takes 487 * an inclusive "last". 488 */ 489 vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) { 490 unsigned long v_start; 491 unsigned long v_end; 492 493 if (!hugetlb_vma_trylock_write(vma)) 494 continue; 495 496 v_start = vma_offset_start(vma, start); 497 v_end = vma_offset_end(vma, end); 498 499 unmap_hugepage_range(vma, v_start, v_end, NULL, zap_flags); 500 501 /* 502 * Note that vma lock only exists for shared/non-private 503 * vmas. Therefore, lock is not held when calling 504 * unmap_hugepage_range for private vmas. 505 */ 506 hugetlb_vma_unlock_write(vma); 507 } 508 } 509 510 /* 511 * Called with hugetlb fault mutex held. 512 * Returns true if page was actually removed, false otherwise. 513 */ 514 static bool remove_inode_single_folio(struct hstate *h, struct inode *inode, 515 struct address_space *mapping, 516 struct folio *folio, pgoff_t index, 517 bool truncate_op) 518 { 519 bool ret = false; 520 521 /* 522 * If folio is mapped, it was faulted in after being 523 * unmapped in caller. Unmap (again) while holding 524 * the fault mutex. The mutex will prevent faults 525 * until we finish removing the folio. 526 */ 527 if (unlikely(folio_mapped(folio))) 528 hugetlb_unmap_file_folio(h, mapping, folio, index); 529 530 folio_lock(folio); 531 /* 532 * We must remove the folio from page cache before removing 533 * the region/ reserve map (hugetlb_unreserve_pages). In 534 * rare out of memory conditions, removal of the region/reserve 535 * map could fail. Correspondingly, the subpool and global 536 * reserve usage count can need to be adjusted. 537 */ 538 VM_BUG_ON_FOLIO(folio_test_hugetlb_restore_reserve(folio), folio); 539 hugetlb_delete_from_page_cache(folio); 540 ret = true; 541 if (!truncate_op) { 542 if (unlikely(hugetlb_unreserve_pages(inode, index, 543 index + 1, 1))) 544 hugetlb_fix_reserve_counts(inode); 545 } 546 547 folio_unlock(folio); 548 return ret; 549 } 550 551 /* 552 * remove_inode_hugepages handles two distinct cases: truncation and hole 553 * punch. There are subtle differences in operation for each case. 554 * 555 * truncation is indicated by end of range being LLONG_MAX 556 * In this case, we first scan the range and release found pages. 557 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserve 558 * maps and global counts. Page faults can race with truncation. 559 * During faults, hugetlb_no_page() checks i_size before page allocation, 560 * and again after obtaining page table lock. It will 'back out' 561 * allocations in the truncated range. 562 * hole punch is indicated if end is not LLONG_MAX 563 * In the hole punch case we scan the range and release found pages. 564 * Only when releasing a page is the associated region/reserve map 565 * deleted. The region/reserve map for ranges without associated 566 * pages are not modified. Page faults can race with hole punch. 567 * This is indicated if we find a mapped page. 568 * Note: If the passed end of range value is beyond the end of file, but 569 * not LLONG_MAX this routine still performs a hole punch operation. 570 */ 571 static void remove_inode_hugepages(struct inode *inode, loff_t lstart, 572 loff_t lend) 573 { 574 struct hstate *h = hstate_inode(inode); 575 struct address_space *mapping = &inode->i_data; 576 const pgoff_t end = lend >> PAGE_SHIFT; 577 struct folio_batch fbatch; 578 pgoff_t next, index; 579 int i, freed = 0; 580 bool truncate_op = (lend == LLONG_MAX); 581 582 folio_batch_init(&fbatch); 583 next = lstart >> PAGE_SHIFT; 584 while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) { 585 for (i = 0; i < folio_batch_count(&fbatch); ++i) { 586 struct folio *folio = fbatch.folios[i]; 587 u32 hash = 0; 588 589 index = folio->index >> huge_page_order(h); 590 hash = hugetlb_fault_mutex_hash(mapping, index); 591 mutex_lock(&hugetlb_fault_mutex_table[hash]); 592 593 /* 594 * Remove folio that was part of folio_batch. 595 */ 596 if (remove_inode_single_folio(h, inode, mapping, folio, 597 index, truncate_op)) 598 freed++; 599 600 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 601 } 602 folio_batch_release(&fbatch); 603 cond_resched(); 604 } 605 606 if (truncate_op) 607 (void)hugetlb_unreserve_pages(inode, 608 lstart >> huge_page_shift(h), 609 LONG_MAX, freed); 610 } 611 612 static void hugetlbfs_evict_inode(struct inode *inode) 613 { 614 struct resv_map *resv_map; 615 616 remove_inode_hugepages(inode, 0, LLONG_MAX); 617 618 /* 619 * Get the resv_map from the address space embedded in the inode. 620 * This is the address space which points to any resv_map allocated 621 * at inode creation time. If this is a device special inode, 622 * i_mapping may not point to the original address space. 623 */ 624 resv_map = (struct resv_map *)(&inode->i_data)->i_private_data; 625 /* Only regular and link inodes have associated reserve maps */ 626 if (resv_map) 627 resv_map_release(&resv_map->refs); 628 clear_inode(inode); 629 } 630 631 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset) 632 { 633 pgoff_t pgoff; 634 struct address_space *mapping = inode->i_mapping; 635 struct hstate *h = hstate_inode(inode); 636 637 BUG_ON(offset & ~huge_page_mask(h)); 638 pgoff = offset >> PAGE_SHIFT; 639 640 i_size_write(inode, offset); 641 i_mmap_lock_write(mapping); 642 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 643 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0, 644 ZAP_FLAG_DROP_MARKER); 645 i_mmap_unlock_write(mapping); 646 remove_inode_hugepages(inode, offset, LLONG_MAX); 647 } 648 649 static void hugetlbfs_zero_partial_page(struct hstate *h, 650 struct address_space *mapping, 651 loff_t start, 652 loff_t end) 653 { 654 pgoff_t idx = start >> huge_page_shift(h); 655 struct folio *folio; 656 657 folio = filemap_lock_hugetlb_folio(h, mapping, idx); 658 if (IS_ERR(folio)) 659 return; 660 661 start = start & ~huge_page_mask(h); 662 end = end & ~huge_page_mask(h); 663 if (!end) 664 end = huge_page_size(h); 665 666 folio_zero_segment(folio, (size_t)start, (size_t)end); 667 668 folio_unlock(folio); 669 folio_put(folio); 670 } 671 672 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 673 { 674 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 675 struct address_space *mapping = inode->i_mapping; 676 struct hstate *h = hstate_inode(inode); 677 loff_t hpage_size = huge_page_size(h); 678 loff_t hole_start, hole_end; 679 680 /* 681 * hole_start and hole_end indicate the full pages within the hole. 682 */ 683 hole_start = round_up(offset, hpage_size); 684 hole_end = round_down(offset + len, hpage_size); 685 686 inode_lock(inode); 687 688 /* protected by i_rwsem */ 689 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 690 inode_unlock(inode); 691 return -EPERM; 692 } 693 694 i_mmap_lock_write(mapping); 695 696 /* If range starts before first full page, zero partial page. */ 697 if (offset < hole_start) 698 hugetlbfs_zero_partial_page(h, mapping, 699 offset, min(offset + len, hole_start)); 700 701 /* Unmap users of full pages in the hole. */ 702 if (hole_end > hole_start) { 703 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 704 hugetlb_vmdelete_list(&mapping->i_mmap, 705 hole_start >> PAGE_SHIFT, 706 hole_end >> PAGE_SHIFT, 0); 707 } 708 709 /* If range extends beyond last full page, zero partial page. */ 710 if ((offset + len) > hole_end && (offset + len) > hole_start) 711 hugetlbfs_zero_partial_page(h, mapping, 712 hole_end, offset + len); 713 714 i_mmap_unlock_write(mapping); 715 716 /* Remove full pages from the file. */ 717 if (hole_end > hole_start) 718 remove_inode_hugepages(inode, hole_start, hole_end); 719 720 inode_unlock(inode); 721 722 return 0; 723 } 724 725 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset, 726 loff_t len) 727 { 728 struct inode *inode = file_inode(file); 729 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 730 struct address_space *mapping = inode->i_mapping; 731 struct hstate *h = hstate_inode(inode); 732 struct vm_area_struct pseudo_vma; 733 struct mm_struct *mm = current->mm; 734 loff_t hpage_size = huge_page_size(h); 735 unsigned long hpage_shift = huge_page_shift(h); 736 pgoff_t start, index, end; 737 int error; 738 u32 hash; 739 740 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 741 return -EOPNOTSUPP; 742 743 if (mode & FALLOC_FL_PUNCH_HOLE) 744 return hugetlbfs_punch_hole(inode, offset, len); 745 746 /* 747 * Default preallocate case. 748 * For this range, start is rounded down and end is rounded up 749 * as well as being converted to page offsets. 750 */ 751 start = offset >> hpage_shift; 752 end = (offset + len + hpage_size - 1) >> hpage_shift; 753 754 inode_lock(inode); 755 756 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 757 error = inode_newsize_ok(inode, offset + len); 758 if (error) 759 goto out; 760 761 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 762 error = -EPERM; 763 goto out; 764 } 765 766 /* 767 * Initialize a pseudo vma as this is required by the huge page 768 * allocation routines. 769 */ 770 vma_init(&pseudo_vma, mm); 771 vm_flags_init(&pseudo_vma, VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 772 pseudo_vma.vm_file = file; 773 774 for (index = start; index < end; index++) { 775 /* 776 * This is supposed to be the vaddr where the page is being 777 * faulted in, but we have no vaddr here. 778 */ 779 struct folio *folio; 780 unsigned long addr; 781 782 cond_resched(); 783 784 /* 785 * fallocate(2) manpage permits EINTR; we may have been 786 * interrupted because we are using up too much memory. 787 */ 788 if (signal_pending(current)) { 789 error = -EINTR; 790 break; 791 } 792 793 /* addr is the offset within the file (zero based) */ 794 addr = index * hpage_size; 795 796 /* mutex taken here, fault path and hole punch */ 797 hash = hugetlb_fault_mutex_hash(mapping, index); 798 mutex_lock(&hugetlb_fault_mutex_table[hash]); 799 800 /* See if already present in mapping to avoid alloc/free */ 801 folio = filemap_get_folio(mapping, index << huge_page_order(h)); 802 if (!IS_ERR(folio)) { 803 folio_put(folio); 804 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 805 continue; 806 } 807 808 /* 809 * Allocate folio without setting the avoid_reserve argument. 810 * There certainly are no reserves associated with the 811 * pseudo_vma. However, there could be shared mappings with 812 * reserves for the file at the inode level. If we fallocate 813 * folios in these areas, we need to consume the reserves 814 * to keep reservation accounting consistent. 815 */ 816 folio = alloc_hugetlb_folio(&pseudo_vma, addr, 0); 817 if (IS_ERR(folio)) { 818 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 819 error = PTR_ERR(folio); 820 goto out; 821 } 822 folio_zero_user(folio, ALIGN_DOWN(addr, hpage_size)); 823 __folio_mark_uptodate(folio); 824 error = hugetlb_add_to_page_cache(folio, mapping, index); 825 if (unlikely(error)) { 826 restore_reserve_on_error(h, &pseudo_vma, addr, folio); 827 folio_put(folio); 828 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 829 goto out; 830 } 831 832 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 833 834 folio_set_hugetlb_migratable(folio); 835 /* 836 * folio_unlock because locked by hugetlb_add_to_page_cache() 837 * folio_put() due to reference from alloc_hugetlb_folio() 838 */ 839 folio_unlock(folio); 840 folio_put(folio); 841 } 842 843 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 844 i_size_write(inode, offset + len); 845 inode_set_ctime_current(inode); 846 out: 847 inode_unlock(inode); 848 return error; 849 } 850 851 static int hugetlbfs_setattr(struct mnt_idmap *idmap, 852 struct dentry *dentry, struct iattr *attr) 853 { 854 struct inode *inode = d_inode(dentry); 855 struct hstate *h = hstate_inode(inode); 856 int error; 857 unsigned int ia_valid = attr->ia_valid; 858 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 859 860 error = setattr_prepare(idmap, dentry, attr); 861 if (error) 862 return error; 863 864 if (ia_valid & ATTR_SIZE) { 865 loff_t oldsize = inode->i_size; 866 loff_t newsize = attr->ia_size; 867 868 if (newsize & ~huge_page_mask(h)) 869 return -EINVAL; 870 /* protected by i_rwsem */ 871 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 872 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 873 return -EPERM; 874 hugetlb_vmtruncate(inode, newsize); 875 } 876 877 setattr_copy(idmap, inode, attr); 878 mark_inode_dirty(inode); 879 return 0; 880 } 881 882 static struct inode *hugetlbfs_get_root(struct super_block *sb, 883 struct hugetlbfs_fs_context *ctx) 884 { 885 struct inode *inode; 886 887 inode = new_inode(sb); 888 if (inode) { 889 inode->i_ino = get_next_ino(); 890 inode->i_mode = S_IFDIR | ctx->mode; 891 inode->i_uid = ctx->uid; 892 inode->i_gid = ctx->gid; 893 simple_inode_init_ts(inode); 894 inode->i_op = &hugetlbfs_dir_inode_operations; 895 inode->i_fop = &simple_dir_operations; 896 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 897 inc_nlink(inode); 898 lockdep_annotate_inode_mutex_key(inode); 899 } 900 return inode; 901 } 902 903 /* 904 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never 905 * be taken from reclaim -- unlike regular filesystems. This needs an 906 * annotation because huge_pmd_share() does an allocation under hugetlb's 907 * i_mmap_rwsem. 908 */ 909 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key; 910 911 static struct inode *hugetlbfs_get_inode(struct super_block *sb, 912 struct mnt_idmap *idmap, 913 struct inode *dir, 914 umode_t mode, dev_t dev) 915 { 916 struct inode *inode; 917 struct resv_map *resv_map = NULL; 918 919 /* 920 * Reserve maps are only needed for inodes that can have associated 921 * page allocations. 922 */ 923 if (S_ISREG(mode) || S_ISLNK(mode)) { 924 resv_map = resv_map_alloc(); 925 if (!resv_map) 926 return NULL; 927 } 928 929 inode = new_inode(sb); 930 if (inode) { 931 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 932 933 inode->i_ino = get_next_ino(); 934 inode_init_owner(idmap, inode, dir, mode); 935 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem, 936 &hugetlbfs_i_mmap_rwsem_key); 937 inode->i_mapping->a_ops = &hugetlbfs_aops; 938 simple_inode_init_ts(inode); 939 inode->i_mapping->i_private_data = resv_map; 940 info->seals = F_SEAL_SEAL; 941 switch (mode & S_IFMT) { 942 default: 943 init_special_inode(inode, mode, dev); 944 break; 945 case S_IFREG: 946 inode->i_op = &hugetlbfs_inode_operations; 947 inode->i_fop = &hugetlbfs_file_operations; 948 break; 949 case S_IFDIR: 950 inode->i_op = &hugetlbfs_dir_inode_operations; 951 inode->i_fop = &simple_dir_operations; 952 953 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 954 inc_nlink(inode); 955 break; 956 case S_IFLNK: 957 inode->i_op = &page_symlink_inode_operations; 958 inode_nohighmem(inode); 959 break; 960 } 961 lockdep_annotate_inode_mutex_key(inode); 962 } else { 963 if (resv_map) 964 kref_put(&resv_map->refs, resv_map_release); 965 } 966 967 return inode; 968 } 969 970 /* 971 * File creation. Allocate an inode, and we're done.. 972 */ 973 static int hugetlbfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 974 struct dentry *dentry, umode_t mode, dev_t dev) 975 { 976 struct inode *inode; 977 978 inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, dev); 979 if (!inode) 980 return -ENOSPC; 981 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 982 d_instantiate(dentry, inode); 983 dget(dentry);/* Extra count - pin the dentry in core */ 984 return 0; 985 } 986 987 static int hugetlbfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 988 struct dentry *dentry, umode_t mode) 989 { 990 int retval = hugetlbfs_mknod(idmap, dir, dentry, 991 mode | S_IFDIR, 0); 992 if (!retval) 993 inc_nlink(dir); 994 return retval; 995 } 996 997 static int hugetlbfs_create(struct mnt_idmap *idmap, 998 struct inode *dir, struct dentry *dentry, 999 umode_t mode, bool excl) 1000 { 1001 return hugetlbfs_mknod(idmap, dir, dentry, mode | S_IFREG, 0); 1002 } 1003 1004 static int hugetlbfs_tmpfile(struct mnt_idmap *idmap, 1005 struct inode *dir, struct file *file, 1006 umode_t mode) 1007 { 1008 struct inode *inode; 1009 1010 inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode | S_IFREG, 0); 1011 if (!inode) 1012 return -ENOSPC; 1013 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 1014 d_tmpfile(file, inode); 1015 return finish_open_simple(file, 0); 1016 } 1017 1018 static int hugetlbfs_symlink(struct mnt_idmap *idmap, 1019 struct inode *dir, struct dentry *dentry, 1020 const char *symname) 1021 { 1022 const umode_t mode = S_IFLNK|S_IRWXUGO; 1023 struct inode *inode; 1024 int error = -ENOSPC; 1025 1026 inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, 0); 1027 if (inode) { 1028 int l = strlen(symname)+1; 1029 error = page_symlink(inode, symname, l); 1030 if (!error) { 1031 d_instantiate(dentry, inode); 1032 dget(dentry); 1033 } else 1034 iput(inode); 1035 } 1036 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 1037 1038 return error; 1039 } 1040 1041 #ifdef CONFIG_MIGRATION 1042 static int hugetlbfs_migrate_folio(struct address_space *mapping, 1043 struct folio *dst, struct folio *src, 1044 enum migrate_mode mode) 1045 { 1046 int rc; 1047 1048 rc = migrate_huge_page_move_mapping(mapping, dst, src); 1049 if (rc != MIGRATEPAGE_SUCCESS) 1050 return rc; 1051 1052 if (hugetlb_folio_subpool(src)) { 1053 hugetlb_set_folio_subpool(dst, 1054 hugetlb_folio_subpool(src)); 1055 hugetlb_set_folio_subpool(src, NULL); 1056 } 1057 1058 folio_migrate_flags(dst, src); 1059 1060 return MIGRATEPAGE_SUCCESS; 1061 } 1062 #else 1063 #define hugetlbfs_migrate_folio NULL 1064 #endif 1065 1066 static int hugetlbfs_error_remove_folio(struct address_space *mapping, 1067 struct folio *folio) 1068 { 1069 return 0; 1070 } 1071 1072 /* 1073 * Display the mount options in /proc/mounts. 1074 */ 1075 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root) 1076 { 1077 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb); 1078 struct hugepage_subpool *spool = sbinfo->spool; 1079 unsigned long hpage_size = huge_page_size(sbinfo->hstate); 1080 unsigned hpage_shift = huge_page_shift(sbinfo->hstate); 1081 char mod; 1082 1083 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 1084 seq_printf(m, ",uid=%u", 1085 from_kuid_munged(&init_user_ns, sbinfo->uid)); 1086 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 1087 seq_printf(m, ",gid=%u", 1088 from_kgid_munged(&init_user_ns, sbinfo->gid)); 1089 if (sbinfo->mode != 0755) 1090 seq_printf(m, ",mode=%o", sbinfo->mode); 1091 if (sbinfo->max_inodes != -1) 1092 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes); 1093 1094 hpage_size /= 1024; 1095 mod = 'K'; 1096 if (hpage_size >= 1024) { 1097 hpage_size /= 1024; 1098 mod = 'M'; 1099 } 1100 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod); 1101 if (spool) { 1102 if (spool->max_hpages != -1) 1103 seq_printf(m, ",size=%llu", 1104 (unsigned long long)spool->max_hpages << hpage_shift); 1105 if (spool->min_hpages != -1) 1106 seq_printf(m, ",min_size=%llu", 1107 (unsigned long long)spool->min_hpages << hpage_shift); 1108 } 1109 return 0; 1110 } 1111 1112 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf) 1113 { 1114 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb); 1115 struct hstate *h = hstate_inode(d_inode(dentry)); 1116 u64 id = huge_encode_dev(dentry->d_sb->s_dev); 1117 1118 buf->f_fsid = u64_to_fsid(id); 1119 buf->f_type = HUGETLBFS_MAGIC; 1120 buf->f_bsize = huge_page_size(h); 1121 if (sbinfo) { 1122 spin_lock(&sbinfo->stat_lock); 1123 /* If no limits set, just report 0 or -1 for max/free/used 1124 * blocks, like simple_statfs() */ 1125 if (sbinfo->spool) { 1126 long free_pages; 1127 1128 spin_lock_irq(&sbinfo->spool->lock); 1129 buf->f_blocks = sbinfo->spool->max_hpages; 1130 free_pages = sbinfo->spool->max_hpages 1131 - sbinfo->spool->used_hpages; 1132 buf->f_bavail = buf->f_bfree = free_pages; 1133 spin_unlock_irq(&sbinfo->spool->lock); 1134 buf->f_files = sbinfo->max_inodes; 1135 buf->f_ffree = sbinfo->free_inodes; 1136 } 1137 spin_unlock(&sbinfo->stat_lock); 1138 } 1139 buf->f_namelen = NAME_MAX; 1140 return 0; 1141 } 1142 1143 static void hugetlbfs_put_super(struct super_block *sb) 1144 { 1145 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb); 1146 1147 if (sbi) { 1148 sb->s_fs_info = NULL; 1149 1150 if (sbi->spool) 1151 hugepage_put_subpool(sbi->spool); 1152 1153 kfree(sbi); 1154 } 1155 } 1156 1157 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1158 { 1159 if (sbinfo->free_inodes >= 0) { 1160 spin_lock(&sbinfo->stat_lock); 1161 if (unlikely(!sbinfo->free_inodes)) { 1162 spin_unlock(&sbinfo->stat_lock); 1163 return 0; 1164 } 1165 sbinfo->free_inodes--; 1166 spin_unlock(&sbinfo->stat_lock); 1167 } 1168 1169 return 1; 1170 } 1171 1172 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1173 { 1174 if (sbinfo->free_inodes >= 0) { 1175 spin_lock(&sbinfo->stat_lock); 1176 sbinfo->free_inodes++; 1177 spin_unlock(&sbinfo->stat_lock); 1178 } 1179 } 1180 1181 1182 static struct kmem_cache *hugetlbfs_inode_cachep; 1183 1184 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb) 1185 { 1186 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb); 1187 struct hugetlbfs_inode_info *p; 1188 1189 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo))) 1190 return NULL; 1191 p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL); 1192 if (unlikely(!p)) { 1193 hugetlbfs_inc_free_inodes(sbinfo); 1194 return NULL; 1195 } 1196 return &p->vfs_inode; 1197 } 1198 1199 static void hugetlbfs_free_inode(struct inode *inode) 1200 { 1201 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode)); 1202 } 1203 1204 static void hugetlbfs_destroy_inode(struct inode *inode) 1205 { 1206 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb)); 1207 } 1208 1209 static const struct address_space_operations hugetlbfs_aops = { 1210 .write_begin = hugetlbfs_write_begin, 1211 .write_end = hugetlbfs_write_end, 1212 .dirty_folio = noop_dirty_folio, 1213 .migrate_folio = hugetlbfs_migrate_folio, 1214 .error_remove_folio = hugetlbfs_error_remove_folio, 1215 }; 1216 1217 1218 static void init_once(void *foo) 1219 { 1220 struct hugetlbfs_inode_info *ei = foo; 1221 1222 inode_init_once(&ei->vfs_inode); 1223 } 1224 1225 static const struct file_operations hugetlbfs_file_operations = { 1226 .read_iter = hugetlbfs_read_iter, 1227 .mmap = hugetlbfs_file_mmap, 1228 .fsync = noop_fsync, 1229 .get_unmapped_area = hugetlb_get_unmapped_area, 1230 .llseek = default_llseek, 1231 .fallocate = hugetlbfs_fallocate, 1232 .fop_flags = FOP_HUGE_PAGES, 1233 }; 1234 1235 static const struct inode_operations hugetlbfs_dir_inode_operations = { 1236 .create = hugetlbfs_create, 1237 .lookup = simple_lookup, 1238 .link = simple_link, 1239 .unlink = simple_unlink, 1240 .symlink = hugetlbfs_symlink, 1241 .mkdir = hugetlbfs_mkdir, 1242 .rmdir = simple_rmdir, 1243 .mknod = hugetlbfs_mknod, 1244 .rename = simple_rename, 1245 .setattr = hugetlbfs_setattr, 1246 .tmpfile = hugetlbfs_tmpfile, 1247 }; 1248 1249 static const struct inode_operations hugetlbfs_inode_operations = { 1250 .setattr = hugetlbfs_setattr, 1251 }; 1252 1253 static const struct super_operations hugetlbfs_ops = { 1254 .alloc_inode = hugetlbfs_alloc_inode, 1255 .free_inode = hugetlbfs_free_inode, 1256 .destroy_inode = hugetlbfs_destroy_inode, 1257 .evict_inode = hugetlbfs_evict_inode, 1258 .statfs = hugetlbfs_statfs, 1259 .put_super = hugetlbfs_put_super, 1260 .show_options = hugetlbfs_show_options, 1261 }; 1262 1263 /* 1264 * Convert size option passed from command line to number of huge pages 1265 * in the pool specified by hstate. Size option could be in bytes 1266 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT). 1267 */ 1268 static long 1269 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt, 1270 enum hugetlbfs_size_type val_type) 1271 { 1272 if (val_type == NO_SIZE) 1273 return -1; 1274 1275 if (val_type == SIZE_PERCENT) { 1276 size_opt <<= huge_page_shift(h); 1277 size_opt *= h->max_huge_pages; 1278 do_div(size_opt, 100); 1279 } 1280 1281 size_opt >>= huge_page_shift(h); 1282 return size_opt; 1283 } 1284 1285 /* 1286 * Parse one mount parameter. 1287 */ 1288 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param) 1289 { 1290 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1291 struct fs_parse_result result; 1292 struct hstate *h; 1293 char *rest; 1294 unsigned long ps; 1295 int opt; 1296 1297 opt = fs_parse(fc, hugetlb_fs_parameters, param, &result); 1298 if (opt < 0) 1299 return opt; 1300 1301 switch (opt) { 1302 case Opt_uid: 1303 ctx->uid = result.uid; 1304 return 0; 1305 1306 case Opt_gid: 1307 ctx->gid = result.gid; 1308 return 0; 1309 1310 case Opt_mode: 1311 ctx->mode = result.uint_32 & 01777U; 1312 return 0; 1313 1314 case Opt_size: 1315 /* memparse() will accept a K/M/G without a digit */ 1316 if (!param->string || !isdigit(param->string[0])) 1317 goto bad_val; 1318 ctx->max_size_opt = memparse(param->string, &rest); 1319 ctx->max_val_type = SIZE_STD; 1320 if (*rest == '%') 1321 ctx->max_val_type = SIZE_PERCENT; 1322 return 0; 1323 1324 case Opt_nr_inodes: 1325 /* memparse() will accept a K/M/G without a digit */ 1326 if (!param->string || !isdigit(param->string[0])) 1327 goto bad_val; 1328 ctx->nr_inodes = memparse(param->string, &rest); 1329 return 0; 1330 1331 case Opt_pagesize: 1332 ps = memparse(param->string, &rest); 1333 h = size_to_hstate(ps); 1334 if (!h) { 1335 pr_err("Unsupported page size %lu MB\n", ps / SZ_1M); 1336 return -EINVAL; 1337 } 1338 ctx->hstate = h; 1339 return 0; 1340 1341 case Opt_min_size: 1342 /* memparse() will accept a K/M/G without a digit */ 1343 if (!param->string || !isdigit(param->string[0])) 1344 goto bad_val; 1345 ctx->min_size_opt = memparse(param->string, &rest); 1346 ctx->min_val_type = SIZE_STD; 1347 if (*rest == '%') 1348 ctx->min_val_type = SIZE_PERCENT; 1349 return 0; 1350 1351 default: 1352 return -EINVAL; 1353 } 1354 1355 bad_val: 1356 return invalfc(fc, "Bad value '%s' for mount option '%s'\n", 1357 param->string, param->key); 1358 } 1359 1360 /* 1361 * Validate the parsed options. 1362 */ 1363 static int hugetlbfs_validate(struct fs_context *fc) 1364 { 1365 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1366 1367 /* 1368 * Use huge page pool size (in hstate) to convert the size 1369 * options to number of huge pages. If NO_SIZE, -1 is returned. 1370 */ 1371 ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1372 ctx->max_size_opt, 1373 ctx->max_val_type); 1374 ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1375 ctx->min_size_opt, 1376 ctx->min_val_type); 1377 1378 /* 1379 * If max_size was specified, then min_size must be smaller 1380 */ 1381 if (ctx->max_val_type > NO_SIZE && 1382 ctx->min_hpages > ctx->max_hpages) { 1383 pr_err("Minimum size can not be greater than maximum size\n"); 1384 return -EINVAL; 1385 } 1386 1387 return 0; 1388 } 1389 1390 static int 1391 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc) 1392 { 1393 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1394 struct hugetlbfs_sb_info *sbinfo; 1395 1396 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL); 1397 if (!sbinfo) 1398 return -ENOMEM; 1399 sb->s_fs_info = sbinfo; 1400 spin_lock_init(&sbinfo->stat_lock); 1401 sbinfo->hstate = ctx->hstate; 1402 sbinfo->max_inodes = ctx->nr_inodes; 1403 sbinfo->free_inodes = ctx->nr_inodes; 1404 sbinfo->spool = NULL; 1405 sbinfo->uid = ctx->uid; 1406 sbinfo->gid = ctx->gid; 1407 sbinfo->mode = ctx->mode; 1408 1409 /* 1410 * Allocate and initialize subpool if maximum or minimum size is 1411 * specified. Any needed reservations (for minimum size) are taken 1412 * when the subpool is created. 1413 */ 1414 if (ctx->max_hpages != -1 || ctx->min_hpages != -1) { 1415 sbinfo->spool = hugepage_new_subpool(ctx->hstate, 1416 ctx->max_hpages, 1417 ctx->min_hpages); 1418 if (!sbinfo->spool) 1419 goto out_free; 1420 } 1421 sb->s_maxbytes = MAX_LFS_FILESIZE; 1422 sb->s_blocksize = huge_page_size(ctx->hstate); 1423 sb->s_blocksize_bits = huge_page_shift(ctx->hstate); 1424 sb->s_magic = HUGETLBFS_MAGIC; 1425 sb->s_op = &hugetlbfs_ops; 1426 sb->s_time_gran = 1; 1427 1428 /* 1429 * Due to the special and limited functionality of hugetlbfs, it does 1430 * not work well as a stacking filesystem. 1431 */ 1432 sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH; 1433 sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx)); 1434 if (!sb->s_root) 1435 goto out_free; 1436 return 0; 1437 out_free: 1438 kfree(sbinfo->spool); 1439 kfree(sbinfo); 1440 return -ENOMEM; 1441 } 1442 1443 static int hugetlbfs_get_tree(struct fs_context *fc) 1444 { 1445 int err = hugetlbfs_validate(fc); 1446 if (err) 1447 return err; 1448 return get_tree_nodev(fc, hugetlbfs_fill_super); 1449 } 1450 1451 static void hugetlbfs_fs_context_free(struct fs_context *fc) 1452 { 1453 kfree(fc->fs_private); 1454 } 1455 1456 static const struct fs_context_operations hugetlbfs_fs_context_ops = { 1457 .free = hugetlbfs_fs_context_free, 1458 .parse_param = hugetlbfs_parse_param, 1459 .get_tree = hugetlbfs_get_tree, 1460 }; 1461 1462 static int hugetlbfs_init_fs_context(struct fs_context *fc) 1463 { 1464 struct hugetlbfs_fs_context *ctx; 1465 1466 ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL); 1467 if (!ctx) 1468 return -ENOMEM; 1469 1470 ctx->max_hpages = -1; /* No limit on size by default */ 1471 ctx->nr_inodes = -1; /* No limit on number of inodes by default */ 1472 ctx->uid = current_fsuid(); 1473 ctx->gid = current_fsgid(); 1474 ctx->mode = 0755; 1475 ctx->hstate = &default_hstate; 1476 ctx->min_hpages = -1; /* No default minimum size */ 1477 ctx->max_val_type = NO_SIZE; 1478 ctx->min_val_type = NO_SIZE; 1479 fc->fs_private = ctx; 1480 fc->ops = &hugetlbfs_fs_context_ops; 1481 return 0; 1482 } 1483 1484 static struct file_system_type hugetlbfs_fs_type = { 1485 .name = "hugetlbfs", 1486 .init_fs_context = hugetlbfs_init_fs_context, 1487 .parameters = hugetlb_fs_parameters, 1488 .kill_sb = kill_litter_super, 1489 .fs_flags = FS_ALLOW_IDMAP, 1490 }; 1491 1492 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE]; 1493 1494 static int can_do_hugetlb_shm(void) 1495 { 1496 kgid_t shm_group; 1497 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group); 1498 return capable(CAP_IPC_LOCK) || in_group_p(shm_group); 1499 } 1500 1501 static int get_hstate_idx(int page_size_log) 1502 { 1503 struct hstate *h = hstate_sizelog(page_size_log); 1504 1505 if (!h) 1506 return -1; 1507 return hstate_index(h); 1508 } 1509 1510 /* 1511 * Note that size should be aligned to proper hugepage size in caller side, 1512 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended. 1513 */ 1514 struct file *hugetlb_file_setup(const char *name, size_t size, 1515 vm_flags_t acctflag, int creat_flags, 1516 int page_size_log) 1517 { 1518 struct inode *inode; 1519 struct vfsmount *mnt; 1520 int hstate_idx; 1521 struct file *file; 1522 1523 hstate_idx = get_hstate_idx(page_size_log); 1524 if (hstate_idx < 0) 1525 return ERR_PTR(-ENODEV); 1526 1527 mnt = hugetlbfs_vfsmount[hstate_idx]; 1528 if (!mnt) 1529 return ERR_PTR(-ENOENT); 1530 1531 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) { 1532 struct ucounts *ucounts = current_ucounts(); 1533 1534 if (user_shm_lock(size, ucounts)) { 1535 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n", 1536 current->comm, current->pid); 1537 user_shm_unlock(size, ucounts); 1538 } 1539 return ERR_PTR(-EPERM); 1540 } 1541 1542 file = ERR_PTR(-ENOSPC); 1543 /* hugetlbfs_vfsmount[] mounts do not use idmapped mounts. */ 1544 inode = hugetlbfs_get_inode(mnt->mnt_sb, &nop_mnt_idmap, NULL, 1545 S_IFREG | S_IRWXUGO, 0); 1546 if (!inode) 1547 goto out; 1548 if (creat_flags == HUGETLB_SHMFS_INODE) 1549 inode->i_flags |= S_PRIVATE; 1550 1551 inode->i_size = size; 1552 clear_nlink(inode); 1553 1554 if (!hugetlb_reserve_pages(inode, 0, 1555 size >> huge_page_shift(hstate_inode(inode)), NULL, 1556 acctflag)) 1557 file = ERR_PTR(-ENOMEM); 1558 else 1559 file = alloc_file_pseudo(inode, mnt, name, O_RDWR, 1560 &hugetlbfs_file_operations); 1561 if (!IS_ERR(file)) 1562 return file; 1563 1564 iput(inode); 1565 out: 1566 return file; 1567 } 1568 1569 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h) 1570 { 1571 struct fs_context *fc; 1572 struct vfsmount *mnt; 1573 1574 fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT); 1575 if (IS_ERR(fc)) { 1576 mnt = ERR_CAST(fc); 1577 } else { 1578 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1579 ctx->hstate = h; 1580 mnt = fc_mount(fc); 1581 put_fs_context(fc); 1582 } 1583 if (IS_ERR(mnt)) 1584 pr_err("Cannot mount internal hugetlbfs for page size %luK", 1585 huge_page_size(h) / SZ_1K); 1586 return mnt; 1587 } 1588 1589 static int __init init_hugetlbfs_fs(void) 1590 { 1591 struct vfsmount *mnt; 1592 struct hstate *h; 1593 int error; 1594 int i; 1595 1596 if (!hugepages_supported()) { 1597 pr_info("disabling because there are no supported hugepage sizes\n"); 1598 return -ENOTSUPP; 1599 } 1600 1601 error = -ENOMEM; 1602 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache", 1603 sizeof(struct hugetlbfs_inode_info), 1604 0, SLAB_ACCOUNT, init_once); 1605 if (hugetlbfs_inode_cachep == NULL) 1606 goto out; 1607 1608 error = register_filesystem(&hugetlbfs_fs_type); 1609 if (error) 1610 goto out_free; 1611 1612 /* default hstate mount is required */ 1613 mnt = mount_one_hugetlbfs(&default_hstate); 1614 if (IS_ERR(mnt)) { 1615 error = PTR_ERR(mnt); 1616 goto out_unreg; 1617 } 1618 hugetlbfs_vfsmount[default_hstate_idx] = mnt; 1619 1620 /* other hstates are optional */ 1621 i = 0; 1622 for_each_hstate(h) { 1623 if (i == default_hstate_idx) { 1624 i++; 1625 continue; 1626 } 1627 1628 mnt = mount_one_hugetlbfs(h); 1629 if (IS_ERR(mnt)) 1630 hugetlbfs_vfsmount[i] = NULL; 1631 else 1632 hugetlbfs_vfsmount[i] = mnt; 1633 i++; 1634 } 1635 1636 return 0; 1637 1638 out_unreg: 1639 (void)unregister_filesystem(&hugetlbfs_fs_type); 1640 out_free: 1641 kmem_cache_destroy(hugetlbfs_inode_cachep); 1642 out: 1643 return error; 1644 } 1645 fs_initcall(init_hugetlbfs_fs) 1646