1 /* 2 * hugetlbpage-backed filesystem. Based on ramfs. 3 * 4 * Nadia Yvette Chambers, 2002 5 * 6 * Copyright (C) 2002 Linus Torvalds. 7 * License: GPL 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/thread_info.h> 13 #include <asm/current.h> 14 #include <linux/falloc.h> 15 #include <linux/fs.h> 16 #include <linux/mount.h> 17 #include <linux/file.h> 18 #include <linux/kernel.h> 19 #include <linux/writeback.h> 20 #include <linux/pagemap.h> 21 #include <linux/highmem.h> 22 #include <linux/init.h> 23 #include <linux/string.h> 24 #include <linux/capability.h> 25 #include <linux/ctype.h> 26 #include <linux/backing-dev.h> 27 #include <linux/hugetlb.h> 28 #include <linux/pagevec.h> 29 #include <linux/fs_parser.h> 30 #include <linux/mman.h> 31 #include <linux/slab.h> 32 #include <linux/dnotify.h> 33 #include <linux/statfs.h> 34 #include <linux/security.h> 35 #include <linux/magic.h> 36 #include <linux/migrate.h> 37 #include <linux/uio.h> 38 39 #include <linux/uaccess.h> 40 #include <linux/sched/mm.h> 41 42 #define CREATE_TRACE_POINTS 43 #include <trace/events/hugetlbfs.h> 44 45 static const struct address_space_operations hugetlbfs_aops; 46 static const struct file_operations hugetlbfs_file_operations; 47 static const struct inode_operations hugetlbfs_dir_inode_operations; 48 static const struct inode_operations hugetlbfs_inode_operations; 49 50 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT }; 51 52 struct hugetlbfs_fs_context { 53 struct hstate *hstate; 54 unsigned long long max_size_opt; 55 unsigned long long min_size_opt; 56 long max_hpages; 57 long nr_inodes; 58 long min_hpages; 59 enum hugetlbfs_size_type max_val_type; 60 enum hugetlbfs_size_type min_val_type; 61 kuid_t uid; 62 kgid_t gid; 63 umode_t mode; 64 }; 65 66 int sysctl_hugetlb_shm_group; 67 68 enum hugetlb_param { 69 Opt_gid, 70 Opt_min_size, 71 Opt_mode, 72 Opt_nr_inodes, 73 Opt_pagesize, 74 Opt_size, 75 Opt_uid, 76 }; 77 78 static const struct fs_parameter_spec hugetlb_fs_parameters[] = { 79 fsparam_gid ("gid", Opt_gid), 80 fsparam_string("min_size", Opt_min_size), 81 fsparam_u32oct("mode", Opt_mode), 82 fsparam_string("nr_inodes", Opt_nr_inodes), 83 fsparam_string("pagesize", Opt_pagesize), 84 fsparam_string("size", Opt_size), 85 fsparam_uid ("uid", Opt_uid), 86 {} 87 }; 88 89 /* 90 * Mask used when checking the page offset value passed in via system 91 * calls. This value will be converted to a loff_t which is signed. 92 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the 93 * value. The extra bit (- 1 in the shift value) is to take the sign 94 * bit into account. 95 */ 96 #define PGOFF_LOFFT_MAX \ 97 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1))) 98 99 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma) 100 { 101 struct inode *inode = file_inode(file); 102 loff_t len, vma_len; 103 int ret; 104 struct hstate *h = hstate_file(file); 105 vm_flags_t vm_flags; 106 107 /* 108 * vma address alignment (but not the pgoff alignment) has 109 * already been checked by prepare_hugepage_range. If you add 110 * any error returns here, do so after setting VM_HUGETLB, so 111 * is_vm_hugetlb_page tests below unmap_region go the right 112 * way when do_mmap unwinds (may be important on powerpc 113 * and ia64). 114 */ 115 vm_flags_set(vma, VM_HUGETLB | VM_DONTEXPAND); 116 vma->vm_ops = &hugetlb_vm_ops; 117 118 /* 119 * page based offset in vm_pgoff could be sufficiently large to 120 * overflow a loff_t when converted to byte offset. This can 121 * only happen on architectures where sizeof(loff_t) == 122 * sizeof(unsigned long). So, only check in those instances. 123 */ 124 if (sizeof(unsigned long) == sizeof(loff_t)) { 125 if (vma->vm_pgoff & PGOFF_LOFFT_MAX) 126 return -EINVAL; 127 } 128 129 /* must be huge page aligned */ 130 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT)) 131 return -EINVAL; 132 133 vma_len = (loff_t)(vma->vm_end - vma->vm_start); 134 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 135 /* check for overflow */ 136 if (len < vma_len) 137 return -EINVAL; 138 139 inode_lock(inode); 140 file_accessed(file); 141 142 ret = -ENOMEM; 143 144 vm_flags = vma->vm_flags; 145 /* 146 * for SHM_HUGETLB, the pages are reserved in the shmget() call so skip 147 * reserving here. Note: only for SHM hugetlbfs file, the inode 148 * flag S_PRIVATE is set. 149 */ 150 if (inode->i_flags & S_PRIVATE) 151 vm_flags |= VM_NORESERVE; 152 153 if (!hugetlb_reserve_pages(inode, 154 vma->vm_pgoff >> huge_page_order(h), 155 len >> huge_page_shift(h), vma, 156 vm_flags)) 157 goto out; 158 159 ret = 0; 160 if (vma->vm_flags & VM_WRITE && inode->i_size < len) 161 i_size_write(inode, len); 162 out: 163 inode_unlock(inode); 164 165 return ret; 166 } 167 168 /* 169 * Called under mmap_write_lock(mm). 170 */ 171 172 unsigned long 173 hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 174 unsigned long len, unsigned long pgoff, 175 unsigned long flags) 176 { 177 unsigned long addr0 = 0; 178 struct hstate *h = hstate_file(file); 179 180 if (len & ~huge_page_mask(h)) 181 return -EINVAL; 182 if (flags & MAP_FIXED) { 183 if (addr & ~huge_page_mask(h)) 184 return -EINVAL; 185 if (prepare_hugepage_range(file, addr, len)) 186 return -EINVAL; 187 } 188 if (addr) 189 addr0 = ALIGN(addr, huge_page_size(h)); 190 191 return mm_get_unmapped_area_vmflags(current->mm, file, addr0, len, pgoff, 192 flags, 0); 193 } 194 195 /* 196 * Someone wants to read @bytes from a HWPOISON hugetlb @folio from @offset. 197 * Returns the maximum number of bytes one can read without touching the 1st raw 198 * HWPOISON page. 199 * 200 * The implementation borrows the iteration logic from copy_page_to_iter*. 201 */ 202 static size_t adjust_range_hwpoison(struct folio *folio, size_t offset, 203 size_t bytes) 204 { 205 struct page *page; 206 size_t n = 0; 207 size_t res = 0; 208 209 /* First page to start the loop. */ 210 page = folio_page(folio, offset / PAGE_SIZE); 211 offset %= PAGE_SIZE; 212 while (1) { 213 if (is_raw_hwpoison_page_in_hugepage(page)) 214 break; 215 216 /* Safe to read n bytes without touching HWPOISON subpage. */ 217 n = min(bytes, (size_t)PAGE_SIZE - offset); 218 res += n; 219 bytes -= n; 220 if (!bytes || !n) 221 break; 222 offset += n; 223 if (offset == PAGE_SIZE) { 224 page = nth_page(page, 1); 225 offset = 0; 226 } 227 } 228 229 return res; 230 } 231 232 /* 233 * Support for read() - Find the page attached to f_mapping and copy out the 234 * data. This provides functionality similar to filemap_read(). 235 */ 236 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to) 237 { 238 struct file *file = iocb->ki_filp; 239 struct hstate *h = hstate_file(file); 240 struct address_space *mapping = file->f_mapping; 241 struct inode *inode = mapping->host; 242 unsigned long index = iocb->ki_pos >> huge_page_shift(h); 243 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h); 244 unsigned long end_index; 245 loff_t isize; 246 ssize_t retval = 0; 247 248 while (iov_iter_count(to)) { 249 struct folio *folio; 250 size_t nr, copied, want; 251 252 /* nr is the maximum number of bytes to copy from this page */ 253 nr = huge_page_size(h); 254 isize = i_size_read(inode); 255 if (!isize) 256 break; 257 end_index = (isize - 1) >> huge_page_shift(h); 258 if (index > end_index) 259 break; 260 if (index == end_index) { 261 nr = ((isize - 1) & ~huge_page_mask(h)) + 1; 262 if (nr <= offset) 263 break; 264 } 265 nr = nr - offset; 266 267 /* Find the folio */ 268 folio = filemap_lock_hugetlb_folio(h, mapping, index); 269 if (IS_ERR(folio)) { 270 /* 271 * We have a HOLE, zero out the user-buffer for the 272 * length of the hole or request. 273 */ 274 copied = iov_iter_zero(nr, to); 275 } else { 276 folio_unlock(folio); 277 278 if (!folio_test_hwpoison(folio)) 279 want = nr; 280 else { 281 /* 282 * Adjust how many bytes safe to read without 283 * touching the 1st raw HWPOISON page after 284 * offset. 285 */ 286 want = adjust_range_hwpoison(folio, offset, nr); 287 if (want == 0) { 288 folio_put(folio); 289 retval = -EIO; 290 break; 291 } 292 } 293 294 /* 295 * We have the folio, copy it to user space buffer. 296 */ 297 copied = copy_folio_to_iter(folio, offset, want, to); 298 folio_put(folio); 299 } 300 offset += copied; 301 retval += copied; 302 if (copied != nr && iov_iter_count(to)) { 303 if (!retval) 304 retval = -EFAULT; 305 break; 306 } 307 index += offset >> huge_page_shift(h); 308 offset &= ~huge_page_mask(h); 309 } 310 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset; 311 return retval; 312 } 313 314 static int hugetlbfs_write_begin(const struct kiocb *iocb, 315 struct address_space *mapping, 316 loff_t pos, unsigned len, 317 struct folio **foliop, void **fsdata) 318 { 319 return -EINVAL; 320 } 321 322 static int hugetlbfs_write_end(const struct kiocb *iocb, 323 struct address_space *mapping, 324 loff_t pos, unsigned len, unsigned copied, 325 struct folio *folio, void *fsdata) 326 { 327 BUG(); 328 return -EINVAL; 329 } 330 331 static void hugetlb_delete_from_page_cache(struct folio *folio) 332 { 333 folio_clear_dirty(folio); 334 folio_clear_uptodate(folio); 335 filemap_remove_folio(folio); 336 } 337 338 /* 339 * Called with i_mmap_rwsem held for inode based vma maps. This makes 340 * sure vma (and vm_mm) will not go away. We also hold the hugetlb fault 341 * mutex for the page in the mapping. So, we can not race with page being 342 * faulted into the vma. 343 */ 344 static bool hugetlb_vma_maps_pfn(struct vm_area_struct *vma, 345 unsigned long addr, unsigned long pfn) 346 { 347 pte_t *ptep, pte; 348 349 ptep = hugetlb_walk(vma, addr, huge_page_size(hstate_vma(vma))); 350 if (!ptep) 351 return false; 352 353 pte = huge_ptep_get(vma->vm_mm, addr, ptep); 354 if (huge_pte_none(pte) || !pte_present(pte)) 355 return false; 356 357 if (pte_pfn(pte) == pfn) 358 return true; 359 360 return false; 361 } 362 363 /* 364 * Can vma_offset_start/vma_offset_end overflow on 32-bit arches? 365 * No, because the interval tree returns us only those vmas 366 * which overlap the truncated area starting at pgoff, 367 * and no vma on a 32-bit arch can span beyond the 4GB. 368 */ 369 static unsigned long vma_offset_start(struct vm_area_struct *vma, pgoff_t start) 370 { 371 unsigned long offset = 0; 372 373 if (vma->vm_pgoff < start) 374 offset = (start - vma->vm_pgoff) << PAGE_SHIFT; 375 376 return vma->vm_start + offset; 377 } 378 379 static unsigned long vma_offset_end(struct vm_area_struct *vma, pgoff_t end) 380 { 381 unsigned long t_end; 382 383 if (!end) 384 return vma->vm_end; 385 386 t_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) + vma->vm_start; 387 if (t_end > vma->vm_end) 388 t_end = vma->vm_end; 389 return t_end; 390 } 391 392 /* 393 * Called with hugetlb fault mutex held. Therefore, no more mappings to 394 * this folio can be created while executing the routine. 395 */ 396 static void hugetlb_unmap_file_folio(struct hstate *h, 397 struct address_space *mapping, 398 struct folio *folio, pgoff_t index) 399 { 400 struct rb_root_cached *root = &mapping->i_mmap; 401 struct hugetlb_vma_lock *vma_lock; 402 unsigned long pfn = folio_pfn(folio); 403 struct vm_area_struct *vma; 404 unsigned long v_start; 405 unsigned long v_end; 406 pgoff_t start, end; 407 408 start = index * pages_per_huge_page(h); 409 end = (index + 1) * pages_per_huge_page(h); 410 411 i_mmap_lock_write(mapping); 412 retry: 413 vma_lock = NULL; 414 vma_interval_tree_foreach(vma, root, start, end - 1) { 415 v_start = vma_offset_start(vma, start); 416 v_end = vma_offset_end(vma, end); 417 418 if (!hugetlb_vma_maps_pfn(vma, v_start, pfn)) 419 continue; 420 421 if (!hugetlb_vma_trylock_write(vma)) { 422 vma_lock = vma->vm_private_data; 423 /* 424 * If we can not get vma lock, we need to drop 425 * immap_sema and take locks in order. First, 426 * take a ref on the vma_lock structure so that 427 * we can be guaranteed it will not go away when 428 * dropping immap_sema. 429 */ 430 kref_get(&vma_lock->refs); 431 break; 432 } 433 434 unmap_hugepage_range(vma, v_start, v_end, NULL, 435 ZAP_FLAG_DROP_MARKER); 436 hugetlb_vma_unlock_write(vma); 437 } 438 439 i_mmap_unlock_write(mapping); 440 441 if (vma_lock) { 442 /* 443 * Wait on vma_lock. We know it is still valid as we have 444 * a reference. We must 'open code' vma locking as we do 445 * not know if vma_lock is still attached to vma. 446 */ 447 down_write(&vma_lock->rw_sema); 448 i_mmap_lock_write(mapping); 449 450 vma = vma_lock->vma; 451 if (!vma) { 452 /* 453 * If lock is no longer attached to vma, then just 454 * unlock, drop our reference and retry looking for 455 * other vmas. 456 */ 457 up_write(&vma_lock->rw_sema); 458 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 459 goto retry; 460 } 461 462 /* 463 * vma_lock is still attached to vma. Check to see if vma 464 * still maps page and if so, unmap. 465 */ 466 v_start = vma_offset_start(vma, start); 467 v_end = vma_offset_end(vma, end); 468 if (hugetlb_vma_maps_pfn(vma, v_start, pfn)) 469 unmap_hugepage_range(vma, v_start, v_end, NULL, 470 ZAP_FLAG_DROP_MARKER); 471 472 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 473 hugetlb_vma_unlock_write(vma); 474 475 goto retry; 476 } 477 } 478 479 static void 480 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end, 481 zap_flags_t zap_flags) 482 { 483 struct vm_area_struct *vma; 484 485 /* 486 * end == 0 indicates that the entire range after start should be 487 * unmapped. Note, end is exclusive, whereas the interval tree takes 488 * an inclusive "last". 489 */ 490 vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) { 491 unsigned long v_start; 492 unsigned long v_end; 493 494 if (!hugetlb_vma_trylock_write(vma)) 495 continue; 496 497 v_start = vma_offset_start(vma, start); 498 v_end = vma_offset_end(vma, end); 499 500 unmap_hugepage_range(vma, v_start, v_end, NULL, zap_flags); 501 502 /* 503 * Note that vma lock only exists for shared/non-private 504 * vmas. Therefore, lock is not held when calling 505 * unmap_hugepage_range for private vmas. 506 */ 507 hugetlb_vma_unlock_write(vma); 508 } 509 } 510 511 /* 512 * Called with hugetlb fault mutex held. 513 * Returns true if page was actually removed, false otherwise. 514 */ 515 static bool remove_inode_single_folio(struct hstate *h, struct inode *inode, 516 struct address_space *mapping, 517 struct folio *folio, pgoff_t index, 518 bool truncate_op) 519 { 520 bool ret = false; 521 522 /* 523 * If folio is mapped, it was faulted in after being 524 * unmapped in caller. Unmap (again) while holding 525 * the fault mutex. The mutex will prevent faults 526 * until we finish removing the folio. 527 */ 528 if (unlikely(folio_mapped(folio))) 529 hugetlb_unmap_file_folio(h, mapping, folio, index); 530 531 folio_lock(folio); 532 /* 533 * We must remove the folio from page cache before removing 534 * the region/ reserve map (hugetlb_unreserve_pages). In 535 * rare out of memory conditions, removal of the region/reserve 536 * map could fail. Correspondingly, the subpool and global 537 * reserve usage count can need to be adjusted. 538 */ 539 VM_BUG_ON_FOLIO(folio_test_hugetlb_restore_reserve(folio), folio); 540 hugetlb_delete_from_page_cache(folio); 541 ret = true; 542 if (!truncate_op) { 543 if (unlikely(hugetlb_unreserve_pages(inode, index, 544 index + 1, 1))) 545 hugetlb_fix_reserve_counts(inode); 546 } 547 548 folio_unlock(folio); 549 return ret; 550 } 551 552 /* 553 * remove_inode_hugepages handles two distinct cases: truncation and hole 554 * punch. There are subtle differences in operation for each case. 555 * 556 * truncation is indicated by end of range being LLONG_MAX 557 * In this case, we first scan the range and release found pages. 558 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserve 559 * maps and global counts. Page faults can race with truncation. 560 * During faults, hugetlb_no_page() checks i_size before page allocation, 561 * and again after obtaining page table lock. It will 'back out' 562 * allocations in the truncated range. 563 * hole punch is indicated if end is not LLONG_MAX 564 * In the hole punch case we scan the range and release found pages. 565 * Only when releasing a page is the associated region/reserve map 566 * deleted. The region/reserve map for ranges without associated 567 * pages are not modified. Page faults can race with hole punch. 568 * This is indicated if we find a mapped page. 569 * Note: If the passed end of range value is beyond the end of file, but 570 * not LLONG_MAX this routine still performs a hole punch operation. 571 */ 572 static void remove_inode_hugepages(struct inode *inode, loff_t lstart, 573 loff_t lend) 574 { 575 struct hstate *h = hstate_inode(inode); 576 struct address_space *mapping = &inode->i_data; 577 const pgoff_t end = lend >> PAGE_SHIFT; 578 struct folio_batch fbatch; 579 pgoff_t next, index; 580 int i, freed = 0; 581 bool truncate_op = (lend == LLONG_MAX); 582 583 folio_batch_init(&fbatch); 584 next = lstart >> PAGE_SHIFT; 585 while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) { 586 for (i = 0; i < folio_batch_count(&fbatch); ++i) { 587 struct folio *folio = fbatch.folios[i]; 588 u32 hash = 0; 589 590 index = folio->index >> huge_page_order(h); 591 hash = hugetlb_fault_mutex_hash(mapping, index); 592 mutex_lock(&hugetlb_fault_mutex_table[hash]); 593 594 /* 595 * Remove folio that was part of folio_batch. 596 */ 597 if (remove_inode_single_folio(h, inode, mapping, folio, 598 index, truncate_op)) 599 freed++; 600 601 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 602 } 603 folio_batch_release(&fbatch); 604 cond_resched(); 605 } 606 607 if (truncate_op) 608 (void)hugetlb_unreserve_pages(inode, 609 lstart >> huge_page_shift(h), 610 LONG_MAX, freed); 611 } 612 613 static void hugetlbfs_evict_inode(struct inode *inode) 614 { 615 struct resv_map *resv_map; 616 617 trace_hugetlbfs_evict_inode(inode); 618 remove_inode_hugepages(inode, 0, LLONG_MAX); 619 620 /* 621 * Get the resv_map from the address space embedded in the inode. 622 * This is the address space which points to any resv_map allocated 623 * at inode creation time. If this is a device special inode, 624 * i_mapping may not point to the original address space. 625 */ 626 resv_map = (struct resv_map *)(&inode->i_data)->i_private_data; 627 /* Only regular and link inodes have associated reserve maps */ 628 if (resv_map) 629 resv_map_release(&resv_map->refs); 630 clear_inode(inode); 631 } 632 633 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset) 634 { 635 pgoff_t pgoff; 636 struct address_space *mapping = inode->i_mapping; 637 struct hstate *h = hstate_inode(inode); 638 639 BUG_ON(offset & ~huge_page_mask(h)); 640 pgoff = offset >> PAGE_SHIFT; 641 642 i_size_write(inode, offset); 643 i_mmap_lock_write(mapping); 644 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 645 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0, 646 ZAP_FLAG_DROP_MARKER); 647 i_mmap_unlock_write(mapping); 648 remove_inode_hugepages(inode, offset, LLONG_MAX); 649 } 650 651 static void hugetlbfs_zero_partial_page(struct hstate *h, 652 struct address_space *mapping, 653 loff_t start, 654 loff_t end) 655 { 656 pgoff_t idx = start >> huge_page_shift(h); 657 struct folio *folio; 658 659 folio = filemap_lock_hugetlb_folio(h, mapping, idx); 660 if (IS_ERR(folio)) 661 return; 662 663 start = start & ~huge_page_mask(h); 664 end = end & ~huge_page_mask(h); 665 if (!end) 666 end = huge_page_size(h); 667 668 folio_zero_segment(folio, (size_t)start, (size_t)end); 669 670 folio_unlock(folio); 671 folio_put(folio); 672 } 673 674 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 675 { 676 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 677 struct address_space *mapping = inode->i_mapping; 678 struct hstate *h = hstate_inode(inode); 679 loff_t hpage_size = huge_page_size(h); 680 loff_t hole_start, hole_end; 681 682 /* 683 * hole_start and hole_end indicate the full pages within the hole. 684 */ 685 hole_start = round_up(offset, hpage_size); 686 hole_end = round_down(offset + len, hpage_size); 687 688 inode_lock(inode); 689 690 /* protected by i_rwsem */ 691 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 692 inode_unlock(inode); 693 return -EPERM; 694 } 695 696 i_mmap_lock_write(mapping); 697 698 /* If range starts before first full page, zero partial page. */ 699 if (offset < hole_start) 700 hugetlbfs_zero_partial_page(h, mapping, 701 offset, min(offset + len, hole_start)); 702 703 /* Unmap users of full pages in the hole. */ 704 if (hole_end > hole_start) { 705 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 706 hugetlb_vmdelete_list(&mapping->i_mmap, 707 hole_start >> PAGE_SHIFT, 708 hole_end >> PAGE_SHIFT, 0); 709 } 710 711 /* If range extends beyond last full page, zero partial page. */ 712 if ((offset + len) > hole_end && (offset + len) > hole_start) 713 hugetlbfs_zero_partial_page(h, mapping, 714 hole_end, offset + len); 715 716 i_mmap_unlock_write(mapping); 717 718 /* Remove full pages from the file. */ 719 if (hole_end > hole_start) 720 remove_inode_hugepages(inode, hole_start, hole_end); 721 722 inode_unlock(inode); 723 724 return 0; 725 } 726 727 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset, 728 loff_t len) 729 { 730 struct inode *inode = file_inode(file); 731 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 732 struct address_space *mapping = inode->i_mapping; 733 struct hstate *h = hstate_inode(inode); 734 struct vm_area_struct pseudo_vma; 735 struct mm_struct *mm = current->mm; 736 loff_t hpage_size = huge_page_size(h); 737 unsigned long hpage_shift = huge_page_shift(h); 738 pgoff_t start, index, end; 739 int error; 740 u32 hash; 741 742 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 743 return -EOPNOTSUPP; 744 745 if (mode & FALLOC_FL_PUNCH_HOLE) { 746 error = hugetlbfs_punch_hole(inode, offset, len); 747 goto out_nolock; 748 } 749 750 /* 751 * Default preallocate case. 752 * For this range, start is rounded down and end is rounded up 753 * as well as being converted to page offsets. 754 */ 755 start = offset >> hpage_shift; 756 end = (offset + len + hpage_size - 1) >> hpage_shift; 757 758 inode_lock(inode); 759 760 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 761 error = inode_newsize_ok(inode, offset + len); 762 if (error) 763 goto out; 764 765 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 766 error = -EPERM; 767 goto out; 768 } 769 770 /* 771 * Initialize a pseudo vma as this is required by the huge page 772 * allocation routines. 773 */ 774 vma_init(&pseudo_vma, mm); 775 vm_flags_init(&pseudo_vma, VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 776 pseudo_vma.vm_file = file; 777 778 for (index = start; index < end; index++) { 779 /* 780 * This is supposed to be the vaddr where the page is being 781 * faulted in, but we have no vaddr here. 782 */ 783 struct folio *folio; 784 unsigned long addr; 785 786 cond_resched(); 787 788 /* 789 * fallocate(2) manpage permits EINTR; we may have been 790 * interrupted because we are using up too much memory. 791 */ 792 if (signal_pending(current)) { 793 error = -EINTR; 794 break; 795 } 796 797 /* addr is the offset within the file (zero based) */ 798 addr = index * hpage_size; 799 800 /* mutex taken here, fault path and hole punch */ 801 hash = hugetlb_fault_mutex_hash(mapping, index); 802 mutex_lock(&hugetlb_fault_mutex_table[hash]); 803 804 /* See if already present in mapping to avoid alloc/free */ 805 folio = filemap_get_folio(mapping, index << huge_page_order(h)); 806 if (!IS_ERR(folio)) { 807 folio_put(folio); 808 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 809 continue; 810 } 811 812 /* 813 * Allocate folio without setting the avoid_reserve argument. 814 * There certainly are no reserves associated with the 815 * pseudo_vma. However, there could be shared mappings with 816 * reserves for the file at the inode level. If we fallocate 817 * folios in these areas, we need to consume the reserves 818 * to keep reservation accounting consistent. 819 */ 820 folio = alloc_hugetlb_folio(&pseudo_vma, addr, false); 821 if (IS_ERR(folio)) { 822 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 823 error = PTR_ERR(folio); 824 goto out; 825 } 826 folio_zero_user(folio, addr); 827 __folio_mark_uptodate(folio); 828 error = hugetlb_add_to_page_cache(folio, mapping, index); 829 if (unlikely(error)) { 830 restore_reserve_on_error(h, &pseudo_vma, addr, folio); 831 folio_put(folio); 832 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 833 goto out; 834 } 835 836 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 837 838 folio_set_hugetlb_migratable(folio); 839 /* 840 * folio_unlock because locked by hugetlb_add_to_page_cache() 841 * folio_put() due to reference from alloc_hugetlb_folio() 842 */ 843 folio_unlock(folio); 844 folio_put(folio); 845 } 846 847 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 848 i_size_write(inode, offset + len); 849 inode_set_ctime_current(inode); 850 out: 851 inode_unlock(inode); 852 853 out_nolock: 854 trace_hugetlbfs_fallocate(inode, mode, offset, len, error); 855 return error; 856 } 857 858 static int hugetlbfs_setattr(struct mnt_idmap *idmap, 859 struct dentry *dentry, struct iattr *attr) 860 { 861 struct inode *inode = d_inode(dentry); 862 struct hstate *h = hstate_inode(inode); 863 int error; 864 unsigned int ia_valid = attr->ia_valid; 865 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 866 867 error = setattr_prepare(idmap, dentry, attr); 868 if (error) 869 return error; 870 871 trace_hugetlbfs_setattr(inode, dentry, attr); 872 873 if (ia_valid & ATTR_SIZE) { 874 loff_t oldsize = inode->i_size; 875 loff_t newsize = attr->ia_size; 876 877 if (newsize & ~huge_page_mask(h)) 878 return -EINVAL; 879 /* protected by i_rwsem */ 880 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 881 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 882 return -EPERM; 883 hugetlb_vmtruncate(inode, newsize); 884 } 885 886 setattr_copy(idmap, inode, attr); 887 mark_inode_dirty(inode); 888 return 0; 889 } 890 891 static struct inode *hugetlbfs_get_root(struct super_block *sb, 892 struct hugetlbfs_fs_context *ctx) 893 { 894 struct inode *inode; 895 896 inode = new_inode(sb); 897 if (inode) { 898 inode->i_ino = get_next_ino(); 899 inode->i_mode = S_IFDIR | ctx->mode; 900 inode->i_uid = ctx->uid; 901 inode->i_gid = ctx->gid; 902 simple_inode_init_ts(inode); 903 inode->i_op = &hugetlbfs_dir_inode_operations; 904 inode->i_fop = &simple_dir_operations; 905 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 906 inc_nlink(inode); 907 lockdep_annotate_inode_mutex_key(inode); 908 } 909 return inode; 910 } 911 912 /* 913 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never 914 * be taken from reclaim -- unlike regular filesystems. This needs an 915 * annotation because huge_pmd_share() does an allocation under hugetlb's 916 * i_mmap_rwsem. 917 */ 918 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key; 919 920 static struct inode *hugetlbfs_get_inode(struct super_block *sb, 921 struct mnt_idmap *idmap, 922 struct inode *dir, 923 umode_t mode, dev_t dev) 924 { 925 struct inode *inode; 926 struct resv_map *resv_map = NULL; 927 928 /* 929 * Reserve maps are only needed for inodes that can have associated 930 * page allocations. 931 */ 932 if (S_ISREG(mode) || S_ISLNK(mode)) { 933 resv_map = resv_map_alloc(); 934 if (!resv_map) 935 return NULL; 936 } 937 938 inode = new_inode(sb); 939 if (inode) { 940 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 941 942 inode->i_ino = get_next_ino(); 943 inode_init_owner(idmap, inode, dir, mode); 944 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem, 945 &hugetlbfs_i_mmap_rwsem_key); 946 inode->i_mapping->a_ops = &hugetlbfs_aops; 947 simple_inode_init_ts(inode); 948 inode->i_mapping->i_private_data = resv_map; 949 info->seals = F_SEAL_SEAL; 950 switch (mode & S_IFMT) { 951 default: 952 init_special_inode(inode, mode, dev); 953 break; 954 case S_IFREG: 955 inode->i_op = &hugetlbfs_inode_operations; 956 inode->i_fop = &hugetlbfs_file_operations; 957 break; 958 case S_IFDIR: 959 inode->i_op = &hugetlbfs_dir_inode_operations; 960 inode->i_fop = &simple_dir_operations; 961 962 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 963 inc_nlink(inode); 964 break; 965 case S_IFLNK: 966 inode->i_op = &page_symlink_inode_operations; 967 inode_nohighmem(inode); 968 break; 969 } 970 lockdep_annotate_inode_mutex_key(inode); 971 trace_hugetlbfs_alloc_inode(inode, dir, mode); 972 } else { 973 if (resv_map) 974 kref_put(&resv_map->refs, resv_map_release); 975 } 976 977 return inode; 978 } 979 980 /* 981 * File creation. Allocate an inode, and we're done.. 982 */ 983 static int hugetlbfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 984 struct dentry *dentry, umode_t mode, dev_t dev) 985 { 986 struct inode *inode; 987 988 inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, dev); 989 if (!inode) 990 return -ENOSPC; 991 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 992 d_instantiate(dentry, inode); 993 dget(dentry);/* Extra count - pin the dentry in core */ 994 return 0; 995 } 996 997 static struct dentry *hugetlbfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 998 struct dentry *dentry, umode_t mode) 999 { 1000 int retval = hugetlbfs_mknod(idmap, dir, dentry, 1001 mode | S_IFDIR, 0); 1002 if (!retval) 1003 inc_nlink(dir); 1004 return ERR_PTR(retval); 1005 } 1006 1007 static int hugetlbfs_create(struct mnt_idmap *idmap, 1008 struct inode *dir, struct dentry *dentry, 1009 umode_t mode, bool excl) 1010 { 1011 return hugetlbfs_mknod(idmap, dir, dentry, mode | S_IFREG, 0); 1012 } 1013 1014 static int hugetlbfs_tmpfile(struct mnt_idmap *idmap, 1015 struct inode *dir, struct file *file, 1016 umode_t mode) 1017 { 1018 struct inode *inode; 1019 1020 inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode | S_IFREG, 0); 1021 if (!inode) 1022 return -ENOSPC; 1023 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 1024 d_tmpfile(file, inode); 1025 return finish_open_simple(file, 0); 1026 } 1027 1028 static int hugetlbfs_symlink(struct mnt_idmap *idmap, 1029 struct inode *dir, struct dentry *dentry, 1030 const char *symname) 1031 { 1032 const umode_t mode = S_IFLNK|S_IRWXUGO; 1033 struct inode *inode; 1034 int error = -ENOSPC; 1035 1036 inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, 0); 1037 if (inode) { 1038 int l = strlen(symname)+1; 1039 error = page_symlink(inode, symname, l); 1040 if (!error) { 1041 d_instantiate(dentry, inode); 1042 dget(dentry); 1043 } else 1044 iput(inode); 1045 } 1046 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 1047 1048 return error; 1049 } 1050 1051 #ifdef CONFIG_MIGRATION 1052 static int hugetlbfs_migrate_folio(struct address_space *mapping, 1053 struct folio *dst, struct folio *src, 1054 enum migrate_mode mode) 1055 { 1056 int rc; 1057 1058 rc = migrate_huge_page_move_mapping(mapping, dst, src); 1059 if (rc != MIGRATEPAGE_SUCCESS) 1060 return rc; 1061 1062 if (hugetlb_folio_subpool(src)) { 1063 hugetlb_set_folio_subpool(dst, 1064 hugetlb_folio_subpool(src)); 1065 hugetlb_set_folio_subpool(src, NULL); 1066 } 1067 1068 folio_migrate_flags(dst, src); 1069 1070 return MIGRATEPAGE_SUCCESS; 1071 } 1072 #else 1073 #define hugetlbfs_migrate_folio NULL 1074 #endif 1075 1076 static int hugetlbfs_error_remove_folio(struct address_space *mapping, 1077 struct folio *folio) 1078 { 1079 return 0; 1080 } 1081 1082 /* 1083 * Display the mount options in /proc/mounts. 1084 */ 1085 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root) 1086 { 1087 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb); 1088 struct hugepage_subpool *spool = sbinfo->spool; 1089 unsigned long hpage_size = huge_page_size(sbinfo->hstate); 1090 unsigned hpage_shift = huge_page_shift(sbinfo->hstate); 1091 char mod; 1092 1093 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 1094 seq_printf(m, ",uid=%u", 1095 from_kuid_munged(&init_user_ns, sbinfo->uid)); 1096 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 1097 seq_printf(m, ",gid=%u", 1098 from_kgid_munged(&init_user_ns, sbinfo->gid)); 1099 if (sbinfo->mode != 0755) 1100 seq_printf(m, ",mode=%o", sbinfo->mode); 1101 if (sbinfo->max_inodes != -1) 1102 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes); 1103 1104 hpage_size /= 1024; 1105 mod = 'K'; 1106 if (hpage_size >= 1024) { 1107 hpage_size /= 1024; 1108 mod = 'M'; 1109 } 1110 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod); 1111 if (spool) { 1112 if (spool->max_hpages != -1) 1113 seq_printf(m, ",size=%llu", 1114 (unsigned long long)spool->max_hpages << hpage_shift); 1115 if (spool->min_hpages != -1) 1116 seq_printf(m, ",min_size=%llu", 1117 (unsigned long long)spool->min_hpages << hpage_shift); 1118 } 1119 return 0; 1120 } 1121 1122 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf) 1123 { 1124 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb); 1125 struct hstate *h = hstate_inode(d_inode(dentry)); 1126 u64 id = huge_encode_dev(dentry->d_sb->s_dev); 1127 1128 buf->f_fsid = u64_to_fsid(id); 1129 buf->f_type = HUGETLBFS_MAGIC; 1130 buf->f_bsize = huge_page_size(h); 1131 if (sbinfo) { 1132 spin_lock(&sbinfo->stat_lock); 1133 /* If no limits set, just report 0 or -1 for max/free/used 1134 * blocks, like simple_statfs() */ 1135 if (sbinfo->spool) { 1136 long free_pages; 1137 1138 spin_lock_irq(&sbinfo->spool->lock); 1139 buf->f_blocks = sbinfo->spool->max_hpages; 1140 free_pages = sbinfo->spool->max_hpages 1141 - sbinfo->spool->used_hpages; 1142 buf->f_bavail = buf->f_bfree = free_pages; 1143 spin_unlock_irq(&sbinfo->spool->lock); 1144 buf->f_files = sbinfo->max_inodes; 1145 buf->f_ffree = sbinfo->free_inodes; 1146 } 1147 spin_unlock(&sbinfo->stat_lock); 1148 } 1149 buf->f_namelen = NAME_MAX; 1150 return 0; 1151 } 1152 1153 static void hugetlbfs_put_super(struct super_block *sb) 1154 { 1155 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb); 1156 1157 if (sbi) { 1158 sb->s_fs_info = NULL; 1159 1160 if (sbi->spool) 1161 hugepage_put_subpool(sbi->spool); 1162 1163 kfree(sbi); 1164 } 1165 } 1166 1167 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1168 { 1169 if (sbinfo->free_inodes >= 0) { 1170 spin_lock(&sbinfo->stat_lock); 1171 if (unlikely(!sbinfo->free_inodes)) { 1172 spin_unlock(&sbinfo->stat_lock); 1173 return 0; 1174 } 1175 sbinfo->free_inodes--; 1176 spin_unlock(&sbinfo->stat_lock); 1177 } 1178 1179 return 1; 1180 } 1181 1182 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1183 { 1184 if (sbinfo->free_inodes >= 0) { 1185 spin_lock(&sbinfo->stat_lock); 1186 sbinfo->free_inodes++; 1187 spin_unlock(&sbinfo->stat_lock); 1188 } 1189 } 1190 1191 1192 static struct kmem_cache *hugetlbfs_inode_cachep; 1193 1194 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb) 1195 { 1196 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb); 1197 struct hugetlbfs_inode_info *p; 1198 1199 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo))) 1200 return NULL; 1201 p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL); 1202 if (unlikely(!p)) { 1203 hugetlbfs_inc_free_inodes(sbinfo); 1204 return NULL; 1205 } 1206 return &p->vfs_inode; 1207 } 1208 1209 static void hugetlbfs_free_inode(struct inode *inode) 1210 { 1211 trace_hugetlbfs_free_inode(inode); 1212 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode)); 1213 } 1214 1215 static void hugetlbfs_destroy_inode(struct inode *inode) 1216 { 1217 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb)); 1218 } 1219 1220 static const struct address_space_operations hugetlbfs_aops = { 1221 .write_begin = hugetlbfs_write_begin, 1222 .write_end = hugetlbfs_write_end, 1223 .dirty_folio = noop_dirty_folio, 1224 .migrate_folio = hugetlbfs_migrate_folio, 1225 .error_remove_folio = hugetlbfs_error_remove_folio, 1226 }; 1227 1228 1229 static void init_once(void *foo) 1230 { 1231 struct hugetlbfs_inode_info *ei = foo; 1232 1233 inode_init_once(&ei->vfs_inode); 1234 } 1235 1236 static const struct file_operations hugetlbfs_file_operations = { 1237 .read_iter = hugetlbfs_read_iter, 1238 .mmap = hugetlbfs_file_mmap, 1239 .fsync = noop_fsync, 1240 .get_unmapped_area = hugetlb_get_unmapped_area, 1241 .llseek = default_llseek, 1242 .fallocate = hugetlbfs_fallocate, 1243 .fop_flags = FOP_HUGE_PAGES, 1244 }; 1245 1246 static const struct inode_operations hugetlbfs_dir_inode_operations = { 1247 .create = hugetlbfs_create, 1248 .lookup = simple_lookup, 1249 .link = simple_link, 1250 .unlink = simple_unlink, 1251 .symlink = hugetlbfs_symlink, 1252 .mkdir = hugetlbfs_mkdir, 1253 .rmdir = simple_rmdir, 1254 .mknod = hugetlbfs_mknod, 1255 .rename = simple_rename, 1256 .setattr = hugetlbfs_setattr, 1257 .tmpfile = hugetlbfs_tmpfile, 1258 }; 1259 1260 static const struct inode_operations hugetlbfs_inode_operations = { 1261 .setattr = hugetlbfs_setattr, 1262 }; 1263 1264 static const struct super_operations hugetlbfs_ops = { 1265 .alloc_inode = hugetlbfs_alloc_inode, 1266 .free_inode = hugetlbfs_free_inode, 1267 .destroy_inode = hugetlbfs_destroy_inode, 1268 .evict_inode = hugetlbfs_evict_inode, 1269 .statfs = hugetlbfs_statfs, 1270 .put_super = hugetlbfs_put_super, 1271 .show_options = hugetlbfs_show_options, 1272 }; 1273 1274 /* 1275 * Convert size option passed from command line to number of huge pages 1276 * in the pool specified by hstate. Size option could be in bytes 1277 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT). 1278 */ 1279 static long 1280 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt, 1281 enum hugetlbfs_size_type val_type) 1282 { 1283 if (val_type == NO_SIZE) 1284 return -1; 1285 1286 if (val_type == SIZE_PERCENT) { 1287 size_opt <<= huge_page_shift(h); 1288 size_opt *= h->max_huge_pages; 1289 do_div(size_opt, 100); 1290 } 1291 1292 size_opt >>= huge_page_shift(h); 1293 return size_opt; 1294 } 1295 1296 /* 1297 * Parse one mount parameter. 1298 */ 1299 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param) 1300 { 1301 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1302 struct fs_parse_result result; 1303 struct hstate *h; 1304 char *rest; 1305 unsigned long ps; 1306 int opt; 1307 1308 opt = fs_parse(fc, hugetlb_fs_parameters, param, &result); 1309 if (opt < 0) 1310 return opt; 1311 1312 switch (opt) { 1313 case Opt_uid: 1314 ctx->uid = result.uid; 1315 return 0; 1316 1317 case Opt_gid: 1318 ctx->gid = result.gid; 1319 return 0; 1320 1321 case Opt_mode: 1322 ctx->mode = result.uint_32 & 01777U; 1323 return 0; 1324 1325 case Opt_size: 1326 /* memparse() will accept a K/M/G without a digit */ 1327 if (!param->string || !isdigit(param->string[0])) 1328 goto bad_val; 1329 ctx->max_size_opt = memparse(param->string, &rest); 1330 ctx->max_val_type = SIZE_STD; 1331 if (*rest == '%') 1332 ctx->max_val_type = SIZE_PERCENT; 1333 return 0; 1334 1335 case Opt_nr_inodes: 1336 /* memparse() will accept a K/M/G without a digit */ 1337 if (!param->string || !isdigit(param->string[0])) 1338 goto bad_val; 1339 ctx->nr_inodes = memparse(param->string, &rest); 1340 return 0; 1341 1342 case Opt_pagesize: 1343 ps = memparse(param->string, &rest); 1344 h = size_to_hstate(ps); 1345 if (!h) { 1346 pr_err("Unsupported page size %lu MB\n", ps / SZ_1M); 1347 return -EINVAL; 1348 } 1349 ctx->hstate = h; 1350 return 0; 1351 1352 case Opt_min_size: 1353 /* memparse() will accept a K/M/G without a digit */ 1354 if (!param->string || !isdigit(param->string[0])) 1355 goto bad_val; 1356 ctx->min_size_opt = memparse(param->string, &rest); 1357 ctx->min_val_type = SIZE_STD; 1358 if (*rest == '%') 1359 ctx->min_val_type = SIZE_PERCENT; 1360 return 0; 1361 1362 default: 1363 return -EINVAL; 1364 } 1365 1366 bad_val: 1367 return invalfc(fc, "Bad value '%s' for mount option '%s'\n", 1368 param->string, param->key); 1369 } 1370 1371 /* 1372 * Validate the parsed options. 1373 */ 1374 static int hugetlbfs_validate(struct fs_context *fc) 1375 { 1376 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1377 1378 /* 1379 * Use huge page pool size (in hstate) to convert the size 1380 * options to number of huge pages. If NO_SIZE, -1 is returned. 1381 */ 1382 ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1383 ctx->max_size_opt, 1384 ctx->max_val_type); 1385 ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1386 ctx->min_size_opt, 1387 ctx->min_val_type); 1388 1389 /* 1390 * If max_size was specified, then min_size must be smaller 1391 */ 1392 if (ctx->max_val_type > NO_SIZE && 1393 ctx->min_hpages > ctx->max_hpages) { 1394 pr_err("Minimum size can not be greater than maximum size\n"); 1395 return -EINVAL; 1396 } 1397 1398 return 0; 1399 } 1400 1401 static int 1402 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc) 1403 { 1404 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1405 struct hugetlbfs_sb_info *sbinfo; 1406 1407 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL); 1408 if (!sbinfo) 1409 return -ENOMEM; 1410 sb->s_fs_info = sbinfo; 1411 spin_lock_init(&sbinfo->stat_lock); 1412 sbinfo->hstate = ctx->hstate; 1413 sbinfo->max_inodes = ctx->nr_inodes; 1414 sbinfo->free_inodes = ctx->nr_inodes; 1415 sbinfo->spool = NULL; 1416 sbinfo->uid = ctx->uid; 1417 sbinfo->gid = ctx->gid; 1418 sbinfo->mode = ctx->mode; 1419 1420 /* 1421 * Allocate and initialize subpool if maximum or minimum size is 1422 * specified. Any needed reservations (for minimum size) are taken 1423 * when the subpool is created. 1424 */ 1425 if (ctx->max_hpages != -1 || ctx->min_hpages != -1) { 1426 sbinfo->spool = hugepage_new_subpool(ctx->hstate, 1427 ctx->max_hpages, 1428 ctx->min_hpages); 1429 if (!sbinfo->spool) 1430 goto out_free; 1431 } 1432 sb->s_maxbytes = MAX_LFS_FILESIZE; 1433 sb->s_blocksize = huge_page_size(ctx->hstate); 1434 sb->s_blocksize_bits = huge_page_shift(ctx->hstate); 1435 sb->s_magic = HUGETLBFS_MAGIC; 1436 sb->s_op = &hugetlbfs_ops; 1437 sb->s_d_flags = DCACHE_DONTCACHE; 1438 sb->s_time_gran = 1; 1439 1440 /* 1441 * Due to the special and limited functionality of hugetlbfs, it does 1442 * not work well as a stacking filesystem. 1443 */ 1444 sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH; 1445 sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx)); 1446 if (!sb->s_root) 1447 goto out_free; 1448 return 0; 1449 out_free: 1450 kfree(sbinfo->spool); 1451 kfree(sbinfo); 1452 return -ENOMEM; 1453 } 1454 1455 static int hugetlbfs_get_tree(struct fs_context *fc) 1456 { 1457 int err = hugetlbfs_validate(fc); 1458 if (err) 1459 return err; 1460 return get_tree_nodev(fc, hugetlbfs_fill_super); 1461 } 1462 1463 static void hugetlbfs_fs_context_free(struct fs_context *fc) 1464 { 1465 kfree(fc->fs_private); 1466 } 1467 1468 static const struct fs_context_operations hugetlbfs_fs_context_ops = { 1469 .free = hugetlbfs_fs_context_free, 1470 .parse_param = hugetlbfs_parse_param, 1471 .get_tree = hugetlbfs_get_tree, 1472 }; 1473 1474 static int hugetlbfs_init_fs_context(struct fs_context *fc) 1475 { 1476 struct hugetlbfs_fs_context *ctx; 1477 1478 ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL); 1479 if (!ctx) 1480 return -ENOMEM; 1481 1482 ctx->max_hpages = -1; /* No limit on size by default */ 1483 ctx->nr_inodes = -1; /* No limit on number of inodes by default */ 1484 ctx->uid = current_fsuid(); 1485 ctx->gid = current_fsgid(); 1486 ctx->mode = 0755; 1487 ctx->hstate = &default_hstate; 1488 ctx->min_hpages = -1; /* No default minimum size */ 1489 ctx->max_val_type = NO_SIZE; 1490 ctx->min_val_type = NO_SIZE; 1491 fc->fs_private = ctx; 1492 fc->ops = &hugetlbfs_fs_context_ops; 1493 return 0; 1494 } 1495 1496 static struct file_system_type hugetlbfs_fs_type = { 1497 .name = "hugetlbfs", 1498 .init_fs_context = hugetlbfs_init_fs_context, 1499 .parameters = hugetlb_fs_parameters, 1500 .kill_sb = kill_litter_super, 1501 .fs_flags = FS_ALLOW_IDMAP, 1502 }; 1503 1504 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE]; 1505 1506 static int can_do_hugetlb_shm(void) 1507 { 1508 kgid_t shm_group; 1509 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group); 1510 return capable(CAP_IPC_LOCK) || in_group_p(shm_group); 1511 } 1512 1513 static int get_hstate_idx(int page_size_log) 1514 { 1515 struct hstate *h = hstate_sizelog(page_size_log); 1516 1517 if (!h) 1518 return -1; 1519 return hstate_index(h); 1520 } 1521 1522 /* 1523 * Note that size should be aligned to proper hugepage size in caller side, 1524 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended. 1525 */ 1526 struct file *hugetlb_file_setup(const char *name, size_t size, 1527 vm_flags_t acctflag, int creat_flags, 1528 int page_size_log) 1529 { 1530 struct inode *inode; 1531 struct vfsmount *mnt; 1532 int hstate_idx; 1533 struct file *file; 1534 1535 hstate_idx = get_hstate_idx(page_size_log); 1536 if (hstate_idx < 0) 1537 return ERR_PTR(-ENODEV); 1538 1539 mnt = hugetlbfs_vfsmount[hstate_idx]; 1540 if (!mnt) 1541 return ERR_PTR(-ENOENT); 1542 1543 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) { 1544 struct ucounts *ucounts = current_ucounts(); 1545 1546 if (user_shm_lock(size, ucounts)) { 1547 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n", 1548 current->comm, current->pid); 1549 user_shm_unlock(size, ucounts); 1550 } 1551 return ERR_PTR(-EPERM); 1552 } 1553 1554 file = ERR_PTR(-ENOSPC); 1555 /* hugetlbfs_vfsmount[] mounts do not use idmapped mounts. */ 1556 inode = hugetlbfs_get_inode(mnt->mnt_sb, &nop_mnt_idmap, NULL, 1557 S_IFREG | S_IRWXUGO, 0); 1558 if (!inode) 1559 goto out; 1560 if (creat_flags == HUGETLB_SHMFS_INODE) 1561 inode->i_flags |= S_PRIVATE; 1562 1563 inode->i_size = size; 1564 clear_nlink(inode); 1565 1566 if (!hugetlb_reserve_pages(inode, 0, 1567 size >> huge_page_shift(hstate_inode(inode)), NULL, 1568 acctflag)) 1569 file = ERR_PTR(-ENOMEM); 1570 else 1571 file = alloc_file_pseudo(inode, mnt, name, O_RDWR, 1572 &hugetlbfs_file_operations); 1573 if (!IS_ERR(file)) 1574 return file; 1575 1576 iput(inode); 1577 out: 1578 return file; 1579 } 1580 1581 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h) 1582 { 1583 struct fs_context *fc; 1584 struct vfsmount *mnt; 1585 1586 fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT); 1587 if (IS_ERR(fc)) { 1588 mnt = ERR_CAST(fc); 1589 } else { 1590 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1591 ctx->hstate = h; 1592 mnt = fc_mount_longterm(fc); 1593 put_fs_context(fc); 1594 } 1595 if (IS_ERR(mnt)) 1596 pr_err("Cannot mount internal hugetlbfs for page size %luK", 1597 huge_page_size(h) / SZ_1K); 1598 return mnt; 1599 } 1600 1601 static int __init init_hugetlbfs_fs(void) 1602 { 1603 struct vfsmount *mnt; 1604 struct hstate *h; 1605 int error; 1606 int i; 1607 1608 if (!hugepages_supported()) { 1609 pr_info("disabling because there are no supported hugepage sizes\n"); 1610 return -ENOTSUPP; 1611 } 1612 1613 error = -ENOMEM; 1614 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache", 1615 sizeof(struct hugetlbfs_inode_info), 1616 0, SLAB_ACCOUNT, init_once); 1617 if (hugetlbfs_inode_cachep == NULL) 1618 goto out; 1619 1620 error = register_filesystem(&hugetlbfs_fs_type); 1621 if (error) 1622 goto out_free; 1623 1624 /* default hstate mount is required */ 1625 mnt = mount_one_hugetlbfs(&default_hstate); 1626 if (IS_ERR(mnt)) { 1627 error = PTR_ERR(mnt); 1628 goto out_unreg; 1629 } 1630 hugetlbfs_vfsmount[default_hstate_idx] = mnt; 1631 1632 /* other hstates are optional */ 1633 i = 0; 1634 for_each_hstate(h) { 1635 if (i == default_hstate_idx) { 1636 i++; 1637 continue; 1638 } 1639 1640 mnt = mount_one_hugetlbfs(h); 1641 if (IS_ERR(mnt)) 1642 hugetlbfs_vfsmount[i] = NULL; 1643 else 1644 hugetlbfs_vfsmount[i] = mnt; 1645 i++; 1646 } 1647 1648 return 0; 1649 1650 out_unreg: 1651 (void)unregister_filesystem(&hugetlbfs_fs_type); 1652 out_free: 1653 kmem_cache_destroy(hugetlbfs_inode_cachep); 1654 out: 1655 return error; 1656 } 1657 fs_initcall(init_hugetlbfs_fs) 1658