1 /* 2 * hugetlbpage-backed filesystem. Based on ramfs. 3 * 4 * Nadia Yvette Chambers, 2002 5 * 6 * Copyright (C) 2002 Linus Torvalds. 7 * License: GPL 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/thread_info.h> 13 #include <asm/current.h> 14 #include <linux/sched/signal.h> /* remove ASAP */ 15 #include <linux/falloc.h> 16 #include <linux/fs.h> 17 #include <linux/mount.h> 18 #include <linux/file.h> 19 #include <linux/kernel.h> 20 #include <linux/writeback.h> 21 #include <linux/pagemap.h> 22 #include <linux/highmem.h> 23 #include <linux/init.h> 24 #include <linux/string.h> 25 #include <linux/capability.h> 26 #include <linux/ctype.h> 27 #include <linux/backing-dev.h> 28 #include <linux/hugetlb.h> 29 #include <linux/pagevec.h> 30 #include <linux/fs_parser.h> 31 #include <linux/mman.h> 32 #include <linux/slab.h> 33 #include <linux/dnotify.h> 34 #include <linux/statfs.h> 35 #include <linux/security.h> 36 #include <linux/magic.h> 37 #include <linux/migrate.h> 38 #include <linux/uio.h> 39 40 #include <linux/uaccess.h> 41 #include <linux/sched/mm.h> 42 43 static const struct super_operations hugetlbfs_ops; 44 static const struct address_space_operations hugetlbfs_aops; 45 const struct file_operations hugetlbfs_file_operations; 46 static const struct inode_operations hugetlbfs_dir_inode_operations; 47 static const struct inode_operations hugetlbfs_inode_operations; 48 49 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT }; 50 51 struct hugetlbfs_fs_context { 52 struct hstate *hstate; 53 unsigned long long max_size_opt; 54 unsigned long long min_size_opt; 55 long max_hpages; 56 long nr_inodes; 57 long min_hpages; 58 enum hugetlbfs_size_type max_val_type; 59 enum hugetlbfs_size_type min_val_type; 60 kuid_t uid; 61 kgid_t gid; 62 umode_t mode; 63 }; 64 65 int sysctl_hugetlb_shm_group; 66 67 enum hugetlb_param { 68 Opt_gid, 69 Opt_min_size, 70 Opt_mode, 71 Opt_nr_inodes, 72 Opt_pagesize, 73 Opt_size, 74 Opt_uid, 75 }; 76 77 static const struct fs_parameter_spec hugetlb_fs_parameters[] = { 78 fsparam_u32 ("gid", Opt_gid), 79 fsparam_string("min_size", Opt_min_size), 80 fsparam_u32oct("mode", Opt_mode), 81 fsparam_string("nr_inodes", Opt_nr_inodes), 82 fsparam_string("pagesize", Opt_pagesize), 83 fsparam_string("size", Opt_size), 84 fsparam_u32 ("uid", Opt_uid), 85 {} 86 }; 87 88 #ifdef CONFIG_NUMA 89 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 90 struct inode *inode, pgoff_t index) 91 { 92 vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy, 93 index); 94 } 95 96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 97 { 98 mpol_cond_put(vma->vm_policy); 99 } 100 #else 101 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 102 struct inode *inode, pgoff_t index) 103 { 104 } 105 106 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 107 { 108 } 109 #endif 110 111 static void huge_pagevec_release(struct pagevec *pvec) 112 { 113 int i; 114 115 for (i = 0; i < pagevec_count(pvec); ++i) 116 put_page(pvec->pages[i]); 117 118 pagevec_reinit(pvec); 119 } 120 121 /* 122 * Mask used when checking the page offset value passed in via system 123 * calls. This value will be converted to a loff_t which is signed. 124 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the 125 * value. The extra bit (- 1 in the shift value) is to take the sign 126 * bit into account. 127 */ 128 #define PGOFF_LOFFT_MAX \ 129 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1))) 130 131 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma) 132 { 133 struct inode *inode = file_inode(file); 134 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 135 loff_t len, vma_len; 136 int ret; 137 struct hstate *h = hstate_file(file); 138 139 /* 140 * vma address alignment (but not the pgoff alignment) has 141 * already been checked by prepare_hugepage_range. If you add 142 * any error returns here, do so after setting VM_HUGETLB, so 143 * is_vm_hugetlb_page tests below unmap_region go the right 144 * way when do_mmap unwinds (may be important on powerpc 145 * and ia64). 146 */ 147 vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND; 148 vma->vm_ops = &hugetlb_vm_ops; 149 150 ret = seal_check_future_write(info->seals, vma); 151 if (ret) 152 return ret; 153 154 /* 155 * page based offset in vm_pgoff could be sufficiently large to 156 * overflow a loff_t when converted to byte offset. This can 157 * only happen on architectures where sizeof(loff_t) == 158 * sizeof(unsigned long). So, only check in those instances. 159 */ 160 if (sizeof(unsigned long) == sizeof(loff_t)) { 161 if (vma->vm_pgoff & PGOFF_LOFFT_MAX) 162 return -EINVAL; 163 } 164 165 /* must be huge page aligned */ 166 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT)) 167 return -EINVAL; 168 169 vma_len = (loff_t)(vma->vm_end - vma->vm_start); 170 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 171 /* check for overflow */ 172 if (len < vma_len) 173 return -EINVAL; 174 175 inode_lock(inode); 176 file_accessed(file); 177 178 ret = -ENOMEM; 179 if (!hugetlb_reserve_pages(inode, 180 vma->vm_pgoff >> huge_page_order(h), 181 len >> huge_page_shift(h), vma, 182 vma->vm_flags)) 183 goto out; 184 185 ret = 0; 186 if (vma->vm_flags & VM_WRITE && inode->i_size < len) 187 i_size_write(inode, len); 188 out: 189 inode_unlock(inode); 190 191 return ret; 192 } 193 194 /* 195 * Called under mmap_write_lock(mm). 196 */ 197 198 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA 199 static unsigned long 200 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr, 201 unsigned long len, unsigned long pgoff, unsigned long flags) 202 { 203 struct hstate *h = hstate_file(file); 204 struct vm_unmapped_area_info info; 205 206 info.flags = 0; 207 info.length = len; 208 info.low_limit = current->mm->mmap_base; 209 info.high_limit = arch_get_mmap_end(addr); 210 info.align_mask = PAGE_MASK & ~huge_page_mask(h); 211 info.align_offset = 0; 212 return vm_unmapped_area(&info); 213 } 214 215 static unsigned long 216 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr, 217 unsigned long len, unsigned long pgoff, unsigned long flags) 218 { 219 struct hstate *h = hstate_file(file); 220 struct vm_unmapped_area_info info; 221 222 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 223 info.length = len; 224 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 225 info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base); 226 info.align_mask = PAGE_MASK & ~huge_page_mask(h); 227 info.align_offset = 0; 228 addr = vm_unmapped_area(&info); 229 230 /* 231 * A failed mmap() very likely causes application failure, 232 * so fall back to the bottom-up function here. This scenario 233 * can happen with large stack limits and large mmap() 234 * allocations. 235 */ 236 if (unlikely(offset_in_page(addr))) { 237 VM_BUG_ON(addr != -ENOMEM); 238 info.flags = 0; 239 info.low_limit = current->mm->mmap_base; 240 info.high_limit = arch_get_mmap_end(addr); 241 addr = vm_unmapped_area(&info); 242 } 243 244 return addr; 245 } 246 247 static unsigned long 248 hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 249 unsigned long len, unsigned long pgoff, unsigned long flags) 250 { 251 struct mm_struct *mm = current->mm; 252 struct vm_area_struct *vma; 253 struct hstate *h = hstate_file(file); 254 const unsigned long mmap_end = arch_get_mmap_end(addr); 255 256 if (len & ~huge_page_mask(h)) 257 return -EINVAL; 258 if (len > TASK_SIZE) 259 return -ENOMEM; 260 261 if (flags & MAP_FIXED) { 262 if (prepare_hugepage_range(file, addr, len)) 263 return -EINVAL; 264 return addr; 265 } 266 267 if (addr) { 268 addr = ALIGN(addr, huge_page_size(h)); 269 vma = find_vma(mm, addr); 270 if (mmap_end - len >= addr && 271 (!vma || addr + len <= vm_start_gap(vma))) 272 return addr; 273 } 274 275 /* 276 * Use mm->get_unmapped_area value as a hint to use topdown routine. 277 * If architectures have special needs, they should define their own 278 * version of hugetlb_get_unmapped_area. 279 */ 280 if (mm->get_unmapped_area == arch_get_unmapped_area_topdown) 281 return hugetlb_get_unmapped_area_topdown(file, addr, len, 282 pgoff, flags); 283 return hugetlb_get_unmapped_area_bottomup(file, addr, len, 284 pgoff, flags); 285 } 286 #endif 287 288 static size_t 289 hugetlbfs_read_actor(struct page *page, unsigned long offset, 290 struct iov_iter *to, unsigned long size) 291 { 292 size_t copied = 0; 293 int i, chunksize; 294 295 /* Find which 4k chunk and offset with in that chunk */ 296 i = offset >> PAGE_SHIFT; 297 offset = offset & ~PAGE_MASK; 298 299 while (size) { 300 size_t n; 301 chunksize = PAGE_SIZE; 302 if (offset) 303 chunksize -= offset; 304 if (chunksize > size) 305 chunksize = size; 306 n = copy_page_to_iter(&page[i], offset, chunksize, to); 307 copied += n; 308 if (n != chunksize) 309 return copied; 310 offset = 0; 311 size -= chunksize; 312 i++; 313 } 314 return copied; 315 } 316 317 /* 318 * Support for read() - Find the page attached to f_mapping and copy out the 319 * data. Its *very* similar to generic_file_buffered_read(), we can't use that 320 * since it has PAGE_SIZE assumptions. 321 */ 322 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to) 323 { 324 struct file *file = iocb->ki_filp; 325 struct hstate *h = hstate_file(file); 326 struct address_space *mapping = file->f_mapping; 327 struct inode *inode = mapping->host; 328 unsigned long index = iocb->ki_pos >> huge_page_shift(h); 329 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h); 330 unsigned long end_index; 331 loff_t isize; 332 ssize_t retval = 0; 333 334 while (iov_iter_count(to)) { 335 struct page *page; 336 size_t nr, copied; 337 338 /* nr is the maximum number of bytes to copy from this page */ 339 nr = huge_page_size(h); 340 isize = i_size_read(inode); 341 if (!isize) 342 break; 343 end_index = (isize - 1) >> huge_page_shift(h); 344 if (index > end_index) 345 break; 346 if (index == end_index) { 347 nr = ((isize - 1) & ~huge_page_mask(h)) + 1; 348 if (nr <= offset) 349 break; 350 } 351 nr = nr - offset; 352 353 /* Find the page */ 354 page = find_lock_page(mapping, index); 355 if (unlikely(page == NULL)) { 356 /* 357 * We have a HOLE, zero out the user-buffer for the 358 * length of the hole or request. 359 */ 360 copied = iov_iter_zero(nr, to); 361 } else { 362 unlock_page(page); 363 364 /* 365 * We have the page, copy it to user space buffer. 366 */ 367 copied = hugetlbfs_read_actor(page, offset, to, nr); 368 put_page(page); 369 } 370 offset += copied; 371 retval += copied; 372 if (copied != nr && iov_iter_count(to)) { 373 if (!retval) 374 retval = -EFAULT; 375 break; 376 } 377 index += offset >> huge_page_shift(h); 378 offset &= ~huge_page_mask(h); 379 } 380 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset; 381 return retval; 382 } 383 384 static int hugetlbfs_write_begin(struct file *file, 385 struct address_space *mapping, 386 loff_t pos, unsigned len, unsigned flags, 387 struct page **pagep, void **fsdata) 388 { 389 return -EINVAL; 390 } 391 392 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping, 393 loff_t pos, unsigned len, unsigned copied, 394 struct page *page, void *fsdata) 395 { 396 BUG(); 397 return -EINVAL; 398 } 399 400 static void remove_huge_page(struct page *page) 401 { 402 ClearPageDirty(page); 403 ClearPageUptodate(page); 404 delete_from_page_cache(page); 405 } 406 407 static void 408 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end) 409 { 410 struct vm_area_struct *vma; 411 412 /* 413 * end == 0 indicates that the entire range after start should be 414 * unmapped. Note, end is exclusive, whereas the interval tree takes 415 * an inclusive "last". 416 */ 417 vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) { 418 unsigned long v_offset; 419 unsigned long v_end; 420 421 /* 422 * Can the expression below overflow on 32-bit arches? 423 * No, because the interval tree returns us only those vmas 424 * which overlap the truncated area starting at pgoff, 425 * and no vma on a 32-bit arch can span beyond the 4GB. 426 */ 427 if (vma->vm_pgoff < start) 428 v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT; 429 else 430 v_offset = 0; 431 432 if (!end) 433 v_end = vma->vm_end; 434 else { 435 v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) 436 + vma->vm_start; 437 if (v_end > vma->vm_end) 438 v_end = vma->vm_end; 439 } 440 441 unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end, 442 NULL); 443 } 444 } 445 446 /* 447 * remove_inode_hugepages handles two distinct cases: truncation and hole 448 * punch. There are subtle differences in operation for each case. 449 * 450 * truncation is indicated by end of range being LLONG_MAX 451 * In this case, we first scan the range and release found pages. 452 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserve 453 * maps and global counts. Page faults can not race with truncation 454 * in this routine. hugetlb_no_page() holds i_mmap_rwsem and prevents 455 * page faults in the truncated range by checking i_size. i_size is 456 * modified while holding i_mmap_rwsem. 457 * hole punch is indicated if end is not LLONG_MAX 458 * In the hole punch case we scan the range and release found pages. 459 * Only when releasing a page is the associated region/reserve map 460 * deleted. The region/reserve map for ranges without associated 461 * pages are not modified. Page faults can race with hole punch. 462 * This is indicated if we find a mapped page. 463 * Note: If the passed end of range value is beyond the end of file, but 464 * not LLONG_MAX this routine still performs a hole punch operation. 465 */ 466 static void remove_inode_hugepages(struct inode *inode, loff_t lstart, 467 loff_t lend) 468 { 469 struct hstate *h = hstate_inode(inode); 470 struct address_space *mapping = &inode->i_data; 471 const pgoff_t start = lstart >> huge_page_shift(h); 472 const pgoff_t end = lend >> huge_page_shift(h); 473 struct pagevec pvec; 474 pgoff_t next, index; 475 int i, freed = 0; 476 bool truncate_op = (lend == LLONG_MAX); 477 478 pagevec_init(&pvec); 479 next = start; 480 while (next < end) { 481 /* 482 * When no more pages are found, we are done. 483 */ 484 if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1)) 485 break; 486 487 for (i = 0; i < pagevec_count(&pvec); ++i) { 488 struct page *page = pvec.pages[i]; 489 u32 hash = 0; 490 491 index = page->index; 492 if (!truncate_op) { 493 /* 494 * Only need to hold the fault mutex in the 495 * hole punch case. This prevents races with 496 * page faults. Races are not possible in the 497 * case of truncation. 498 */ 499 hash = hugetlb_fault_mutex_hash(mapping, index); 500 mutex_lock(&hugetlb_fault_mutex_table[hash]); 501 } 502 503 /* 504 * If page is mapped, it was faulted in after being 505 * unmapped in caller. Unmap (again) now after taking 506 * the fault mutex. The mutex will prevent faults 507 * until we finish removing the page. 508 * 509 * This race can only happen in the hole punch case. 510 * Getting here in a truncate operation is a bug. 511 */ 512 if (unlikely(page_mapped(page))) { 513 BUG_ON(truncate_op); 514 515 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 516 i_mmap_lock_write(mapping); 517 mutex_lock(&hugetlb_fault_mutex_table[hash]); 518 hugetlb_vmdelete_list(&mapping->i_mmap, 519 index * pages_per_huge_page(h), 520 (index + 1) * pages_per_huge_page(h)); 521 i_mmap_unlock_write(mapping); 522 } 523 524 lock_page(page); 525 /* 526 * We must free the huge page and remove from page 527 * cache (remove_huge_page) BEFORE removing the 528 * region/reserve map (hugetlb_unreserve_pages). In 529 * rare out of memory conditions, removal of the 530 * region/reserve map could fail. Correspondingly, 531 * the subpool and global reserve usage count can need 532 * to be adjusted. 533 */ 534 VM_BUG_ON(HPageRestoreReserve(page)); 535 remove_huge_page(page); 536 freed++; 537 if (!truncate_op) { 538 if (unlikely(hugetlb_unreserve_pages(inode, 539 index, index + 1, 1))) 540 hugetlb_fix_reserve_counts(inode); 541 } 542 543 unlock_page(page); 544 if (!truncate_op) 545 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 546 } 547 huge_pagevec_release(&pvec); 548 cond_resched(); 549 } 550 551 if (truncate_op) 552 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed); 553 } 554 555 static void hugetlbfs_evict_inode(struct inode *inode) 556 { 557 struct resv_map *resv_map; 558 559 remove_inode_hugepages(inode, 0, LLONG_MAX); 560 561 /* 562 * Get the resv_map from the address space embedded in the inode. 563 * This is the address space which points to any resv_map allocated 564 * at inode creation time. If this is a device special inode, 565 * i_mapping may not point to the original address space. 566 */ 567 resv_map = (struct resv_map *)(&inode->i_data)->private_data; 568 /* Only regular and link inodes have associated reserve maps */ 569 if (resv_map) 570 resv_map_release(&resv_map->refs); 571 clear_inode(inode); 572 } 573 574 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset) 575 { 576 pgoff_t pgoff; 577 struct address_space *mapping = inode->i_mapping; 578 struct hstate *h = hstate_inode(inode); 579 580 BUG_ON(offset & ~huge_page_mask(h)); 581 pgoff = offset >> PAGE_SHIFT; 582 583 i_mmap_lock_write(mapping); 584 i_size_write(inode, offset); 585 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 586 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0); 587 i_mmap_unlock_write(mapping); 588 remove_inode_hugepages(inode, offset, LLONG_MAX); 589 } 590 591 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 592 { 593 struct hstate *h = hstate_inode(inode); 594 loff_t hpage_size = huge_page_size(h); 595 loff_t hole_start, hole_end; 596 597 /* 598 * For hole punch round up the beginning offset of the hole and 599 * round down the end. 600 */ 601 hole_start = round_up(offset, hpage_size); 602 hole_end = round_down(offset + len, hpage_size); 603 604 if (hole_end > hole_start) { 605 struct address_space *mapping = inode->i_mapping; 606 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 607 608 inode_lock(inode); 609 610 /* protected by i_rwsem */ 611 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 612 inode_unlock(inode); 613 return -EPERM; 614 } 615 616 i_mmap_lock_write(mapping); 617 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 618 hugetlb_vmdelete_list(&mapping->i_mmap, 619 hole_start >> PAGE_SHIFT, 620 hole_end >> PAGE_SHIFT); 621 i_mmap_unlock_write(mapping); 622 remove_inode_hugepages(inode, hole_start, hole_end); 623 inode_unlock(inode); 624 } 625 626 return 0; 627 } 628 629 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset, 630 loff_t len) 631 { 632 struct inode *inode = file_inode(file); 633 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 634 struct address_space *mapping = inode->i_mapping; 635 struct hstate *h = hstate_inode(inode); 636 struct vm_area_struct pseudo_vma; 637 struct mm_struct *mm = current->mm; 638 loff_t hpage_size = huge_page_size(h); 639 unsigned long hpage_shift = huge_page_shift(h); 640 pgoff_t start, index, end; 641 int error; 642 u32 hash; 643 644 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 645 return -EOPNOTSUPP; 646 647 if (mode & FALLOC_FL_PUNCH_HOLE) 648 return hugetlbfs_punch_hole(inode, offset, len); 649 650 /* 651 * Default preallocate case. 652 * For this range, start is rounded down and end is rounded up 653 * as well as being converted to page offsets. 654 */ 655 start = offset >> hpage_shift; 656 end = (offset + len + hpage_size - 1) >> hpage_shift; 657 658 inode_lock(inode); 659 660 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 661 error = inode_newsize_ok(inode, offset + len); 662 if (error) 663 goto out; 664 665 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 666 error = -EPERM; 667 goto out; 668 } 669 670 /* 671 * Initialize a pseudo vma as this is required by the huge page 672 * allocation routines. If NUMA is configured, use page index 673 * as input to create an allocation policy. 674 */ 675 vma_init(&pseudo_vma, mm); 676 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 677 pseudo_vma.vm_file = file; 678 679 for (index = start; index < end; index++) { 680 /* 681 * This is supposed to be the vaddr where the page is being 682 * faulted in, but we have no vaddr here. 683 */ 684 struct page *page; 685 unsigned long addr; 686 687 cond_resched(); 688 689 /* 690 * fallocate(2) manpage permits EINTR; we may have been 691 * interrupted because we are using up too much memory. 692 */ 693 if (signal_pending(current)) { 694 error = -EINTR; 695 break; 696 } 697 698 /* Set numa allocation policy based on index */ 699 hugetlb_set_vma_policy(&pseudo_vma, inode, index); 700 701 /* addr is the offset within the file (zero based) */ 702 addr = index * hpage_size; 703 704 /* 705 * fault mutex taken here, protects against fault path 706 * and hole punch. inode_lock previously taken protects 707 * against truncation. 708 */ 709 hash = hugetlb_fault_mutex_hash(mapping, index); 710 mutex_lock(&hugetlb_fault_mutex_table[hash]); 711 712 /* See if already present in mapping to avoid alloc/free */ 713 page = find_get_page(mapping, index); 714 if (page) { 715 put_page(page); 716 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 717 hugetlb_drop_vma_policy(&pseudo_vma); 718 continue; 719 } 720 721 /* 722 * Allocate page without setting the avoid_reserve argument. 723 * There certainly are no reserves associated with the 724 * pseudo_vma. However, there could be shared mappings with 725 * reserves for the file at the inode level. If we fallocate 726 * pages in these areas, we need to consume the reserves 727 * to keep reservation accounting consistent. 728 */ 729 page = alloc_huge_page(&pseudo_vma, addr, 0); 730 hugetlb_drop_vma_policy(&pseudo_vma); 731 if (IS_ERR(page)) { 732 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 733 error = PTR_ERR(page); 734 goto out; 735 } 736 clear_huge_page(page, addr, pages_per_huge_page(h)); 737 __SetPageUptodate(page); 738 error = huge_add_to_page_cache(page, mapping, index); 739 if (unlikely(error)) { 740 restore_reserve_on_error(h, &pseudo_vma, addr, page); 741 put_page(page); 742 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 743 goto out; 744 } 745 746 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 747 748 SetHPageMigratable(page); 749 /* 750 * unlock_page because locked by add_to_page_cache() 751 * put_page() due to reference from alloc_huge_page() 752 */ 753 unlock_page(page); 754 put_page(page); 755 } 756 757 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 758 i_size_write(inode, offset + len); 759 inode->i_ctime = current_time(inode); 760 out: 761 inode_unlock(inode); 762 return error; 763 } 764 765 static int hugetlbfs_setattr(struct user_namespace *mnt_userns, 766 struct dentry *dentry, struct iattr *attr) 767 { 768 struct inode *inode = d_inode(dentry); 769 struct hstate *h = hstate_inode(inode); 770 int error; 771 unsigned int ia_valid = attr->ia_valid; 772 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 773 774 error = setattr_prepare(&init_user_ns, dentry, attr); 775 if (error) 776 return error; 777 778 if (ia_valid & ATTR_SIZE) { 779 loff_t oldsize = inode->i_size; 780 loff_t newsize = attr->ia_size; 781 782 if (newsize & ~huge_page_mask(h)) 783 return -EINVAL; 784 /* protected by i_rwsem */ 785 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 786 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 787 return -EPERM; 788 hugetlb_vmtruncate(inode, newsize); 789 } 790 791 setattr_copy(&init_user_ns, inode, attr); 792 mark_inode_dirty(inode); 793 return 0; 794 } 795 796 static struct inode *hugetlbfs_get_root(struct super_block *sb, 797 struct hugetlbfs_fs_context *ctx) 798 { 799 struct inode *inode; 800 801 inode = new_inode(sb); 802 if (inode) { 803 inode->i_ino = get_next_ino(); 804 inode->i_mode = S_IFDIR | ctx->mode; 805 inode->i_uid = ctx->uid; 806 inode->i_gid = ctx->gid; 807 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 808 inode->i_op = &hugetlbfs_dir_inode_operations; 809 inode->i_fop = &simple_dir_operations; 810 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 811 inc_nlink(inode); 812 lockdep_annotate_inode_mutex_key(inode); 813 } 814 return inode; 815 } 816 817 /* 818 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never 819 * be taken from reclaim -- unlike regular filesystems. This needs an 820 * annotation because huge_pmd_share() does an allocation under hugetlb's 821 * i_mmap_rwsem. 822 */ 823 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key; 824 825 static struct inode *hugetlbfs_get_inode(struct super_block *sb, 826 struct inode *dir, 827 umode_t mode, dev_t dev) 828 { 829 struct inode *inode; 830 struct resv_map *resv_map = NULL; 831 832 /* 833 * Reserve maps are only needed for inodes that can have associated 834 * page allocations. 835 */ 836 if (S_ISREG(mode) || S_ISLNK(mode)) { 837 resv_map = resv_map_alloc(); 838 if (!resv_map) 839 return NULL; 840 } 841 842 inode = new_inode(sb); 843 if (inode) { 844 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 845 846 inode->i_ino = get_next_ino(); 847 inode_init_owner(&init_user_ns, inode, dir, mode); 848 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem, 849 &hugetlbfs_i_mmap_rwsem_key); 850 inode->i_mapping->a_ops = &hugetlbfs_aops; 851 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 852 inode->i_mapping->private_data = resv_map; 853 info->seals = F_SEAL_SEAL; 854 switch (mode & S_IFMT) { 855 default: 856 init_special_inode(inode, mode, dev); 857 break; 858 case S_IFREG: 859 inode->i_op = &hugetlbfs_inode_operations; 860 inode->i_fop = &hugetlbfs_file_operations; 861 break; 862 case S_IFDIR: 863 inode->i_op = &hugetlbfs_dir_inode_operations; 864 inode->i_fop = &simple_dir_operations; 865 866 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 867 inc_nlink(inode); 868 break; 869 case S_IFLNK: 870 inode->i_op = &page_symlink_inode_operations; 871 inode_nohighmem(inode); 872 break; 873 } 874 lockdep_annotate_inode_mutex_key(inode); 875 } else { 876 if (resv_map) 877 kref_put(&resv_map->refs, resv_map_release); 878 } 879 880 return inode; 881 } 882 883 /* 884 * File creation. Allocate an inode, and we're done.. 885 */ 886 static int do_hugetlbfs_mknod(struct inode *dir, 887 struct dentry *dentry, 888 umode_t mode, 889 dev_t dev, 890 bool tmpfile) 891 { 892 struct inode *inode; 893 int error = -ENOSPC; 894 895 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev); 896 if (inode) { 897 dir->i_ctime = dir->i_mtime = current_time(dir); 898 if (tmpfile) { 899 d_tmpfile(dentry, inode); 900 } else { 901 d_instantiate(dentry, inode); 902 dget(dentry);/* Extra count - pin the dentry in core */ 903 } 904 error = 0; 905 } 906 return error; 907 } 908 909 static int hugetlbfs_mknod(struct user_namespace *mnt_userns, struct inode *dir, 910 struct dentry *dentry, umode_t mode, dev_t dev) 911 { 912 return do_hugetlbfs_mknod(dir, dentry, mode, dev, false); 913 } 914 915 static int hugetlbfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 916 struct dentry *dentry, umode_t mode) 917 { 918 int retval = hugetlbfs_mknod(&init_user_ns, dir, dentry, 919 mode | S_IFDIR, 0); 920 if (!retval) 921 inc_nlink(dir); 922 return retval; 923 } 924 925 static int hugetlbfs_create(struct user_namespace *mnt_userns, 926 struct inode *dir, struct dentry *dentry, 927 umode_t mode, bool excl) 928 { 929 return hugetlbfs_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0); 930 } 931 932 static int hugetlbfs_tmpfile(struct user_namespace *mnt_userns, 933 struct inode *dir, struct dentry *dentry, 934 umode_t mode) 935 { 936 return do_hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0, true); 937 } 938 939 static int hugetlbfs_symlink(struct user_namespace *mnt_userns, 940 struct inode *dir, struct dentry *dentry, 941 const char *symname) 942 { 943 struct inode *inode; 944 int error = -ENOSPC; 945 946 inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0); 947 if (inode) { 948 int l = strlen(symname)+1; 949 error = page_symlink(inode, symname, l); 950 if (!error) { 951 d_instantiate(dentry, inode); 952 dget(dentry); 953 } else 954 iput(inode); 955 } 956 dir->i_ctime = dir->i_mtime = current_time(dir); 957 958 return error; 959 } 960 961 static int hugetlbfs_migrate_page(struct address_space *mapping, 962 struct page *newpage, struct page *page, 963 enum migrate_mode mode) 964 { 965 int rc; 966 967 rc = migrate_huge_page_move_mapping(mapping, newpage, page); 968 if (rc != MIGRATEPAGE_SUCCESS) 969 return rc; 970 971 if (hugetlb_page_subpool(page)) { 972 hugetlb_set_page_subpool(newpage, hugetlb_page_subpool(page)); 973 hugetlb_set_page_subpool(page, NULL); 974 } 975 976 if (mode != MIGRATE_SYNC_NO_COPY) 977 migrate_page_copy(newpage, page); 978 else 979 migrate_page_states(newpage, page); 980 981 return MIGRATEPAGE_SUCCESS; 982 } 983 984 static int hugetlbfs_error_remove_page(struct address_space *mapping, 985 struct page *page) 986 { 987 struct inode *inode = mapping->host; 988 pgoff_t index = page->index; 989 990 remove_huge_page(page); 991 if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1))) 992 hugetlb_fix_reserve_counts(inode); 993 994 return 0; 995 } 996 997 /* 998 * Display the mount options in /proc/mounts. 999 */ 1000 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root) 1001 { 1002 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb); 1003 struct hugepage_subpool *spool = sbinfo->spool; 1004 unsigned long hpage_size = huge_page_size(sbinfo->hstate); 1005 unsigned hpage_shift = huge_page_shift(sbinfo->hstate); 1006 char mod; 1007 1008 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 1009 seq_printf(m, ",uid=%u", 1010 from_kuid_munged(&init_user_ns, sbinfo->uid)); 1011 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 1012 seq_printf(m, ",gid=%u", 1013 from_kgid_munged(&init_user_ns, sbinfo->gid)); 1014 if (sbinfo->mode != 0755) 1015 seq_printf(m, ",mode=%o", sbinfo->mode); 1016 if (sbinfo->max_inodes != -1) 1017 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes); 1018 1019 hpage_size /= 1024; 1020 mod = 'K'; 1021 if (hpage_size >= 1024) { 1022 hpage_size /= 1024; 1023 mod = 'M'; 1024 } 1025 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod); 1026 if (spool) { 1027 if (spool->max_hpages != -1) 1028 seq_printf(m, ",size=%llu", 1029 (unsigned long long)spool->max_hpages << hpage_shift); 1030 if (spool->min_hpages != -1) 1031 seq_printf(m, ",min_size=%llu", 1032 (unsigned long long)spool->min_hpages << hpage_shift); 1033 } 1034 return 0; 1035 } 1036 1037 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf) 1038 { 1039 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb); 1040 struct hstate *h = hstate_inode(d_inode(dentry)); 1041 1042 buf->f_type = HUGETLBFS_MAGIC; 1043 buf->f_bsize = huge_page_size(h); 1044 if (sbinfo) { 1045 spin_lock(&sbinfo->stat_lock); 1046 /* If no limits set, just report 0 for max/free/used 1047 * blocks, like simple_statfs() */ 1048 if (sbinfo->spool) { 1049 long free_pages; 1050 1051 spin_lock(&sbinfo->spool->lock); 1052 buf->f_blocks = sbinfo->spool->max_hpages; 1053 free_pages = sbinfo->spool->max_hpages 1054 - sbinfo->spool->used_hpages; 1055 buf->f_bavail = buf->f_bfree = free_pages; 1056 spin_unlock(&sbinfo->spool->lock); 1057 buf->f_files = sbinfo->max_inodes; 1058 buf->f_ffree = sbinfo->free_inodes; 1059 } 1060 spin_unlock(&sbinfo->stat_lock); 1061 } 1062 buf->f_namelen = NAME_MAX; 1063 return 0; 1064 } 1065 1066 static void hugetlbfs_put_super(struct super_block *sb) 1067 { 1068 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb); 1069 1070 if (sbi) { 1071 sb->s_fs_info = NULL; 1072 1073 if (sbi->spool) 1074 hugepage_put_subpool(sbi->spool); 1075 1076 kfree(sbi); 1077 } 1078 } 1079 1080 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1081 { 1082 if (sbinfo->free_inodes >= 0) { 1083 spin_lock(&sbinfo->stat_lock); 1084 if (unlikely(!sbinfo->free_inodes)) { 1085 spin_unlock(&sbinfo->stat_lock); 1086 return 0; 1087 } 1088 sbinfo->free_inodes--; 1089 spin_unlock(&sbinfo->stat_lock); 1090 } 1091 1092 return 1; 1093 } 1094 1095 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1096 { 1097 if (sbinfo->free_inodes >= 0) { 1098 spin_lock(&sbinfo->stat_lock); 1099 sbinfo->free_inodes++; 1100 spin_unlock(&sbinfo->stat_lock); 1101 } 1102 } 1103 1104 1105 static struct kmem_cache *hugetlbfs_inode_cachep; 1106 1107 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb) 1108 { 1109 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb); 1110 struct hugetlbfs_inode_info *p; 1111 1112 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo))) 1113 return NULL; 1114 p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL); 1115 if (unlikely(!p)) { 1116 hugetlbfs_inc_free_inodes(sbinfo); 1117 return NULL; 1118 } 1119 1120 /* 1121 * Any time after allocation, hugetlbfs_destroy_inode can be called 1122 * for the inode. mpol_free_shared_policy is unconditionally called 1123 * as part of hugetlbfs_destroy_inode. So, initialize policy here 1124 * in case of a quick call to destroy. 1125 * 1126 * Note that the policy is initialized even if we are creating a 1127 * private inode. This simplifies hugetlbfs_destroy_inode. 1128 */ 1129 mpol_shared_policy_init(&p->policy, NULL); 1130 1131 return &p->vfs_inode; 1132 } 1133 1134 static void hugetlbfs_free_inode(struct inode *inode) 1135 { 1136 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode)); 1137 } 1138 1139 static void hugetlbfs_destroy_inode(struct inode *inode) 1140 { 1141 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb)); 1142 mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy); 1143 } 1144 1145 static const struct address_space_operations hugetlbfs_aops = { 1146 .write_begin = hugetlbfs_write_begin, 1147 .write_end = hugetlbfs_write_end, 1148 .dirty_folio = noop_dirty_folio, 1149 .migratepage = hugetlbfs_migrate_page, 1150 .error_remove_page = hugetlbfs_error_remove_page, 1151 }; 1152 1153 1154 static void init_once(void *foo) 1155 { 1156 struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo; 1157 1158 inode_init_once(&ei->vfs_inode); 1159 } 1160 1161 const struct file_operations hugetlbfs_file_operations = { 1162 .read_iter = hugetlbfs_read_iter, 1163 .mmap = hugetlbfs_file_mmap, 1164 .fsync = noop_fsync, 1165 .get_unmapped_area = hugetlb_get_unmapped_area, 1166 .llseek = default_llseek, 1167 .fallocate = hugetlbfs_fallocate, 1168 }; 1169 1170 static const struct inode_operations hugetlbfs_dir_inode_operations = { 1171 .create = hugetlbfs_create, 1172 .lookup = simple_lookup, 1173 .link = simple_link, 1174 .unlink = simple_unlink, 1175 .symlink = hugetlbfs_symlink, 1176 .mkdir = hugetlbfs_mkdir, 1177 .rmdir = simple_rmdir, 1178 .mknod = hugetlbfs_mknod, 1179 .rename = simple_rename, 1180 .setattr = hugetlbfs_setattr, 1181 .tmpfile = hugetlbfs_tmpfile, 1182 }; 1183 1184 static const struct inode_operations hugetlbfs_inode_operations = { 1185 .setattr = hugetlbfs_setattr, 1186 }; 1187 1188 static const struct super_operations hugetlbfs_ops = { 1189 .alloc_inode = hugetlbfs_alloc_inode, 1190 .free_inode = hugetlbfs_free_inode, 1191 .destroy_inode = hugetlbfs_destroy_inode, 1192 .evict_inode = hugetlbfs_evict_inode, 1193 .statfs = hugetlbfs_statfs, 1194 .put_super = hugetlbfs_put_super, 1195 .show_options = hugetlbfs_show_options, 1196 }; 1197 1198 /* 1199 * Convert size option passed from command line to number of huge pages 1200 * in the pool specified by hstate. Size option could be in bytes 1201 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT). 1202 */ 1203 static long 1204 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt, 1205 enum hugetlbfs_size_type val_type) 1206 { 1207 if (val_type == NO_SIZE) 1208 return -1; 1209 1210 if (val_type == SIZE_PERCENT) { 1211 size_opt <<= huge_page_shift(h); 1212 size_opt *= h->max_huge_pages; 1213 do_div(size_opt, 100); 1214 } 1215 1216 size_opt >>= huge_page_shift(h); 1217 return size_opt; 1218 } 1219 1220 /* 1221 * Parse one mount parameter. 1222 */ 1223 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param) 1224 { 1225 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1226 struct fs_parse_result result; 1227 char *rest; 1228 unsigned long ps; 1229 int opt; 1230 1231 opt = fs_parse(fc, hugetlb_fs_parameters, param, &result); 1232 if (opt < 0) 1233 return opt; 1234 1235 switch (opt) { 1236 case Opt_uid: 1237 ctx->uid = make_kuid(current_user_ns(), result.uint_32); 1238 if (!uid_valid(ctx->uid)) 1239 goto bad_val; 1240 return 0; 1241 1242 case Opt_gid: 1243 ctx->gid = make_kgid(current_user_ns(), result.uint_32); 1244 if (!gid_valid(ctx->gid)) 1245 goto bad_val; 1246 return 0; 1247 1248 case Opt_mode: 1249 ctx->mode = result.uint_32 & 01777U; 1250 return 0; 1251 1252 case Opt_size: 1253 /* memparse() will accept a K/M/G without a digit */ 1254 if (!isdigit(param->string[0])) 1255 goto bad_val; 1256 ctx->max_size_opt = memparse(param->string, &rest); 1257 ctx->max_val_type = SIZE_STD; 1258 if (*rest == '%') 1259 ctx->max_val_type = SIZE_PERCENT; 1260 return 0; 1261 1262 case Opt_nr_inodes: 1263 /* memparse() will accept a K/M/G without a digit */ 1264 if (!isdigit(param->string[0])) 1265 goto bad_val; 1266 ctx->nr_inodes = memparse(param->string, &rest); 1267 return 0; 1268 1269 case Opt_pagesize: 1270 ps = memparse(param->string, &rest); 1271 ctx->hstate = size_to_hstate(ps); 1272 if (!ctx->hstate) { 1273 pr_err("Unsupported page size %lu MB\n", ps >> 20); 1274 return -EINVAL; 1275 } 1276 return 0; 1277 1278 case Opt_min_size: 1279 /* memparse() will accept a K/M/G without a digit */ 1280 if (!isdigit(param->string[0])) 1281 goto bad_val; 1282 ctx->min_size_opt = memparse(param->string, &rest); 1283 ctx->min_val_type = SIZE_STD; 1284 if (*rest == '%') 1285 ctx->min_val_type = SIZE_PERCENT; 1286 return 0; 1287 1288 default: 1289 return -EINVAL; 1290 } 1291 1292 bad_val: 1293 return invalfc(fc, "Bad value '%s' for mount option '%s'\n", 1294 param->string, param->key); 1295 } 1296 1297 /* 1298 * Validate the parsed options. 1299 */ 1300 static int hugetlbfs_validate(struct fs_context *fc) 1301 { 1302 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1303 1304 /* 1305 * Use huge page pool size (in hstate) to convert the size 1306 * options to number of huge pages. If NO_SIZE, -1 is returned. 1307 */ 1308 ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1309 ctx->max_size_opt, 1310 ctx->max_val_type); 1311 ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1312 ctx->min_size_opt, 1313 ctx->min_val_type); 1314 1315 /* 1316 * If max_size was specified, then min_size must be smaller 1317 */ 1318 if (ctx->max_val_type > NO_SIZE && 1319 ctx->min_hpages > ctx->max_hpages) { 1320 pr_err("Minimum size can not be greater than maximum size\n"); 1321 return -EINVAL; 1322 } 1323 1324 return 0; 1325 } 1326 1327 static int 1328 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc) 1329 { 1330 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1331 struct hugetlbfs_sb_info *sbinfo; 1332 1333 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL); 1334 if (!sbinfo) 1335 return -ENOMEM; 1336 sb->s_fs_info = sbinfo; 1337 spin_lock_init(&sbinfo->stat_lock); 1338 sbinfo->hstate = ctx->hstate; 1339 sbinfo->max_inodes = ctx->nr_inodes; 1340 sbinfo->free_inodes = ctx->nr_inodes; 1341 sbinfo->spool = NULL; 1342 sbinfo->uid = ctx->uid; 1343 sbinfo->gid = ctx->gid; 1344 sbinfo->mode = ctx->mode; 1345 1346 /* 1347 * Allocate and initialize subpool if maximum or minimum size is 1348 * specified. Any needed reservations (for minimum size) are taken 1349 * taken when the subpool is created. 1350 */ 1351 if (ctx->max_hpages != -1 || ctx->min_hpages != -1) { 1352 sbinfo->spool = hugepage_new_subpool(ctx->hstate, 1353 ctx->max_hpages, 1354 ctx->min_hpages); 1355 if (!sbinfo->spool) 1356 goto out_free; 1357 } 1358 sb->s_maxbytes = MAX_LFS_FILESIZE; 1359 sb->s_blocksize = huge_page_size(ctx->hstate); 1360 sb->s_blocksize_bits = huge_page_shift(ctx->hstate); 1361 sb->s_magic = HUGETLBFS_MAGIC; 1362 sb->s_op = &hugetlbfs_ops; 1363 sb->s_time_gran = 1; 1364 1365 /* 1366 * Due to the special and limited functionality of hugetlbfs, it does 1367 * not work well as a stacking filesystem. 1368 */ 1369 sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH; 1370 sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx)); 1371 if (!sb->s_root) 1372 goto out_free; 1373 return 0; 1374 out_free: 1375 kfree(sbinfo->spool); 1376 kfree(sbinfo); 1377 return -ENOMEM; 1378 } 1379 1380 static int hugetlbfs_get_tree(struct fs_context *fc) 1381 { 1382 int err = hugetlbfs_validate(fc); 1383 if (err) 1384 return err; 1385 return get_tree_nodev(fc, hugetlbfs_fill_super); 1386 } 1387 1388 static void hugetlbfs_fs_context_free(struct fs_context *fc) 1389 { 1390 kfree(fc->fs_private); 1391 } 1392 1393 static const struct fs_context_operations hugetlbfs_fs_context_ops = { 1394 .free = hugetlbfs_fs_context_free, 1395 .parse_param = hugetlbfs_parse_param, 1396 .get_tree = hugetlbfs_get_tree, 1397 }; 1398 1399 static int hugetlbfs_init_fs_context(struct fs_context *fc) 1400 { 1401 struct hugetlbfs_fs_context *ctx; 1402 1403 ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL); 1404 if (!ctx) 1405 return -ENOMEM; 1406 1407 ctx->max_hpages = -1; /* No limit on size by default */ 1408 ctx->nr_inodes = -1; /* No limit on number of inodes by default */ 1409 ctx->uid = current_fsuid(); 1410 ctx->gid = current_fsgid(); 1411 ctx->mode = 0755; 1412 ctx->hstate = &default_hstate; 1413 ctx->min_hpages = -1; /* No default minimum size */ 1414 ctx->max_val_type = NO_SIZE; 1415 ctx->min_val_type = NO_SIZE; 1416 fc->fs_private = ctx; 1417 fc->ops = &hugetlbfs_fs_context_ops; 1418 return 0; 1419 } 1420 1421 static struct file_system_type hugetlbfs_fs_type = { 1422 .name = "hugetlbfs", 1423 .init_fs_context = hugetlbfs_init_fs_context, 1424 .parameters = hugetlb_fs_parameters, 1425 .kill_sb = kill_litter_super, 1426 }; 1427 1428 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE]; 1429 1430 static int can_do_hugetlb_shm(void) 1431 { 1432 kgid_t shm_group; 1433 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group); 1434 return capable(CAP_IPC_LOCK) || in_group_p(shm_group); 1435 } 1436 1437 static int get_hstate_idx(int page_size_log) 1438 { 1439 struct hstate *h = hstate_sizelog(page_size_log); 1440 1441 if (!h) 1442 return -1; 1443 return hstate_index(h); 1444 } 1445 1446 /* 1447 * Note that size should be aligned to proper hugepage size in caller side, 1448 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended. 1449 */ 1450 struct file *hugetlb_file_setup(const char *name, size_t size, 1451 vm_flags_t acctflag, int creat_flags, 1452 int page_size_log) 1453 { 1454 struct inode *inode; 1455 struct vfsmount *mnt; 1456 int hstate_idx; 1457 struct file *file; 1458 1459 hstate_idx = get_hstate_idx(page_size_log); 1460 if (hstate_idx < 0) 1461 return ERR_PTR(-ENODEV); 1462 1463 mnt = hugetlbfs_vfsmount[hstate_idx]; 1464 if (!mnt) 1465 return ERR_PTR(-ENOENT); 1466 1467 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) { 1468 struct ucounts *ucounts = current_ucounts(); 1469 1470 if (user_shm_lock(size, ucounts)) { 1471 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n", 1472 current->comm, current->pid); 1473 user_shm_unlock(size, ucounts); 1474 } 1475 return ERR_PTR(-EPERM); 1476 } 1477 1478 file = ERR_PTR(-ENOSPC); 1479 inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0); 1480 if (!inode) 1481 goto out; 1482 if (creat_flags == HUGETLB_SHMFS_INODE) 1483 inode->i_flags |= S_PRIVATE; 1484 1485 inode->i_size = size; 1486 clear_nlink(inode); 1487 1488 if (!hugetlb_reserve_pages(inode, 0, 1489 size >> huge_page_shift(hstate_inode(inode)), NULL, 1490 acctflag)) 1491 file = ERR_PTR(-ENOMEM); 1492 else 1493 file = alloc_file_pseudo(inode, mnt, name, O_RDWR, 1494 &hugetlbfs_file_operations); 1495 if (!IS_ERR(file)) 1496 return file; 1497 1498 iput(inode); 1499 out: 1500 return file; 1501 } 1502 1503 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h) 1504 { 1505 struct fs_context *fc; 1506 struct vfsmount *mnt; 1507 1508 fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT); 1509 if (IS_ERR(fc)) { 1510 mnt = ERR_CAST(fc); 1511 } else { 1512 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1513 ctx->hstate = h; 1514 mnt = fc_mount(fc); 1515 put_fs_context(fc); 1516 } 1517 if (IS_ERR(mnt)) 1518 pr_err("Cannot mount internal hugetlbfs for page size %luK", 1519 huge_page_size(h) >> 10); 1520 return mnt; 1521 } 1522 1523 static int __init init_hugetlbfs_fs(void) 1524 { 1525 struct vfsmount *mnt; 1526 struct hstate *h; 1527 int error; 1528 int i; 1529 1530 if (!hugepages_supported()) { 1531 pr_info("disabling because there are no supported hugepage sizes\n"); 1532 return -ENOTSUPP; 1533 } 1534 1535 error = -ENOMEM; 1536 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache", 1537 sizeof(struct hugetlbfs_inode_info), 1538 0, SLAB_ACCOUNT, init_once); 1539 if (hugetlbfs_inode_cachep == NULL) 1540 goto out; 1541 1542 error = register_filesystem(&hugetlbfs_fs_type); 1543 if (error) 1544 goto out_free; 1545 1546 /* default hstate mount is required */ 1547 mnt = mount_one_hugetlbfs(&default_hstate); 1548 if (IS_ERR(mnt)) { 1549 error = PTR_ERR(mnt); 1550 goto out_unreg; 1551 } 1552 hugetlbfs_vfsmount[default_hstate_idx] = mnt; 1553 1554 /* other hstates are optional */ 1555 i = 0; 1556 for_each_hstate(h) { 1557 if (i == default_hstate_idx) { 1558 i++; 1559 continue; 1560 } 1561 1562 mnt = mount_one_hugetlbfs(h); 1563 if (IS_ERR(mnt)) 1564 hugetlbfs_vfsmount[i] = NULL; 1565 else 1566 hugetlbfs_vfsmount[i] = mnt; 1567 i++; 1568 } 1569 1570 return 0; 1571 1572 out_unreg: 1573 (void)unregister_filesystem(&hugetlbfs_fs_type); 1574 out_free: 1575 kmem_cache_destroy(hugetlbfs_inode_cachep); 1576 out: 1577 return error; 1578 } 1579 fs_initcall(init_hugetlbfs_fs) 1580