1 /* 2 * hugetlbpage-backed filesystem. Based on ramfs. 3 * 4 * Nadia Yvette Chambers, 2002 5 * 6 * Copyright (C) 2002 Linus Torvalds. 7 * License: GPL 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/thread_info.h> 13 #include <asm/current.h> 14 #include <linux/falloc.h> 15 #include <linux/fs.h> 16 #include <linux/mount.h> 17 #include <linux/file.h> 18 #include <linux/kernel.h> 19 #include <linux/writeback.h> 20 #include <linux/pagemap.h> 21 #include <linux/highmem.h> 22 #include <linux/init.h> 23 #include <linux/string.h> 24 #include <linux/capability.h> 25 #include <linux/ctype.h> 26 #include <linux/backing-dev.h> 27 #include <linux/hugetlb.h> 28 #include <linux/pagevec.h> 29 #include <linux/fs_parser.h> 30 #include <linux/mman.h> 31 #include <linux/slab.h> 32 #include <linux/dnotify.h> 33 #include <linux/statfs.h> 34 #include <linux/security.h> 35 #include <linux/magic.h> 36 #include <linux/migrate.h> 37 #include <linux/uio.h> 38 39 #include <linux/uaccess.h> 40 #include <linux/sched/mm.h> 41 42 static const struct address_space_operations hugetlbfs_aops; 43 static const struct file_operations hugetlbfs_file_operations; 44 static const struct inode_operations hugetlbfs_dir_inode_operations; 45 static const struct inode_operations hugetlbfs_inode_operations; 46 47 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT }; 48 49 struct hugetlbfs_fs_context { 50 struct hstate *hstate; 51 unsigned long long max_size_opt; 52 unsigned long long min_size_opt; 53 long max_hpages; 54 long nr_inodes; 55 long min_hpages; 56 enum hugetlbfs_size_type max_val_type; 57 enum hugetlbfs_size_type min_val_type; 58 kuid_t uid; 59 kgid_t gid; 60 umode_t mode; 61 }; 62 63 int sysctl_hugetlb_shm_group; 64 65 enum hugetlb_param { 66 Opt_gid, 67 Opt_min_size, 68 Opt_mode, 69 Opt_nr_inodes, 70 Opt_pagesize, 71 Opt_size, 72 Opt_uid, 73 }; 74 75 static const struct fs_parameter_spec hugetlb_fs_parameters[] = { 76 fsparam_gid ("gid", Opt_gid), 77 fsparam_string("min_size", Opt_min_size), 78 fsparam_u32oct("mode", Opt_mode), 79 fsparam_string("nr_inodes", Opt_nr_inodes), 80 fsparam_string("pagesize", Opt_pagesize), 81 fsparam_string("size", Opt_size), 82 fsparam_uid ("uid", Opt_uid), 83 {} 84 }; 85 86 /* 87 * Mask used when checking the page offset value passed in via system 88 * calls. This value will be converted to a loff_t which is signed. 89 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the 90 * value. The extra bit (- 1 in the shift value) is to take the sign 91 * bit into account. 92 */ 93 #define PGOFF_LOFFT_MAX \ 94 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1))) 95 96 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma) 97 { 98 struct inode *inode = file_inode(file); 99 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 100 loff_t len, vma_len; 101 int ret; 102 struct hstate *h = hstate_file(file); 103 vm_flags_t vm_flags; 104 105 /* 106 * vma address alignment (but not the pgoff alignment) has 107 * already been checked by prepare_hugepage_range. If you add 108 * any error returns here, do so after setting VM_HUGETLB, so 109 * is_vm_hugetlb_page tests below unmap_region go the right 110 * way when do_mmap unwinds (may be important on powerpc 111 * and ia64). 112 */ 113 vm_flags_set(vma, VM_HUGETLB | VM_DONTEXPAND); 114 vma->vm_ops = &hugetlb_vm_ops; 115 116 ret = seal_check_write(info->seals, vma); 117 if (ret) 118 return ret; 119 120 /* 121 * page based offset in vm_pgoff could be sufficiently large to 122 * overflow a loff_t when converted to byte offset. This can 123 * only happen on architectures where sizeof(loff_t) == 124 * sizeof(unsigned long). So, only check in those instances. 125 */ 126 if (sizeof(unsigned long) == sizeof(loff_t)) { 127 if (vma->vm_pgoff & PGOFF_LOFFT_MAX) 128 return -EINVAL; 129 } 130 131 /* must be huge page aligned */ 132 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT)) 133 return -EINVAL; 134 135 vma_len = (loff_t)(vma->vm_end - vma->vm_start); 136 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 137 /* check for overflow */ 138 if (len < vma_len) 139 return -EINVAL; 140 141 inode_lock(inode); 142 file_accessed(file); 143 144 ret = -ENOMEM; 145 146 vm_flags = vma->vm_flags; 147 /* 148 * for SHM_HUGETLB, the pages are reserved in the shmget() call so skip 149 * reserving here. Note: only for SHM hugetlbfs file, the inode 150 * flag S_PRIVATE is set. 151 */ 152 if (inode->i_flags & S_PRIVATE) 153 vm_flags |= VM_NORESERVE; 154 155 if (!hugetlb_reserve_pages(inode, 156 vma->vm_pgoff >> huge_page_order(h), 157 len >> huge_page_shift(h), vma, 158 vm_flags)) 159 goto out; 160 161 ret = 0; 162 if (vma->vm_flags & VM_WRITE && inode->i_size < len) 163 i_size_write(inode, len); 164 out: 165 inode_unlock(inode); 166 167 return ret; 168 } 169 170 /* 171 * Called under mmap_write_lock(mm). 172 */ 173 174 static unsigned long 175 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr, 176 unsigned long len, unsigned long pgoff, unsigned long flags) 177 { 178 struct hstate *h = hstate_file(file); 179 struct vm_unmapped_area_info info = {}; 180 181 info.length = len; 182 info.low_limit = current->mm->mmap_base; 183 info.high_limit = arch_get_mmap_end(addr, len, flags); 184 info.align_mask = PAGE_MASK & ~huge_page_mask(h); 185 return vm_unmapped_area(&info); 186 } 187 188 static unsigned long 189 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr, 190 unsigned long len, unsigned long pgoff, unsigned long flags) 191 { 192 struct hstate *h = hstate_file(file); 193 struct vm_unmapped_area_info info = {}; 194 195 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 196 info.length = len; 197 info.low_limit = PAGE_SIZE; 198 info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base); 199 info.align_mask = PAGE_MASK & ~huge_page_mask(h); 200 addr = vm_unmapped_area(&info); 201 202 /* 203 * A failed mmap() very likely causes application failure, 204 * so fall back to the bottom-up function here. This scenario 205 * can happen with large stack limits and large mmap() 206 * allocations. 207 */ 208 if (unlikely(offset_in_page(addr))) { 209 VM_BUG_ON(addr != -ENOMEM); 210 info.flags = 0; 211 info.low_limit = current->mm->mmap_base; 212 info.high_limit = arch_get_mmap_end(addr, len, flags); 213 addr = vm_unmapped_area(&info); 214 } 215 216 return addr; 217 } 218 219 unsigned long 220 generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 221 unsigned long len, unsigned long pgoff, 222 unsigned long flags) 223 { 224 struct mm_struct *mm = current->mm; 225 struct vm_area_struct *vma; 226 struct hstate *h = hstate_file(file); 227 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); 228 229 if (len & ~huge_page_mask(h)) 230 return -EINVAL; 231 if (len > TASK_SIZE) 232 return -ENOMEM; 233 234 if (flags & MAP_FIXED) { 235 if (prepare_hugepage_range(file, addr, len)) 236 return -EINVAL; 237 return addr; 238 } 239 240 if (addr) { 241 addr = ALIGN(addr, huge_page_size(h)); 242 vma = find_vma(mm, addr); 243 if (mmap_end - len >= addr && 244 (!vma || addr + len <= vm_start_gap(vma))) 245 return addr; 246 } 247 248 /* 249 * Use MMF_TOPDOWN flag as a hint to use topdown routine. 250 * If architectures have special needs, they should define their own 251 * version of hugetlb_get_unmapped_area. 252 */ 253 if (test_bit(MMF_TOPDOWN, &mm->flags)) 254 return hugetlb_get_unmapped_area_topdown(file, addr, len, 255 pgoff, flags); 256 return hugetlb_get_unmapped_area_bottomup(file, addr, len, 257 pgoff, flags); 258 } 259 260 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA 261 static unsigned long 262 hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 263 unsigned long len, unsigned long pgoff, 264 unsigned long flags) 265 { 266 return generic_hugetlb_get_unmapped_area(file, addr, len, pgoff, flags); 267 } 268 #endif 269 270 /* 271 * Someone wants to read @bytes from a HWPOISON hugetlb @page from @offset. 272 * Returns the maximum number of bytes one can read without touching the 1st raw 273 * HWPOISON subpage. 274 * 275 * The implementation borrows the iteration logic from copy_page_to_iter*. 276 */ 277 static size_t adjust_range_hwpoison(struct page *page, size_t offset, size_t bytes) 278 { 279 size_t n = 0; 280 size_t res = 0; 281 282 /* First subpage to start the loop. */ 283 page = nth_page(page, offset / PAGE_SIZE); 284 offset %= PAGE_SIZE; 285 while (1) { 286 if (is_raw_hwpoison_page_in_hugepage(page)) 287 break; 288 289 /* Safe to read n bytes without touching HWPOISON subpage. */ 290 n = min(bytes, (size_t)PAGE_SIZE - offset); 291 res += n; 292 bytes -= n; 293 if (!bytes || !n) 294 break; 295 offset += n; 296 if (offset == PAGE_SIZE) { 297 page = nth_page(page, 1); 298 offset = 0; 299 } 300 } 301 302 return res; 303 } 304 305 /* 306 * Support for read() - Find the page attached to f_mapping and copy out the 307 * data. This provides functionality similar to filemap_read(). 308 */ 309 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to) 310 { 311 struct file *file = iocb->ki_filp; 312 struct hstate *h = hstate_file(file); 313 struct address_space *mapping = file->f_mapping; 314 struct inode *inode = mapping->host; 315 unsigned long index = iocb->ki_pos >> huge_page_shift(h); 316 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h); 317 unsigned long end_index; 318 loff_t isize; 319 ssize_t retval = 0; 320 321 while (iov_iter_count(to)) { 322 struct folio *folio; 323 size_t nr, copied, want; 324 325 /* nr is the maximum number of bytes to copy from this page */ 326 nr = huge_page_size(h); 327 isize = i_size_read(inode); 328 if (!isize) 329 break; 330 end_index = (isize - 1) >> huge_page_shift(h); 331 if (index > end_index) 332 break; 333 if (index == end_index) { 334 nr = ((isize - 1) & ~huge_page_mask(h)) + 1; 335 if (nr <= offset) 336 break; 337 } 338 nr = nr - offset; 339 340 /* Find the folio */ 341 folio = filemap_lock_hugetlb_folio(h, mapping, index); 342 if (IS_ERR(folio)) { 343 /* 344 * We have a HOLE, zero out the user-buffer for the 345 * length of the hole or request. 346 */ 347 copied = iov_iter_zero(nr, to); 348 } else { 349 folio_unlock(folio); 350 351 if (!folio_test_hwpoison(folio)) 352 want = nr; 353 else { 354 /* 355 * Adjust how many bytes safe to read without 356 * touching the 1st raw HWPOISON subpage after 357 * offset. 358 */ 359 want = adjust_range_hwpoison(&folio->page, offset, nr); 360 if (want == 0) { 361 folio_put(folio); 362 retval = -EIO; 363 break; 364 } 365 } 366 367 /* 368 * We have the folio, copy it to user space buffer. 369 */ 370 copied = copy_folio_to_iter(folio, offset, want, to); 371 folio_put(folio); 372 } 373 offset += copied; 374 retval += copied; 375 if (copied != nr && iov_iter_count(to)) { 376 if (!retval) 377 retval = -EFAULT; 378 break; 379 } 380 index += offset >> huge_page_shift(h); 381 offset &= ~huge_page_mask(h); 382 } 383 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset; 384 return retval; 385 } 386 387 static int hugetlbfs_write_begin(struct file *file, 388 struct address_space *mapping, 389 loff_t pos, unsigned len, 390 struct page **pagep, void **fsdata) 391 { 392 return -EINVAL; 393 } 394 395 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping, 396 loff_t pos, unsigned len, unsigned copied, 397 struct page *page, void *fsdata) 398 { 399 BUG(); 400 return -EINVAL; 401 } 402 403 static void hugetlb_delete_from_page_cache(struct folio *folio) 404 { 405 folio_clear_dirty(folio); 406 folio_clear_uptodate(folio); 407 filemap_remove_folio(folio); 408 } 409 410 /* 411 * Called with i_mmap_rwsem held for inode based vma maps. This makes 412 * sure vma (and vm_mm) will not go away. We also hold the hugetlb fault 413 * mutex for the page in the mapping. So, we can not race with page being 414 * faulted into the vma. 415 */ 416 static bool hugetlb_vma_maps_page(struct vm_area_struct *vma, 417 unsigned long addr, struct page *page) 418 { 419 pte_t *ptep, pte; 420 421 ptep = hugetlb_walk(vma, addr, huge_page_size(hstate_vma(vma))); 422 if (!ptep) 423 return false; 424 425 pte = huge_ptep_get(ptep); 426 if (huge_pte_none(pte) || !pte_present(pte)) 427 return false; 428 429 if (pte_page(pte) == page) 430 return true; 431 432 return false; 433 } 434 435 /* 436 * Can vma_offset_start/vma_offset_end overflow on 32-bit arches? 437 * No, because the interval tree returns us only those vmas 438 * which overlap the truncated area starting at pgoff, 439 * and no vma on a 32-bit arch can span beyond the 4GB. 440 */ 441 static unsigned long vma_offset_start(struct vm_area_struct *vma, pgoff_t start) 442 { 443 unsigned long offset = 0; 444 445 if (vma->vm_pgoff < start) 446 offset = (start - vma->vm_pgoff) << PAGE_SHIFT; 447 448 return vma->vm_start + offset; 449 } 450 451 static unsigned long vma_offset_end(struct vm_area_struct *vma, pgoff_t end) 452 { 453 unsigned long t_end; 454 455 if (!end) 456 return vma->vm_end; 457 458 t_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) + vma->vm_start; 459 if (t_end > vma->vm_end) 460 t_end = vma->vm_end; 461 return t_end; 462 } 463 464 /* 465 * Called with hugetlb fault mutex held. Therefore, no more mappings to 466 * this folio can be created while executing the routine. 467 */ 468 static void hugetlb_unmap_file_folio(struct hstate *h, 469 struct address_space *mapping, 470 struct folio *folio, pgoff_t index) 471 { 472 struct rb_root_cached *root = &mapping->i_mmap; 473 struct hugetlb_vma_lock *vma_lock; 474 struct page *page = &folio->page; 475 struct vm_area_struct *vma; 476 unsigned long v_start; 477 unsigned long v_end; 478 pgoff_t start, end; 479 480 start = index * pages_per_huge_page(h); 481 end = (index + 1) * pages_per_huge_page(h); 482 483 i_mmap_lock_write(mapping); 484 retry: 485 vma_lock = NULL; 486 vma_interval_tree_foreach(vma, root, start, end - 1) { 487 v_start = vma_offset_start(vma, start); 488 v_end = vma_offset_end(vma, end); 489 490 if (!hugetlb_vma_maps_page(vma, v_start, page)) 491 continue; 492 493 if (!hugetlb_vma_trylock_write(vma)) { 494 vma_lock = vma->vm_private_data; 495 /* 496 * If we can not get vma lock, we need to drop 497 * immap_sema and take locks in order. First, 498 * take a ref on the vma_lock structure so that 499 * we can be guaranteed it will not go away when 500 * dropping immap_sema. 501 */ 502 kref_get(&vma_lock->refs); 503 break; 504 } 505 506 unmap_hugepage_range(vma, v_start, v_end, NULL, 507 ZAP_FLAG_DROP_MARKER); 508 hugetlb_vma_unlock_write(vma); 509 } 510 511 i_mmap_unlock_write(mapping); 512 513 if (vma_lock) { 514 /* 515 * Wait on vma_lock. We know it is still valid as we have 516 * a reference. We must 'open code' vma locking as we do 517 * not know if vma_lock is still attached to vma. 518 */ 519 down_write(&vma_lock->rw_sema); 520 i_mmap_lock_write(mapping); 521 522 vma = vma_lock->vma; 523 if (!vma) { 524 /* 525 * If lock is no longer attached to vma, then just 526 * unlock, drop our reference and retry looking for 527 * other vmas. 528 */ 529 up_write(&vma_lock->rw_sema); 530 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 531 goto retry; 532 } 533 534 /* 535 * vma_lock is still attached to vma. Check to see if vma 536 * still maps page and if so, unmap. 537 */ 538 v_start = vma_offset_start(vma, start); 539 v_end = vma_offset_end(vma, end); 540 if (hugetlb_vma_maps_page(vma, v_start, page)) 541 unmap_hugepage_range(vma, v_start, v_end, NULL, 542 ZAP_FLAG_DROP_MARKER); 543 544 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 545 hugetlb_vma_unlock_write(vma); 546 547 goto retry; 548 } 549 } 550 551 static void 552 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end, 553 zap_flags_t zap_flags) 554 { 555 struct vm_area_struct *vma; 556 557 /* 558 * end == 0 indicates that the entire range after start should be 559 * unmapped. Note, end is exclusive, whereas the interval tree takes 560 * an inclusive "last". 561 */ 562 vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) { 563 unsigned long v_start; 564 unsigned long v_end; 565 566 if (!hugetlb_vma_trylock_write(vma)) 567 continue; 568 569 v_start = vma_offset_start(vma, start); 570 v_end = vma_offset_end(vma, end); 571 572 unmap_hugepage_range(vma, v_start, v_end, NULL, zap_flags); 573 574 /* 575 * Note that vma lock only exists for shared/non-private 576 * vmas. Therefore, lock is not held when calling 577 * unmap_hugepage_range for private vmas. 578 */ 579 hugetlb_vma_unlock_write(vma); 580 } 581 } 582 583 /* 584 * Called with hugetlb fault mutex held. 585 * Returns true if page was actually removed, false otherwise. 586 */ 587 static bool remove_inode_single_folio(struct hstate *h, struct inode *inode, 588 struct address_space *mapping, 589 struct folio *folio, pgoff_t index, 590 bool truncate_op) 591 { 592 bool ret = false; 593 594 /* 595 * If folio is mapped, it was faulted in after being 596 * unmapped in caller. Unmap (again) while holding 597 * the fault mutex. The mutex will prevent faults 598 * until we finish removing the folio. 599 */ 600 if (unlikely(folio_mapped(folio))) 601 hugetlb_unmap_file_folio(h, mapping, folio, index); 602 603 folio_lock(folio); 604 /* 605 * We must remove the folio from page cache before removing 606 * the region/ reserve map (hugetlb_unreserve_pages). In 607 * rare out of memory conditions, removal of the region/reserve 608 * map could fail. Correspondingly, the subpool and global 609 * reserve usage count can need to be adjusted. 610 */ 611 VM_BUG_ON_FOLIO(folio_test_hugetlb_restore_reserve(folio), folio); 612 hugetlb_delete_from_page_cache(folio); 613 ret = true; 614 if (!truncate_op) { 615 if (unlikely(hugetlb_unreserve_pages(inode, index, 616 index + 1, 1))) 617 hugetlb_fix_reserve_counts(inode); 618 } 619 620 folio_unlock(folio); 621 return ret; 622 } 623 624 /* 625 * remove_inode_hugepages handles two distinct cases: truncation and hole 626 * punch. There are subtle differences in operation for each case. 627 * 628 * truncation is indicated by end of range being LLONG_MAX 629 * In this case, we first scan the range and release found pages. 630 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserve 631 * maps and global counts. Page faults can race with truncation. 632 * During faults, hugetlb_no_page() checks i_size before page allocation, 633 * and again after obtaining page table lock. It will 'back out' 634 * allocations in the truncated range. 635 * hole punch is indicated if end is not LLONG_MAX 636 * In the hole punch case we scan the range and release found pages. 637 * Only when releasing a page is the associated region/reserve map 638 * deleted. The region/reserve map for ranges without associated 639 * pages are not modified. Page faults can race with hole punch. 640 * This is indicated if we find a mapped page. 641 * Note: If the passed end of range value is beyond the end of file, but 642 * not LLONG_MAX this routine still performs a hole punch operation. 643 */ 644 static void remove_inode_hugepages(struct inode *inode, loff_t lstart, 645 loff_t lend) 646 { 647 struct hstate *h = hstate_inode(inode); 648 struct address_space *mapping = &inode->i_data; 649 const pgoff_t end = lend >> PAGE_SHIFT; 650 struct folio_batch fbatch; 651 pgoff_t next, index; 652 int i, freed = 0; 653 bool truncate_op = (lend == LLONG_MAX); 654 655 folio_batch_init(&fbatch); 656 next = lstart >> PAGE_SHIFT; 657 while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) { 658 for (i = 0; i < folio_batch_count(&fbatch); ++i) { 659 struct folio *folio = fbatch.folios[i]; 660 u32 hash = 0; 661 662 index = folio->index >> huge_page_order(h); 663 hash = hugetlb_fault_mutex_hash(mapping, index); 664 mutex_lock(&hugetlb_fault_mutex_table[hash]); 665 666 /* 667 * Remove folio that was part of folio_batch. 668 */ 669 if (remove_inode_single_folio(h, inode, mapping, folio, 670 index, truncate_op)) 671 freed++; 672 673 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 674 } 675 folio_batch_release(&fbatch); 676 cond_resched(); 677 } 678 679 if (truncate_op) 680 (void)hugetlb_unreserve_pages(inode, 681 lstart >> huge_page_shift(h), 682 LONG_MAX, freed); 683 } 684 685 static void hugetlbfs_evict_inode(struct inode *inode) 686 { 687 struct resv_map *resv_map; 688 689 remove_inode_hugepages(inode, 0, LLONG_MAX); 690 691 /* 692 * Get the resv_map from the address space embedded in the inode. 693 * This is the address space which points to any resv_map allocated 694 * at inode creation time. If this is a device special inode, 695 * i_mapping may not point to the original address space. 696 */ 697 resv_map = (struct resv_map *)(&inode->i_data)->i_private_data; 698 /* Only regular and link inodes have associated reserve maps */ 699 if (resv_map) 700 resv_map_release(&resv_map->refs); 701 clear_inode(inode); 702 } 703 704 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset) 705 { 706 pgoff_t pgoff; 707 struct address_space *mapping = inode->i_mapping; 708 struct hstate *h = hstate_inode(inode); 709 710 BUG_ON(offset & ~huge_page_mask(h)); 711 pgoff = offset >> PAGE_SHIFT; 712 713 i_size_write(inode, offset); 714 i_mmap_lock_write(mapping); 715 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 716 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0, 717 ZAP_FLAG_DROP_MARKER); 718 i_mmap_unlock_write(mapping); 719 remove_inode_hugepages(inode, offset, LLONG_MAX); 720 } 721 722 static void hugetlbfs_zero_partial_page(struct hstate *h, 723 struct address_space *mapping, 724 loff_t start, 725 loff_t end) 726 { 727 pgoff_t idx = start >> huge_page_shift(h); 728 struct folio *folio; 729 730 folio = filemap_lock_hugetlb_folio(h, mapping, idx); 731 if (IS_ERR(folio)) 732 return; 733 734 start = start & ~huge_page_mask(h); 735 end = end & ~huge_page_mask(h); 736 if (!end) 737 end = huge_page_size(h); 738 739 folio_zero_segment(folio, (size_t)start, (size_t)end); 740 741 folio_unlock(folio); 742 folio_put(folio); 743 } 744 745 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 746 { 747 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 748 struct address_space *mapping = inode->i_mapping; 749 struct hstate *h = hstate_inode(inode); 750 loff_t hpage_size = huge_page_size(h); 751 loff_t hole_start, hole_end; 752 753 /* 754 * hole_start and hole_end indicate the full pages within the hole. 755 */ 756 hole_start = round_up(offset, hpage_size); 757 hole_end = round_down(offset + len, hpage_size); 758 759 inode_lock(inode); 760 761 /* protected by i_rwsem */ 762 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 763 inode_unlock(inode); 764 return -EPERM; 765 } 766 767 i_mmap_lock_write(mapping); 768 769 /* If range starts before first full page, zero partial page. */ 770 if (offset < hole_start) 771 hugetlbfs_zero_partial_page(h, mapping, 772 offset, min(offset + len, hole_start)); 773 774 /* Unmap users of full pages in the hole. */ 775 if (hole_end > hole_start) { 776 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 777 hugetlb_vmdelete_list(&mapping->i_mmap, 778 hole_start >> PAGE_SHIFT, 779 hole_end >> PAGE_SHIFT, 0); 780 } 781 782 /* If range extends beyond last full page, zero partial page. */ 783 if ((offset + len) > hole_end && (offset + len) > hole_start) 784 hugetlbfs_zero_partial_page(h, mapping, 785 hole_end, offset + len); 786 787 i_mmap_unlock_write(mapping); 788 789 /* Remove full pages from the file. */ 790 if (hole_end > hole_start) 791 remove_inode_hugepages(inode, hole_start, hole_end); 792 793 inode_unlock(inode); 794 795 return 0; 796 } 797 798 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset, 799 loff_t len) 800 { 801 struct inode *inode = file_inode(file); 802 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 803 struct address_space *mapping = inode->i_mapping; 804 struct hstate *h = hstate_inode(inode); 805 struct vm_area_struct pseudo_vma; 806 struct mm_struct *mm = current->mm; 807 loff_t hpage_size = huge_page_size(h); 808 unsigned long hpage_shift = huge_page_shift(h); 809 pgoff_t start, index, end; 810 int error; 811 u32 hash; 812 813 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 814 return -EOPNOTSUPP; 815 816 if (mode & FALLOC_FL_PUNCH_HOLE) 817 return hugetlbfs_punch_hole(inode, offset, len); 818 819 /* 820 * Default preallocate case. 821 * For this range, start is rounded down and end is rounded up 822 * as well as being converted to page offsets. 823 */ 824 start = offset >> hpage_shift; 825 end = (offset + len + hpage_size - 1) >> hpage_shift; 826 827 inode_lock(inode); 828 829 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 830 error = inode_newsize_ok(inode, offset + len); 831 if (error) 832 goto out; 833 834 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 835 error = -EPERM; 836 goto out; 837 } 838 839 /* 840 * Initialize a pseudo vma as this is required by the huge page 841 * allocation routines. 842 */ 843 vma_init(&pseudo_vma, mm); 844 vm_flags_init(&pseudo_vma, VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 845 pseudo_vma.vm_file = file; 846 847 for (index = start; index < end; index++) { 848 /* 849 * This is supposed to be the vaddr where the page is being 850 * faulted in, but we have no vaddr here. 851 */ 852 struct folio *folio; 853 unsigned long addr; 854 855 cond_resched(); 856 857 /* 858 * fallocate(2) manpage permits EINTR; we may have been 859 * interrupted because we are using up too much memory. 860 */ 861 if (signal_pending(current)) { 862 error = -EINTR; 863 break; 864 } 865 866 /* addr is the offset within the file (zero based) */ 867 addr = index * hpage_size; 868 869 /* mutex taken here, fault path and hole punch */ 870 hash = hugetlb_fault_mutex_hash(mapping, index); 871 mutex_lock(&hugetlb_fault_mutex_table[hash]); 872 873 /* See if already present in mapping to avoid alloc/free */ 874 folio = filemap_get_folio(mapping, index << huge_page_order(h)); 875 if (!IS_ERR(folio)) { 876 folio_put(folio); 877 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 878 continue; 879 } 880 881 /* 882 * Allocate folio without setting the avoid_reserve argument. 883 * There certainly are no reserves associated with the 884 * pseudo_vma. However, there could be shared mappings with 885 * reserves for the file at the inode level. If we fallocate 886 * folios in these areas, we need to consume the reserves 887 * to keep reservation accounting consistent. 888 */ 889 folio = alloc_hugetlb_folio(&pseudo_vma, addr, 0); 890 if (IS_ERR(folio)) { 891 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 892 error = PTR_ERR(folio); 893 goto out; 894 } 895 clear_huge_page(&folio->page, addr, pages_per_huge_page(h)); 896 __folio_mark_uptodate(folio); 897 error = hugetlb_add_to_page_cache(folio, mapping, index); 898 if (unlikely(error)) { 899 restore_reserve_on_error(h, &pseudo_vma, addr, folio); 900 folio_put(folio); 901 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 902 goto out; 903 } 904 905 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 906 907 folio_set_hugetlb_migratable(folio); 908 /* 909 * folio_unlock because locked by hugetlb_add_to_page_cache() 910 * folio_put() due to reference from alloc_hugetlb_folio() 911 */ 912 folio_unlock(folio); 913 folio_put(folio); 914 } 915 916 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 917 i_size_write(inode, offset + len); 918 inode_set_ctime_current(inode); 919 out: 920 inode_unlock(inode); 921 return error; 922 } 923 924 static int hugetlbfs_setattr(struct mnt_idmap *idmap, 925 struct dentry *dentry, struct iattr *attr) 926 { 927 struct inode *inode = d_inode(dentry); 928 struct hstate *h = hstate_inode(inode); 929 int error; 930 unsigned int ia_valid = attr->ia_valid; 931 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 932 933 error = setattr_prepare(idmap, dentry, attr); 934 if (error) 935 return error; 936 937 if (ia_valid & ATTR_SIZE) { 938 loff_t oldsize = inode->i_size; 939 loff_t newsize = attr->ia_size; 940 941 if (newsize & ~huge_page_mask(h)) 942 return -EINVAL; 943 /* protected by i_rwsem */ 944 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 945 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 946 return -EPERM; 947 hugetlb_vmtruncate(inode, newsize); 948 } 949 950 setattr_copy(idmap, inode, attr); 951 mark_inode_dirty(inode); 952 return 0; 953 } 954 955 static struct inode *hugetlbfs_get_root(struct super_block *sb, 956 struct hugetlbfs_fs_context *ctx) 957 { 958 struct inode *inode; 959 960 inode = new_inode(sb); 961 if (inode) { 962 inode->i_ino = get_next_ino(); 963 inode->i_mode = S_IFDIR | ctx->mode; 964 inode->i_uid = ctx->uid; 965 inode->i_gid = ctx->gid; 966 simple_inode_init_ts(inode); 967 inode->i_op = &hugetlbfs_dir_inode_operations; 968 inode->i_fop = &simple_dir_operations; 969 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 970 inc_nlink(inode); 971 lockdep_annotate_inode_mutex_key(inode); 972 } 973 return inode; 974 } 975 976 /* 977 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never 978 * be taken from reclaim -- unlike regular filesystems. This needs an 979 * annotation because huge_pmd_share() does an allocation under hugetlb's 980 * i_mmap_rwsem. 981 */ 982 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key; 983 984 static struct inode *hugetlbfs_get_inode(struct super_block *sb, 985 struct mnt_idmap *idmap, 986 struct inode *dir, 987 umode_t mode, dev_t dev) 988 { 989 struct inode *inode; 990 struct resv_map *resv_map = NULL; 991 992 /* 993 * Reserve maps are only needed for inodes that can have associated 994 * page allocations. 995 */ 996 if (S_ISREG(mode) || S_ISLNK(mode)) { 997 resv_map = resv_map_alloc(); 998 if (!resv_map) 999 return NULL; 1000 } 1001 1002 inode = new_inode(sb); 1003 if (inode) { 1004 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 1005 1006 inode->i_ino = get_next_ino(); 1007 inode_init_owner(idmap, inode, dir, mode); 1008 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem, 1009 &hugetlbfs_i_mmap_rwsem_key); 1010 inode->i_mapping->a_ops = &hugetlbfs_aops; 1011 simple_inode_init_ts(inode); 1012 inode->i_mapping->i_private_data = resv_map; 1013 info->seals = F_SEAL_SEAL; 1014 switch (mode & S_IFMT) { 1015 default: 1016 init_special_inode(inode, mode, dev); 1017 break; 1018 case S_IFREG: 1019 inode->i_op = &hugetlbfs_inode_operations; 1020 inode->i_fop = &hugetlbfs_file_operations; 1021 break; 1022 case S_IFDIR: 1023 inode->i_op = &hugetlbfs_dir_inode_operations; 1024 inode->i_fop = &simple_dir_operations; 1025 1026 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 1027 inc_nlink(inode); 1028 break; 1029 case S_IFLNK: 1030 inode->i_op = &page_symlink_inode_operations; 1031 inode_nohighmem(inode); 1032 break; 1033 } 1034 lockdep_annotate_inode_mutex_key(inode); 1035 } else { 1036 if (resv_map) 1037 kref_put(&resv_map->refs, resv_map_release); 1038 } 1039 1040 return inode; 1041 } 1042 1043 /* 1044 * File creation. Allocate an inode, and we're done.. 1045 */ 1046 static int hugetlbfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 1047 struct dentry *dentry, umode_t mode, dev_t dev) 1048 { 1049 struct inode *inode; 1050 1051 inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, dev); 1052 if (!inode) 1053 return -ENOSPC; 1054 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 1055 d_instantiate(dentry, inode); 1056 dget(dentry);/* Extra count - pin the dentry in core */ 1057 return 0; 1058 } 1059 1060 static int hugetlbfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 1061 struct dentry *dentry, umode_t mode) 1062 { 1063 int retval = hugetlbfs_mknod(idmap, dir, dentry, 1064 mode | S_IFDIR, 0); 1065 if (!retval) 1066 inc_nlink(dir); 1067 return retval; 1068 } 1069 1070 static int hugetlbfs_create(struct mnt_idmap *idmap, 1071 struct inode *dir, struct dentry *dentry, 1072 umode_t mode, bool excl) 1073 { 1074 return hugetlbfs_mknod(idmap, dir, dentry, mode | S_IFREG, 0); 1075 } 1076 1077 static int hugetlbfs_tmpfile(struct mnt_idmap *idmap, 1078 struct inode *dir, struct file *file, 1079 umode_t mode) 1080 { 1081 struct inode *inode; 1082 1083 inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode | S_IFREG, 0); 1084 if (!inode) 1085 return -ENOSPC; 1086 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 1087 d_tmpfile(file, inode); 1088 return finish_open_simple(file, 0); 1089 } 1090 1091 static int hugetlbfs_symlink(struct mnt_idmap *idmap, 1092 struct inode *dir, struct dentry *dentry, 1093 const char *symname) 1094 { 1095 const umode_t mode = S_IFLNK|S_IRWXUGO; 1096 struct inode *inode; 1097 int error = -ENOSPC; 1098 1099 inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, 0); 1100 if (inode) { 1101 int l = strlen(symname)+1; 1102 error = page_symlink(inode, symname, l); 1103 if (!error) { 1104 d_instantiate(dentry, inode); 1105 dget(dentry); 1106 } else 1107 iput(inode); 1108 } 1109 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 1110 1111 return error; 1112 } 1113 1114 #ifdef CONFIG_MIGRATION 1115 static int hugetlbfs_migrate_folio(struct address_space *mapping, 1116 struct folio *dst, struct folio *src, 1117 enum migrate_mode mode) 1118 { 1119 int rc; 1120 1121 rc = migrate_huge_page_move_mapping(mapping, dst, src); 1122 if (rc != MIGRATEPAGE_SUCCESS) 1123 return rc; 1124 1125 if (hugetlb_folio_subpool(src)) { 1126 hugetlb_set_folio_subpool(dst, 1127 hugetlb_folio_subpool(src)); 1128 hugetlb_set_folio_subpool(src, NULL); 1129 } 1130 1131 if (mode != MIGRATE_SYNC_NO_COPY) 1132 folio_migrate_copy(dst, src); 1133 else 1134 folio_migrate_flags(dst, src); 1135 1136 return MIGRATEPAGE_SUCCESS; 1137 } 1138 #else 1139 #define hugetlbfs_migrate_folio NULL 1140 #endif 1141 1142 static int hugetlbfs_error_remove_folio(struct address_space *mapping, 1143 struct folio *folio) 1144 { 1145 return 0; 1146 } 1147 1148 /* 1149 * Display the mount options in /proc/mounts. 1150 */ 1151 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root) 1152 { 1153 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb); 1154 struct hugepage_subpool *spool = sbinfo->spool; 1155 unsigned long hpage_size = huge_page_size(sbinfo->hstate); 1156 unsigned hpage_shift = huge_page_shift(sbinfo->hstate); 1157 char mod; 1158 1159 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 1160 seq_printf(m, ",uid=%u", 1161 from_kuid_munged(&init_user_ns, sbinfo->uid)); 1162 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 1163 seq_printf(m, ",gid=%u", 1164 from_kgid_munged(&init_user_ns, sbinfo->gid)); 1165 if (sbinfo->mode != 0755) 1166 seq_printf(m, ",mode=%o", sbinfo->mode); 1167 if (sbinfo->max_inodes != -1) 1168 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes); 1169 1170 hpage_size /= 1024; 1171 mod = 'K'; 1172 if (hpage_size >= 1024) { 1173 hpage_size /= 1024; 1174 mod = 'M'; 1175 } 1176 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod); 1177 if (spool) { 1178 if (spool->max_hpages != -1) 1179 seq_printf(m, ",size=%llu", 1180 (unsigned long long)spool->max_hpages << hpage_shift); 1181 if (spool->min_hpages != -1) 1182 seq_printf(m, ",min_size=%llu", 1183 (unsigned long long)spool->min_hpages << hpage_shift); 1184 } 1185 return 0; 1186 } 1187 1188 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf) 1189 { 1190 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb); 1191 struct hstate *h = hstate_inode(d_inode(dentry)); 1192 u64 id = huge_encode_dev(dentry->d_sb->s_dev); 1193 1194 buf->f_fsid = u64_to_fsid(id); 1195 buf->f_type = HUGETLBFS_MAGIC; 1196 buf->f_bsize = huge_page_size(h); 1197 if (sbinfo) { 1198 spin_lock(&sbinfo->stat_lock); 1199 /* If no limits set, just report 0 or -1 for max/free/used 1200 * blocks, like simple_statfs() */ 1201 if (sbinfo->spool) { 1202 long free_pages; 1203 1204 spin_lock_irq(&sbinfo->spool->lock); 1205 buf->f_blocks = sbinfo->spool->max_hpages; 1206 free_pages = sbinfo->spool->max_hpages 1207 - sbinfo->spool->used_hpages; 1208 buf->f_bavail = buf->f_bfree = free_pages; 1209 spin_unlock_irq(&sbinfo->spool->lock); 1210 buf->f_files = sbinfo->max_inodes; 1211 buf->f_ffree = sbinfo->free_inodes; 1212 } 1213 spin_unlock(&sbinfo->stat_lock); 1214 } 1215 buf->f_namelen = NAME_MAX; 1216 return 0; 1217 } 1218 1219 static void hugetlbfs_put_super(struct super_block *sb) 1220 { 1221 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb); 1222 1223 if (sbi) { 1224 sb->s_fs_info = NULL; 1225 1226 if (sbi->spool) 1227 hugepage_put_subpool(sbi->spool); 1228 1229 kfree(sbi); 1230 } 1231 } 1232 1233 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1234 { 1235 if (sbinfo->free_inodes >= 0) { 1236 spin_lock(&sbinfo->stat_lock); 1237 if (unlikely(!sbinfo->free_inodes)) { 1238 spin_unlock(&sbinfo->stat_lock); 1239 return 0; 1240 } 1241 sbinfo->free_inodes--; 1242 spin_unlock(&sbinfo->stat_lock); 1243 } 1244 1245 return 1; 1246 } 1247 1248 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1249 { 1250 if (sbinfo->free_inodes >= 0) { 1251 spin_lock(&sbinfo->stat_lock); 1252 sbinfo->free_inodes++; 1253 spin_unlock(&sbinfo->stat_lock); 1254 } 1255 } 1256 1257 1258 static struct kmem_cache *hugetlbfs_inode_cachep; 1259 1260 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb) 1261 { 1262 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb); 1263 struct hugetlbfs_inode_info *p; 1264 1265 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo))) 1266 return NULL; 1267 p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL); 1268 if (unlikely(!p)) { 1269 hugetlbfs_inc_free_inodes(sbinfo); 1270 return NULL; 1271 } 1272 return &p->vfs_inode; 1273 } 1274 1275 static void hugetlbfs_free_inode(struct inode *inode) 1276 { 1277 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode)); 1278 } 1279 1280 static void hugetlbfs_destroy_inode(struct inode *inode) 1281 { 1282 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb)); 1283 } 1284 1285 static const struct address_space_operations hugetlbfs_aops = { 1286 .write_begin = hugetlbfs_write_begin, 1287 .write_end = hugetlbfs_write_end, 1288 .dirty_folio = noop_dirty_folio, 1289 .migrate_folio = hugetlbfs_migrate_folio, 1290 .error_remove_folio = hugetlbfs_error_remove_folio, 1291 }; 1292 1293 1294 static void init_once(void *foo) 1295 { 1296 struct hugetlbfs_inode_info *ei = foo; 1297 1298 inode_init_once(&ei->vfs_inode); 1299 } 1300 1301 static const struct file_operations hugetlbfs_file_operations = { 1302 .read_iter = hugetlbfs_read_iter, 1303 .mmap = hugetlbfs_file_mmap, 1304 .fsync = noop_fsync, 1305 .get_unmapped_area = hugetlb_get_unmapped_area, 1306 .llseek = default_llseek, 1307 .fallocate = hugetlbfs_fallocate, 1308 .fop_flags = FOP_HUGE_PAGES, 1309 }; 1310 1311 static const struct inode_operations hugetlbfs_dir_inode_operations = { 1312 .create = hugetlbfs_create, 1313 .lookup = simple_lookup, 1314 .link = simple_link, 1315 .unlink = simple_unlink, 1316 .symlink = hugetlbfs_symlink, 1317 .mkdir = hugetlbfs_mkdir, 1318 .rmdir = simple_rmdir, 1319 .mknod = hugetlbfs_mknod, 1320 .rename = simple_rename, 1321 .setattr = hugetlbfs_setattr, 1322 .tmpfile = hugetlbfs_tmpfile, 1323 }; 1324 1325 static const struct inode_operations hugetlbfs_inode_operations = { 1326 .setattr = hugetlbfs_setattr, 1327 }; 1328 1329 static const struct super_operations hugetlbfs_ops = { 1330 .alloc_inode = hugetlbfs_alloc_inode, 1331 .free_inode = hugetlbfs_free_inode, 1332 .destroy_inode = hugetlbfs_destroy_inode, 1333 .evict_inode = hugetlbfs_evict_inode, 1334 .statfs = hugetlbfs_statfs, 1335 .put_super = hugetlbfs_put_super, 1336 .show_options = hugetlbfs_show_options, 1337 }; 1338 1339 /* 1340 * Convert size option passed from command line to number of huge pages 1341 * in the pool specified by hstate. Size option could be in bytes 1342 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT). 1343 */ 1344 static long 1345 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt, 1346 enum hugetlbfs_size_type val_type) 1347 { 1348 if (val_type == NO_SIZE) 1349 return -1; 1350 1351 if (val_type == SIZE_PERCENT) { 1352 size_opt <<= huge_page_shift(h); 1353 size_opt *= h->max_huge_pages; 1354 do_div(size_opt, 100); 1355 } 1356 1357 size_opt >>= huge_page_shift(h); 1358 return size_opt; 1359 } 1360 1361 /* 1362 * Parse one mount parameter. 1363 */ 1364 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param) 1365 { 1366 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1367 struct fs_parse_result result; 1368 struct hstate *h; 1369 char *rest; 1370 unsigned long ps; 1371 int opt; 1372 1373 opt = fs_parse(fc, hugetlb_fs_parameters, param, &result); 1374 if (opt < 0) 1375 return opt; 1376 1377 switch (opt) { 1378 case Opt_uid: 1379 ctx->uid = result.uid; 1380 return 0; 1381 1382 case Opt_gid: 1383 ctx->gid = result.gid; 1384 return 0; 1385 1386 case Opt_mode: 1387 ctx->mode = result.uint_32 & 01777U; 1388 return 0; 1389 1390 case Opt_size: 1391 /* memparse() will accept a K/M/G without a digit */ 1392 if (!param->string || !isdigit(param->string[0])) 1393 goto bad_val; 1394 ctx->max_size_opt = memparse(param->string, &rest); 1395 ctx->max_val_type = SIZE_STD; 1396 if (*rest == '%') 1397 ctx->max_val_type = SIZE_PERCENT; 1398 return 0; 1399 1400 case Opt_nr_inodes: 1401 /* memparse() will accept a K/M/G without a digit */ 1402 if (!param->string || !isdigit(param->string[0])) 1403 goto bad_val; 1404 ctx->nr_inodes = memparse(param->string, &rest); 1405 return 0; 1406 1407 case Opt_pagesize: 1408 ps = memparse(param->string, &rest); 1409 h = size_to_hstate(ps); 1410 if (!h) { 1411 pr_err("Unsupported page size %lu MB\n", ps / SZ_1M); 1412 return -EINVAL; 1413 } 1414 ctx->hstate = h; 1415 return 0; 1416 1417 case Opt_min_size: 1418 /* memparse() will accept a K/M/G without a digit */ 1419 if (!param->string || !isdigit(param->string[0])) 1420 goto bad_val; 1421 ctx->min_size_opt = memparse(param->string, &rest); 1422 ctx->min_val_type = SIZE_STD; 1423 if (*rest == '%') 1424 ctx->min_val_type = SIZE_PERCENT; 1425 return 0; 1426 1427 default: 1428 return -EINVAL; 1429 } 1430 1431 bad_val: 1432 return invalfc(fc, "Bad value '%s' for mount option '%s'\n", 1433 param->string, param->key); 1434 } 1435 1436 /* 1437 * Validate the parsed options. 1438 */ 1439 static int hugetlbfs_validate(struct fs_context *fc) 1440 { 1441 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1442 1443 /* 1444 * Use huge page pool size (in hstate) to convert the size 1445 * options to number of huge pages. If NO_SIZE, -1 is returned. 1446 */ 1447 ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1448 ctx->max_size_opt, 1449 ctx->max_val_type); 1450 ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1451 ctx->min_size_opt, 1452 ctx->min_val_type); 1453 1454 /* 1455 * If max_size was specified, then min_size must be smaller 1456 */ 1457 if (ctx->max_val_type > NO_SIZE && 1458 ctx->min_hpages > ctx->max_hpages) { 1459 pr_err("Minimum size can not be greater than maximum size\n"); 1460 return -EINVAL; 1461 } 1462 1463 return 0; 1464 } 1465 1466 static int 1467 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc) 1468 { 1469 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1470 struct hugetlbfs_sb_info *sbinfo; 1471 1472 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL); 1473 if (!sbinfo) 1474 return -ENOMEM; 1475 sb->s_fs_info = sbinfo; 1476 spin_lock_init(&sbinfo->stat_lock); 1477 sbinfo->hstate = ctx->hstate; 1478 sbinfo->max_inodes = ctx->nr_inodes; 1479 sbinfo->free_inodes = ctx->nr_inodes; 1480 sbinfo->spool = NULL; 1481 sbinfo->uid = ctx->uid; 1482 sbinfo->gid = ctx->gid; 1483 sbinfo->mode = ctx->mode; 1484 1485 /* 1486 * Allocate and initialize subpool if maximum or minimum size is 1487 * specified. Any needed reservations (for minimum size) are taken 1488 * when the subpool is created. 1489 */ 1490 if (ctx->max_hpages != -1 || ctx->min_hpages != -1) { 1491 sbinfo->spool = hugepage_new_subpool(ctx->hstate, 1492 ctx->max_hpages, 1493 ctx->min_hpages); 1494 if (!sbinfo->spool) 1495 goto out_free; 1496 } 1497 sb->s_maxbytes = MAX_LFS_FILESIZE; 1498 sb->s_blocksize = huge_page_size(ctx->hstate); 1499 sb->s_blocksize_bits = huge_page_shift(ctx->hstate); 1500 sb->s_magic = HUGETLBFS_MAGIC; 1501 sb->s_op = &hugetlbfs_ops; 1502 sb->s_time_gran = 1; 1503 1504 /* 1505 * Due to the special and limited functionality of hugetlbfs, it does 1506 * not work well as a stacking filesystem. 1507 */ 1508 sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH; 1509 sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx)); 1510 if (!sb->s_root) 1511 goto out_free; 1512 return 0; 1513 out_free: 1514 kfree(sbinfo->spool); 1515 kfree(sbinfo); 1516 return -ENOMEM; 1517 } 1518 1519 static int hugetlbfs_get_tree(struct fs_context *fc) 1520 { 1521 int err = hugetlbfs_validate(fc); 1522 if (err) 1523 return err; 1524 return get_tree_nodev(fc, hugetlbfs_fill_super); 1525 } 1526 1527 static void hugetlbfs_fs_context_free(struct fs_context *fc) 1528 { 1529 kfree(fc->fs_private); 1530 } 1531 1532 static const struct fs_context_operations hugetlbfs_fs_context_ops = { 1533 .free = hugetlbfs_fs_context_free, 1534 .parse_param = hugetlbfs_parse_param, 1535 .get_tree = hugetlbfs_get_tree, 1536 }; 1537 1538 static int hugetlbfs_init_fs_context(struct fs_context *fc) 1539 { 1540 struct hugetlbfs_fs_context *ctx; 1541 1542 ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL); 1543 if (!ctx) 1544 return -ENOMEM; 1545 1546 ctx->max_hpages = -1; /* No limit on size by default */ 1547 ctx->nr_inodes = -1; /* No limit on number of inodes by default */ 1548 ctx->uid = current_fsuid(); 1549 ctx->gid = current_fsgid(); 1550 ctx->mode = 0755; 1551 ctx->hstate = &default_hstate; 1552 ctx->min_hpages = -1; /* No default minimum size */ 1553 ctx->max_val_type = NO_SIZE; 1554 ctx->min_val_type = NO_SIZE; 1555 fc->fs_private = ctx; 1556 fc->ops = &hugetlbfs_fs_context_ops; 1557 return 0; 1558 } 1559 1560 static struct file_system_type hugetlbfs_fs_type = { 1561 .name = "hugetlbfs", 1562 .init_fs_context = hugetlbfs_init_fs_context, 1563 .parameters = hugetlb_fs_parameters, 1564 .kill_sb = kill_litter_super, 1565 .fs_flags = FS_ALLOW_IDMAP, 1566 }; 1567 1568 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE]; 1569 1570 static int can_do_hugetlb_shm(void) 1571 { 1572 kgid_t shm_group; 1573 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group); 1574 return capable(CAP_IPC_LOCK) || in_group_p(shm_group); 1575 } 1576 1577 static int get_hstate_idx(int page_size_log) 1578 { 1579 struct hstate *h = hstate_sizelog(page_size_log); 1580 1581 if (!h) 1582 return -1; 1583 return hstate_index(h); 1584 } 1585 1586 /* 1587 * Note that size should be aligned to proper hugepage size in caller side, 1588 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended. 1589 */ 1590 struct file *hugetlb_file_setup(const char *name, size_t size, 1591 vm_flags_t acctflag, int creat_flags, 1592 int page_size_log) 1593 { 1594 struct inode *inode; 1595 struct vfsmount *mnt; 1596 int hstate_idx; 1597 struct file *file; 1598 1599 hstate_idx = get_hstate_idx(page_size_log); 1600 if (hstate_idx < 0) 1601 return ERR_PTR(-ENODEV); 1602 1603 mnt = hugetlbfs_vfsmount[hstate_idx]; 1604 if (!mnt) 1605 return ERR_PTR(-ENOENT); 1606 1607 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) { 1608 struct ucounts *ucounts = current_ucounts(); 1609 1610 if (user_shm_lock(size, ucounts)) { 1611 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n", 1612 current->comm, current->pid); 1613 user_shm_unlock(size, ucounts); 1614 } 1615 return ERR_PTR(-EPERM); 1616 } 1617 1618 file = ERR_PTR(-ENOSPC); 1619 /* hugetlbfs_vfsmount[] mounts do not use idmapped mounts. */ 1620 inode = hugetlbfs_get_inode(mnt->mnt_sb, &nop_mnt_idmap, NULL, 1621 S_IFREG | S_IRWXUGO, 0); 1622 if (!inode) 1623 goto out; 1624 if (creat_flags == HUGETLB_SHMFS_INODE) 1625 inode->i_flags |= S_PRIVATE; 1626 1627 inode->i_size = size; 1628 clear_nlink(inode); 1629 1630 if (!hugetlb_reserve_pages(inode, 0, 1631 size >> huge_page_shift(hstate_inode(inode)), NULL, 1632 acctflag)) 1633 file = ERR_PTR(-ENOMEM); 1634 else 1635 file = alloc_file_pseudo(inode, mnt, name, O_RDWR, 1636 &hugetlbfs_file_operations); 1637 if (!IS_ERR(file)) 1638 return file; 1639 1640 iput(inode); 1641 out: 1642 return file; 1643 } 1644 1645 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h) 1646 { 1647 struct fs_context *fc; 1648 struct vfsmount *mnt; 1649 1650 fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT); 1651 if (IS_ERR(fc)) { 1652 mnt = ERR_CAST(fc); 1653 } else { 1654 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1655 ctx->hstate = h; 1656 mnt = fc_mount(fc); 1657 put_fs_context(fc); 1658 } 1659 if (IS_ERR(mnt)) 1660 pr_err("Cannot mount internal hugetlbfs for page size %luK", 1661 huge_page_size(h) / SZ_1K); 1662 return mnt; 1663 } 1664 1665 static int __init init_hugetlbfs_fs(void) 1666 { 1667 struct vfsmount *mnt; 1668 struct hstate *h; 1669 int error; 1670 int i; 1671 1672 if (!hugepages_supported()) { 1673 pr_info("disabling because there are no supported hugepage sizes\n"); 1674 return -ENOTSUPP; 1675 } 1676 1677 error = -ENOMEM; 1678 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache", 1679 sizeof(struct hugetlbfs_inode_info), 1680 0, SLAB_ACCOUNT, init_once); 1681 if (hugetlbfs_inode_cachep == NULL) 1682 goto out; 1683 1684 error = register_filesystem(&hugetlbfs_fs_type); 1685 if (error) 1686 goto out_free; 1687 1688 /* default hstate mount is required */ 1689 mnt = mount_one_hugetlbfs(&default_hstate); 1690 if (IS_ERR(mnt)) { 1691 error = PTR_ERR(mnt); 1692 goto out_unreg; 1693 } 1694 hugetlbfs_vfsmount[default_hstate_idx] = mnt; 1695 1696 /* other hstates are optional */ 1697 i = 0; 1698 for_each_hstate(h) { 1699 if (i == default_hstate_idx) { 1700 i++; 1701 continue; 1702 } 1703 1704 mnt = mount_one_hugetlbfs(h); 1705 if (IS_ERR(mnt)) 1706 hugetlbfs_vfsmount[i] = NULL; 1707 else 1708 hugetlbfs_vfsmount[i] = mnt; 1709 i++; 1710 } 1711 1712 return 0; 1713 1714 out_unreg: 1715 (void)unregister_filesystem(&hugetlbfs_fs_type); 1716 out_free: 1717 kmem_cache_destroy(hugetlbfs_inode_cachep); 1718 out: 1719 return error; 1720 } 1721 fs_initcall(init_hugetlbfs_fs) 1722