xref: /linux/fs/hugetlbfs/inode.c (revision 260f6f4fda93c8485c8037865c941b42b9cba5d2)
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/falloc.h>
15 #include <linux/fs.h>
16 #include <linux/mount.h>
17 #include <linux/file.h>
18 #include <linux/kernel.h>
19 #include <linux/writeback.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/init.h>
23 #include <linux/string.h>
24 #include <linux/capability.h>
25 #include <linux/ctype.h>
26 #include <linux/backing-dev.h>
27 #include <linux/hugetlb.h>
28 #include <linux/pagevec.h>
29 #include <linux/fs_parser.h>
30 #include <linux/mman.h>
31 #include <linux/slab.h>
32 #include <linux/dnotify.h>
33 #include <linux/statfs.h>
34 #include <linux/security.h>
35 #include <linux/magic.h>
36 #include <linux/migrate.h>
37 #include <linux/uio.h>
38 
39 #include <linux/uaccess.h>
40 #include <linux/sched/mm.h>
41 
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/hugetlbfs.h>
44 
45 static const struct address_space_operations hugetlbfs_aops;
46 static const struct file_operations hugetlbfs_file_operations;
47 static const struct inode_operations hugetlbfs_dir_inode_operations;
48 static const struct inode_operations hugetlbfs_inode_operations;
49 
50 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
51 
52 struct hugetlbfs_fs_context {
53 	struct hstate		*hstate;
54 	unsigned long long	max_size_opt;
55 	unsigned long long	min_size_opt;
56 	long			max_hpages;
57 	long			nr_inodes;
58 	long			min_hpages;
59 	enum hugetlbfs_size_type max_val_type;
60 	enum hugetlbfs_size_type min_val_type;
61 	kuid_t			uid;
62 	kgid_t			gid;
63 	umode_t			mode;
64 };
65 
66 int sysctl_hugetlb_shm_group;
67 
68 enum hugetlb_param {
69 	Opt_gid,
70 	Opt_min_size,
71 	Opt_mode,
72 	Opt_nr_inodes,
73 	Opt_pagesize,
74 	Opt_size,
75 	Opt_uid,
76 };
77 
78 static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
79 	fsparam_gid   ("gid",		Opt_gid),
80 	fsparam_string("min_size",	Opt_min_size),
81 	fsparam_u32oct("mode",		Opt_mode),
82 	fsparam_string("nr_inodes",	Opt_nr_inodes),
83 	fsparam_string("pagesize",	Opt_pagesize),
84 	fsparam_string("size",		Opt_size),
85 	fsparam_uid   ("uid",		Opt_uid),
86 	{}
87 };
88 
89 /*
90  * Mask used when checking the page offset value passed in via system
91  * calls.  This value will be converted to a loff_t which is signed.
92  * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
93  * value.  The extra bit (- 1 in the shift value) is to take the sign
94  * bit into account.
95  */
96 #define PGOFF_LOFFT_MAX \
97 	(((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
98 
99 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
100 {
101 	struct inode *inode = file_inode(file);
102 	loff_t len, vma_len;
103 	int ret;
104 	struct hstate *h = hstate_file(file);
105 	vm_flags_t vm_flags;
106 
107 	/*
108 	 * vma address alignment (but not the pgoff alignment) has
109 	 * already been checked by prepare_hugepage_range.  If you add
110 	 * any error returns here, do so after setting VM_HUGETLB, so
111 	 * is_vm_hugetlb_page tests below unmap_region go the right
112 	 * way when do_mmap unwinds (may be important on powerpc
113 	 * and ia64).
114 	 */
115 	vm_flags_set(vma, VM_HUGETLB | VM_DONTEXPAND);
116 	vma->vm_ops = &hugetlb_vm_ops;
117 
118 	/*
119 	 * page based offset in vm_pgoff could be sufficiently large to
120 	 * overflow a loff_t when converted to byte offset.  This can
121 	 * only happen on architectures where sizeof(loff_t) ==
122 	 * sizeof(unsigned long).  So, only check in those instances.
123 	 */
124 	if (sizeof(unsigned long) == sizeof(loff_t)) {
125 		if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
126 			return -EINVAL;
127 	}
128 
129 	/* must be huge page aligned */
130 	if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
131 		return -EINVAL;
132 
133 	vma_len = (loff_t)(vma->vm_end - vma->vm_start);
134 	len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
135 	/* check for overflow */
136 	if (len < vma_len)
137 		return -EINVAL;
138 
139 	inode_lock(inode);
140 	file_accessed(file);
141 
142 	ret = -ENOMEM;
143 
144 	vm_flags = vma->vm_flags;
145 	/*
146 	 * for SHM_HUGETLB, the pages are reserved in the shmget() call so skip
147 	 * reserving here. Note: only for SHM hugetlbfs file, the inode
148 	 * flag S_PRIVATE is set.
149 	 */
150 	if (inode->i_flags & S_PRIVATE)
151 		vm_flags |= VM_NORESERVE;
152 
153 	if (!hugetlb_reserve_pages(inode,
154 				vma->vm_pgoff >> huge_page_order(h),
155 				len >> huge_page_shift(h), vma,
156 				vm_flags))
157 		goto out;
158 
159 	ret = 0;
160 	if (vma->vm_flags & VM_WRITE && inode->i_size < len)
161 		i_size_write(inode, len);
162 out:
163 	inode_unlock(inode);
164 
165 	return ret;
166 }
167 
168 /*
169  * Called under mmap_write_lock(mm).
170  */
171 
172 unsigned long
173 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
174 			    unsigned long len, unsigned long pgoff,
175 			    unsigned long flags)
176 {
177 	unsigned long addr0 = 0;
178 	struct hstate *h = hstate_file(file);
179 
180 	if (len & ~huge_page_mask(h))
181 		return -EINVAL;
182 	if (flags & MAP_FIXED) {
183 		if (addr & ~huge_page_mask(h))
184 			return -EINVAL;
185 		if (prepare_hugepage_range(file, addr, len))
186 			return -EINVAL;
187 	}
188 	if (addr)
189 		addr0 = ALIGN(addr, huge_page_size(h));
190 
191 	return mm_get_unmapped_area_vmflags(current->mm, file, addr0, len, pgoff,
192 					    flags, 0);
193 }
194 
195 /*
196  * Someone wants to read @bytes from a HWPOISON hugetlb @folio from @offset.
197  * Returns the maximum number of bytes one can read without touching the 1st raw
198  * HWPOISON page.
199  *
200  * The implementation borrows the iteration logic from copy_page_to_iter*.
201  */
202 static size_t adjust_range_hwpoison(struct folio *folio, size_t offset,
203 		size_t bytes)
204 {
205 	struct page *page;
206 	size_t n = 0;
207 	size_t res = 0;
208 
209 	/* First page to start the loop. */
210 	page = folio_page(folio, offset / PAGE_SIZE);
211 	offset %= PAGE_SIZE;
212 	while (1) {
213 		if (is_raw_hwpoison_page_in_hugepage(page))
214 			break;
215 
216 		/* Safe to read n bytes without touching HWPOISON subpage. */
217 		n = min(bytes, (size_t)PAGE_SIZE - offset);
218 		res += n;
219 		bytes -= n;
220 		if (!bytes || !n)
221 			break;
222 		offset += n;
223 		if (offset == PAGE_SIZE) {
224 			page = nth_page(page, 1);
225 			offset = 0;
226 		}
227 	}
228 
229 	return res;
230 }
231 
232 /*
233  * Support for read() - Find the page attached to f_mapping and copy out the
234  * data. This provides functionality similar to filemap_read().
235  */
236 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
237 {
238 	struct file *file = iocb->ki_filp;
239 	struct hstate *h = hstate_file(file);
240 	struct address_space *mapping = file->f_mapping;
241 	struct inode *inode = mapping->host;
242 	unsigned long index = iocb->ki_pos >> huge_page_shift(h);
243 	unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
244 	unsigned long end_index;
245 	loff_t isize;
246 	ssize_t retval = 0;
247 
248 	while (iov_iter_count(to)) {
249 		struct folio *folio;
250 		size_t nr, copied, want;
251 
252 		/* nr is the maximum number of bytes to copy from this page */
253 		nr = huge_page_size(h);
254 		isize = i_size_read(inode);
255 		if (!isize)
256 			break;
257 		end_index = (isize - 1) >> huge_page_shift(h);
258 		if (index > end_index)
259 			break;
260 		if (index == end_index) {
261 			nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
262 			if (nr <= offset)
263 				break;
264 		}
265 		nr = nr - offset;
266 
267 		/* Find the folio */
268 		folio = filemap_lock_hugetlb_folio(h, mapping, index);
269 		if (IS_ERR(folio)) {
270 			/*
271 			 * We have a HOLE, zero out the user-buffer for the
272 			 * length of the hole or request.
273 			 */
274 			copied = iov_iter_zero(nr, to);
275 		} else {
276 			folio_unlock(folio);
277 
278 			if (!folio_test_hwpoison(folio))
279 				want = nr;
280 			else {
281 				/*
282 				 * Adjust how many bytes safe to read without
283 				 * touching the 1st raw HWPOISON page after
284 				 * offset.
285 				 */
286 				want = adjust_range_hwpoison(folio, offset, nr);
287 				if (want == 0) {
288 					folio_put(folio);
289 					retval = -EIO;
290 					break;
291 				}
292 			}
293 
294 			/*
295 			 * We have the folio, copy it to user space buffer.
296 			 */
297 			copied = copy_folio_to_iter(folio, offset, want, to);
298 			folio_put(folio);
299 		}
300 		offset += copied;
301 		retval += copied;
302 		if (copied != nr && iov_iter_count(to)) {
303 			if (!retval)
304 				retval = -EFAULT;
305 			break;
306 		}
307 		index += offset >> huge_page_shift(h);
308 		offset &= ~huge_page_mask(h);
309 	}
310 	iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
311 	return retval;
312 }
313 
314 static int hugetlbfs_write_begin(const struct kiocb *iocb,
315 			struct address_space *mapping,
316 			loff_t pos, unsigned len,
317 			struct folio **foliop, void **fsdata)
318 {
319 	return -EINVAL;
320 }
321 
322 static int hugetlbfs_write_end(const struct kiocb *iocb,
323 			       struct address_space *mapping,
324 			       loff_t pos, unsigned len, unsigned copied,
325 			       struct folio *folio, void *fsdata)
326 {
327 	BUG();
328 	return -EINVAL;
329 }
330 
331 static void hugetlb_delete_from_page_cache(struct folio *folio)
332 {
333 	folio_clear_dirty(folio);
334 	folio_clear_uptodate(folio);
335 	filemap_remove_folio(folio);
336 }
337 
338 /*
339  * Called with i_mmap_rwsem held for inode based vma maps.  This makes
340  * sure vma (and vm_mm) will not go away.  We also hold the hugetlb fault
341  * mutex for the page in the mapping.  So, we can not race with page being
342  * faulted into the vma.
343  */
344 static bool hugetlb_vma_maps_pfn(struct vm_area_struct *vma,
345 				unsigned long addr, unsigned long pfn)
346 {
347 	pte_t *ptep, pte;
348 
349 	ptep = hugetlb_walk(vma, addr, huge_page_size(hstate_vma(vma)));
350 	if (!ptep)
351 		return false;
352 
353 	pte = huge_ptep_get(vma->vm_mm, addr, ptep);
354 	if (huge_pte_none(pte) || !pte_present(pte))
355 		return false;
356 
357 	if (pte_pfn(pte) == pfn)
358 		return true;
359 
360 	return false;
361 }
362 
363 /*
364  * Can vma_offset_start/vma_offset_end overflow on 32-bit arches?
365  * No, because the interval tree returns us only those vmas
366  * which overlap the truncated area starting at pgoff,
367  * and no vma on a 32-bit arch can span beyond the 4GB.
368  */
369 static unsigned long vma_offset_start(struct vm_area_struct *vma, pgoff_t start)
370 {
371 	unsigned long offset = 0;
372 
373 	if (vma->vm_pgoff < start)
374 		offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
375 
376 	return vma->vm_start + offset;
377 }
378 
379 static unsigned long vma_offset_end(struct vm_area_struct *vma, pgoff_t end)
380 {
381 	unsigned long t_end;
382 
383 	if (!end)
384 		return vma->vm_end;
385 
386 	t_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) + vma->vm_start;
387 	if (t_end > vma->vm_end)
388 		t_end = vma->vm_end;
389 	return t_end;
390 }
391 
392 /*
393  * Called with hugetlb fault mutex held.  Therefore, no more mappings to
394  * this folio can be created while executing the routine.
395  */
396 static void hugetlb_unmap_file_folio(struct hstate *h,
397 					struct address_space *mapping,
398 					struct folio *folio, pgoff_t index)
399 {
400 	struct rb_root_cached *root = &mapping->i_mmap;
401 	struct hugetlb_vma_lock *vma_lock;
402 	unsigned long pfn = folio_pfn(folio);
403 	struct vm_area_struct *vma;
404 	unsigned long v_start;
405 	unsigned long v_end;
406 	pgoff_t start, end;
407 
408 	start = index * pages_per_huge_page(h);
409 	end = (index + 1) * pages_per_huge_page(h);
410 
411 	i_mmap_lock_write(mapping);
412 retry:
413 	vma_lock = NULL;
414 	vma_interval_tree_foreach(vma, root, start, end - 1) {
415 		v_start = vma_offset_start(vma, start);
416 		v_end = vma_offset_end(vma, end);
417 
418 		if (!hugetlb_vma_maps_pfn(vma, v_start, pfn))
419 			continue;
420 
421 		if (!hugetlb_vma_trylock_write(vma)) {
422 			vma_lock = vma->vm_private_data;
423 			/*
424 			 * If we can not get vma lock, we need to drop
425 			 * immap_sema and take locks in order.  First,
426 			 * take a ref on the vma_lock structure so that
427 			 * we can be guaranteed it will not go away when
428 			 * dropping immap_sema.
429 			 */
430 			kref_get(&vma_lock->refs);
431 			break;
432 		}
433 
434 		unmap_hugepage_range(vma, v_start, v_end, NULL,
435 				     ZAP_FLAG_DROP_MARKER);
436 		hugetlb_vma_unlock_write(vma);
437 	}
438 
439 	i_mmap_unlock_write(mapping);
440 
441 	if (vma_lock) {
442 		/*
443 		 * Wait on vma_lock.  We know it is still valid as we have
444 		 * a reference.  We must 'open code' vma locking as we do
445 		 * not know if vma_lock is still attached to vma.
446 		 */
447 		down_write(&vma_lock->rw_sema);
448 		i_mmap_lock_write(mapping);
449 
450 		vma = vma_lock->vma;
451 		if (!vma) {
452 			/*
453 			 * If lock is no longer attached to vma, then just
454 			 * unlock, drop our reference and retry looking for
455 			 * other vmas.
456 			 */
457 			up_write(&vma_lock->rw_sema);
458 			kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
459 			goto retry;
460 		}
461 
462 		/*
463 		 * vma_lock is still attached to vma.  Check to see if vma
464 		 * still maps page and if so, unmap.
465 		 */
466 		v_start = vma_offset_start(vma, start);
467 		v_end = vma_offset_end(vma, end);
468 		if (hugetlb_vma_maps_pfn(vma, v_start, pfn))
469 			unmap_hugepage_range(vma, v_start, v_end, NULL,
470 					     ZAP_FLAG_DROP_MARKER);
471 
472 		kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
473 		hugetlb_vma_unlock_write(vma);
474 
475 		goto retry;
476 	}
477 }
478 
479 static void
480 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end,
481 		      zap_flags_t zap_flags)
482 {
483 	struct vm_area_struct *vma;
484 
485 	/*
486 	 * end == 0 indicates that the entire range after start should be
487 	 * unmapped.  Note, end is exclusive, whereas the interval tree takes
488 	 * an inclusive "last".
489 	 */
490 	vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) {
491 		unsigned long v_start;
492 		unsigned long v_end;
493 
494 		if (!hugetlb_vma_trylock_write(vma))
495 			continue;
496 
497 		v_start = vma_offset_start(vma, start);
498 		v_end = vma_offset_end(vma, end);
499 
500 		unmap_hugepage_range(vma, v_start, v_end, NULL, zap_flags);
501 
502 		/*
503 		 * Note that vma lock only exists for shared/non-private
504 		 * vmas.  Therefore, lock is not held when calling
505 		 * unmap_hugepage_range for private vmas.
506 		 */
507 		hugetlb_vma_unlock_write(vma);
508 	}
509 }
510 
511 /*
512  * Called with hugetlb fault mutex held.
513  * Returns true if page was actually removed, false otherwise.
514  */
515 static bool remove_inode_single_folio(struct hstate *h, struct inode *inode,
516 					struct address_space *mapping,
517 					struct folio *folio, pgoff_t index,
518 					bool truncate_op)
519 {
520 	bool ret = false;
521 
522 	/*
523 	 * If folio is mapped, it was faulted in after being
524 	 * unmapped in caller.  Unmap (again) while holding
525 	 * the fault mutex.  The mutex will prevent faults
526 	 * until we finish removing the folio.
527 	 */
528 	if (unlikely(folio_mapped(folio)))
529 		hugetlb_unmap_file_folio(h, mapping, folio, index);
530 
531 	folio_lock(folio);
532 	/*
533 	 * We must remove the folio from page cache before removing
534 	 * the region/ reserve map (hugetlb_unreserve_pages).  In
535 	 * rare out of memory conditions, removal of the region/reserve
536 	 * map could fail.  Correspondingly, the subpool and global
537 	 * reserve usage count can need to be adjusted.
538 	 */
539 	VM_BUG_ON_FOLIO(folio_test_hugetlb_restore_reserve(folio), folio);
540 	hugetlb_delete_from_page_cache(folio);
541 	ret = true;
542 	if (!truncate_op) {
543 		if (unlikely(hugetlb_unreserve_pages(inode, index,
544 							index + 1, 1)))
545 			hugetlb_fix_reserve_counts(inode);
546 	}
547 
548 	folio_unlock(folio);
549 	return ret;
550 }
551 
552 /*
553  * remove_inode_hugepages handles two distinct cases: truncation and hole
554  * punch.  There are subtle differences in operation for each case.
555  *
556  * truncation is indicated by end of range being LLONG_MAX
557  *	In this case, we first scan the range and release found pages.
558  *	After releasing pages, hugetlb_unreserve_pages cleans up region/reserve
559  *	maps and global counts.  Page faults can race with truncation.
560  *	During faults, hugetlb_no_page() checks i_size before page allocation,
561  *	and again after obtaining page table lock.  It will 'back out'
562  *	allocations in the truncated range.
563  * hole punch is indicated if end is not LLONG_MAX
564  *	In the hole punch case we scan the range and release found pages.
565  *	Only when releasing a page is the associated region/reserve map
566  *	deleted.  The region/reserve map for ranges without associated
567  *	pages are not modified.  Page faults can race with hole punch.
568  *	This is indicated if we find a mapped page.
569  * Note: If the passed end of range value is beyond the end of file, but
570  * not LLONG_MAX this routine still performs a hole punch operation.
571  */
572 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
573 				   loff_t lend)
574 {
575 	struct hstate *h = hstate_inode(inode);
576 	struct address_space *mapping = &inode->i_data;
577 	const pgoff_t end = lend >> PAGE_SHIFT;
578 	struct folio_batch fbatch;
579 	pgoff_t next, index;
580 	int i, freed = 0;
581 	bool truncate_op = (lend == LLONG_MAX);
582 
583 	folio_batch_init(&fbatch);
584 	next = lstart >> PAGE_SHIFT;
585 	while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) {
586 		for (i = 0; i < folio_batch_count(&fbatch); ++i) {
587 			struct folio *folio = fbatch.folios[i];
588 			u32 hash = 0;
589 
590 			index = folio->index >> huge_page_order(h);
591 			hash = hugetlb_fault_mutex_hash(mapping, index);
592 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
593 
594 			/*
595 			 * Remove folio that was part of folio_batch.
596 			 */
597 			if (remove_inode_single_folio(h, inode, mapping, folio,
598 							index, truncate_op))
599 				freed++;
600 
601 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
602 		}
603 		folio_batch_release(&fbatch);
604 		cond_resched();
605 	}
606 
607 	if (truncate_op)
608 		(void)hugetlb_unreserve_pages(inode,
609 				lstart >> huge_page_shift(h),
610 				LONG_MAX, freed);
611 }
612 
613 static void hugetlbfs_evict_inode(struct inode *inode)
614 {
615 	struct resv_map *resv_map;
616 
617 	trace_hugetlbfs_evict_inode(inode);
618 	remove_inode_hugepages(inode, 0, LLONG_MAX);
619 
620 	/*
621 	 * Get the resv_map from the address space embedded in the inode.
622 	 * This is the address space which points to any resv_map allocated
623 	 * at inode creation time.  If this is a device special inode,
624 	 * i_mapping may not point to the original address space.
625 	 */
626 	resv_map = (struct resv_map *)(&inode->i_data)->i_private_data;
627 	/* Only regular and link inodes have associated reserve maps */
628 	if (resv_map)
629 		resv_map_release(&resv_map->refs);
630 	clear_inode(inode);
631 }
632 
633 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset)
634 {
635 	pgoff_t pgoff;
636 	struct address_space *mapping = inode->i_mapping;
637 	struct hstate *h = hstate_inode(inode);
638 
639 	BUG_ON(offset & ~huge_page_mask(h));
640 	pgoff = offset >> PAGE_SHIFT;
641 
642 	i_size_write(inode, offset);
643 	i_mmap_lock_write(mapping);
644 	if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
645 		hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0,
646 				      ZAP_FLAG_DROP_MARKER);
647 	i_mmap_unlock_write(mapping);
648 	remove_inode_hugepages(inode, offset, LLONG_MAX);
649 }
650 
651 static void hugetlbfs_zero_partial_page(struct hstate *h,
652 					struct address_space *mapping,
653 					loff_t start,
654 					loff_t end)
655 {
656 	pgoff_t idx = start >> huge_page_shift(h);
657 	struct folio *folio;
658 
659 	folio = filemap_lock_hugetlb_folio(h, mapping, idx);
660 	if (IS_ERR(folio))
661 		return;
662 
663 	start = start & ~huge_page_mask(h);
664 	end = end & ~huge_page_mask(h);
665 	if (!end)
666 		end = huge_page_size(h);
667 
668 	folio_zero_segment(folio, (size_t)start, (size_t)end);
669 
670 	folio_unlock(folio);
671 	folio_put(folio);
672 }
673 
674 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
675 {
676 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
677 	struct address_space *mapping = inode->i_mapping;
678 	struct hstate *h = hstate_inode(inode);
679 	loff_t hpage_size = huge_page_size(h);
680 	loff_t hole_start, hole_end;
681 
682 	/*
683 	 * hole_start and hole_end indicate the full pages within the hole.
684 	 */
685 	hole_start = round_up(offset, hpage_size);
686 	hole_end = round_down(offset + len, hpage_size);
687 
688 	inode_lock(inode);
689 
690 	/* protected by i_rwsem */
691 	if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
692 		inode_unlock(inode);
693 		return -EPERM;
694 	}
695 
696 	i_mmap_lock_write(mapping);
697 
698 	/* If range starts before first full page, zero partial page. */
699 	if (offset < hole_start)
700 		hugetlbfs_zero_partial_page(h, mapping,
701 				offset, min(offset + len, hole_start));
702 
703 	/* Unmap users of full pages in the hole. */
704 	if (hole_end > hole_start) {
705 		if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
706 			hugetlb_vmdelete_list(&mapping->i_mmap,
707 					      hole_start >> PAGE_SHIFT,
708 					      hole_end >> PAGE_SHIFT, 0);
709 	}
710 
711 	/* If range extends beyond last full page, zero partial page. */
712 	if ((offset + len) > hole_end && (offset + len) > hole_start)
713 		hugetlbfs_zero_partial_page(h, mapping,
714 				hole_end, offset + len);
715 
716 	i_mmap_unlock_write(mapping);
717 
718 	/* Remove full pages from the file. */
719 	if (hole_end > hole_start)
720 		remove_inode_hugepages(inode, hole_start, hole_end);
721 
722 	inode_unlock(inode);
723 
724 	return 0;
725 }
726 
727 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
728 				loff_t len)
729 {
730 	struct inode *inode = file_inode(file);
731 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
732 	struct address_space *mapping = inode->i_mapping;
733 	struct hstate *h = hstate_inode(inode);
734 	struct vm_area_struct pseudo_vma;
735 	struct mm_struct *mm = current->mm;
736 	loff_t hpage_size = huge_page_size(h);
737 	unsigned long hpage_shift = huge_page_shift(h);
738 	pgoff_t start, index, end;
739 	int error;
740 	u32 hash;
741 
742 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
743 		return -EOPNOTSUPP;
744 
745 	if (mode & FALLOC_FL_PUNCH_HOLE) {
746 		error = hugetlbfs_punch_hole(inode, offset, len);
747 		goto out_nolock;
748 	}
749 
750 	/*
751 	 * Default preallocate case.
752 	 * For this range, start is rounded down and end is rounded up
753 	 * as well as being converted to page offsets.
754 	 */
755 	start = offset >> hpage_shift;
756 	end = (offset + len + hpage_size - 1) >> hpage_shift;
757 
758 	inode_lock(inode);
759 
760 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
761 	error = inode_newsize_ok(inode, offset + len);
762 	if (error)
763 		goto out;
764 
765 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
766 		error = -EPERM;
767 		goto out;
768 	}
769 
770 	/*
771 	 * Initialize a pseudo vma as this is required by the huge page
772 	 * allocation routines.
773 	 */
774 	vma_init(&pseudo_vma, mm);
775 	vm_flags_init(&pseudo_vma, VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
776 	pseudo_vma.vm_file = file;
777 
778 	for (index = start; index < end; index++) {
779 		/*
780 		 * This is supposed to be the vaddr where the page is being
781 		 * faulted in, but we have no vaddr here.
782 		 */
783 		struct folio *folio;
784 		unsigned long addr;
785 
786 		cond_resched();
787 
788 		/*
789 		 * fallocate(2) manpage permits EINTR; we may have been
790 		 * interrupted because we are using up too much memory.
791 		 */
792 		if (signal_pending(current)) {
793 			error = -EINTR;
794 			break;
795 		}
796 
797 		/* addr is the offset within the file (zero based) */
798 		addr = index * hpage_size;
799 
800 		/* mutex taken here, fault path and hole punch */
801 		hash = hugetlb_fault_mutex_hash(mapping, index);
802 		mutex_lock(&hugetlb_fault_mutex_table[hash]);
803 
804 		/* See if already present in mapping to avoid alloc/free */
805 		folio = filemap_get_folio(mapping, index << huge_page_order(h));
806 		if (!IS_ERR(folio)) {
807 			folio_put(folio);
808 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
809 			continue;
810 		}
811 
812 		/*
813 		 * Allocate folio without setting the avoid_reserve argument.
814 		 * There certainly are no reserves associated with the
815 		 * pseudo_vma.  However, there could be shared mappings with
816 		 * reserves for the file at the inode level.  If we fallocate
817 		 * folios in these areas, we need to consume the reserves
818 		 * to keep reservation accounting consistent.
819 		 */
820 		folio = alloc_hugetlb_folio(&pseudo_vma, addr, false);
821 		if (IS_ERR(folio)) {
822 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
823 			error = PTR_ERR(folio);
824 			goto out;
825 		}
826 		folio_zero_user(folio, addr);
827 		__folio_mark_uptodate(folio);
828 		error = hugetlb_add_to_page_cache(folio, mapping, index);
829 		if (unlikely(error)) {
830 			restore_reserve_on_error(h, &pseudo_vma, addr, folio);
831 			folio_put(folio);
832 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
833 			goto out;
834 		}
835 
836 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
837 
838 		folio_set_hugetlb_migratable(folio);
839 		/*
840 		 * folio_unlock because locked by hugetlb_add_to_page_cache()
841 		 * folio_put() due to reference from alloc_hugetlb_folio()
842 		 */
843 		folio_unlock(folio);
844 		folio_put(folio);
845 	}
846 
847 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
848 		i_size_write(inode, offset + len);
849 	inode_set_ctime_current(inode);
850 out:
851 	inode_unlock(inode);
852 
853 out_nolock:
854 	trace_hugetlbfs_fallocate(inode, mode, offset, len, error);
855 	return error;
856 }
857 
858 static int hugetlbfs_setattr(struct mnt_idmap *idmap,
859 			     struct dentry *dentry, struct iattr *attr)
860 {
861 	struct inode *inode = d_inode(dentry);
862 	struct hstate *h = hstate_inode(inode);
863 	int error;
864 	unsigned int ia_valid = attr->ia_valid;
865 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
866 
867 	error = setattr_prepare(idmap, dentry, attr);
868 	if (error)
869 		return error;
870 
871 	trace_hugetlbfs_setattr(inode, dentry, attr);
872 
873 	if (ia_valid & ATTR_SIZE) {
874 		loff_t oldsize = inode->i_size;
875 		loff_t newsize = attr->ia_size;
876 
877 		if (newsize & ~huge_page_mask(h))
878 			return -EINVAL;
879 		/* protected by i_rwsem */
880 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
881 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
882 			return -EPERM;
883 		hugetlb_vmtruncate(inode, newsize);
884 	}
885 
886 	setattr_copy(idmap, inode, attr);
887 	mark_inode_dirty(inode);
888 	return 0;
889 }
890 
891 static struct inode *hugetlbfs_get_root(struct super_block *sb,
892 					struct hugetlbfs_fs_context *ctx)
893 {
894 	struct inode *inode;
895 
896 	inode = new_inode(sb);
897 	if (inode) {
898 		inode->i_ino = get_next_ino();
899 		inode->i_mode = S_IFDIR | ctx->mode;
900 		inode->i_uid = ctx->uid;
901 		inode->i_gid = ctx->gid;
902 		simple_inode_init_ts(inode);
903 		inode->i_op = &hugetlbfs_dir_inode_operations;
904 		inode->i_fop = &simple_dir_operations;
905 		/* directory inodes start off with i_nlink == 2 (for "." entry) */
906 		inc_nlink(inode);
907 		lockdep_annotate_inode_mutex_key(inode);
908 	}
909 	return inode;
910 }
911 
912 /*
913  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
914  * be taken from reclaim -- unlike regular filesystems. This needs an
915  * annotation because huge_pmd_share() does an allocation under hugetlb's
916  * i_mmap_rwsem.
917  */
918 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
919 
920 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
921 					struct mnt_idmap *idmap,
922 					struct inode *dir,
923 					umode_t mode, dev_t dev)
924 {
925 	struct inode *inode;
926 	struct resv_map *resv_map = NULL;
927 
928 	/*
929 	 * Reserve maps are only needed for inodes that can have associated
930 	 * page allocations.
931 	 */
932 	if (S_ISREG(mode) || S_ISLNK(mode)) {
933 		resv_map = resv_map_alloc();
934 		if (!resv_map)
935 			return NULL;
936 	}
937 
938 	inode = new_inode(sb);
939 	if (inode) {
940 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
941 
942 		inode->i_ino = get_next_ino();
943 		inode_init_owner(idmap, inode, dir, mode);
944 		lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
945 				&hugetlbfs_i_mmap_rwsem_key);
946 		inode->i_mapping->a_ops = &hugetlbfs_aops;
947 		simple_inode_init_ts(inode);
948 		inode->i_mapping->i_private_data = resv_map;
949 		info->seals = F_SEAL_SEAL;
950 		switch (mode & S_IFMT) {
951 		default:
952 			init_special_inode(inode, mode, dev);
953 			break;
954 		case S_IFREG:
955 			inode->i_op = &hugetlbfs_inode_operations;
956 			inode->i_fop = &hugetlbfs_file_operations;
957 			break;
958 		case S_IFDIR:
959 			inode->i_op = &hugetlbfs_dir_inode_operations;
960 			inode->i_fop = &simple_dir_operations;
961 
962 			/* directory inodes start off with i_nlink == 2 (for "." entry) */
963 			inc_nlink(inode);
964 			break;
965 		case S_IFLNK:
966 			inode->i_op = &page_symlink_inode_operations;
967 			inode_nohighmem(inode);
968 			break;
969 		}
970 		lockdep_annotate_inode_mutex_key(inode);
971 		trace_hugetlbfs_alloc_inode(inode, dir, mode);
972 	} else {
973 		if (resv_map)
974 			kref_put(&resv_map->refs, resv_map_release);
975 	}
976 
977 	return inode;
978 }
979 
980 /*
981  * File creation. Allocate an inode, and we're done..
982  */
983 static int hugetlbfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
984 			   struct dentry *dentry, umode_t mode, dev_t dev)
985 {
986 	struct inode *inode;
987 
988 	inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, dev);
989 	if (!inode)
990 		return -ENOSPC;
991 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
992 	d_instantiate(dentry, inode);
993 	dget(dentry);/* Extra count - pin the dentry in core */
994 	return 0;
995 }
996 
997 static struct dentry *hugetlbfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
998 				      struct dentry *dentry, umode_t mode)
999 {
1000 	int retval = hugetlbfs_mknod(idmap, dir, dentry,
1001 				     mode | S_IFDIR, 0);
1002 	if (!retval)
1003 		inc_nlink(dir);
1004 	return ERR_PTR(retval);
1005 }
1006 
1007 static int hugetlbfs_create(struct mnt_idmap *idmap,
1008 			    struct inode *dir, struct dentry *dentry,
1009 			    umode_t mode, bool excl)
1010 {
1011 	return hugetlbfs_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
1012 }
1013 
1014 static int hugetlbfs_tmpfile(struct mnt_idmap *idmap,
1015 			     struct inode *dir, struct file *file,
1016 			     umode_t mode)
1017 {
1018 	struct inode *inode;
1019 
1020 	inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode | S_IFREG, 0);
1021 	if (!inode)
1022 		return -ENOSPC;
1023 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
1024 	d_tmpfile(file, inode);
1025 	return finish_open_simple(file, 0);
1026 }
1027 
1028 static int hugetlbfs_symlink(struct mnt_idmap *idmap,
1029 			     struct inode *dir, struct dentry *dentry,
1030 			     const char *symname)
1031 {
1032 	const umode_t mode = S_IFLNK|S_IRWXUGO;
1033 	struct inode *inode;
1034 	int error = -ENOSPC;
1035 
1036 	inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, 0);
1037 	if (inode) {
1038 		int l = strlen(symname)+1;
1039 		error = page_symlink(inode, symname, l);
1040 		if (!error) {
1041 			d_instantiate(dentry, inode);
1042 			dget(dentry);
1043 		} else
1044 			iput(inode);
1045 	}
1046 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
1047 
1048 	return error;
1049 }
1050 
1051 #ifdef CONFIG_MIGRATION
1052 static int hugetlbfs_migrate_folio(struct address_space *mapping,
1053 				struct folio *dst, struct folio *src,
1054 				enum migrate_mode mode)
1055 {
1056 	int rc;
1057 
1058 	rc = migrate_huge_page_move_mapping(mapping, dst, src);
1059 	if (rc != MIGRATEPAGE_SUCCESS)
1060 		return rc;
1061 
1062 	if (hugetlb_folio_subpool(src)) {
1063 		hugetlb_set_folio_subpool(dst,
1064 					hugetlb_folio_subpool(src));
1065 		hugetlb_set_folio_subpool(src, NULL);
1066 	}
1067 
1068 	folio_migrate_flags(dst, src);
1069 
1070 	return MIGRATEPAGE_SUCCESS;
1071 }
1072 #else
1073 #define hugetlbfs_migrate_folio NULL
1074 #endif
1075 
1076 static int hugetlbfs_error_remove_folio(struct address_space *mapping,
1077 				struct folio *folio)
1078 {
1079 	return 0;
1080 }
1081 
1082 /*
1083  * Display the mount options in /proc/mounts.
1084  */
1085 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
1086 {
1087 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
1088 	struct hugepage_subpool *spool = sbinfo->spool;
1089 	unsigned long hpage_size = huge_page_size(sbinfo->hstate);
1090 	unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
1091 	char mod;
1092 
1093 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1094 		seq_printf(m, ",uid=%u",
1095 			   from_kuid_munged(&init_user_ns, sbinfo->uid));
1096 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1097 		seq_printf(m, ",gid=%u",
1098 			   from_kgid_munged(&init_user_ns, sbinfo->gid));
1099 	if (sbinfo->mode != 0755)
1100 		seq_printf(m, ",mode=%o", sbinfo->mode);
1101 	if (sbinfo->max_inodes != -1)
1102 		seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1103 
1104 	hpage_size /= 1024;
1105 	mod = 'K';
1106 	if (hpage_size >= 1024) {
1107 		hpage_size /= 1024;
1108 		mod = 'M';
1109 	}
1110 	seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1111 	if (spool) {
1112 		if (spool->max_hpages != -1)
1113 			seq_printf(m, ",size=%llu",
1114 				   (unsigned long long)spool->max_hpages << hpage_shift);
1115 		if (spool->min_hpages != -1)
1116 			seq_printf(m, ",min_size=%llu",
1117 				   (unsigned long long)spool->min_hpages << hpage_shift);
1118 	}
1119 	return 0;
1120 }
1121 
1122 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1123 {
1124 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
1125 	struct hstate *h = hstate_inode(d_inode(dentry));
1126 	u64 id = huge_encode_dev(dentry->d_sb->s_dev);
1127 
1128 	buf->f_fsid = u64_to_fsid(id);
1129 	buf->f_type = HUGETLBFS_MAGIC;
1130 	buf->f_bsize = huge_page_size(h);
1131 	if (sbinfo) {
1132 		spin_lock(&sbinfo->stat_lock);
1133 		/* If no limits set, just report 0 or -1 for max/free/used
1134 		 * blocks, like simple_statfs() */
1135 		if (sbinfo->spool) {
1136 			long free_pages;
1137 
1138 			spin_lock_irq(&sbinfo->spool->lock);
1139 			buf->f_blocks = sbinfo->spool->max_hpages;
1140 			free_pages = sbinfo->spool->max_hpages
1141 				- sbinfo->spool->used_hpages;
1142 			buf->f_bavail = buf->f_bfree = free_pages;
1143 			spin_unlock_irq(&sbinfo->spool->lock);
1144 			buf->f_files = sbinfo->max_inodes;
1145 			buf->f_ffree = sbinfo->free_inodes;
1146 		}
1147 		spin_unlock(&sbinfo->stat_lock);
1148 	}
1149 	buf->f_namelen = NAME_MAX;
1150 	return 0;
1151 }
1152 
1153 static void hugetlbfs_put_super(struct super_block *sb)
1154 {
1155 	struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1156 
1157 	if (sbi) {
1158 		sb->s_fs_info = NULL;
1159 
1160 		if (sbi->spool)
1161 			hugepage_put_subpool(sbi->spool);
1162 
1163 		kfree(sbi);
1164 	}
1165 }
1166 
1167 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1168 {
1169 	if (sbinfo->free_inodes >= 0) {
1170 		spin_lock(&sbinfo->stat_lock);
1171 		if (unlikely(!sbinfo->free_inodes)) {
1172 			spin_unlock(&sbinfo->stat_lock);
1173 			return 0;
1174 		}
1175 		sbinfo->free_inodes--;
1176 		spin_unlock(&sbinfo->stat_lock);
1177 	}
1178 
1179 	return 1;
1180 }
1181 
1182 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1183 {
1184 	if (sbinfo->free_inodes >= 0) {
1185 		spin_lock(&sbinfo->stat_lock);
1186 		sbinfo->free_inodes++;
1187 		spin_unlock(&sbinfo->stat_lock);
1188 	}
1189 }
1190 
1191 
1192 static struct kmem_cache *hugetlbfs_inode_cachep;
1193 
1194 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1195 {
1196 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1197 	struct hugetlbfs_inode_info *p;
1198 
1199 	if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1200 		return NULL;
1201 	p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL);
1202 	if (unlikely(!p)) {
1203 		hugetlbfs_inc_free_inodes(sbinfo);
1204 		return NULL;
1205 	}
1206 	return &p->vfs_inode;
1207 }
1208 
1209 static void hugetlbfs_free_inode(struct inode *inode)
1210 {
1211 	trace_hugetlbfs_free_inode(inode);
1212 	kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1213 }
1214 
1215 static void hugetlbfs_destroy_inode(struct inode *inode)
1216 {
1217 	hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1218 }
1219 
1220 static const struct address_space_operations hugetlbfs_aops = {
1221 	.write_begin	= hugetlbfs_write_begin,
1222 	.write_end	= hugetlbfs_write_end,
1223 	.dirty_folio	= noop_dirty_folio,
1224 	.migrate_folio  = hugetlbfs_migrate_folio,
1225 	.error_remove_folio	= hugetlbfs_error_remove_folio,
1226 };
1227 
1228 
1229 static void init_once(void *foo)
1230 {
1231 	struct hugetlbfs_inode_info *ei = foo;
1232 
1233 	inode_init_once(&ei->vfs_inode);
1234 }
1235 
1236 static const struct file_operations hugetlbfs_file_operations = {
1237 	.read_iter		= hugetlbfs_read_iter,
1238 	.mmap			= hugetlbfs_file_mmap,
1239 	.fsync			= noop_fsync,
1240 	.get_unmapped_area	= hugetlb_get_unmapped_area,
1241 	.llseek			= default_llseek,
1242 	.fallocate		= hugetlbfs_fallocate,
1243 	.fop_flags		= FOP_HUGE_PAGES,
1244 };
1245 
1246 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1247 	.create		= hugetlbfs_create,
1248 	.lookup		= simple_lookup,
1249 	.link		= simple_link,
1250 	.unlink		= simple_unlink,
1251 	.symlink	= hugetlbfs_symlink,
1252 	.mkdir		= hugetlbfs_mkdir,
1253 	.rmdir		= simple_rmdir,
1254 	.mknod		= hugetlbfs_mknod,
1255 	.rename		= simple_rename,
1256 	.setattr	= hugetlbfs_setattr,
1257 	.tmpfile	= hugetlbfs_tmpfile,
1258 };
1259 
1260 static const struct inode_operations hugetlbfs_inode_operations = {
1261 	.setattr	= hugetlbfs_setattr,
1262 };
1263 
1264 static const struct super_operations hugetlbfs_ops = {
1265 	.alloc_inode    = hugetlbfs_alloc_inode,
1266 	.free_inode     = hugetlbfs_free_inode,
1267 	.destroy_inode  = hugetlbfs_destroy_inode,
1268 	.evict_inode	= hugetlbfs_evict_inode,
1269 	.statfs		= hugetlbfs_statfs,
1270 	.put_super	= hugetlbfs_put_super,
1271 	.show_options	= hugetlbfs_show_options,
1272 };
1273 
1274 /*
1275  * Convert size option passed from command line to number of huge pages
1276  * in the pool specified by hstate.  Size option could be in bytes
1277  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1278  */
1279 static long
1280 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1281 			 enum hugetlbfs_size_type val_type)
1282 {
1283 	if (val_type == NO_SIZE)
1284 		return -1;
1285 
1286 	if (val_type == SIZE_PERCENT) {
1287 		size_opt <<= huge_page_shift(h);
1288 		size_opt *= h->max_huge_pages;
1289 		do_div(size_opt, 100);
1290 	}
1291 
1292 	size_opt >>= huge_page_shift(h);
1293 	return size_opt;
1294 }
1295 
1296 /*
1297  * Parse one mount parameter.
1298  */
1299 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1300 {
1301 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1302 	struct fs_parse_result result;
1303 	struct hstate *h;
1304 	char *rest;
1305 	unsigned long ps;
1306 	int opt;
1307 
1308 	opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1309 	if (opt < 0)
1310 		return opt;
1311 
1312 	switch (opt) {
1313 	case Opt_uid:
1314 		ctx->uid = result.uid;
1315 		return 0;
1316 
1317 	case Opt_gid:
1318 		ctx->gid = result.gid;
1319 		return 0;
1320 
1321 	case Opt_mode:
1322 		ctx->mode = result.uint_32 & 01777U;
1323 		return 0;
1324 
1325 	case Opt_size:
1326 		/* memparse() will accept a K/M/G without a digit */
1327 		if (!param->string || !isdigit(param->string[0]))
1328 			goto bad_val;
1329 		ctx->max_size_opt = memparse(param->string, &rest);
1330 		ctx->max_val_type = SIZE_STD;
1331 		if (*rest == '%')
1332 			ctx->max_val_type = SIZE_PERCENT;
1333 		return 0;
1334 
1335 	case Opt_nr_inodes:
1336 		/* memparse() will accept a K/M/G without a digit */
1337 		if (!param->string || !isdigit(param->string[0]))
1338 			goto bad_val;
1339 		ctx->nr_inodes = memparse(param->string, &rest);
1340 		return 0;
1341 
1342 	case Opt_pagesize:
1343 		ps = memparse(param->string, &rest);
1344 		h = size_to_hstate(ps);
1345 		if (!h) {
1346 			pr_err("Unsupported page size %lu MB\n", ps / SZ_1M);
1347 			return -EINVAL;
1348 		}
1349 		ctx->hstate = h;
1350 		return 0;
1351 
1352 	case Opt_min_size:
1353 		/* memparse() will accept a K/M/G without a digit */
1354 		if (!param->string || !isdigit(param->string[0]))
1355 			goto bad_val;
1356 		ctx->min_size_opt = memparse(param->string, &rest);
1357 		ctx->min_val_type = SIZE_STD;
1358 		if (*rest == '%')
1359 			ctx->min_val_type = SIZE_PERCENT;
1360 		return 0;
1361 
1362 	default:
1363 		return -EINVAL;
1364 	}
1365 
1366 bad_val:
1367 	return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1368 		      param->string, param->key);
1369 }
1370 
1371 /*
1372  * Validate the parsed options.
1373  */
1374 static int hugetlbfs_validate(struct fs_context *fc)
1375 {
1376 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1377 
1378 	/*
1379 	 * Use huge page pool size (in hstate) to convert the size
1380 	 * options to number of huge pages.  If NO_SIZE, -1 is returned.
1381 	 */
1382 	ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1383 						   ctx->max_size_opt,
1384 						   ctx->max_val_type);
1385 	ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1386 						   ctx->min_size_opt,
1387 						   ctx->min_val_type);
1388 
1389 	/*
1390 	 * If max_size was specified, then min_size must be smaller
1391 	 */
1392 	if (ctx->max_val_type > NO_SIZE &&
1393 	    ctx->min_hpages > ctx->max_hpages) {
1394 		pr_err("Minimum size can not be greater than maximum size\n");
1395 		return -EINVAL;
1396 	}
1397 
1398 	return 0;
1399 }
1400 
1401 static int
1402 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1403 {
1404 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1405 	struct hugetlbfs_sb_info *sbinfo;
1406 
1407 	sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1408 	if (!sbinfo)
1409 		return -ENOMEM;
1410 	sb->s_fs_info = sbinfo;
1411 	spin_lock_init(&sbinfo->stat_lock);
1412 	sbinfo->hstate		= ctx->hstate;
1413 	sbinfo->max_inodes	= ctx->nr_inodes;
1414 	sbinfo->free_inodes	= ctx->nr_inodes;
1415 	sbinfo->spool		= NULL;
1416 	sbinfo->uid		= ctx->uid;
1417 	sbinfo->gid		= ctx->gid;
1418 	sbinfo->mode		= ctx->mode;
1419 
1420 	/*
1421 	 * Allocate and initialize subpool if maximum or minimum size is
1422 	 * specified.  Any needed reservations (for minimum size) are taken
1423 	 * when the subpool is created.
1424 	 */
1425 	if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1426 		sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1427 						     ctx->max_hpages,
1428 						     ctx->min_hpages);
1429 		if (!sbinfo->spool)
1430 			goto out_free;
1431 	}
1432 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1433 	sb->s_blocksize = huge_page_size(ctx->hstate);
1434 	sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1435 	sb->s_magic = HUGETLBFS_MAGIC;
1436 	sb->s_op = &hugetlbfs_ops;
1437 	sb->s_d_flags = DCACHE_DONTCACHE;
1438 	sb->s_time_gran = 1;
1439 
1440 	/*
1441 	 * Due to the special and limited functionality of hugetlbfs, it does
1442 	 * not work well as a stacking filesystem.
1443 	 */
1444 	sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
1445 	sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1446 	if (!sb->s_root)
1447 		goto out_free;
1448 	return 0;
1449 out_free:
1450 	kfree(sbinfo->spool);
1451 	kfree(sbinfo);
1452 	return -ENOMEM;
1453 }
1454 
1455 static int hugetlbfs_get_tree(struct fs_context *fc)
1456 {
1457 	int err = hugetlbfs_validate(fc);
1458 	if (err)
1459 		return err;
1460 	return get_tree_nodev(fc, hugetlbfs_fill_super);
1461 }
1462 
1463 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1464 {
1465 	kfree(fc->fs_private);
1466 }
1467 
1468 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1469 	.free		= hugetlbfs_fs_context_free,
1470 	.parse_param	= hugetlbfs_parse_param,
1471 	.get_tree	= hugetlbfs_get_tree,
1472 };
1473 
1474 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1475 {
1476 	struct hugetlbfs_fs_context *ctx;
1477 
1478 	ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1479 	if (!ctx)
1480 		return -ENOMEM;
1481 
1482 	ctx->max_hpages	= -1; /* No limit on size by default */
1483 	ctx->nr_inodes	= -1; /* No limit on number of inodes by default */
1484 	ctx->uid	= current_fsuid();
1485 	ctx->gid	= current_fsgid();
1486 	ctx->mode	= 0755;
1487 	ctx->hstate	= &default_hstate;
1488 	ctx->min_hpages	= -1; /* No default minimum size */
1489 	ctx->max_val_type = NO_SIZE;
1490 	ctx->min_val_type = NO_SIZE;
1491 	fc->fs_private = ctx;
1492 	fc->ops	= &hugetlbfs_fs_context_ops;
1493 	return 0;
1494 }
1495 
1496 static struct file_system_type hugetlbfs_fs_type = {
1497 	.name			= "hugetlbfs",
1498 	.init_fs_context	= hugetlbfs_init_fs_context,
1499 	.parameters		= hugetlb_fs_parameters,
1500 	.kill_sb		= kill_litter_super,
1501 	.fs_flags               = FS_ALLOW_IDMAP,
1502 };
1503 
1504 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1505 
1506 static int can_do_hugetlb_shm(void)
1507 {
1508 	kgid_t shm_group;
1509 	shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1510 	return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1511 }
1512 
1513 static int get_hstate_idx(int page_size_log)
1514 {
1515 	struct hstate *h = hstate_sizelog(page_size_log);
1516 
1517 	if (!h)
1518 		return -1;
1519 	return hstate_index(h);
1520 }
1521 
1522 /*
1523  * Note that size should be aligned to proper hugepage size in caller side,
1524  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1525  */
1526 struct file *hugetlb_file_setup(const char *name, size_t size,
1527 				vm_flags_t acctflag, int creat_flags,
1528 				int page_size_log)
1529 {
1530 	struct inode *inode;
1531 	struct vfsmount *mnt;
1532 	int hstate_idx;
1533 	struct file *file;
1534 
1535 	hstate_idx = get_hstate_idx(page_size_log);
1536 	if (hstate_idx < 0)
1537 		return ERR_PTR(-ENODEV);
1538 
1539 	mnt = hugetlbfs_vfsmount[hstate_idx];
1540 	if (!mnt)
1541 		return ERR_PTR(-ENOENT);
1542 
1543 	if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1544 		struct ucounts *ucounts = current_ucounts();
1545 
1546 		if (user_shm_lock(size, ucounts)) {
1547 			pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n",
1548 				current->comm, current->pid);
1549 			user_shm_unlock(size, ucounts);
1550 		}
1551 		return ERR_PTR(-EPERM);
1552 	}
1553 
1554 	file = ERR_PTR(-ENOSPC);
1555 	/* hugetlbfs_vfsmount[] mounts do not use idmapped mounts.  */
1556 	inode = hugetlbfs_get_inode(mnt->mnt_sb, &nop_mnt_idmap, NULL,
1557 				    S_IFREG | S_IRWXUGO, 0);
1558 	if (!inode)
1559 		goto out;
1560 	if (creat_flags == HUGETLB_SHMFS_INODE)
1561 		inode->i_flags |= S_PRIVATE;
1562 
1563 	inode->i_size = size;
1564 	clear_nlink(inode);
1565 
1566 	if (!hugetlb_reserve_pages(inode, 0,
1567 			size >> huge_page_shift(hstate_inode(inode)), NULL,
1568 			acctflag))
1569 		file = ERR_PTR(-ENOMEM);
1570 	else
1571 		file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1572 					&hugetlbfs_file_operations);
1573 	if (!IS_ERR(file))
1574 		return file;
1575 
1576 	iput(inode);
1577 out:
1578 	return file;
1579 }
1580 
1581 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1582 {
1583 	struct fs_context *fc;
1584 	struct vfsmount *mnt;
1585 
1586 	fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1587 	if (IS_ERR(fc)) {
1588 		mnt = ERR_CAST(fc);
1589 	} else {
1590 		struct hugetlbfs_fs_context *ctx = fc->fs_private;
1591 		ctx->hstate = h;
1592 		mnt = fc_mount_longterm(fc);
1593 		put_fs_context(fc);
1594 	}
1595 	if (IS_ERR(mnt))
1596 		pr_err("Cannot mount internal hugetlbfs for page size %luK",
1597 		       huge_page_size(h) / SZ_1K);
1598 	return mnt;
1599 }
1600 
1601 static int __init init_hugetlbfs_fs(void)
1602 {
1603 	struct vfsmount *mnt;
1604 	struct hstate *h;
1605 	int error;
1606 	int i;
1607 
1608 	if (!hugepages_supported()) {
1609 		pr_info("disabling because there are no supported hugepage sizes\n");
1610 		return -ENOTSUPP;
1611 	}
1612 
1613 	error = -ENOMEM;
1614 	hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1615 					sizeof(struct hugetlbfs_inode_info),
1616 					0, SLAB_ACCOUNT, init_once);
1617 	if (hugetlbfs_inode_cachep == NULL)
1618 		goto out;
1619 
1620 	error = register_filesystem(&hugetlbfs_fs_type);
1621 	if (error)
1622 		goto out_free;
1623 
1624 	/* default hstate mount is required */
1625 	mnt = mount_one_hugetlbfs(&default_hstate);
1626 	if (IS_ERR(mnt)) {
1627 		error = PTR_ERR(mnt);
1628 		goto out_unreg;
1629 	}
1630 	hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1631 
1632 	/* other hstates are optional */
1633 	i = 0;
1634 	for_each_hstate(h) {
1635 		if (i == default_hstate_idx) {
1636 			i++;
1637 			continue;
1638 		}
1639 
1640 		mnt = mount_one_hugetlbfs(h);
1641 		if (IS_ERR(mnt))
1642 			hugetlbfs_vfsmount[i] = NULL;
1643 		else
1644 			hugetlbfs_vfsmount[i] = mnt;
1645 		i++;
1646 	}
1647 
1648 	return 0;
1649 
1650  out_unreg:
1651 	(void)unregister_filesystem(&hugetlbfs_fs_type);
1652  out_free:
1653 	kmem_cache_destroy(hugetlbfs_inode_cachep);
1654  out:
1655 	return error;
1656 }
1657 fs_initcall(init_hugetlbfs_fs)
1658