xref: /linux/fs/hugetlbfs/inode.c (revision 2b64b2ed277ff23e785fbdb65098ee7e1252d64f)
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched/signal.h>		/* remove ASAP */
15 #include <linux/falloc.h>
16 #include <linux/fs.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/fs_parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
39 
40 #include <linux/uaccess.h>
41 
42 static const struct super_operations hugetlbfs_ops;
43 static const struct address_space_operations hugetlbfs_aops;
44 const struct file_operations hugetlbfs_file_operations;
45 static const struct inode_operations hugetlbfs_dir_inode_operations;
46 static const struct inode_operations hugetlbfs_inode_operations;
47 
48 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
49 
50 struct hugetlbfs_fs_context {
51 	struct hstate		*hstate;
52 	unsigned long long	max_size_opt;
53 	unsigned long long	min_size_opt;
54 	long			max_hpages;
55 	long			nr_inodes;
56 	long			min_hpages;
57 	enum hugetlbfs_size_type max_val_type;
58 	enum hugetlbfs_size_type min_val_type;
59 	kuid_t			uid;
60 	kgid_t			gid;
61 	umode_t			mode;
62 };
63 
64 int sysctl_hugetlb_shm_group;
65 
66 enum hugetlb_param {
67 	Opt_gid,
68 	Opt_min_size,
69 	Opt_mode,
70 	Opt_nr_inodes,
71 	Opt_pagesize,
72 	Opt_size,
73 	Opt_uid,
74 };
75 
76 static const struct fs_parameter_spec hugetlb_param_specs[] = {
77 	fsparam_u32   ("gid",		Opt_gid),
78 	fsparam_string("min_size",	Opt_min_size),
79 	fsparam_u32   ("mode",		Opt_mode),
80 	fsparam_string("nr_inodes",	Opt_nr_inodes),
81 	fsparam_string("pagesize",	Opt_pagesize),
82 	fsparam_string("size",		Opt_size),
83 	fsparam_u32   ("uid",		Opt_uid),
84 	{}
85 };
86 
87 static const struct fs_parameter_description hugetlb_fs_parameters = {
88 	.name		= "hugetlbfs",
89 	.specs		= hugetlb_param_specs,
90 };
91 
92 #ifdef CONFIG_NUMA
93 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
94 					struct inode *inode, pgoff_t index)
95 {
96 	vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
97 							index);
98 }
99 
100 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
101 {
102 	mpol_cond_put(vma->vm_policy);
103 }
104 #else
105 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
106 					struct inode *inode, pgoff_t index)
107 {
108 }
109 
110 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
111 {
112 }
113 #endif
114 
115 static void huge_pagevec_release(struct pagevec *pvec)
116 {
117 	int i;
118 
119 	for (i = 0; i < pagevec_count(pvec); ++i)
120 		put_page(pvec->pages[i]);
121 
122 	pagevec_reinit(pvec);
123 }
124 
125 /*
126  * Mask used when checking the page offset value passed in via system
127  * calls.  This value will be converted to a loff_t which is signed.
128  * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
129  * value.  The extra bit (- 1 in the shift value) is to take the sign
130  * bit into account.
131  */
132 #define PGOFF_LOFFT_MAX \
133 	(((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
134 
135 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
136 {
137 	struct inode *inode = file_inode(file);
138 	loff_t len, vma_len;
139 	int ret;
140 	struct hstate *h = hstate_file(file);
141 
142 	/*
143 	 * vma address alignment (but not the pgoff alignment) has
144 	 * already been checked by prepare_hugepage_range.  If you add
145 	 * any error returns here, do so after setting VM_HUGETLB, so
146 	 * is_vm_hugetlb_page tests below unmap_region go the right
147 	 * way when do_mmap_pgoff unwinds (may be important on powerpc
148 	 * and ia64).
149 	 */
150 	vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
151 	vma->vm_ops = &hugetlb_vm_ops;
152 
153 	/*
154 	 * page based offset in vm_pgoff could be sufficiently large to
155 	 * overflow a loff_t when converted to byte offset.  This can
156 	 * only happen on architectures where sizeof(loff_t) ==
157 	 * sizeof(unsigned long).  So, only check in those instances.
158 	 */
159 	if (sizeof(unsigned long) == sizeof(loff_t)) {
160 		if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
161 			return -EINVAL;
162 	}
163 
164 	/* must be huge page aligned */
165 	if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
166 		return -EINVAL;
167 
168 	vma_len = (loff_t)(vma->vm_end - vma->vm_start);
169 	len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
170 	/* check for overflow */
171 	if (len < vma_len)
172 		return -EINVAL;
173 
174 	inode_lock(inode);
175 	file_accessed(file);
176 
177 	ret = -ENOMEM;
178 	if (hugetlb_reserve_pages(inode,
179 				vma->vm_pgoff >> huge_page_order(h),
180 				len >> huge_page_shift(h), vma,
181 				vma->vm_flags))
182 		goto out;
183 
184 	ret = 0;
185 	if (vma->vm_flags & VM_WRITE && inode->i_size < len)
186 		i_size_write(inode, len);
187 out:
188 	inode_unlock(inode);
189 
190 	return ret;
191 }
192 
193 /*
194  * Called under down_write(mmap_sem).
195  */
196 
197 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
198 static unsigned long
199 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
200 		unsigned long len, unsigned long pgoff, unsigned long flags)
201 {
202 	struct mm_struct *mm = current->mm;
203 	struct vm_area_struct *vma;
204 	struct hstate *h = hstate_file(file);
205 	struct vm_unmapped_area_info info;
206 
207 	if (len & ~huge_page_mask(h))
208 		return -EINVAL;
209 	if (len > TASK_SIZE)
210 		return -ENOMEM;
211 
212 	if (flags & MAP_FIXED) {
213 		if (prepare_hugepage_range(file, addr, len))
214 			return -EINVAL;
215 		return addr;
216 	}
217 
218 	if (addr) {
219 		addr = ALIGN(addr, huge_page_size(h));
220 		vma = find_vma(mm, addr);
221 		if (TASK_SIZE - len >= addr &&
222 		    (!vma || addr + len <= vm_start_gap(vma)))
223 			return addr;
224 	}
225 
226 	info.flags = 0;
227 	info.length = len;
228 	info.low_limit = TASK_UNMAPPED_BASE;
229 	info.high_limit = TASK_SIZE;
230 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
231 	info.align_offset = 0;
232 	return vm_unmapped_area(&info);
233 }
234 #endif
235 
236 static size_t
237 hugetlbfs_read_actor(struct page *page, unsigned long offset,
238 			struct iov_iter *to, unsigned long size)
239 {
240 	size_t copied = 0;
241 	int i, chunksize;
242 
243 	/* Find which 4k chunk and offset with in that chunk */
244 	i = offset >> PAGE_SHIFT;
245 	offset = offset & ~PAGE_MASK;
246 
247 	while (size) {
248 		size_t n;
249 		chunksize = PAGE_SIZE;
250 		if (offset)
251 			chunksize -= offset;
252 		if (chunksize > size)
253 			chunksize = size;
254 		n = copy_page_to_iter(&page[i], offset, chunksize, to);
255 		copied += n;
256 		if (n != chunksize)
257 			return copied;
258 		offset = 0;
259 		size -= chunksize;
260 		i++;
261 	}
262 	return copied;
263 }
264 
265 /*
266  * Support for read() - Find the page attached to f_mapping and copy out the
267  * data. Its *very* similar to do_generic_mapping_read(), we can't use that
268  * since it has PAGE_SIZE assumptions.
269  */
270 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
271 {
272 	struct file *file = iocb->ki_filp;
273 	struct hstate *h = hstate_file(file);
274 	struct address_space *mapping = file->f_mapping;
275 	struct inode *inode = mapping->host;
276 	unsigned long index = iocb->ki_pos >> huge_page_shift(h);
277 	unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
278 	unsigned long end_index;
279 	loff_t isize;
280 	ssize_t retval = 0;
281 
282 	while (iov_iter_count(to)) {
283 		struct page *page;
284 		size_t nr, copied;
285 
286 		/* nr is the maximum number of bytes to copy from this page */
287 		nr = huge_page_size(h);
288 		isize = i_size_read(inode);
289 		if (!isize)
290 			break;
291 		end_index = (isize - 1) >> huge_page_shift(h);
292 		if (index > end_index)
293 			break;
294 		if (index == end_index) {
295 			nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
296 			if (nr <= offset)
297 				break;
298 		}
299 		nr = nr - offset;
300 
301 		/* Find the page */
302 		page = find_lock_page(mapping, index);
303 		if (unlikely(page == NULL)) {
304 			/*
305 			 * We have a HOLE, zero out the user-buffer for the
306 			 * length of the hole or request.
307 			 */
308 			copied = iov_iter_zero(nr, to);
309 		} else {
310 			unlock_page(page);
311 
312 			/*
313 			 * We have the page, copy it to user space buffer.
314 			 */
315 			copied = hugetlbfs_read_actor(page, offset, to, nr);
316 			put_page(page);
317 		}
318 		offset += copied;
319 		retval += copied;
320 		if (copied != nr && iov_iter_count(to)) {
321 			if (!retval)
322 				retval = -EFAULT;
323 			break;
324 		}
325 		index += offset >> huge_page_shift(h);
326 		offset &= ~huge_page_mask(h);
327 	}
328 	iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
329 	return retval;
330 }
331 
332 static int hugetlbfs_write_begin(struct file *file,
333 			struct address_space *mapping,
334 			loff_t pos, unsigned len, unsigned flags,
335 			struct page **pagep, void **fsdata)
336 {
337 	return -EINVAL;
338 }
339 
340 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
341 			loff_t pos, unsigned len, unsigned copied,
342 			struct page *page, void *fsdata)
343 {
344 	BUG();
345 	return -EINVAL;
346 }
347 
348 static void remove_huge_page(struct page *page)
349 {
350 	ClearPageDirty(page);
351 	ClearPageUptodate(page);
352 	delete_from_page_cache(page);
353 }
354 
355 static void
356 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end)
357 {
358 	struct vm_area_struct *vma;
359 
360 	/*
361 	 * end == 0 indicates that the entire range after
362 	 * start should be unmapped.
363 	 */
364 	vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) {
365 		unsigned long v_offset;
366 		unsigned long v_end;
367 
368 		/*
369 		 * Can the expression below overflow on 32-bit arches?
370 		 * No, because the interval tree returns us only those vmas
371 		 * which overlap the truncated area starting at pgoff,
372 		 * and no vma on a 32-bit arch can span beyond the 4GB.
373 		 */
374 		if (vma->vm_pgoff < start)
375 			v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
376 		else
377 			v_offset = 0;
378 
379 		if (!end)
380 			v_end = vma->vm_end;
381 		else {
382 			v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
383 							+ vma->vm_start;
384 			if (v_end > vma->vm_end)
385 				v_end = vma->vm_end;
386 		}
387 
388 		unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
389 									NULL);
390 	}
391 }
392 
393 /*
394  * remove_inode_hugepages handles two distinct cases: truncation and hole
395  * punch.  There are subtle differences in operation for each case.
396  *
397  * truncation is indicated by end of range being LLONG_MAX
398  *	In this case, we first scan the range and release found pages.
399  *	After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
400  *	maps and global counts.  Page faults can not race with truncation
401  *	in this routine.  hugetlb_no_page() prevents page faults in the
402  *	truncated range.  It checks i_size before allocation, and again after
403  *	with the page table lock for the page held.  The same lock must be
404  *	acquired to unmap a page.
405  * hole punch is indicated if end is not LLONG_MAX
406  *	In the hole punch case we scan the range and release found pages.
407  *	Only when releasing a page is the associated region/reserv map
408  *	deleted.  The region/reserv map for ranges without associated
409  *	pages are not modified.  Page faults can race with hole punch.
410  *	This is indicated if we find a mapped page.
411  * Note: If the passed end of range value is beyond the end of file, but
412  * not LLONG_MAX this routine still performs a hole punch operation.
413  */
414 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
415 				   loff_t lend)
416 {
417 	struct hstate *h = hstate_inode(inode);
418 	struct address_space *mapping = &inode->i_data;
419 	const pgoff_t start = lstart >> huge_page_shift(h);
420 	const pgoff_t end = lend >> huge_page_shift(h);
421 	struct vm_area_struct pseudo_vma;
422 	struct pagevec pvec;
423 	pgoff_t next, index;
424 	int i, freed = 0;
425 	bool truncate_op = (lend == LLONG_MAX);
426 
427 	vma_init(&pseudo_vma, current->mm);
428 	pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
429 	pagevec_init(&pvec);
430 	next = start;
431 	while (next < end) {
432 		/*
433 		 * When no more pages are found, we are done.
434 		 */
435 		if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1))
436 			break;
437 
438 		for (i = 0; i < pagevec_count(&pvec); ++i) {
439 			struct page *page = pvec.pages[i];
440 			u32 hash;
441 
442 			index = page->index;
443 			hash = hugetlb_fault_mutex_hash(h, current->mm,
444 							&pseudo_vma,
445 							mapping, index, 0);
446 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
447 
448 			/*
449 			 * If page is mapped, it was faulted in after being
450 			 * unmapped in caller.  Unmap (again) now after taking
451 			 * the fault mutex.  The mutex will prevent faults
452 			 * until we finish removing the page.
453 			 *
454 			 * This race can only happen in the hole punch case.
455 			 * Getting here in a truncate operation is a bug.
456 			 */
457 			if (unlikely(page_mapped(page))) {
458 				BUG_ON(truncate_op);
459 
460 				i_mmap_lock_write(mapping);
461 				hugetlb_vmdelete_list(&mapping->i_mmap,
462 					index * pages_per_huge_page(h),
463 					(index + 1) * pages_per_huge_page(h));
464 				i_mmap_unlock_write(mapping);
465 			}
466 
467 			lock_page(page);
468 			/*
469 			 * We must free the huge page and remove from page
470 			 * cache (remove_huge_page) BEFORE removing the
471 			 * region/reserve map (hugetlb_unreserve_pages).  In
472 			 * rare out of memory conditions, removal of the
473 			 * region/reserve map could fail. Correspondingly,
474 			 * the subpool and global reserve usage count can need
475 			 * to be adjusted.
476 			 */
477 			VM_BUG_ON(PagePrivate(page));
478 			remove_huge_page(page);
479 			freed++;
480 			if (!truncate_op) {
481 				if (unlikely(hugetlb_unreserve_pages(inode,
482 							index, index + 1, 1)))
483 					hugetlb_fix_reserve_counts(inode);
484 			}
485 
486 			unlock_page(page);
487 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
488 		}
489 		huge_pagevec_release(&pvec);
490 		cond_resched();
491 	}
492 
493 	if (truncate_op)
494 		(void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
495 }
496 
497 static void hugetlbfs_evict_inode(struct inode *inode)
498 {
499 	struct resv_map *resv_map;
500 
501 	remove_inode_hugepages(inode, 0, LLONG_MAX);
502 	resv_map = (struct resv_map *)inode->i_mapping->private_data;
503 	/* root inode doesn't have the resv_map, so we should check it */
504 	if (resv_map)
505 		resv_map_release(&resv_map->refs);
506 	clear_inode(inode);
507 }
508 
509 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
510 {
511 	pgoff_t pgoff;
512 	struct address_space *mapping = inode->i_mapping;
513 	struct hstate *h = hstate_inode(inode);
514 
515 	BUG_ON(offset & ~huge_page_mask(h));
516 	pgoff = offset >> PAGE_SHIFT;
517 
518 	i_size_write(inode, offset);
519 	i_mmap_lock_write(mapping);
520 	if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
521 		hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
522 	i_mmap_unlock_write(mapping);
523 	remove_inode_hugepages(inode, offset, LLONG_MAX);
524 	return 0;
525 }
526 
527 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
528 {
529 	struct hstate *h = hstate_inode(inode);
530 	loff_t hpage_size = huge_page_size(h);
531 	loff_t hole_start, hole_end;
532 
533 	/*
534 	 * For hole punch round up the beginning offset of the hole and
535 	 * round down the end.
536 	 */
537 	hole_start = round_up(offset, hpage_size);
538 	hole_end = round_down(offset + len, hpage_size);
539 
540 	if (hole_end > hole_start) {
541 		struct address_space *mapping = inode->i_mapping;
542 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
543 
544 		inode_lock(inode);
545 
546 		/* protected by i_mutex */
547 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
548 			inode_unlock(inode);
549 			return -EPERM;
550 		}
551 
552 		i_mmap_lock_write(mapping);
553 		if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
554 			hugetlb_vmdelete_list(&mapping->i_mmap,
555 						hole_start >> PAGE_SHIFT,
556 						hole_end  >> PAGE_SHIFT);
557 		i_mmap_unlock_write(mapping);
558 		remove_inode_hugepages(inode, hole_start, hole_end);
559 		inode_unlock(inode);
560 	}
561 
562 	return 0;
563 }
564 
565 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
566 				loff_t len)
567 {
568 	struct inode *inode = file_inode(file);
569 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
570 	struct address_space *mapping = inode->i_mapping;
571 	struct hstate *h = hstate_inode(inode);
572 	struct vm_area_struct pseudo_vma;
573 	struct mm_struct *mm = current->mm;
574 	loff_t hpage_size = huge_page_size(h);
575 	unsigned long hpage_shift = huge_page_shift(h);
576 	pgoff_t start, index, end;
577 	int error;
578 	u32 hash;
579 
580 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
581 		return -EOPNOTSUPP;
582 
583 	if (mode & FALLOC_FL_PUNCH_HOLE)
584 		return hugetlbfs_punch_hole(inode, offset, len);
585 
586 	/*
587 	 * Default preallocate case.
588 	 * For this range, start is rounded down and end is rounded up
589 	 * as well as being converted to page offsets.
590 	 */
591 	start = offset >> hpage_shift;
592 	end = (offset + len + hpage_size - 1) >> hpage_shift;
593 
594 	inode_lock(inode);
595 
596 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
597 	error = inode_newsize_ok(inode, offset + len);
598 	if (error)
599 		goto out;
600 
601 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
602 		error = -EPERM;
603 		goto out;
604 	}
605 
606 	/*
607 	 * Initialize a pseudo vma as this is required by the huge page
608 	 * allocation routines.  If NUMA is configured, use page index
609 	 * as input to create an allocation policy.
610 	 */
611 	vma_init(&pseudo_vma, mm);
612 	pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
613 	pseudo_vma.vm_file = file;
614 
615 	for (index = start; index < end; index++) {
616 		/*
617 		 * This is supposed to be the vaddr where the page is being
618 		 * faulted in, but we have no vaddr here.
619 		 */
620 		struct page *page;
621 		unsigned long addr;
622 		int avoid_reserve = 0;
623 
624 		cond_resched();
625 
626 		/*
627 		 * fallocate(2) manpage permits EINTR; we may have been
628 		 * interrupted because we are using up too much memory.
629 		 */
630 		if (signal_pending(current)) {
631 			error = -EINTR;
632 			break;
633 		}
634 
635 		/* Set numa allocation policy based on index */
636 		hugetlb_set_vma_policy(&pseudo_vma, inode, index);
637 
638 		/* addr is the offset within the file (zero based) */
639 		addr = index * hpage_size;
640 
641 		/* mutex taken here, fault path and hole punch */
642 		hash = hugetlb_fault_mutex_hash(h, mm, &pseudo_vma, mapping,
643 						index, addr);
644 		mutex_lock(&hugetlb_fault_mutex_table[hash]);
645 
646 		/* See if already present in mapping to avoid alloc/free */
647 		page = find_get_page(mapping, index);
648 		if (page) {
649 			put_page(page);
650 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
651 			hugetlb_drop_vma_policy(&pseudo_vma);
652 			continue;
653 		}
654 
655 		/* Allocate page and add to page cache */
656 		page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve);
657 		hugetlb_drop_vma_policy(&pseudo_vma);
658 		if (IS_ERR(page)) {
659 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
660 			error = PTR_ERR(page);
661 			goto out;
662 		}
663 		clear_huge_page(page, addr, pages_per_huge_page(h));
664 		__SetPageUptodate(page);
665 		error = huge_add_to_page_cache(page, mapping, index);
666 		if (unlikely(error)) {
667 			put_page(page);
668 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
669 			goto out;
670 		}
671 
672 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
673 
674 		/*
675 		 * unlock_page because locked by add_to_page_cache()
676 		 * page_put due to reference from alloc_huge_page()
677 		 */
678 		unlock_page(page);
679 		put_page(page);
680 	}
681 
682 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
683 		i_size_write(inode, offset + len);
684 	inode->i_ctime = current_time(inode);
685 out:
686 	inode_unlock(inode);
687 	return error;
688 }
689 
690 static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr)
691 {
692 	struct inode *inode = d_inode(dentry);
693 	struct hstate *h = hstate_inode(inode);
694 	int error;
695 	unsigned int ia_valid = attr->ia_valid;
696 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
697 
698 	BUG_ON(!inode);
699 
700 	error = setattr_prepare(dentry, attr);
701 	if (error)
702 		return error;
703 
704 	if (ia_valid & ATTR_SIZE) {
705 		loff_t oldsize = inode->i_size;
706 		loff_t newsize = attr->ia_size;
707 
708 		if (newsize & ~huge_page_mask(h))
709 			return -EINVAL;
710 		/* protected by i_mutex */
711 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
712 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
713 			return -EPERM;
714 		error = hugetlb_vmtruncate(inode, newsize);
715 		if (error)
716 			return error;
717 	}
718 
719 	setattr_copy(inode, attr);
720 	mark_inode_dirty(inode);
721 	return 0;
722 }
723 
724 static struct inode *hugetlbfs_get_root(struct super_block *sb,
725 					struct hugetlbfs_fs_context *ctx)
726 {
727 	struct inode *inode;
728 
729 	inode = new_inode(sb);
730 	if (inode) {
731 		inode->i_ino = get_next_ino();
732 		inode->i_mode = S_IFDIR | ctx->mode;
733 		inode->i_uid = ctx->uid;
734 		inode->i_gid = ctx->gid;
735 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
736 		inode->i_op = &hugetlbfs_dir_inode_operations;
737 		inode->i_fop = &simple_dir_operations;
738 		/* directory inodes start off with i_nlink == 2 (for "." entry) */
739 		inc_nlink(inode);
740 		lockdep_annotate_inode_mutex_key(inode);
741 	}
742 	return inode;
743 }
744 
745 /*
746  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
747  * be taken from reclaim -- unlike regular filesystems. This needs an
748  * annotation because huge_pmd_share() does an allocation under hugetlb's
749  * i_mmap_rwsem.
750  */
751 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
752 
753 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
754 					struct inode *dir,
755 					umode_t mode, dev_t dev)
756 {
757 	struct inode *inode;
758 	struct resv_map *resv_map;
759 
760 	resv_map = resv_map_alloc();
761 	if (!resv_map)
762 		return NULL;
763 
764 	inode = new_inode(sb);
765 	if (inode) {
766 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
767 
768 		inode->i_ino = get_next_ino();
769 		inode_init_owner(inode, dir, mode);
770 		lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
771 				&hugetlbfs_i_mmap_rwsem_key);
772 		inode->i_mapping->a_ops = &hugetlbfs_aops;
773 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
774 		inode->i_mapping->private_data = resv_map;
775 		info->seals = F_SEAL_SEAL;
776 		switch (mode & S_IFMT) {
777 		default:
778 			init_special_inode(inode, mode, dev);
779 			break;
780 		case S_IFREG:
781 			inode->i_op = &hugetlbfs_inode_operations;
782 			inode->i_fop = &hugetlbfs_file_operations;
783 			break;
784 		case S_IFDIR:
785 			inode->i_op = &hugetlbfs_dir_inode_operations;
786 			inode->i_fop = &simple_dir_operations;
787 
788 			/* directory inodes start off with i_nlink == 2 (for "." entry) */
789 			inc_nlink(inode);
790 			break;
791 		case S_IFLNK:
792 			inode->i_op = &page_symlink_inode_operations;
793 			inode_nohighmem(inode);
794 			break;
795 		}
796 		lockdep_annotate_inode_mutex_key(inode);
797 	} else
798 		kref_put(&resv_map->refs, resv_map_release);
799 
800 	return inode;
801 }
802 
803 /*
804  * File creation. Allocate an inode, and we're done..
805  */
806 static int hugetlbfs_mknod(struct inode *dir,
807 			struct dentry *dentry, umode_t mode, dev_t dev)
808 {
809 	struct inode *inode;
810 	int error = -ENOSPC;
811 
812 	inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
813 	if (inode) {
814 		dir->i_ctime = dir->i_mtime = current_time(dir);
815 		d_instantiate(dentry, inode);
816 		dget(dentry);	/* Extra count - pin the dentry in core */
817 		error = 0;
818 	}
819 	return error;
820 }
821 
822 static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
823 {
824 	int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0);
825 	if (!retval)
826 		inc_nlink(dir);
827 	return retval;
828 }
829 
830 static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl)
831 {
832 	return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0);
833 }
834 
835 static int hugetlbfs_symlink(struct inode *dir,
836 			struct dentry *dentry, const char *symname)
837 {
838 	struct inode *inode;
839 	int error = -ENOSPC;
840 
841 	inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
842 	if (inode) {
843 		int l = strlen(symname)+1;
844 		error = page_symlink(inode, symname, l);
845 		if (!error) {
846 			d_instantiate(dentry, inode);
847 			dget(dentry);
848 		} else
849 			iput(inode);
850 	}
851 	dir->i_ctime = dir->i_mtime = current_time(dir);
852 
853 	return error;
854 }
855 
856 /*
857  * mark the head page dirty
858  */
859 static int hugetlbfs_set_page_dirty(struct page *page)
860 {
861 	struct page *head = compound_head(page);
862 
863 	SetPageDirty(head);
864 	return 0;
865 }
866 
867 static int hugetlbfs_migrate_page(struct address_space *mapping,
868 				struct page *newpage, struct page *page,
869 				enum migrate_mode mode)
870 {
871 	int rc;
872 
873 	rc = migrate_huge_page_move_mapping(mapping, newpage, page);
874 	if (rc != MIGRATEPAGE_SUCCESS)
875 		return rc;
876 
877 	/*
878 	 * page_private is subpool pointer in hugetlb pages.  Transfer to
879 	 * new page.  PagePrivate is not associated with page_private for
880 	 * hugetlb pages and can not be set here as only page_huge_active
881 	 * pages can be migrated.
882 	 */
883 	if (page_private(page)) {
884 		set_page_private(newpage, page_private(page));
885 		set_page_private(page, 0);
886 	}
887 
888 	if (mode != MIGRATE_SYNC_NO_COPY)
889 		migrate_page_copy(newpage, page);
890 	else
891 		migrate_page_states(newpage, page);
892 
893 	return MIGRATEPAGE_SUCCESS;
894 }
895 
896 static int hugetlbfs_error_remove_page(struct address_space *mapping,
897 				struct page *page)
898 {
899 	struct inode *inode = mapping->host;
900 	pgoff_t index = page->index;
901 
902 	remove_huge_page(page);
903 	if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1)))
904 		hugetlb_fix_reserve_counts(inode);
905 
906 	return 0;
907 }
908 
909 /*
910  * Display the mount options in /proc/mounts.
911  */
912 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
913 {
914 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
915 	struct hugepage_subpool *spool = sbinfo->spool;
916 	unsigned long hpage_size = huge_page_size(sbinfo->hstate);
917 	unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
918 	char mod;
919 
920 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
921 		seq_printf(m, ",uid=%u",
922 			   from_kuid_munged(&init_user_ns, sbinfo->uid));
923 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
924 		seq_printf(m, ",gid=%u",
925 			   from_kgid_munged(&init_user_ns, sbinfo->gid));
926 	if (sbinfo->mode != 0755)
927 		seq_printf(m, ",mode=%o", sbinfo->mode);
928 	if (sbinfo->max_inodes != -1)
929 		seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
930 
931 	hpage_size /= 1024;
932 	mod = 'K';
933 	if (hpage_size >= 1024) {
934 		hpage_size /= 1024;
935 		mod = 'M';
936 	}
937 	seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
938 	if (spool) {
939 		if (spool->max_hpages != -1)
940 			seq_printf(m, ",size=%llu",
941 				   (unsigned long long)spool->max_hpages << hpage_shift);
942 		if (spool->min_hpages != -1)
943 			seq_printf(m, ",min_size=%llu",
944 				   (unsigned long long)spool->min_hpages << hpage_shift);
945 	}
946 	return 0;
947 }
948 
949 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
950 {
951 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
952 	struct hstate *h = hstate_inode(d_inode(dentry));
953 
954 	buf->f_type = HUGETLBFS_MAGIC;
955 	buf->f_bsize = huge_page_size(h);
956 	if (sbinfo) {
957 		spin_lock(&sbinfo->stat_lock);
958 		/* If no limits set, just report 0 for max/free/used
959 		 * blocks, like simple_statfs() */
960 		if (sbinfo->spool) {
961 			long free_pages;
962 
963 			spin_lock(&sbinfo->spool->lock);
964 			buf->f_blocks = sbinfo->spool->max_hpages;
965 			free_pages = sbinfo->spool->max_hpages
966 				- sbinfo->spool->used_hpages;
967 			buf->f_bavail = buf->f_bfree = free_pages;
968 			spin_unlock(&sbinfo->spool->lock);
969 			buf->f_files = sbinfo->max_inodes;
970 			buf->f_ffree = sbinfo->free_inodes;
971 		}
972 		spin_unlock(&sbinfo->stat_lock);
973 	}
974 	buf->f_namelen = NAME_MAX;
975 	return 0;
976 }
977 
978 static void hugetlbfs_put_super(struct super_block *sb)
979 {
980 	struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
981 
982 	if (sbi) {
983 		sb->s_fs_info = NULL;
984 
985 		if (sbi->spool)
986 			hugepage_put_subpool(sbi->spool);
987 
988 		kfree(sbi);
989 	}
990 }
991 
992 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
993 {
994 	if (sbinfo->free_inodes >= 0) {
995 		spin_lock(&sbinfo->stat_lock);
996 		if (unlikely(!sbinfo->free_inodes)) {
997 			spin_unlock(&sbinfo->stat_lock);
998 			return 0;
999 		}
1000 		sbinfo->free_inodes--;
1001 		spin_unlock(&sbinfo->stat_lock);
1002 	}
1003 
1004 	return 1;
1005 }
1006 
1007 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1008 {
1009 	if (sbinfo->free_inodes >= 0) {
1010 		spin_lock(&sbinfo->stat_lock);
1011 		sbinfo->free_inodes++;
1012 		spin_unlock(&sbinfo->stat_lock);
1013 	}
1014 }
1015 
1016 
1017 static struct kmem_cache *hugetlbfs_inode_cachep;
1018 
1019 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1020 {
1021 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1022 	struct hugetlbfs_inode_info *p;
1023 
1024 	if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1025 		return NULL;
1026 	p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
1027 	if (unlikely(!p)) {
1028 		hugetlbfs_inc_free_inodes(sbinfo);
1029 		return NULL;
1030 	}
1031 
1032 	/*
1033 	 * Any time after allocation, hugetlbfs_destroy_inode can be called
1034 	 * for the inode.  mpol_free_shared_policy is unconditionally called
1035 	 * as part of hugetlbfs_destroy_inode.  So, initialize policy here
1036 	 * in case of a quick call to destroy.
1037 	 *
1038 	 * Note that the policy is initialized even if we are creating a
1039 	 * private inode.  This simplifies hugetlbfs_destroy_inode.
1040 	 */
1041 	mpol_shared_policy_init(&p->policy, NULL);
1042 
1043 	return &p->vfs_inode;
1044 }
1045 
1046 static void hugetlbfs_i_callback(struct rcu_head *head)
1047 {
1048 	struct inode *inode = container_of(head, struct inode, i_rcu);
1049 	kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1050 }
1051 
1052 static void hugetlbfs_destroy_inode(struct inode *inode)
1053 {
1054 	hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1055 	mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1056 	call_rcu(&inode->i_rcu, hugetlbfs_i_callback);
1057 }
1058 
1059 static const struct address_space_operations hugetlbfs_aops = {
1060 	.write_begin	= hugetlbfs_write_begin,
1061 	.write_end	= hugetlbfs_write_end,
1062 	.set_page_dirty	= hugetlbfs_set_page_dirty,
1063 	.migratepage    = hugetlbfs_migrate_page,
1064 	.error_remove_page	= hugetlbfs_error_remove_page,
1065 };
1066 
1067 
1068 static void init_once(void *foo)
1069 {
1070 	struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1071 
1072 	inode_init_once(&ei->vfs_inode);
1073 }
1074 
1075 const struct file_operations hugetlbfs_file_operations = {
1076 	.read_iter		= hugetlbfs_read_iter,
1077 	.mmap			= hugetlbfs_file_mmap,
1078 	.fsync			= noop_fsync,
1079 	.get_unmapped_area	= hugetlb_get_unmapped_area,
1080 	.llseek			= default_llseek,
1081 	.fallocate		= hugetlbfs_fallocate,
1082 };
1083 
1084 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1085 	.create		= hugetlbfs_create,
1086 	.lookup		= simple_lookup,
1087 	.link		= simple_link,
1088 	.unlink		= simple_unlink,
1089 	.symlink	= hugetlbfs_symlink,
1090 	.mkdir		= hugetlbfs_mkdir,
1091 	.rmdir		= simple_rmdir,
1092 	.mknod		= hugetlbfs_mknod,
1093 	.rename		= simple_rename,
1094 	.setattr	= hugetlbfs_setattr,
1095 };
1096 
1097 static const struct inode_operations hugetlbfs_inode_operations = {
1098 	.setattr	= hugetlbfs_setattr,
1099 };
1100 
1101 static const struct super_operations hugetlbfs_ops = {
1102 	.alloc_inode    = hugetlbfs_alloc_inode,
1103 	.destroy_inode  = hugetlbfs_destroy_inode,
1104 	.evict_inode	= hugetlbfs_evict_inode,
1105 	.statfs		= hugetlbfs_statfs,
1106 	.put_super	= hugetlbfs_put_super,
1107 	.show_options	= hugetlbfs_show_options,
1108 };
1109 
1110 /*
1111  * Convert size option passed from command line to number of huge pages
1112  * in the pool specified by hstate.  Size option could be in bytes
1113  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1114  */
1115 static long
1116 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1117 			 enum hugetlbfs_size_type val_type)
1118 {
1119 	if (val_type == NO_SIZE)
1120 		return -1;
1121 
1122 	if (val_type == SIZE_PERCENT) {
1123 		size_opt <<= huge_page_shift(h);
1124 		size_opt *= h->max_huge_pages;
1125 		do_div(size_opt, 100);
1126 	}
1127 
1128 	size_opt >>= huge_page_shift(h);
1129 	return size_opt;
1130 }
1131 
1132 /*
1133  * Parse one mount parameter.
1134  */
1135 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1136 {
1137 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1138 	struct fs_parse_result result;
1139 	char *rest;
1140 	unsigned long ps;
1141 	int opt;
1142 
1143 	opt = fs_parse(fc, &hugetlb_fs_parameters, param, &result);
1144 	if (opt < 0)
1145 		return opt;
1146 
1147 	switch (opt) {
1148 	case Opt_uid:
1149 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
1150 		if (!uid_valid(ctx->uid))
1151 			goto bad_val;
1152 		return 0;
1153 
1154 	case Opt_gid:
1155 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
1156 		if (!gid_valid(ctx->gid))
1157 			goto bad_val;
1158 		return 0;
1159 
1160 	case Opt_mode:
1161 		ctx->mode = result.uint_32 & 01777U;
1162 		return 0;
1163 
1164 	case Opt_size:
1165 		/* memparse() will accept a K/M/G without a digit */
1166 		if (!isdigit(param->string[0]))
1167 			goto bad_val;
1168 		ctx->max_size_opt = memparse(param->string, &rest);
1169 		ctx->max_val_type = SIZE_STD;
1170 		if (*rest == '%')
1171 			ctx->max_val_type = SIZE_PERCENT;
1172 		return 0;
1173 
1174 	case Opt_nr_inodes:
1175 		/* memparse() will accept a K/M/G without a digit */
1176 		if (!isdigit(param->string[0]))
1177 			goto bad_val;
1178 		ctx->nr_inodes = memparse(param->string, &rest);
1179 		return 0;
1180 
1181 	case Opt_pagesize:
1182 		ps = memparse(param->string, &rest);
1183 		ctx->hstate = size_to_hstate(ps);
1184 		if (!ctx->hstate) {
1185 			pr_err("Unsupported page size %lu MB\n", ps >> 20);
1186 			return -EINVAL;
1187 		}
1188 		return 0;
1189 
1190 	case Opt_min_size:
1191 		/* memparse() will accept a K/M/G without a digit */
1192 		if (!isdigit(param->string[0]))
1193 			goto bad_val;
1194 		ctx->min_size_opt = memparse(param->string, &rest);
1195 		ctx->min_val_type = SIZE_STD;
1196 		if (*rest == '%')
1197 			ctx->min_val_type = SIZE_PERCENT;
1198 		return 0;
1199 
1200 	default:
1201 		return -EINVAL;
1202 	}
1203 
1204 bad_val:
1205 	return invalf(fc, "hugetlbfs: Bad value '%s' for mount option '%s'\n",
1206 		      param->string, param->key);
1207 }
1208 
1209 /*
1210  * Validate the parsed options.
1211  */
1212 static int hugetlbfs_validate(struct fs_context *fc)
1213 {
1214 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1215 
1216 	/*
1217 	 * Use huge page pool size (in hstate) to convert the size
1218 	 * options to number of huge pages.  If NO_SIZE, -1 is returned.
1219 	 */
1220 	ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1221 						   ctx->max_size_opt,
1222 						   ctx->max_val_type);
1223 	ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1224 						   ctx->min_size_opt,
1225 						   ctx->min_val_type);
1226 
1227 	/*
1228 	 * If max_size was specified, then min_size must be smaller
1229 	 */
1230 	if (ctx->max_val_type > NO_SIZE &&
1231 	    ctx->min_hpages > ctx->max_hpages) {
1232 		pr_err("Minimum size can not be greater than maximum size\n");
1233 		return -EINVAL;
1234 	}
1235 
1236 	return 0;
1237 }
1238 
1239 static int
1240 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1241 {
1242 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1243 	struct hugetlbfs_sb_info *sbinfo;
1244 
1245 	sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1246 	if (!sbinfo)
1247 		return -ENOMEM;
1248 	sb->s_fs_info = sbinfo;
1249 	spin_lock_init(&sbinfo->stat_lock);
1250 	sbinfo->hstate		= ctx->hstate;
1251 	sbinfo->max_inodes	= ctx->nr_inodes;
1252 	sbinfo->free_inodes	= ctx->nr_inodes;
1253 	sbinfo->spool		= NULL;
1254 	sbinfo->uid		= ctx->uid;
1255 	sbinfo->gid		= ctx->gid;
1256 	sbinfo->mode		= ctx->mode;
1257 
1258 	/*
1259 	 * Allocate and initialize subpool if maximum or minimum size is
1260 	 * specified.  Any needed reservations (for minimim size) are taken
1261 	 * taken when the subpool is created.
1262 	 */
1263 	if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1264 		sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1265 						     ctx->max_hpages,
1266 						     ctx->min_hpages);
1267 		if (!sbinfo->spool)
1268 			goto out_free;
1269 	}
1270 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1271 	sb->s_blocksize = huge_page_size(ctx->hstate);
1272 	sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1273 	sb->s_magic = HUGETLBFS_MAGIC;
1274 	sb->s_op = &hugetlbfs_ops;
1275 	sb->s_time_gran = 1;
1276 	sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1277 	if (!sb->s_root)
1278 		goto out_free;
1279 	return 0;
1280 out_free:
1281 	kfree(sbinfo->spool);
1282 	kfree(sbinfo);
1283 	return -ENOMEM;
1284 }
1285 
1286 static int hugetlbfs_get_tree(struct fs_context *fc)
1287 {
1288 	int err = hugetlbfs_validate(fc);
1289 	if (err)
1290 		return err;
1291 	return vfs_get_super(fc, vfs_get_independent_super, hugetlbfs_fill_super);
1292 }
1293 
1294 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1295 {
1296 	kfree(fc->fs_private);
1297 }
1298 
1299 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1300 	.free		= hugetlbfs_fs_context_free,
1301 	.parse_param	= hugetlbfs_parse_param,
1302 	.get_tree	= hugetlbfs_get_tree,
1303 };
1304 
1305 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1306 {
1307 	struct hugetlbfs_fs_context *ctx;
1308 
1309 	ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1310 	if (!ctx)
1311 		return -ENOMEM;
1312 
1313 	ctx->max_hpages	= -1; /* No limit on size by default */
1314 	ctx->nr_inodes	= -1; /* No limit on number of inodes by default */
1315 	ctx->uid	= current_fsuid();
1316 	ctx->gid	= current_fsgid();
1317 	ctx->mode	= 0755;
1318 	ctx->hstate	= &default_hstate;
1319 	ctx->min_hpages	= -1; /* No default minimum size */
1320 	ctx->max_val_type = NO_SIZE;
1321 	ctx->min_val_type = NO_SIZE;
1322 	fc->fs_private = ctx;
1323 	fc->ops	= &hugetlbfs_fs_context_ops;
1324 	return 0;
1325 }
1326 
1327 static struct file_system_type hugetlbfs_fs_type = {
1328 	.name			= "hugetlbfs",
1329 	.init_fs_context	= hugetlbfs_init_fs_context,
1330 	.parameters		= &hugetlb_fs_parameters,
1331 	.kill_sb		= kill_litter_super,
1332 };
1333 
1334 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1335 
1336 static int can_do_hugetlb_shm(void)
1337 {
1338 	kgid_t shm_group;
1339 	shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1340 	return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1341 }
1342 
1343 static int get_hstate_idx(int page_size_log)
1344 {
1345 	struct hstate *h = hstate_sizelog(page_size_log);
1346 
1347 	if (!h)
1348 		return -1;
1349 	return h - hstates;
1350 }
1351 
1352 /*
1353  * Note that size should be aligned to proper hugepage size in caller side,
1354  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1355  */
1356 struct file *hugetlb_file_setup(const char *name, size_t size,
1357 				vm_flags_t acctflag, struct user_struct **user,
1358 				int creat_flags, int page_size_log)
1359 {
1360 	struct inode *inode;
1361 	struct vfsmount *mnt;
1362 	int hstate_idx;
1363 	struct file *file;
1364 
1365 	hstate_idx = get_hstate_idx(page_size_log);
1366 	if (hstate_idx < 0)
1367 		return ERR_PTR(-ENODEV);
1368 
1369 	*user = NULL;
1370 	mnt = hugetlbfs_vfsmount[hstate_idx];
1371 	if (!mnt)
1372 		return ERR_PTR(-ENOENT);
1373 
1374 	if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1375 		*user = current_user();
1376 		if (user_shm_lock(size, *user)) {
1377 			task_lock(current);
1378 			pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1379 				current->comm, current->pid);
1380 			task_unlock(current);
1381 		} else {
1382 			*user = NULL;
1383 			return ERR_PTR(-EPERM);
1384 		}
1385 	}
1386 
1387 	file = ERR_PTR(-ENOSPC);
1388 	inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
1389 	if (!inode)
1390 		goto out;
1391 	if (creat_flags == HUGETLB_SHMFS_INODE)
1392 		inode->i_flags |= S_PRIVATE;
1393 
1394 	inode->i_size = size;
1395 	clear_nlink(inode);
1396 
1397 	if (hugetlb_reserve_pages(inode, 0,
1398 			size >> huge_page_shift(hstate_inode(inode)), NULL,
1399 			acctflag))
1400 		file = ERR_PTR(-ENOMEM);
1401 	else
1402 		file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1403 					&hugetlbfs_file_operations);
1404 	if (!IS_ERR(file))
1405 		return file;
1406 
1407 	iput(inode);
1408 out:
1409 	if (*user) {
1410 		user_shm_unlock(size, *user);
1411 		*user = NULL;
1412 	}
1413 	return file;
1414 }
1415 
1416 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1417 {
1418 	struct fs_context *fc;
1419 	struct vfsmount *mnt;
1420 
1421 	fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1422 	if (IS_ERR(fc)) {
1423 		mnt = ERR_CAST(fc);
1424 	} else {
1425 		struct hugetlbfs_fs_context *ctx = fc->fs_private;
1426 		ctx->hstate = h;
1427 		mnt = fc_mount(fc);
1428 		put_fs_context(fc);
1429 	}
1430 	if (IS_ERR(mnt))
1431 		pr_err("Cannot mount internal hugetlbfs for page size %uK",
1432 		       1U << (h->order + PAGE_SHIFT - 10));
1433 	return mnt;
1434 }
1435 
1436 static int __init init_hugetlbfs_fs(void)
1437 {
1438 	struct vfsmount *mnt;
1439 	struct hstate *h;
1440 	int error;
1441 	int i;
1442 
1443 	if (!hugepages_supported()) {
1444 		pr_info("disabling because there are no supported hugepage sizes\n");
1445 		return -ENOTSUPP;
1446 	}
1447 
1448 	error = -ENOMEM;
1449 	hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1450 					sizeof(struct hugetlbfs_inode_info),
1451 					0, SLAB_ACCOUNT, init_once);
1452 	if (hugetlbfs_inode_cachep == NULL)
1453 		goto out2;
1454 
1455 	error = register_filesystem(&hugetlbfs_fs_type);
1456 	if (error)
1457 		goto out;
1458 
1459 	i = 0;
1460 	for_each_hstate(h) {
1461 		mnt = mount_one_hugetlbfs(h);
1462 		if (IS_ERR(mnt) && i == 0) {
1463 			error = PTR_ERR(mnt);
1464 			goto out;
1465 		}
1466 		hugetlbfs_vfsmount[i] = mnt;
1467 		i++;
1468 	}
1469 
1470 	return 0;
1471 
1472  out:
1473 	kmem_cache_destroy(hugetlbfs_inode_cachep);
1474  out2:
1475 	return error;
1476 }
1477 fs_initcall(init_hugetlbfs_fs)
1478