xref: /linux/fs/hugetlbfs/inode.c (revision 3a38ef2b3cb6b63c105247b5ea4a9cf600e673f0)
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/falloc.h>
15 #include <linux/fs.h>
16 #include <linux/mount.h>
17 #include <linux/file.h>
18 #include <linux/kernel.h>
19 #include <linux/writeback.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/init.h>
23 #include <linux/string.h>
24 #include <linux/capability.h>
25 #include <linux/ctype.h>
26 #include <linux/backing-dev.h>
27 #include <linux/hugetlb.h>
28 #include <linux/pagevec.h>
29 #include <linux/fs_parser.h>
30 #include <linux/mman.h>
31 #include <linux/slab.h>
32 #include <linux/dnotify.h>
33 #include <linux/statfs.h>
34 #include <linux/security.h>
35 #include <linux/magic.h>
36 #include <linux/migrate.h>
37 #include <linux/uio.h>
38 
39 #include <linux/uaccess.h>
40 #include <linux/sched/mm.h>
41 
42 static const struct address_space_operations hugetlbfs_aops;
43 const struct file_operations hugetlbfs_file_operations;
44 static const struct inode_operations hugetlbfs_dir_inode_operations;
45 static const struct inode_operations hugetlbfs_inode_operations;
46 
47 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
48 
49 struct hugetlbfs_fs_context {
50 	struct hstate		*hstate;
51 	unsigned long long	max_size_opt;
52 	unsigned long long	min_size_opt;
53 	long			max_hpages;
54 	long			nr_inodes;
55 	long			min_hpages;
56 	enum hugetlbfs_size_type max_val_type;
57 	enum hugetlbfs_size_type min_val_type;
58 	kuid_t			uid;
59 	kgid_t			gid;
60 	umode_t			mode;
61 };
62 
63 int sysctl_hugetlb_shm_group;
64 
65 enum hugetlb_param {
66 	Opt_gid,
67 	Opt_min_size,
68 	Opt_mode,
69 	Opt_nr_inodes,
70 	Opt_pagesize,
71 	Opt_size,
72 	Opt_uid,
73 };
74 
75 static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
76 	fsparam_u32   ("gid",		Opt_gid),
77 	fsparam_string("min_size",	Opt_min_size),
78 	fsparam_u32oct("mode",		Opt_mode),
79 	fsparam_string("nr_inodes",	Opt_nr_inodes),
80 	fsparam_string("pagesize",	Opt_pagesize),
81 	fsparam_string("size",		Opt_size),
82 	fsparam_u32   ("uid",		Opt_uid),
83 	{}
84 };
85 
86 #ifdef CONFIG_NUMA
87 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
88 					struct inode *inode, pgoff_t index)
89 {
90 	vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
91 							index);
92 }
93 
94 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
95 {
96 	mpol_cond_put(vma->vm_policy);
97 }
98 #else
99 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
100 					struct inode *inode, pgoff_t index)
101 {
102 }
103 
104 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
105 {
106 }
107 #endif
108 
109 /*
110  * Mask used when checking the page offset value passed in via system
111  * calls.  This value will be converted to a loff_t which is signed.
112  * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
113  * value.  The extra bit (- 1 in the shift value) is to take the sign
114  * bit into account.
115  */
116 #define PGOFF_LOFFT_MAX \
117 	(((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
118 
119 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
120 {
121 	struct inode *inode = file_inode(file);
122 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
123 	loff_t len, vma_len;
124 	int ret;
125 	struct hstate *h = hstate_file(file);
126 
127 	/*
128 	 * vma address alignment (but not the pgoff alignment) has
129 	 * already been checked by prepare_hugepage_range.  If you add
130 	 * any error returns here, do so after setting VM_HUGETLB, so
131 	 * is_vm_hugetlb_page tests below unmap_region go the right
132 	 * way when do_mmap unwinds (may be important on powerpc
133 	 * and ia64).
134 	 */
135 	vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
136 	vma->vm_ops = &hugetlb_vm_ops;
137 
138 	ret = seal_check_future_write(info->seals, vma);
139 	if (ret)
140 		return ret;
141 
142 	/*
143 	 * page based offset in vm_pgoff could be sufficiently large to
144 	 * overflow a loff_t when converted to byte offset.  This can
145 	 * only happen on architectures where sizeof(loff_t) ==
146 	 * sizeof(unsigned long).  So, only check in those instances.
147 	 */
148 	if (sizeof(unsigned long) == sizeof(loff_t)) {
149 		if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
150 			return -EINVAL;
151 	}
152 
153 	/* must be huge page aligned */
154 	if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
155 		return -EINVAL;
156 
157 	vma_len = (loff_t)(vma->vm_end - vma->vm_start);
158 	len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
159 	/* check for overflow */
160 	if (len < vma_len)
161 		return -EINVAL;
162 
163 	inode_lock(inode);
164 	file_accessed(file);
165 
166 	ret = -ENOMEM;
167 	if (!hugetlb_reserve_pages(inode,
168 				vma->vm_pgoff >> huge_page_order(h),
169 				len >> huge_page_shift(h), vma,
170 				vma->vm_flags))
171 		goto out;
172 
173 	ret = 0;
174 	if (vma->vm_flags & VM_WRITE && inode->i_size < len)
175 		i_size_write(inode, len);
176 out:
177 	inode_unlock(inode);
178 
179 	return ret;
180 }
181 
182 /*
183  * Called under mmap_write_lock(mm).
184  */
185 
186 static unsigned long
187 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr,
188 		unsigned long len, unsigned long pgoff, unsigned long flags)
189 {
190 	struct hstate *h = hstate_file(file);
191 	struct vm_unmapped_area_info info;
192 
193 	info.flags = 0;
194 	info.length = len;
195 	info.low_limit = current->mm->mmap_base;
196 	info.high_limit = arch_get_mmap_end(addr, len, flags);
197 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
198 	info.align_offset = 0;
199 	return vm_unmapped_area(&info);
200 }
201 
202 static unsigned long
203 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr,
204 		unsigned long len, unsigned long pgoff, unsigned long flags)
205 {
206 	struct hstate *h = hstate_file(file);
207 	struct vm_unmapped_area_info info;
208 
209 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
210 	info.length = len;
211 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
212 	info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base);
213 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
214 	info.align_offset = 0;
215 	addr = vm_unmapped_area(&info);
216 
217 	/*
218 	 * A failed mmap() very likely causes application failure,
219 	 * so fall back to the bottom-up function here. This scenario
220 	 * can happen with large stack limits and large mmap()
221 	 * allocations.
222 	 */
223 	if (unlikely(offset_in_page(addr))) {
224 		VM_BUG_ON(addr != -ENOMEM);
225 		info.flags = 0;
226 		info.low_limit = current->mm->mmap_base;
227 		info.high_limit = arch_get_mmap_end(addr, len, flags);
228 		addr = vm_unmapped_area(&info);
229 	}
230 
231 	return addr;
232 }
233 
234 unsigned long
235 generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
236 				  unsigned long len, unsigned long pgoff,
237 				  unsigned long flags)
238 {
239 	struct mm_struct *mm = current->mm;
240 	struct vm_area_struct *vma;
241 	struct hstate *h = hstate_file(file);
242 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
243 
244 	if (len & ~huge_page_mask(h))
245 		return -EINVAL;
246 	if (len > TASK_SIZE)
247 		return -ENOMEM;
248 
249 	if (flags & MAP_FIXED) {
250 		if (prepare_hugepage_range(file, addr, len))
251 			return -EINVAL;
252 		return addr;
253 	}
254 
255 	if (addr) {
256 		addr = ALIGN(addr, huge_page_size(h));
257 		vma = find_vma(mm, addr);
258 		if (mmap_end - len >= addr &&
259 		    (!vma || addr + len <= vm_start_gap(vma)))
260 			return addr;
261 	}
262 
263 	/*
264 	 * Use mm->get_unmapped_area value as a hint to use topdown routine.
265 	 * If architectures have special needs, they should define their own
266 	 * version of hugetlb_get_unmapped_area.
267 	 */
268 	if (mm->get_unmapped_area == arch_get_unmapped_area_topdown)
269 		return hugetlb_get_unmapped_area_topdown(file, addr, len,
270 				pgoff, flags);
271 	return hugetlb_get_unmapped_area_bottomup(file, addr, len,
272 			pgoff, flags);
273 }
274 
275 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
276 static unsigned long
277 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
278 			  unsigned long len, unsigned long pgoff,
279 			  unsigned long flags)
280 {
281 	return generic_hugetlb_get_unmapped_area(file, addr, len, pgoff, flags);
282 }
283 #endif
284 
285 /*
286  * Support for read() - Find the page attached to f_mapping and copy out the
287  * data. This provides functionality similar to filemap_read().
288  */
289 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
290 {
291 	struct file *file = iocb->ki_filp;
292 	struct hstate *h = hstate_file(file);
293 	struct address_space *mapping = file->f_mapping;
294 	struct inode *inode = mapping->host;
295 	unsigned long index = iocb->ki_pos >> huge_page_shift(h);
296 	unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
297 	unsigned long end_index;
298 	loff_t isize;
299 	ssize_t retval = 0;
300 
301 	while (iov_iter_count(to)) {
302 		struct page *page;
303 		size_t nr, copied;
304 
305 		/* nr is the maximum number of bytes to copy from this page */
306 		nr = huge_page_size(h);
307 		isize = i_size_read(inode);
308 		if (!isize)
309 			break;
310 		end_index = (isize - 1) >> huge_page_shift(h);
311 		if (index > end_index)
312 			break;
313 		if (index == end_index) {
314 			nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
315 			if (nr <= offset)
316 				break;
317 		}
318 		nr = nr - offset;
319 
320 		/* Find the page */
321 		page = find_lock_page(mapping, index);
322 		if (unlikely(page == NULL)) {
323 			/*
324 			 * We have a HOLE, zero out the user-buffer for the
325 			 * length of the hole or request.
326 			 */
327 			copied = iov_iter_zero(nr, to);
328 		} else {
329 			unlock_page(page);
330 
331 			/*
332 			 * We have the page, copy it to user space buffer.
333 			 */
334 			copied = copy_page_to_iter(page, offset, nr, to);
335 			put_page(page);
336 		}
337 		offset += copied;
338 		retval += copied;
339 		if (copied != nr && iov_iter_count(to)) {
340 			if (!retval)
341 				retval = -EFAULT;
342 			break;
343 		}
344 		index += offset >> huge_page_shift(h);
345 		offset &= ~huge_page_mask(h);
346 	}
347 	iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
348 	return retval;
349 }
350 
351 static int hugetlbfs_write_begin(struct file *file,
352 			struct address_space *mapping,
353 			loff_t pos, unsigned len,
354 			struct page **pagep, void **fsdata)
355 {
356 	return -EINVAL;
357 }
358 
359 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
360 			loff_t pos, unsigned len, unsigned copied,
361 			struct page *page, void *fsdata)
362 {
363 	BUG();
364 	return -EINVAL;
365 }
366 
367 static void hugetlb_delete_from_page_cache(struct page *page)
368 {
369 	ClearPageDirty(page);
370 	ClearPageUptodate(page);
371 	delete_from_page_cache(page);
372 }
373 
374 /*
375  * Called with i_mmap_rwsem held for inode based vma maps.  This makes
376  * sure vma (and vm_mm) will not go away.  We also hold the hugetlb fault
377  * mutex for the page in the mapping.  So, we can not race with page being
378  * faulted into the vma.
379  */
380 static bool hugetlb_vma_maps_page(struct vm_area_struct *vma,
381 				unsigned long addr, struct page *page)
382 {
383 	pte_t *ptep, pte;
384 
385 	ptep = huge_pte_offset(vma->vm_mm, addr,
386 			huge_page_size(hstate_vma(vma)));
387 
388 	if (!ptep)
389 		return false;
390 
391 	pte = huge_ptep_get(ptep);
392 	if (huge_pte_none(pte) || !pte_present(pte))
393 		return false;
394 
395 	if (pte_page(pte) == page)
396 		return true;
397 
398 	return false;
399 }
400 
401 /*
402  * Can vma_offset_start/vma_offset_end overflow on 32-bit arches?
403  * No, because the interval tree returns us only those vmas
404  * which overlap the truncated area starting at pgoff,
405  * and no vma on a 32-bit arch can span beyond the 4GB.
406  */
407 static unsigned long vma_offset_start(struct vm_area_struct *vma, pgoff_t start)
408 {
409 	if (vma->vm_pgoff < start)
410 		return (start - vma->vm_pgoff) << PAGE_SHIFT;
411 	else
412 		return 0;
413 }
414 
415 static unsigned long vma_offset_end(struct vm_area_struct *vma, pgoff_t end)
416 {
417 	unsigned long t_end;
418 
419 	if (!end)
420 		return vma->vm_end;
421 
422 	t_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) + vma->vm_start;
423 	if (t_end > vma->vm_end)
424 		t_end = vma->vm_end;
425 	return t_end;
426 }
427 
428 /*
429  * Called with hugetlb fault mutex held.  Therefore, no more mappings to
430  * this folio can be created while executing the routine.
431  */
432 static void hugetlb_unmap_file_folio(struct hstate *h,
433 					struct address_space *mapping,
434 					struct folio *folio, pgoff_t index)
435 {
436 	struct rb_root_cached *root = &mapping->i_mmap;
437 	struct hugetlb_vma_lock *vma_lock;
438 	struct page *page = &folio->page;
439 	struct vm_area_struct *vma;
440 	unsigned long v_start;
441 	unsigned long v_end;
442 	pgoff_t start, end;
443 
444 	start = index * pages_per_huge_page(h);
445 	end = (index + 1) * pages_per_huge_page(h);
446 
447 	i_mmap_lock_write(mapping);
448 retry:
449 	vma_lock = NULL;
450 	vma_interval_tree_foreach(vma, root, start, end - 1) {
451 		v_start = vma_offset_start(vma, start);
452 		v_end = vma_offset_end(vma, end);
453 
454 		if (!hugetlb_vma_maps_page(vma, vma->vm_start + v_start, page))
455 			continue;
456 
457 		if (!hugetlb_vma_trylock_write(vma)) {
458 			vma_lock = vma->vm_private_data;
459 			/*
460 			 * If we can not get vma lock, we need to drop
461 			 * immap_sema and take locks in order.  First,
462 			 * take a ref on the vma_lock structure so that
463 			 * we can be guaranteed it will not go away when
464 			 * dropping immap_sema.
465 			 */
466 			kref_get(&vma_lock->refs);
467 			break;
468 		}
469 
470 		unmap_hugepage_range(vma, vma->vm_start + v_start, v_end,
471 				NULL, ZAP_FLAG_DROP_MARKER);
472 		hugetlb_vma_unlock_write(vma);
473 	}
474 
475 	i_mmap_unlock_write(mapping);
476 
477 	if (vma_lock) {
478 		/*
479 		 * Wait on vma_lock.  We know it is still valid as we have
480 		 * a reference.  We must 'open code' vma locking as we do
481 		 * not know if vma_lock is still attached to vma.
482 		 */
483 		down_write(&vma_lock->rw_sema);
484 		i_mmap_lock_write(mapping);
485 
486 		vma = vma_lock->vma;
487 		if (!vma) {
488 			/*
489 			 * If lock is no longer attached to vma, then just
490 			 * unlock, drop our reference and retry looking for
491 			 * other vmas.
492 			 */
493 			up_write(&vma_lock->rw_sema);
494 			kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
495 			goto retry;
496 		}
497 
498 		/*
499 		 * vma_lock is still attached to vma.  Check to see if vma
500 		 * still maps page and if so, unmap.
501 		 */
502 		v_start = vma_offset_start(vma, start);
503 		v_end = vma_offset_end(vma, end);
504 		if (hugetlb_vma_maps_page(vma, vma->vm_start + v_start, page))
505 			unmap_hugepage_range(vma, vma->vm_start + v_start,
506 						v_end, NULL,
507 						ZAP_FLAG_DROP_MARKER);
508 
509 		kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
510 		hugetlb_vma_unlock_write(vma);
511 
512 		goto retry;
513 	}
514 }
515 
516 static void
517 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end,
518 		      zap_flags_t zap_flags)
519 {
520 	struct vm_area_struct *vma;
521 
522 	/*
523 	 * end == 0 indicates that the entire range after start should be
524 	 * unmapped.  Note, end is exclusive, whereas the interval tree takes
525 	 * an inclusive "last".
526 	 */
527 	vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) {
528 		unsigned long v_start;
529 		unsigned long v_end;
530 
531 		if (!hugetlb_vma_trylock_write(vma))
532 			continue;
533 
534 		v_start = vma_offset_start(vma, start);
535 		v_end = vma_offset_end(vma, end);
536 
537 		unmap_hugepage_range(vma, vma->vm_start + v_start, v_end,
538 				     NULL, zap_flags);
539 
540 		/*
541 		 * Note that vma lock only exists for shared/non-private
542 		 * vmas.  Therefore, lock is not held when calling
543 		 * unmap_hugepage_range for private vmas.
544 		 */
545 		hugetlb_vma_unlock_write(vma);
546 	}
547 }
548 
549 /*
550  * Called with hugetlb fault mutex held.
551  * Returns true if page was actually removed, false otherwise.
552  */
553 static bool remove_inode_single_folio(struct hstate *h, struct inode *inode,
554 					struct address_space *mapping,
555 					struct folio *folio, pgoff_t index,
556 					bool truncate_op)
557 {
558 	bool ret = false;
559 
560 	/*
561 	 * If folio is mapped, it was faulted in after being
562 	 * unmapped in caller.  Unmap (again) while holding
563 	 * the fault mutex.  The mutex will prevent faults
564 	 * until we finish removing the folio.
565 	 */
566 	if (unlikely(folio_mapped(folio)))
567 		hugetlb_unmap_file_folio(h, mapping, folio, index);
568 
569 	folio_lock(folio);
570 	/*
571 	 * We must remove the folio from page cache before removing
572 	 * the region/ reserve map (hugetlb_unreserve_pages).  In
573 	 * rare out of memory conditions, removal of the region/reserve
574 	 * map could fail.  Correspondingly, the subpool and global
575 	 * reserve usage count can need to be adjusted.
576 	 */
577 	VM_BUG_ON(HPageRestoreReserve(&folio->page));
578 	hugetlb_delete_from_page_cache(&folio->page);
579 	ret = true;
580 	if (!truncate_op) {
581 		if (unlikely(hugetlb_unreserve_pages(inode, index,
582 							index + 1, 1)))
583 			hugetlb_fix_reserve_counts(inode);
584 	}
585 
586 	folio_unlock(folio);
587 	return ret;
588 }
589 
590 /*
591  * remove_inode_hugepages handles two distinct cases: truncation and hole
592  * punch.  There are subtle differences in operation for each case.
593  *
594  * truncation is indicated by end of range being LLONG_MAX
595  *	In this case, we first scan the range and release found pages.
596  *	After releasing pages, hugetlb_unreserve_pages cleans up region/reserve
597  *	maps and global counts.  Page faults can race with truncation.
598  *	During faults, hugetlb_no_page() checks i_size before page allocation,
599  *	and again after obtaining page table lock.  It will 'back out'
600  *	allocations in the truncated range.
601  * hole punch is indicated if end is not LLONG_MAX
602  *	In the hole punch case we scan the range and release found pages.
603  *	Only when releasing a page is the associated region/reserve map
604  *	deleted.  The region/reserve map for ranges without associated
605  *	pages are not modified.  Page faults can race with hole punch.
606  *	This is indicated if we find a mapped page.
607  * Note: If the passed end of range value is beyond the end of file, but
608  * not LLONG_MAX this routine still performs a hole punch operation.
609  */
610 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
611 				   loff_t lend)
612 {
613 	struct hstate *h = hstate_inode(inode);
614 	struct address_space *mapping = &inode->i_data;
615 	const pgoff_t start = lstart >> huge_page_shift(h);
616 	const pgoff_t end = lend >> huge_page_shift(h);
617 	struct folio_batch fbatch;
618 	pgoff_t next, index;
619 	int i, freed = 0;
620 	bool truncate_op = (lend == LLONG_MAX);
621 
622 	folio_batch_init(&fbatch);
623 	next = start;
624 	while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) {
625 		for (i = 0; i < folio_batch_count(&fbatch); ++i) {
626 			struct folio *folio = fbatch.folios[i];
627 			u32 hash = 0;
628 
629 			index = folio->index;
630 			hash = hugetlb_fault_mutex_hash(mapping, index);
631 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
632 
633 			/*
634 			 * Remove folio that was part of folio_batch.
635 			 */
636 			if (remove_inode_single_folio(h, inode, mapping, folio,
637 							index, truncate_op))
638 				freed++;
639 
640 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
641 		}
642 		folio_batch_release(&fbatch);
643 		cond_resched();
644 	}
645 
646 	if (truncate_op)
647 		(void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
648 }
649 
650 static void hugetlbfs_evict_inode(struct inode *inode)
651 {
652 	struct resv_map *resv_map;
653 
654 	remove_inode_hugepages(inode, 0, LLONG_MAX);
655 
656 	/*
657 	 * Get the resv_map from the address space embedded in the inode.
658 	 * This is the address space which points to any resv_map allocated
659 	 * at inode creation time.  If this is a device special inode,
660 	 * i_mapping may not point to the original address space.
661 	 */
662 	resv_map = (struct resv_map *)(&inode->i_data)->private_data;
663 	/* Only regular and link inodes have associated reserve maps */
664 	if (resv_map)
665 		resv_map_release(&resv_map->refs);
666 	clear_inode(inode);
667 }
668 
669 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset)
670 {
671 	pgoff_t pgoff;
672 	struct address_space *mapping = inode->i_mapping;
673 	struct hstate *h = hstate_inode(inode);
674 
675 	BUG_ON(offset & ~huge_page_mask(h));
676 	pgoff = offset >> PAGE_SHIFT;
677 
678 	i_size_write(inode, offset);
679 	i_mmap_lock_write(mapping);
680 	if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
681 		hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0,
682 				      ZAP_FLAG_DROP_MARKER);
683 	i_mmap_unlock_write(mapping);
684 	remove_inode_hugepages(inode, offset, LLONG_MAX);
685 }
686 
687 static void hugetlbfs_zero_partial_page(struct hstate *h,
688 					struct address_space *mapping,
689 					loff_t start,
690 					loff_t end)
691 {
692 	pgoff_t idx = start >> huge_page_shift(h);
693 	struct folio *folio;
694 
695 	folio = filemap_lock_folio(mapping, idx);
696 	if (!folio)
697 		return;
698 
699 	start = start & ~huge_page_mask(h);
700 	end = end & ~huge_page_mask(h);
701 	if (!end)
702 		end = huge_page_size(h);
703 
704 	folio_zero_segment(folio, (size_t)start, (size_t)end);
705 
706 	folio_unlock(folio);
707 	folio_put(folio);
708 }
709 
710 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
711 {
712 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
713 	struct address_space *mapping = inode->i_mapping;
714 	struct hstate *h = hstate_inode(inode);
715 	loff_t hpage_size = huge_page_size(h);
716 	loff_t hole_start, hole_end;
717 
718 	/*
719 	 * hole_start and hole_end indicate the full pages within the hole.
720 	 */
721 	hole_start = round_up(offset, hpage_size);
722 	hole_end = round_down(offset + len, hpage_size);
723 
724 	inode_lock(inode);
725 
726 	/* protected by i_rwsem */
727 	if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
728 		inode_unlock(inode);
729 		return -EPERM;
730 	}
731 
732 	i_mmap_lock_write(mapping);
733 
734 	/* If range starts before first full page, zero partial page. */
735 	if (offset < hole_start)
736 		hugetlbfs_zero_partial_page(h, mapping,
737 				offset, min(offset + len, hole_start));
738 
739 	/* Unmap users of full pages in the hole. */
740 	if (hole_end > hole_start) {
741 		if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
742 			hugetlb_vmdelete_list(&mapping->i_mmap,
743 					      hole_start >> PAGE_SHIFT,
744 					      hole_end >> PAGE_SHIFT, 0);
745 	}
746 
747 	/* If range extends beyond last full page, zero partial page. */
748 	if ((offset + len) > hole_end && (offset + len) > hole_start)
749 		hugetlbfs_zero_partial_page(h, mapping,
750 				hole_end, offset + len);
751 
752 	i_mmap_unlock_write(mapping);
753 
754 	/* Remove full pages from the file. */
755 	if (hole_end > hole_start)
756 		remove_inode_hugepages(inode, hole_start, hole_end);
757 
758 	inode_unlock(inode);
759 
760 	return 0;
761 }
762 
763 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
764 				loff_t len)
765 {
766 	struct inode *inode = file_inode(file);
767 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
768 	struct address_space *mapping = inode->i_mapping;
769 	struct hstate *h = hstate_inode(inode);
770 	struct vm_area_struct pseudo_vma;
771 	struct mm_struct *mm = current->mm;
772 	loff_t hpage_size = huge_page_size(h);
773 	unsigned long hpage_shift = huge_page_shift(h);
774 	pgoff_t start, index, end;
775 	int error;
776 	u32 hash;
777 
778 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
779 		return -EOPNOTSUPP;
780 
781 	if (mode & FALLOC_FL_PUNCH_HOLE)
782 		return hugetlbfs_punch_hole(inode, offset, len);
783 
784 	/*
785 	 * Default preallocate case.
786 	 * For this range, start is rounded down and end is rounded up
787 	 * as well as being converted to page offsets.
788 	 */
789 	start = offset >> hpage_shift;
790 	end = (offset + len + hpage_size - 1) >> hpage_shift;
791 
792 	inode_lock(inode);
793 
794 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
795 	error = inode_newsize_ok(inode, offset + len);
796 	if (error)
797 		goto out;
798 
799 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
800 		error = -EPERM;
801 		goto out;
802 	}
803 
804 	/*
805 	 * Initialize a pseudo vma as this is required by the huge page
806 	 * allocation routines.  If NUMA is configured, use page index
807 	 * as input to create an allocation policy.
808 	 */
809 	vma_init(&pseudo_vma, mm);
810 	pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
811 	pseudo_vma.vm_file = file;
812 
813 	for (index = start; index < end; index++) {
814 		/*
815 		 * This is supposed to be the vaddr where the page is being
816 		 * faulted in, but we have no vaddr here.
817 		 */
818 		struct page *page;
819 		unsigned long addr;
820 
821 		cond_resched();
822 
823 		/*
824 		 * fallocate(2) manpage permits EINTR; we may have been
825 		 * interrupted because we are using up too much memory.
826 		 */
827 		if (signal_pending(current)) {
828 			error = -EINTR;
829 			break;
830 		}
831 
832 		/* Set numa allocation policy based on index */
833 		hugetlb_set_vma_policy(&pseudo_vma, inode, index);
834 
835 		/* addr is the offset within the file (zero based) */
836 		addr = index * hpage_size;
837 
838 		/* mutex taken here, fault path and hole punch */
839 		hash = hugetlb_fault_mutex_hash(mapping, index);
840 		mutex_lock(&hugetlb_fault_mutex_table[hash]);
841 
842 		/* See if already present in mapping to avoid alloc/free */
843 		page = find_get_page(mapping, index);
844 		if (page) {
845 			put_page(page);
846 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
847 			hugetlb_drop_vma_policy(&pseudo_vma);
848 			continue;
849 		}
850 
851 		/*
852 		 * Allocate page without setting the avoid_reserve argument.
853 		 * There certainly are no reserves associated with the
854 		 * pseudo_vma.  However, there could be shared mappings with
855 		 * reserves for the file at the inode level.  If we fallocate
856 		 * pages in these areas, we need to consume the reserves
857 		 * to keep reservation accounting consistent.
858 		 */
859 		page = alloc_huge_page(&pseudo_vma, addr, 0);
860 		hugetlb_drop_vma_policy(&pseudo_vma);
861 		if (IS_ERR(page)) {
862 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
863 			error = PTR_ERR(page);
864 			goto out;
865 		}
866 		clear_huge_page(page, addr, pages_per_huge_page(h));
867 		__SetPageUptodate(page);
868 		error = hugetlb_add_to_page_cache(page, mapping, index);
869 		if (unlikely(error)) {
870 			restore_reserve_on_error(h, &pseudo_vma, addr, page);
871 			put_page(page);
872 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
873 			goto out;
874 		}
875 
876 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
877 
878 		SetHPageMigratable(page);
879 		/*
880 		 * unlock_page because locked by hugetlb_add_to_page_cache()
881 		 * put_page() due to reference from alloc_huge_page()
882 		 */
883 		unlock_page(page);
884 		put_page(page);
885 	}
886 
887 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
888 		i_size_write(inode, offset + len);
889 	inode->i_ctime = current_time(inode);
890 out:
891 	inode_unlock(inode);
892 	return error;
893 }
894 
895 static int hugetlbfs_setattr(struct user_namespace *mnt_userns,
896 			     struct dentry *dentry, struct iattr *attr)
897 {
898 	struct inode *inode = d_inode(dentry);
899 	struct hstate *h = hstate_inode(inode);
900 	int error;
901 	unsigned int ia_valid = attr->ia_valid;
902 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
903 
904 	error = setattr_prepare(&init_user_ns, dentry, attr);
905 	if (error)
906 		return error;
907 
908 	if (ia_valid & ATTR_SIZE) {
909 		loff_t oldsize = inode->i_size;
910 		loff_t newsize = attr->ia_size;
911 
912 		if (newsize & ~huge_page_mask(h))
913 			return -EINVAL;
914 		/* protected by i_rwsem */
915 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
916 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
917 			return -EPERM;
918 		hugetlb_vmtruncate(inode, newsize);
919 	}
920 
921 	setattr_copy(&init_user_ns, inode, attr);
922 	mark_inode_dirty(inode);
923 	return 0;
924 }
925 
926 static struct inode *hugetlbfs_get_root(struct super_block *sb,
927 					struct hugetlbfs_fs_context *ctx)
928 {
929 	struct inode *inode;
930 
931 	inode = new_inode(sb);
932 	if (inode) {
933 		inode->i_ino = get_next_ino();
934 		inode->i_mode = S_IFDIR | ctx->mode;
935 		inode->i_uid = ctx->uid;
936 		inode->i_gid = ctx->gid;
937 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
938 		inode->i_op = &hugetlbfs_dir_inode_operations;
939 		inode->i_fop = &simple_dir_operations;
940 		/* directory inodes start off with i_nlink == 2 (for "." entry) */
941 		inc_nlink(inode);
942 		lockdep_annotate_inode_mutex_key(inode);
943 	}
944 	return inode;
945 }
946 
947 /*
948  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
949  * be taken from reclaim -- unlike regular filesystems. This needs an
950  * annotation because huge_pmd_share() does an allocation under hugetlb's
951  * i_mmap_rwsem.
952  */
953 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
954 
955 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
956 					struct inode *dir,
957 					umode_t mode, dev_t dev)
958 {
959 	struct inode *inode;
960 	struct resv_map *resv_map = NULL;
961 
962 	/*
963 	 * Reserve maps are only needed for inodes that can have associated
964 	 * page allocations.
965 	 */
966 	if (S_ISREG(mode) || S_ISLNK(mode)) {
967 		resv_map = resv_map_alloc();
968 		if (!resv_map)
969 			return NULL;
970 	}
971 
972 	inode = new_inode(sb);
973 	if (inode) {
974 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
975 
976 		inode->i_ino = get_next_ino();
977 		inode_init_owner(&init_user_ns, inode, dir, mode);
978 		lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
979 				&hugetlbfs_i_mmap_rwsem_key);
980 		inode->i_mapping->a_ops = &hugetlbfs_aops;
981 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
982 		inode->i_mapping->private_data = resv_map;
983 		info->seals = F_SEAL_SEAL;
984 		switch (mode & S_IFMT) {
985 		default:
986 			init_special_inode(inode, mode, dev);
987 			break;
988 		case S_IFREG:
989 			inode->i_op = &hugetlbfs_inode_operations;
990 			inode->i_fop = &hugetlbfs_file_operations;
991 			break;
992 		case S_IFDIR:
993 			inode->i_op = &hugetlbfs_dir_inode_operations;
994 			inode->i_fop = &simple_dir_operations;
995 
996 			/* directory inodes start off with i_nlink == 2 (for "." entry) */
997 			inc_nlink(inode);
998 			break;
999 		case S_IFLNK:
1000 			inode->i_op = &page_symlink_inode_operations;
1001 			inode_nohighmem(inode);
1002 			break;
1003 		}
1004 		lockdep_annotate_inode_mutex_key(inode);
1005 	} else {
1006 		if (resv_map)
1007 			kref_put(&resv_map->refs, resv_map_release);
1008 	}
1009 
1010 	return inode;
1011 }
1012 
1013 /*
1014  * File creation. Allocate an inode, and we're done..
1015  */
1016 static int hugetlbfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
1017 			   struct dentry *dentry, umode_t mode, dev_t dev)
1018 {
1019 	struct inode *inode;
1020 
1021 	inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
1022 	if (!inode)
1023 		return -ENOSPC;
1024 	dir->i_ctime = dir->i_mtime = current_time(dir);
1025 	d_instantiate(dentry, inode);
1026 	dget(dentry);/* Extra count - pin the dentry in core */
1027 	return 0;
1028 }
1029 
1030 static int hugetlbfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
1031 			   struct dentry *dentry, umode_t mode)
1032 {
1033 	int retval = hugetlbfs_mknod(&init_user_ns, dir, dentry,
1034 				     mode | S_IFDIR, 0);
1035 	if (!retval)
1036 		inc_nlink(dir);
1037 	return retval;
1038 }
1039 
1040 static int hugetlbfs_create(struct user_namespace *mnt_userns,
1041 			    struct inode *dir, struct dentry *dentry,
1042 			    umode_t mode, bool excl)
1043 {
1044 	return hugetlbfs_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
1045 }
1046 
1047 static int hugetlbfs_tmpfile(struct user_namespace *mnt_userns,
1048 			     struct inode *dir, struct file *file,
1049 			     umode_t mode)
1050 {
1051 	struct inode *inode;
1052 
1053 	inode = hugetlbfs_get_inode(dir->i_sb, dir, mode | S_IFREG, 0);
1054 	if (!inode)
1055 		return -ENOSPC;
1056 	dir->i_ctime = dir->i_mtime = current_time(dir);
1057 	d_tmpfile(file, inode);
1058 	return finish_open_simple(file, 0);
1059 }
1060 
1061 static int hugetlbfs_symlink(struct user_namespace *mnt_userns,
1062 			     struct inode *dir, struct dentry *dentry,
1063 			     const char *symname)
1064 {
1065 	struct inode *inode;
1066 	int error = -ENOSPC;
1067 
1068 	inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
1069 	if (inode) {
1070 		int l = strlen(symname)+1;
1071 		error = page_symlink(inode, symname, l);
1072 		if (!error) {
1073 			d_instantiate(dentry, inode);
1074 			dget(dentry);
1075 		} else
1076 			iput(inode);
1077 	}
1078 	dir->i_ctime = dir->i_mtime = current_time(dir);
1079 
1080 	return error;
1081 }
1082 
1083 #ifdef CONFIG_MIGRATION
1084 static int hugetlbfs_migrate_folio(struct address_space *mapping,
1085 				struct folio *dst, struct folio *src,
1086 				enum migrate_mode mode)
1087 {
1088 	int rc;
1089 
1090 	rc = migrate_huge_page_move_mapping(mapping, dst, src);
1091 	if (rc != MIGRATEPAGE_SUCCESS)
1092 		return rc;
1093 
1094 	if (hugetlb_page_subpool(&src->page)) {
1095 		hugetlb_set_page_subpool(&dst->page,
1096 					hugetlb_page_subpool(&src->page));
1097 		hugetlb_set_page_subpool(&src->page, NULL);
1098 	}
1099 
1100 	if (mode != MIGRATE_SYNC_NO_COPY)
1101 		folio_migrate_copy(dst, src);
1102 	else
1103 		folio_migrate_flags(dst, src);
1104 
1105 	return MIGRATEPAGE_SUCCESS;
1106 }
1107 #else
1108 #define hugetlbfs_migrate_folio NULL
1109 #endif
1110 
1111 static int hugetlbfs_error_remove_page(struct address_space *mapping,
1112 				struct page *page)
1113 {
1114 	struct inode *inode = mapping->host;
1115 	pgoff_t index = page->index;
1116 
1117 	hugetlb_delete_from_page_cache(page);
1118 	if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1)))
1119 		hugetlb_fix_reserve_counts(inode);
1120 
1121 	return 0;
1122 }
1123 
1124 /*
1125  * Display the mount options in /proc/mounts.
1126  */
1127 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
1128 {
1129 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
1130 	struct hugepage_subpool *spool = sbinfo->spool;
1131 	unsigned long hpage_size = huge_page_size(sbinfo->hstate);
1132 	unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
1133 	char mod;
1134 
1135 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1136 		seq_printf(m, ",uid=%u",
1137 			   from_kuid_munged(&init_user_ns, sbinfo->uid));
1138 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1139 		seq_printf(m, ",gid=%u",
1140 			   from_kgid_munged(&init_user_ns, sbinfo->gid));
1141 	if (sbinfo->mode != 0755)
1142 		seq_printf(m, ",mode=%o", sbinfo->mode);
1143 	if (sbinfo->max_inodes != -1)
1144 		seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1145 
1146 	hpage_size /= 1024;
1147 	mod = 'K';
1148 	if (hpage_size >= 1024) {
1149 		hpage_size /= 1024;
1150 		mod = 'M';
1151 	}
1152 	seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1153 	if (spool) {
1154 		if (spool->max_hpages != -1)
1155 			seq_printf(m, ",size=%llu",
1156 				   (unsigned long long)spool->max_hpages << hpage_shift);
1157 		if (spool->min_hpages != -1)
1158 			seq_printf(m, ",min_size=%llu",
1159 				   (unsigned long long)spool->min_hpages << hpage_shift);
1160 	}
1161 	return 0;
1162 }
1163 
1164 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1165 {
1166 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
1167 	struct hstate *h = hstate_inode(d_inode(dentry));
1168 
1169 	buf->f_type = HUGETLBFS_MAGIC;
1170 	buf->f_bsize = huge_page_size(h);
1171 	if (sbinfo) {
1172 		spin_lock(&sbinfo->stat_lock);
1173 		/* If no limits set, just report 0 or -1 for max/free/used
1174 		 * blocks, like simple_statfs() */
1175 		if (sbinfo->spool) {
1176 			long free_pages;
1177 
1178 			spin_lock_irq(&sbinfo->spool->lock);
1179 			buf->f_blocks = sbinfo->spool->max_hpages;
1180 			free_pages = sbinfo->spool->max_hpages
1181 				- sbinfo->spool->used_hpages;
1182 			buf->f_bavail = buf->f_bfree = free_pages;
1183 			spin_unlock_irq(&sbinfo->spool->lock);
1184 			buf->f_files = sbinfo->max_inodes;
1185 			buf->f_ffree = sbinfo->free_inodes;
1186 		}
1187 		spin_unlock(&sbinfo->stat_lock);
1188 	}
1189 	buf->f_namelen = NAME_MAX;
1190 	return 0;
1191 }
1192 
1193 static void hugetlbfs_put_super(struct super_block *sb)
1194 {
1195 	struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1196 
1197 	if (sbi) {
1198 		sb->s_fs_info = NULL;
1199 
1200 		if (sbi->spool)
1201 			hugepage_put_subpool(sbi->spool);
1202 
1203 		kfree(sbi);
1204 	}
1205 }
1206 
1207 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1208 {
1209 	if (sbinfo->free_inodes >= 0) {
1210 		spin_lock(&sbinfo->stat_lock);
1211 		if (unlikely(!sbinfo->free_inodes)) {
1212 			spin_unlock(&sbinfo->stat_lock);
1213 			return 0;
1214 		}
1215 		sbinfo->free_inodes--;
1216 		spin_unlock(&sbinfo->stat_lock);
1217 	}
1218 
1219 	return 1;
1220 }
1221 
1222 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1223 {
1224 	if (sbinfo->free_inodes >= 0) {
1225 		spin_lock(&sbinfo->stat_lock);
1226 		sbinfo->free_inodes++;
1227 		spin_unlock(&sbinfo->stat_lock);
1228 	}
1229 }
1230 
1231 
1232 static struct kmem_cache *hugetlbfs_inode_cachep;
1233 
1234 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1235 {
1236 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1237 	struct hugetlbfs_inode_info *p;
1238 
1239 	if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1240 		return NULL;
1241 	p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL);
1242 	if (unlikely(!p)) {
1243 		hugetlbfs_inc_free_inodes(sbinfo);
1244 		return NULL;
1245 	}
1246 
1247 	/*
1248 	 * Any time after allocation, hugetlbfs_destroy_inode can be called
1249 	 * for the inode.  mpol_free_shared_policy is unconditionally called
1250 	 * as part of hugetlbfs_destroy_inode.  So, initialize policy here
1251 	 * in case of a quick call to destroy.
1252 	 *
1253 	 * Note that the policy is initialized even if we are creating a
1254 	 * private inode.  This simplifies hugetlbfs_destroy_inode.
1255 	 */
1256 	mpol_shared_policy_init(&p->policy, NULL);
1257 
1258 	return &p->vfs_inode;
1259 }
1260 
1261 static void hugetlbfs_free_inode(struct inode *inode)
1262 {
1263 	kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1264 }
1265 
1266 static void hugetlbfs_destroy_inode(struct inode *inode)
1267 {
1268 	hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1269 	mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1270 }
1271 
1272 static const struct address_space_operations hugetlbfs_aops = {
1273 	.write_begin	= hugetlbfs_write_begin,
1274 	.write_end	= hugetlbfs_write_end,
1275 	.dirty_folio	= noop_dirty_folio,
1276 	.migrate_folio  = hugetlbfs_migrate_folio,
1277 	.error_remove_page	= hugetlbfs_error_remove_page,
1278 };
1279 
1280 
1281 static void init_once(void *foo)
1282 {
1283 	struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1284 
1285 	inode_init_once(&ei->vfs_inode);
1286 }
1287 
1288 const struct file_operations hugetlbfs_file_operations = {
1289 	.read_iter		= hugetlbfs_read_iter,
1290 	.mmap			= hugetlbfs_file_mmap,
1291 	.fsync			= noop_fsync,
1292 	.get_unmapped_area	= hugetlb_get_unmapped_area,
1293 	.llseek			= default_llseek,
1294 	.fallocate		= hugetlbfs_fallocate,
1295 };
1296 
1297 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1298 	.create		= hugetlbfs_create,
1299 	.lookup		= simple_lookup,
1300 	.link		= simple_link,
1301 	.unlink		= simple_unlink,
1302 	.symlink	= hugetlbfs_symlink,
1303 	.mkdir		= hugetlbfs_mkdir,
1304 	.rmdir		= simple_rmdir,
1305 	.mknod		= hugetlbfs_mknod,
1306 	.rename		= simple_rename,
1307 	.setattr	= hugetlbfs_setattr,
1308 	.tmpfile	= hugetlbfs_tmpfile,
1309 };
1310 
1311 static const struct inode_operations hugetlbfs_inode_operations = {
1312 	.setattr	= hugetlbfs_setattr,
1313 };
1314 
1315 static const struct super_operations hugetlbfs_ops = {
1316 	.alloc_inode    = hugetlbfs_alloc_inode,
1317 	.free_inode     = hugetlbfs_free_inode,
1318 	.destroy_inode  = hugetlbfs_destroy_inode,
1319 	.evict_inode	= hugetlbfs_evict_inode,
1320 	.statfs		= hugetlbfs_statfs,
1321 	.put_super	= hugetlbfs_put_super,
1322 	.show_options	= hugetlbfs_show_options,
1323 };
1324 
1325 /*
1326  * Convert size option passed from command line to number of huge pages
1327  * in the pool specified by hstate.  Size option could be in bytes
1328  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1329  */
1330 static long
1331 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1332 			 enum hugetlbfs_size_type val_type)
1333 {
1334 	if (val_type == NO_SIZE)
1335 		return -1;
1336 
1337 	if (val_type == SIZE_PERCENT) {
1338 		size_opt <<= huge_page_shift(h);
1339 		size_opt *= h->max_huge_pages;
1340 		do_div(size_opt, 100);
1341 	}
1342 
1343 	size_opt >>= huge_page_shift(h);
1344 	return size_opt;
1345 }
1346 
1347 /*
1348  * Parse one mount parameter.
1349  */
1350 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1351 {
1352 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1353 	struct fs_parse_result result;
1354 	char *rest;
1355 	unsigned long ps;
1356 	int opt;
1357 
1358 	opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1359 	if (opt < 0)
1360 		return opt;
1361 
1362 	switch (opt) {
1363 	case Opt_uid:
1364 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
1365 		if (!uid_valid(ctx->uid))
1366 			goto bad_val;
1367 		return 0;
1368 
1369 	case Opt_gid:
1370 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
1371 		if (!gid_valid(ctx->gid))
1372 			goto bad_val;
1373 		return 0;
1374 
1375 	case Opt_mode:
1376 		ctx->mode = result.uint_32 & 01777U;
1377 		return 0;
1378 
1379 	case Opt_size:
1380 		/* memparse() will accept a K/M/G without a digit */
1381 		if (!isdigit(param->string[0]))
1382 			goto bad_val;
1383 		ctx->max_size_opt = memparse(param->string, &rest);
1384 		ctx->max_val_type = SIZE_STD;
1385 		if (*rest == '%')
1386 			ctx->max_val_type = SIZE_PERCENT;
1387 		return 0;
1388 
1389 	case Opt_nr_inodes:
1390 		/* memparse() will accept a K/M/G without a digit */
1391 		if (!isdigit(param->string[0]))
1392 			goto bad_val;
1393 		ctx->nr_inodes = memparse(param->string, &rest);
1394 		return 0;
1395 
1396 	case Opt_pagesize:
1397 		ps = memparse(param->string, &rest);
1398 		ctx->hstate = size_to_hstate(ps);
1399 		if (!ctx->hstate) {
1400 			pr_err("Unsupported page size %lu MB\n", ps / SZ_1M);
1401 			return -EINVAL;
1402 		}
1403 		return 0;
1404 
1405 	case Opt_min_size:
1406 		/* memparse() will accept a K/M/G without a digit */
1407 		if (!isdigit(param->string[0]))
1408 			goto bad_val;
1409 		ctx->min_size_opt = memparse(param->string, &rest);
1410 		ctx->min_val_type = SIZE_STD;
1411 		if (*rest == '%')
1412 			ctx->min_val_type = SIZE_PERCENT;
1413 		return 0;
1414 
1415 	default:
1416 		return -EINVAL;
1417 	}
1418 
1419 bad_val:
1420 	return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1421 		      param->string, param->key);
1422 }
1423 
1424 /*
1425  * Validate the parsed options.
1426  */
1427 static int hugetlbfs_validate(struct fs_context *fc)
1428 {
1429 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1430 
1431 	/*
1432 	 * Use huge page pool size (in hstate) to convert the size
1433 	 * options to number of huge pages.  If NO_SIZE, -1 is returned.
1434 	 */
1435 	ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1436 						   ctx->max_size_opt,
1437 						   ctx->max_val_type);
1438 	ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1439 						   ctx->min_size_opt,
1440 						   ctx->min_val_type);
1441 
1442 	/*
1443 	 * If max_size was specified, then min_size must be smaller
1444 	 */
1445 	if (ctx->max_val_type > NO_SIZE &&
1446 	    ctx->min_hpages > ctx->max_hpages) {
1447 		pr_err("Minimum size can not be greater than maximum size\n");
1448 		return -EINVAL;
1449 	}
1450 
1451 	return 0;
1452 }
1453 
1454 static int
1455 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1456 {
1457 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1458 	struct hugetlbfs_sb_info *sbinfo;
1459 
1460 	sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1461 	if (!sbinfo)
1462 		return -ENOMEM;
1463 	sb->s_fs_info = sbinfo;
1464 	spin_lock_init(&sbinfo->stat_lock);
1465 	sbinfo->hstate		= ctx->hstate;
1466 	sbinfo->max_inodes	= ctx->nr_inodes;
1467 	sbinfo->free_inodes	= ctx->nr_inodes;
1468 	sbinfo->spool		= NULL;
1469 	sbinfo->uid		= ctx->uid;
1470 	sbinfo->gid		= ctx->gid;
1471 	sbinfo->mode		= ctx->mode;
1472 
1473 	/*
1474 	 * Allocate and initialize subpool if maximum or minimum size is
1475 	 * specified.  Any needed reservations (for minimum size) are taken
1476 	 * when the subpool is created.
1477 	 */
1478 	if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1479 		sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1480 						     ctx->max_hpages,
1481 						     ctx->min_hpages);
1482 		if (!sbinfo->spool)
1483 			goto out_free;
1484 	}
1485 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1486 	sb->s_blocksize = huge_page_size(ctx->hstate);
1487 	sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1488 	sb->s_magic = HUGETLBFS_MAGIC;
1489 	sb->s_op = &hugetlbfs_ops;
1490 	sb->s_time_gran = 1;
1491 
1492 	/*
1493 	 * Due to the special and limited functionality of hugetlbfs, it does
1494 	 * not work well as a stacking filesystem.
1495 	 */
1496 	sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
1497 	sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1498 	if (!sb->s_root)
1499 		goto out_free;
1500 	return 0;
1501 out_free:
1502 	kfree(sbinfo->spool);
1503 	kfree(sbinfo);
1504 	return -ENOMEM;
1505 }
1506 
1507 static int hugetlbfs_get_tree(struct fs_context *fc)
1508 {
1509 	int err = hugetlbfs_validate(fc);
1510 	if (err)
1511 		return err;
1512 	return get_tree_nodev(fc, hugetlbfs_fill_super);
1513 }
1514 
1515 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1516 {
1517 	kfree(fc->fs_private);
1518 }
1519 
1520 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1521 	.free		= hugetlbfs_fs_context_free,
1522 	.parse_param	= hugetlbfs_parse_param,
1523 	.get_tree	= hugetlbfs_get_tree,
1524 };
1525 
1526 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1527 {
1528 	struct hugetlbfs_fs_context *ctx;
1529 
1530 	ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1531 	if (!ctx)
1532 		return -ENOMEM;
1533 
1534 	ctx->max_hpages	= -1; /* No limit on size by default */
1535 	ctx->nr_inodes	= -1; /* No limit on number of inodes by default */
1536 	ctx->uid	= current_fsuid();
1537 	ctx->gid	= current_fsgid();
1538 	ctx->mode	= 0755;
1539 	ctx->hstate	= &default_hstate;
1540 	ctx->min_hpages	= -1; /* No default minimum size */
1541 	ctx->max_val_type = NO_SIZE;
1542 	ctx->min_val_type = NO_SIZE;
1543 	fc->fs_private = ctx;
1544 	fc->ops	= &hugetlbfs_fs_context_ops;
1545 	return 0;
1546 }
1547 
1548 static struct file_system_type hugetlbfs_fs_type = {
1549 	.name			= "hugetlbfs",
1550 	.init_fs_context	= hugetlbfs_init_fs_context,
1551 	.parameters		= hugetlb_fs_parameters,
1552 	.kill_sb		= kill_litter_super,
1553 };
1554 
1555 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1556 
1557 static int can_do_hugetlb_shm(void)
1558 {
1559 	kgid_t shm_group;
1560 	shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1561 	return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1562 }
1563 
1564 static int get_hstate_idx(int page_size_log)
1565 {
1566 	struct hstate *h = hstate_sizelog(page_size_log);
1567 
1568 	if (!h)
1569 		return -1;
1570 	return hstate_index(h);
1571 }
1572 
1573 /*
1574  * Note that size should be aligned to proper hugepage size in caller side,
1575  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1576  */
1577 struct file *hugetlb_file_setup(const char *name, size_t size,
1578 				vm_flags_t acctflag, int creat_flags,
1579 				int page_size_log)
1580 {
1581 	struct inode *inode;
1582 	struct vfsmount *mnt;
1583 	int hstate_idx;
1584 	struct file *file;
1585 
1586 	hstate_idx = get_hstate_idx(page_size_log);
1587 	if (hstate_idx < 0)
1588 		return ERR_PTR(-ENODEV);
1589 
1590 	mnt = hugetlbfs_vfsmount[hstate_idx];
1591 	if (!mnt)
1592 		return ERR_PTR(-ENOENT);
1593 
1594 	if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1595 		struct ucounts *ucounts = current_ucounts();
1596 
1597 		if (user_shm_lock(size, ucounts)) {
1598 			pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n",
1599 				current->comm, current->pid);
1600 			user_shm_unlock(size, ucounts);
1601 		}
1602 		return ERR_PTR(-EPERM);
1603 	}
1604 
1605 	file = ERR_PTR(-ENOSPC);
1606 	inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
1607 	if (!inode)
1608 		goto out;
1609 	if (creat_flags == HUGETLB_SHMFS_INODE)
1610 		inode->i_flags |= S_PRIVATE;
1611 
1612 	inode->i_size = size;
1613 	clear_nlink(inode);
1614 
1615 	if (!hugetlb_reserve_pages(inode, 0,
1616 			size >> huge_page_shift(hstate_inode(inode)), NULL,
1617 			acctflag))
1618 		file = ERR_PTR(-ENOMEM);
1619 	else
1620 		file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1621 					&hugetlbfs_file_operations);
1622 	if (!IS_ERR(file))
1623 		return file;
1624 
1625 	iput(inode);
1626 out:
1627 	return file;
1628 }
1629 
1630 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1631 {
1632 	struct fs_context *fc;
1633 	struct vfsmount *mnt;
1634 
1635 	fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1636 	if (IS_ERR(fc)) {
1637 		mnt = ERR_CAST(fc);
1638 	} else {
1639 		struct hugetlbfs_fs_context *ctx = fc->fs_private;
1640 		ctx->hstate = h;
1641 		mnt = fc_mount(fc);
1642 		put_fs_context(fc);
1643 	}
1644 	if (IS_ERR(mnt))
1645 		pr_err("Cannot mount internal hugetlbfs for page size %luK",
1646 		       huge_page_size(h) / SZ_1K);
1647 	return mnt;
1648 }
1649 
1650 static int __init init_hugetlbfs_fs(void)
1651 {
1652 	struct vfsmount *mnt;
1653 	struct hstate *h;
1654 	int error;
1655 	int i;
1656 
1657 	if (!hugepages_supported()) {
1658 		pr_info("disabling because there are no supported hugepage sizes\n");
1659 		return -ENOTSUPP;
1660 	}
1661 
1662 	error = -ENOMEM;
1663 	hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1664 					sizeof(struct hugetlbfs_inode_info),
1665 					0, SLAB_ACCOUNT, init_once);
1666 	if (hugetlbfs_inode_cachep == NULL)
1667 		goto out;
1668 
1669 	error = register_filesystem(&hugetlbfs_fs_type);
1670 	if (error)
1671 		goto out_free;
1672 
1673 	/* default hstate mount is required */
1674 	mnt = mount_one_hugetlbfs(&default_hstate);
1675 	if (IS_ERR(mnt)) {
1676 		error = PTR_ERR(mnt);
1677 		goto out_unreg;
1678 	}
1679 	hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1680 
1681 	/* other hstates are optional */
1682 	i = 0;
1683 	for_each_hstate(h) {
1684 		if (i == default_hstate_idx) {
1685 			i++;
1686 			continue;
1687 		}
1688 
1689 		mnt = mount_one_hugetlbfs(h);
1690 		if (IS_ERR(mnt))
1691 			hugetlbfs_vfsmount[i] = NULL;
1692 		else
1693 			hugetlbfs_vfsmount[i] = mnt;
1694 		i++;
1695 	}
1696 
1697 	return 0;
1698 
1699  out_unreg:
1700 	(void)unregister_filesystem(&hugetlbfs_fs_type);
1701  out_free:
1702 	kmem_cache_destroy(hugetlbfs_inode_cachep);
1703  out:
1704 	return error;
1705 }
1706 fs_initcall(init_hugetlbfs_fs)
1707