xref: /linux/fs/hugetlbfs/inode.c (revision 24bce201d79807b668bf9d9e0aca801c5c0d5f78)
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched/signal.h>		/* remove ASAP */
15 #include <linux/falloc.h>
16 #include <linux/fs.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/fs_parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
39 
40 #include <linux/uaccess.h>
41 #include <linux/sched/mm.h>
42 
43 static const struct super_operations hugetlbfs_ops;
44 static const struct address_space_operations hugetlbfs_aops;
45 const struct file_operations hugetlbfs_file_operations;
46 static const struct inode_operations hugetlbfs_dir_inode_operations;
47 static const struct inode_operations hugetlbfs_inode_operations;
48 
49 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
50 
51 struct hugetlbfs_fs_context {
52 	struct hstate		*hstate;
53 	unsigned long long	max_size_opt;
54 	unsigned long long	min_size_opt;
55 	long			max_hpages;
56 	long			nr_inodes;
57 	long			min_hpages;
58 	enum hugetlbfs_size_type max_val_type;
59 	enum hugetlbfs_size_type min_val_type;
60 	kuid_t			uid;
61 	kgid_t			gid;
62 	umode_t			mode;
63 };
64 
65 int sysctl_hugetlb_shm_group;
66 
67 enum hugetlb_param {
68 	Opt_gid,
69 	Opt_min_size,
70 	Opt_mode,
71 	Opt_nr_inodes,
72 	Opt_pagesize,
73 	Opt_size,
74 	Opt_uid,
75 };
76 
77 static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
78 	fsparam_u32   ("gid",		Opt_gid),
79 	fsparam_string("min_size",	Opt_min_size),
80 	fsparam_u32oct("mode",		Opt_mode),
81 	fsparam_string("nr_inodes",	Opt_nr_inodes),
82 	fsparam_string("pagesize",	Opt_pagesize),
83 	fsparam_string("size",		Opt_size),
84 	fsparam_u32   ("uid",		Opt_uid),
85 	{}
86 };
87 
88 #ifdef CONFIG_NUMA
89 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
90 					struct inode *inode, pgoff_t index)
91 {
92 	vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
93 							index);
94 }
95 
96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
97 {
98 	mpol_cond_put(vma->vm_policy);
99 }
100 #else
101 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
102 					struct inode *inode, pgoff_t index)
103 {
104 }
105 
106 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
107 {
108 }
109 #endif
110 
111 static void huge_pagevec_release(struct pagevec *pvec)
112 {
113 	int i;
114 
115 	for (i = 0; i < pagevec_count(pvec); ++i)
116 		put_page(pvec->pages[i]);
117 
118 	pagevec_reinit(pvec);
119 }
120 
121 /*
122  * Mask used when checking the page offset value passed in via system
123  * calls.  This value will be converted to a loff_t which is signed.
124  * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
125  * value.  The extra bit (- 1 in the shift value) is to take the sign
126  * bit into account.
127  */
128 #define PGOFF_LOFFT_MAX \
129 	(((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
130 
131 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
132 {
133 	struct inode *inode = file_inode(file);
134 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
135 	loff_t len, vma_len;
136 	int ret;
137 	struct hstate *h = hstate_file(file);
138 
139 	/*
140 	 * vma address alignment (but not the pgoff alignment) has
141 	 * already been checked by prepare_hugepage_range.  If you add
142 	 * any error returns here, do so after setting VM_HUGETLB, so
143 	 * is_vm_hugetlb_page tests below unmap_region go the right
144 	 * way when do_mmap unwinds (may be important on powerpc
145 	 * and ia64).
146 	 */
147 	vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
148 	vma->vm_ops = &hugetlb_vm_ops;
149 
150 	ret = seal_check_future_write(info->seals, vma);
151 	if (ret)
152 		return ret;
153 
154 	/*
155 	 * page based offset in vm_pgoff could be sufficiently large to
156 	 * overflow a loff_t when converted to byte offset.  This can
157 	 * only happen on architectures where sizeof(loff_t) ==
158 	 * sizeof(unsigned long).  So, only check in those instances.
159 	 */
160 	if (sizeof(unsigned long) == sizeof(loff_t)) {
161 		if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
162 			return -EINVAL;
163 	}
164 
165 	/* must be huge page aligned */
166 	if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
167 		return -EINVAL;
168 
169 	vma_len = (loff_t)(vma->vm_end - vma->vm_start);
170 	len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
171 	/* check for overflow */
172 	if (len < vma_len)
173 		return -EINVAL;
174 
175 	inode_lock(inode);
176 	file_accessed(file);
177 
178 	ret = -ENOMEM;
179 	if (!hugetlb_reserve_pages(inode,
180 				vma->vm_pgoff >> huge_page_order(h),
181 				len >> huge_page_shift(h), vma,
182 				vma->vm_flags))
183 		goto out;
184 
185 	ret = 0;
186 	if (vma->vm_flags & VM_WRITE && inode->i_size < len)
187 		i_size_write(inode, len);
188 out:
189 	inode_unlock(inode);
190 
191 	return ret;
192 }
193 
194 /*
195  * Called under mmap_write_lock(mm).
196  */
197 
198 static unsigned long
199 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr,
200 		unsigned long len, unsigned long pgoff, unsigned long flags)
201 {
202 	struct hstate *h = hstate_file(file);
203 	struct vm_unmapped_area_info info;
204 
205 	info.flags = 0;
206 	info.length = len;
207 	info.low_limit = current->mm->mmap_base;
208 	info.high_limit = arch_get_mmap_end(addr, len, flags);
209 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
210 	info.align_offset = 0;
211 	return vm_unmapped_area(&info);
212 }
213 
214 static unsigned long
215 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr,
216 		unsigned long len, unsigned long pgoff, unsigned long flags)
217 {
218 	struct hstate *h = hstate_file(file);
219 	struct vm_unmapped_area_info info;
220 
221 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
222 	info.length = len;
223 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
224 	info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base);
225 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
226 	info.align_offset = 0;
227 	addr = vm_unmapped_area(&info);
228 
229 	/*
230 	 * A failed mmap() very likely causes application failure,
231 	 * so fall back to the bottom-up function here. This scenario
232 	 * can happen with large stack limits and large mmap()
233 	 * allocations.
234 	 */
235 	if (unlikely(offset_in_page(addr))) {
236 		VM_BUG_ON(addr != -ENOMEM);
237 		info.flags = 0;
238 		info.low_limit = current->mm->mmap_base;
239 		info.high_limit = arch_get_mmap_end(addr, len, flags);
240 		addr = vm_unmapped_area(&info);
241 	}
242 
243 	return addr;
244 }
245 
246 unsigned long
247 generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
248 				  unsigned long len, unsigned long pgoff,
249 				  unsigned long flags)
250 {
251 	struct mm_struct *mm = current->mm;
252 	struct vm_area_struct *vma;
253 	struct hstate *h = hstate_file(file);
254 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
255 
256 	if (len & ~huge_page_mask(h))
257 		return -EINVAL;
258 	if (len > TASK_SIZE)
259 		return -ENOMEM;
260 
261 	if (flags & MAP_FIXED) {
262 		if (prepare_hugepage_range(file, addr, len))
263 			return -EINVAL;
264 		return addr;
265 	}
266 
267 	if (addr) {
268 		addr = ALIGN(addr, huge_page_size(h));
269 		vma = find_vma(mm, addr);
270 		if (mmap_end - len >= addr &&
271 		    (!vma || addr + len <= vm_start_gap(vma)))
272 			return addr;
273 	}
274 
275 	/*
276 	 * Use mm->get_unmapped_area value as a hint to use topdown routine.
277 	 * If architectures have special needs, they should define their own
278 	 * version of hugetlb_get_unmapped_area.
279 	 */
280 	if (mm->get_unmapped_area == arch_get_unmapped_area_topdown)
281 		return hugetlb_get_unmapped_area_topdown(file, addr, len,
282 				pgoff, flags);
283 	return hugetlb_get_unmapped_area_bottomup(file, addr, len,
284 			pgoff, flags);
285 }
286 
287 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
288 static unsigned long
289 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
290 			  unsigned long len, unsigned long pgoff,
291 			  unsigned long flags)
292 {
293 	return generic_hugetlb_get_unmapped_area(file, addr, len, pgoff, flags);
294 }
295 #endif
296 
297 static size_t
298 hugetlbfs_read_actor(struct page *page, unsigned long offset,
299 			struct iov_iter *to, unsigned long size)
300 {
301 	size_t copied = 0;
302 	int i, chunksize;
303 
304 	/* Find which 4k chunk and offset with in that chunk */
305 	i = offset >> PAGE_SHIFT;
306 	offset = offset & ~PAGE_MASK;
307 
308 	while (size) {
309 		size_t n;
310 		chunksize = PAGE_SIZE;
311 		if (offset)
312 			chunksize -= offset;
313 		if (chunksize > size)
314 			chunksize = size;
315 		n = copy_page_to_iter(&page[i], offset, chunksize, to);
316 		copied += n;
317 		if (n != chunksize)
318 			return copied;
319 		offset = 0;
320 		size -= chunksize;
321 		i++;
322 	}
323 	return copied;
324 }
325 
326 /*
327  * Support for read() - Find the page attached to f_mapping and copy out the
328  * data. Its *very* similar to generic_file_buffered_read(), we can't use that
329  * since it has PAGE_SIZE assumptions.
330  */
331 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
332 {
333 	struct file *file = iocb->ki_filp;
334 	struct hstate *h = hstate_file(file);
335 	struct address_space *mapping = file->f_mapping;
336 	struct inode *inode = mapping->host;
337 	unsigned long index = iocb->ki_pos >> huge_page_shift(h);
338 	unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
339 	unsigned long end_index;
340 	loff_t isize;
341 	ssize_t retval = 0;
342 
343 	while (iov_iter_count(to)) {
344 		struct page *page;
345 		size_t nr, copied;
346 
347 		/* nr is the maximum number of bytes to copy from this page */
348 		nr = huge_page_size(h);
349 		isize = i_size_read(inode);
350 		if (!isize)
351 			break;
352 		end_index = (isize - 1) >> huge_page_shift(h);
353 		if (index > end_index)
354 			break;
355 		if (index == end_index) {
356 			nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
357 			if (nr <= offset)
358 				break;
359 		}
360 		nr = nr - offset;
361 
362 		/* Find the page */
363 		page = find_lock_page(mapping, index);
364 		if (unlikely(page == NULL)) {
365 			/*
366 			 * We have a HOLE, zero out the user-buffer for the
367 			 * length of the hole or request.
368 			 */
369 			copied = iov_iter_zero(nr, to);
370 		} else {
371 			unlock_page(page);
372 
373 			/*
374 			 * We have the page, copy it to user space buffer.
375 			 */
376 			copied = hugetlbfs_read_actor(page, offset, to, nr);
377 			put_page(page);
378 		}
379 		offset += copied;
380 		retval += copied;
381 		if (copied != nr && iov_iter_count(to)) {
382 			if (!retval)
383 				retval = -EFAULT;
384 			break;
385 		}
386 		index += offset >> huge_page_shift(h);
387 		offset &= ~huge_page_mask(h);
388 	}
389 	iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
390 	return retval;
391 }
392 
393 static int hugetlbfs_write_begin(struct file *file,
394 			struct address_space *mapping,
395 			loff_t pos, unsigned len,
396 			struct page **pagep, void **fsdata)
397 {
398 	return -EINVAL;
399 }
400 
401 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
402 			loff_t pos, unsigned len, unsigned copied,
403 			struct page *page, void *fsdata)
404 {
405 	BUG();
406 	return -EINVAL;
407 }
408 
409 static void remove_huge_page(struct page *page)
410 {
411 	ClearPageDirty(page);
412 	ClearPageUptodate(page);
413 	delete_from_page_cache(page);
414 }
415 
416 static void
417 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end,
418 		      zap_flags_t zap_flags)
419 {
420 	struct vm_area_struct *vma;
421 
422 	/*
423 	 * end == 0 indicates that the entire range after start should be
424 	 * unmapped.  Note, end is exclusive, whereas the interval tree takes
425 	 * an inclusive "last".
426 	 */
427 	vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) {
428 		unsigned long v_offset;
429 		unsigned long v_end;
430 
431 		/*
432 		 * Can the expression below overflow on 32-bit arches?
433 		 * No, because the interval tree returns us only those vmas
434 		 * which overlap the truncated area starting at pgoff,
435 		 * and no vma on a 32-bit arch can span beyond the 4GB.
436 		 */
437 		if (vma->vm_pgoff < start)
438 			v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
439 		else
440 			v_offset = 0;
441 
442 		if (!end)
443 			v_end = vma->vm_end;
444 		else {
445 			v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
446 							+ vma->vm_start;
447 			if (v_end > vma->vm_end)
448 				v_end = vma->vm_end;
449 		}
450 
451 		unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
452 				     NULL, zap_flags);
453 	}
454 }
455 
456 /*
457  * remove_inode_hugepages handles two distinct cases: truncation and hole
458  * punch.  There are subtle differences in operation for each case.
459  *
460  * truncation is indicated by end of range being LLONG_MAX
461  *	In this case, we first scan the range and release found pages.
462  *	After releasing pages, hugetlb_unreserve_pages cleans up region/reserve
463  *	maps and global counts.  Page faults can not race with truncation
464  *	in this routine.  hugetlb_no_page() holds i_mmap_rwsem and prevents
465  *	page faults in the truncated range by checking i_size.  i_size is
466  *	modified while holding i_mmap_rwsem.
467  * hole punch is indicated if end is not LLONG_MAX
468  *	In the hole punch case we scan the range and release found pages.
469  *	Only when releasing a page is the associated region/reserve map
470  *	deleted.  The region/reserve map for ranges without associated
471  *	pages are not modified.  Page faults can race with hole punch.
472  *	This is indicated if we find a mapped page.
473  * Note: If the passed end of range value is beyond the end of file, but
474  * not LLONG_MAX this routine still performs a hole punch operation.
475  */
476 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
477 				   loff_t lend)
478 {
479 	struct hstate *h = hstate_inode(inode);
480 	struct address_space *mapping = &inode->i_data;
481 	const pgoff_t start = lstart >> huge_page_shift(h);
482 	const pgoff_t end = lend >> huge_page_shift(h);
483 	struct pagevec pvec;
484 	pgoff_t next, index;
485 	int i, freed = 0;
486 	bool truncate_op = (lend == LLONG_MAX);
487 
488 	pagevec_init(&pvec);
489 	next = start;
490 	while (next < end) {
491 		/*
492 		 * When no more pages are found, we are done.
493 		 */
494 		if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1))
495 			break;
496 
497 		for (i = 0; i < pagevec_count(&pvec); ++i) {
498 			struct page *page = pvec.pages[i];
499 			u32 hash = 0;
500 
501 			index = page->index;
502 			if (!truncate_op) {
503 				/*
504 				 * Only need to hold the fault mutex in the
505 				 * hole punch case.  This prevents races with
506 				 * page faults.  Races are not possible in the
507 				 * case of truncation.
508 				 */
509 				hash = hugetlb_fault_mutex_hash(mapping, index);
510 				mutex_lock(&hugetlb_fault_mutex_table[hash]);
511 			}
512 
513 			/*
514 			 * If page is mapped, it was faulted in after being
515 			 * unmapped in caller.  Unmap (again) now after taking
516 			 * the fault mutex.  The mutex will prevent faults
517 			 * until we finish removing the page.
518 			 *
519 			 * This race can only happen in the hole punch case.
520 			 * Getting here in a truncate operation is a bug.
521 			 */
522 			if (unlikely(page_mapped(page))) {
523 				BUG_ON(truncate_op);
524 
525 				mutex_unlock(&hugetlb_fault_mutex_table[hash]);
526 				i_mmap_lock_write(mapping);
527 				mutex_lock(&hugetlb_fault_mutex_table[hash]);
528 				hugetlb_vmdelete_list(&mapping->i_mmap,
529 					index * pages_per_huge_page(h),
530 					(index + 1) * pages_per_huge_page(h),
531 					ZAP_FLAG_DROP_MARKER);
532 				i_mmap_unlock_write(mapping);
533 			}
534 
535 			lock_page(page);
536 			/*
537 			 * We must free the huge page and remove from page
538 			 * cache (remove_huge_page) BEFORE removing the
539 			 * region/reserve map (hugetlb_unreserve_pages).  In
540 			 * rare out of memory conditions, removal of the
541 			 * region/reserve map could fail. Correspondingly,
542 			 * the subpool and global reserve usage count can need
543 			 * to be adjusted.
544 			 */
545 			VM_BUG_ON(HPageRestoreReserve(page));
546 			remove_huge_page(page);
547 			freed++;
548 			if (!truncate_op) {
549 				if (unlikely(hugetlb_unreserve_pages(inode,
550 							index, index + 1, 1)))
551 					hugetlb_fix_reserve_counts(inode);
552 			}
553 
554 			unlock_page(page);
555 			if (!truncate_op)
556 				mutex_unlock(&hugetlb_fault_mutex_table[hash]);
557 		}
558 		huge_pagevec_release(&pvec);
559 		cond_resched();
560 	}
561 
562 	if (truncate_op)
563 		(void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
564 }
565 
566 static void hugetlbfs_evict_inode(struct inode *inode)
567 {
568 	struct resv_map *resv_map;
569 
570 	remove_inode_hugepages(inode, 0, LLONG_MAX);
571 
572 	/*
573 	 * Get the resv_map from the address space embedded in the inode.
574 	 * This is the address space which points to any resv_map allocated
575 	 * at inode creation time.  If this is a device special inode,
576 	 * i_mapping may not point to the original address space.
577 	 */
578 	resv_map = (struct resv_map *)(&inode->i_data)->private_data;
579 	/* Only regular and link inodes have associated reserve maps */
580 	if (resv_map)
581 		resv_map_release(&resv_map->refs);
582 	clear_inode(inode);
583 }
584 
585 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset)
586 {
587 	pgoff_t pgoff;
588 	struct address_space *mapping = inode->i_mapping;
589 	struct hstate *h = hstate_inode(inode);
590 
591 	BUG_ON(offset & ~huge_page_mask(h));
592 	pgoff = offset >> PAGE_SHIFT;
593 
594 	i_mmap_lock_write(mapping);
595 	i_size_write(inode, offset);
596 	if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
597 		hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0,
598 				      ZAP_FLAG_DROP_MARKER);
599 	i_mmap_unlock_write(mapping);
600 	remove_inode_hugepages(inode, offset, LLONG_MAX);
601 }
602 
603 static void hugetlbfs_zero_partial_page(struct hstate *h,
604 					struct address_space *mapping,
605 					loff_t start,
606 					loff_t end)
607 {
608 	pgoff_t idx = start >> huge_page_shift(h);
609 	struct folio *folio;
610 
611 	folio = filemap_lock_folio(mapping, idx);
612 	if (!folio)
613 		return;
614 
615 	start = start & ~huge_page_mask(h);
616 	end = end & ~huge_page_mask(h);
617 	if (!end)
618 		end = huge_page_size(h);
619 
620 	folio_zero_segment(folio, (size_t)start, (size_t)end);
621 
622 	folio_unlock(folio);
623 	folio_put(folio);
624 }
625 
626 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
627 {
628 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
629 	struct address_space *mapping = inode->i_mapping;
630 	struct hstate *h = hstate_inode(inode);
631 	loff_t hpage_size = huge_page_size(h);
632 	loff_t hole_start, hole_end;
633 
634 	/*
635 	 * hole_start and hole_end indicate the full pages within the hole.
636 	 */
637 	hole_start = round_up(offset, hpage_size);
638 	hole_end = round_down(offset + len, hpage_size);
639 
640 	inode_lock(inode);
641 
642 	/* protected by i_rwsem */
643 	if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
644 		inode_unlock(inode);
645 		return -EPERM;
646 	}
647 
648 	i_mmap_lock_write(mapping);
649 
650 	/* If range starts before first full page, zero partial page. */
651 	if (offset < hole_start)
652 		hugetlbfs_zero_partial_page(h, mapping,
653 				offset, min(offset + len, hole_start));
654 
655 	/* Unmap users of full pages in the hole. */
656 	if (hole_end > hole_start) {
657 		if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
658 			hugetlb_vmdelete_list(&mapping->i_mmap,
659 					      hole_start >> PAGE_SHIFT,
660 					      hole_end >> PAGE_SHIFT, 0);
661 	}
662 
663 	/* If range extends beyond last full page, zero partial page. */
664 	if ((offset + len) > hole_end && (offset + len) > hole_start)
665 		hugetlbfs_zero_partial_page(h, mapping,
666 				hole_end, offset + len);
667 
668 	i_mmap_unlock_write(mapping);
669 
670 	/* Remove full pages from the file. */
671 	if (hole_end > hole_start)
672 		remove_inode_hugepages(inode, hole_start, hole_end);
673 
674 	inode_unlock(inode);
675 
676 	return 0;
677 }
678 
679 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
680 				loff_t len)
681 {
682 	struct inode *inode = file_inode(file);
683 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
684 	struct address_space *mapping = inode->i_mapping;
685 	struct hstate *h = hstate_inode(inode);
686 	struct vm_area_struct pseudo_vma;
687 	struct mm_struct *mm = current->mm;
688 	loff_t hpage_size = huge_page_size(h);
689 	unsigned long hpage_shift = huge_page_shift(h);
690 	pgoff_t start, index, end;
691 	int error;
692 	u32 hash;
693 
694 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
695 		return -EOPNOTSUPP;
696 
697 	if (mode & FALLOC_FL_PUNCH_HOLE)
698 		return hugetlbfs_punch_hole(inode, offset, len);
699 
700 	/*
701 	 * Default preallocate case.
702 	 * For this range, start is rounded down and end is rounded up
703 	 * as well as being converted to page offsets.
704 	 */
705 	start = offset >> hpage_shift;
706 	end = (offset + len + hpage_size - 1) >> hpage_shift;
707 
708 	inode_lock(inode);
709 
710 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
711 	error = inode_newsize_ok(inode, offset + len);
712 	if (error)
713 		goto out;
714 
715 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
716 		error = -EPERM;
717 		goto out;
718 	}
719 
720 	/*
721 	 * Initialize a pseudo vma as this is required by the huge page
722 	 * allocation routines.  If NUMA is configured, use page index
723 	 * as input to create an allocation policy.
724 	 */
725 	vma_init(&pseudo_vma, mm);
726 	pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
727 	pseudo_vma.vm_file = file;
728 
729 	for (index = start; index < end; index++) {
730 		/*
731 		 * This is supposed to be the vaddr where the page is being
732 		 * faulted in, but we have no vaddr here.
733 		 */
734 		struct page *page;
735 		unsigned long addr;
736 
737 		cond_resched();
738 
739 		/*
740 		 * fallocate(2) manpage permits EINTR; we may have been
741 		 * interrupted because we are using up too much memory.
742 		 */
743 		if (signal_pending(current)) {
744 			error = -EINTR;
745 			break;
746 		}
747 
748 		/* Set numa allocation policy based on index */
749 		hugetlb_set_vma_policy(&pseudo_vma, inode, index);
750 
751 		/* addr is the offset within the file (zero based) */
752 		addr = index * hpage_size;
753 
754 		/*
755 		 * fault mutex taken here, protects against fault path
756 		 * and hole punch.  inode_lock previously taken protects
757 		 * against truncation.
758 		 */
759 		hash = hugetlb_fault_mutex_hash(mapping, index);
760 		mutex_lock(&hugetlb_fault_mutex_table[hash]);
761 
762 		/* See if already present in mapping to avoid alloc/free */
763 		page = find_get_page(mapping, index);
764 		if (page) {
765 			put_page(page);
766 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
767 			hugetlb_drop_vma_policy(&pseudo_vma);
768 			continue;
769 		}
770 
771 		/*
772 		 * Allocate page without setting the avoid_reserve argument.
773 		 * There certainly are no reserves associated with the
774 		 * pseudo_vma.  However, there could be shared mappings with
775 		 * reserves for the file at the inode level.  If we fallocate
776 		 * pages in these areas, we need to consume the reserves
777 		 * to keep reservation accounting consistent.
778 		 */
779 		page = alloc_huge_page(&pseudo_vma, addr, 0);
780 		hugetlb_drop_vma_policy(&pseudo_vma);
781 		if (IS_ERR(page)) {
782 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
783 			error = PTR_ERR(page);
784 			goto out;
785 		}
786 		clear_huge_page(page, addr, pages_per_huge_page(h));
787 		__SetPageUptodate(page);
788 		error = huge_add_to_page_cache(page, mapping, index);
789 		if (unlikely(error)) {
790 			restore_reserve_on_error(h, &pseudo_vma, addr, page);
791 			put_page(page);
792 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
793 			goto out;
794 		}
795 
796 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
797 
798 		SetHPageMigratable(page);
799 		/*
800 		 * unlock_page because locked by add_to_page_cache()
801 		 * put_page() due to reference from alloc_huge_page()
802 		 */
803 		unlock_page(page);
804 		put_page(page);
805 	}
806 
807 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
808 		i_size_write(inode, offset + len);
809 	inode->i_ctime = current_time(inode);
810 out:
811 	inode_unlock(inode);
812 	return error;
813 }
814 
815 static int hugetlbfs_setattr(struct user_namespace *mnt_userns,
816 			     struct dentry *dentry, struct iattr *attr)
817 {
818 	struct inode *inode = d_inode(dentry);
819 	struct hstate *h = hstate_inode(inode);
820 	int error;
821 	unsigned int ia_valid = attr->ia_valid;
822 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
823 
824 	error = setattr_prepare(&init_user_ns, dentry, attr);
825 	if (error)
826 		return error;
827 
828 	if (ia_valid & ATTR_SIZE) {
829 		loff_t oldsize = inode->i_size;
830 		loff_t newsize = attr->ia_size;
831 
832 		if (newsize & ~huge_page_mask(h))
833 			return -EINVAL;
834 		/* protected by i_rwsem */
835 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
836 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
837 			return -EPERM;
838 		hugetlb_vmtruncate(inode, newsize);
839 	}
840 
841 	setattr_copy(&init_user_ns, inode, attr);
842 	mark_inode_dirty(inode);
843 	return 0;
844 }
845 
846 static struct inode *hugetlbfs_get_root(struct super_block *sb,
847 					struct hugetlbfs_fs_context *ctx)
848 {
849 	struct inode *inode;
850 
851 	inode = new_inode(sb);
852 	if (inode) {
853 		inode->i_ino = get_next_ino();
854 		inode->i_mode = S_IFDIR | ctx->mode;
855 		inode->i_uid = ctx->uid;
856 		inode->i_gid = ctx->gid;
857 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
858 		inode->i_op = &hugetlbfs_dir_inode_operations;
859 		inode->i_fop = &simple_dir_operations;
860 		/* directory inodes start off with i_nlink == 2 (for "." entry) */
861 		inc_nlink(inode);
862 		lockdep_annotate_inode_mutex_key(inode);
863 	}
864 	return inode;
865 }
866 
867 /*
868  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
869  * be taken from reclaim -- unlike regular filesystems. This needs an
870  * annotation because huge_pmd_share() does an allocation under hugetlb's
871  * i_mmap_rwsem.
872  */
873 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
874 
875 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
876 					struct inode *dir,
877 					umode_t mode, dev_t dev)
878 {
879 	struct inode *inode;
880 	struct resv_map *resv_map = NULL;
881 
882 	/*
883 	 * Reserve maps are only needed for inodes that can have associated
884 	 * page allocations.
885 	 */
886 	if (S_ISREG(mode) || S_ISLNK(mode)) {
887 		resv_map = resv_map_alloc();
888 		if (!resv_map)
889 			return NULL;
890 	}
891 
892 	inode = new_inode(sb);
893 	if (inode) {
894 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
895 
896 		inode->i_ino = get_next_ino();
897 		inode_init_owner(&init_user_ns, inode, dir, mode);
898 		lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
899 				&hugetlbfs_i_mmap_rwsem_key);
900 		inode->i_mapping->a_ops = &hugetlbfs_aops;
901 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
902 		inode->i_mapping->private_data = resv_map;
903 		info->seals = F_SEAL_SEAL;
904 		switch (mode & S_IFMT) {
905 		default:
906 			init_special_inode(inode, mode, dev);
907 			break;
908 		case S_IFREG:
909 			inode->i_op = &hugetlbfs_inode_operations;
910 			inode->i_fop = &hugetlbfs_file_operations;
911 			break;
912 		case S_IFDIR:
913 			inode->i_op = &hugetlbfs_dir_inode_operations;
914 			inode->i_fop = &simple_dir_operations;
915 
916 			/* directory inodes start off with i_nlink == 2 (for "." entry) */
917 			inc_nlink(inode);
918 			break;
919 		case S_IFLNK:
920 			inode->i_op = &page_symlink_inode_operations;
921 			inode_nohighmem(inode);
922 			break;
923 		}
924 		lockdep_annotate_inode_mutex_key(inode);
925 	} else {
926 		if (resv_map)
927 			kref_put(&resv_map->refs, resv_map_release);
928 	}
929 
930 	return inode;
931 }
932 
933 /*
934  * File creation. Allocate an inode, and we're done..
935  */
936 static int do_hugetlbfs_mknod(struct inode *dir,
937 			struct dentry *dentry,
938 			umode_t mode,
939 			dev_t dev,
940 			bool tmpfile)
941 {
942 	struct inode *inode;
943 	int error = -ENOSPC;
944 
945 	inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
946 	if (inode) {
947 		dir->i_ctime = dir->i_mtime = current_time(dir);
948 		if (tmpfile) {
949 			d_tmpfile(dentry, inode);
950 		} else {
951 			d_instantiate(dentry, inode);
952 			dget(dentry);/* Extra count - pin the dentry in core */
953 		}
954 		error = 0;
955 	}
956 	return error;
957 }
958 
959 static int hugetlbfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
960 			   struct dentry *dentry, umode_t mode, dev_t dev)
961 {
962 	return do_hugetlbfs_mknod(dir, dentry, mode, dev, false);
963 }
964 
965 static int hugetlbfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
966 			   struct dentry *dentry, umode_t mode)
967 {
968 	int retval = hugetlbfs_mknod(&init_user_ns, dir, dentry,
969 				     mode | S_IFDIR, 0);
970 	if (!retval)
971 		inc_nlink(dir);
972 	return retval;
973 }
974 
975 static int hugetlbfs_create(struct user_namespace *mnt_userns,
976 			    struct inode *dir, struct dentry *dentry,
977 			    umode_t mode, bool excl)
978 {
979 	return hugetlbfs_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
980 }
981 
982 static int hugetlbfs_tmpfile(struct user_namespace *mnt_userns,
983 			     struct inode *dir, struct dentry *dentry,
984 			     umode_t mode)
985 {
986 	return do_hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0, true);
987 }
988 
989 static int hugetlbfs_symlink(struct user_namespace *mnt_userns,
990 			     struct inode *dir, struct dentry *dentry,
991 			     const char *symname)
992 {
993 	struct inode *inode;
994 	int error = -ENOSPC;
995 
996 	inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
997 	if (inode) {
998 		int l = strlen(symname)+1;
999 		error = page_symlink(inode, symname, l);
1000 		if (!error) {
1001 			d_instantiate(dentry, inode);
1002 			dget(dentry);
1003 		} else
1004 			iput(inode);
1005 	}
1006 	dir->i_ctime = dir->i_mtime = current_time(dir);
1007 
1008 	return error;
1009 }
1010 
1011 static int hugetlbfs_migrate_page(struct address_space *mapping,
1012 				struct page *newpage, struct page *page,
1013 				enum migrate_mode mode)
1014 {
1015 	int rc;
1016 
1017 	rc = migrate_huge_page_move_mapping(mapping, newpage, page);
1018 	if (rc != MIGRATEPAGE_SUCCESS)
1019 		return rc;
1020 
1021 	if (hugetlb_page_subpool(page)) {
1022 		hugetlb_set_page_subpool(newpage, hugetlb_page_subpool(page));
1023 		hugetlb_set_page_subpool(page, NULL);
1024 	}
1025 
1026 	if (mode != MIGRATE_SYNC_NO_COPY)
1027 		migrate_page_copy(newpage, page);
1028 	else
1029 		migrate_page_states(newpage, page);
1030 
1031 	return MIGRATEPAGE_SUCCESS;
1032 }
1033 
1034 static int hugetlbfs_error_remove_page(struct address_space *mapping,
1035 				struct page *page)
1036 {
1037 	struct inode *inode = mapping->host;
1038 	pgoff_t index = page->index;
1039 
1040 	remove_huge_page(page);
1041 	if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1)))
1042 		hugetlb_fix_reserve_counts(inode);
1043 
1044 	return 0;
1045 }
1046 
1047 /*
1048  * Display the mount options in /proc/mounts.
1049  */
1050 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
1051 {
1052 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
1053 	struct hugepage_subpool *spool = sbinfo->spool;
1054 	unsigned long hpage_size = huge_page_size(sbinfo->hstate);
1055 	unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
1056 	char mod;
1057 
1058 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1059 		seq_printf(m, ",uid=%u",
1060 			   from_kuid_munged(&init_user_ns, sbinfo->uid));
1061 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1062 		seq_printf(m, ",gid=%u",
1063 			   from_kgid_munged(&init_user_ns, sbinfo->gid));
1064 	if (sbinfo->mode != 0755)
1065 		seq_printf(m, ",mode=%o", sbinfo->mode);
1066 	if (sbinfo->max_inodes != -1)
1067 		seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1068 
1069 	hpage_size /= 1024;
1070 	mod = 'K';
1071 	if (hpage_size >= 1024) {
1072 		hpage_size /= 1024;
1073 		mod = 'M';
1074 	}
1075 	seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1076 	if (spool) {
1077 		if (spool->max_hpages != -1)
1078 			seq_printf(m, ",size=%llu",
1079 				   (unsigned long long)spool->max_hpages << hpage_shift);
1080 		if (spool->min_hpages != -1)
1081 			seq_printf(m, ",min_size=%llu",
1082 				   (unsigned long long)spool->min_hpages << hpage_shift);
1083 	}
1084 	return 0;
1085 }
1086 
1087 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1088 {
1089 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
1090 	struct hstate *h = hstate_inode(d_inode(dentry));
1091 
1092 	buf->f_type = HUGETLBFS_MAGIC;
1093 	buf->f_bsize = huge_page_size(h);
1094 	if (sbinfo) {
1095 		spin_lock(&sbinfo->stat_lock);
1096 		/* If no limits set, just report 0 for max/free/used
1097 		 * blocks, like simple_statfs() */
1098 		if (sbinfo->spool) {
1099 			long free_pages;
1100 
1101 			spin_lock_irq(&sbinfo->spool->lock);
1102 			buf->f_blocks = sbinfo->spool->max_hpages;
1103 			free_pages = sbinfo->spool->max_hpages
1104 				- sbinfo->spool->used_hpages;
1105 			buf->f_bavail = buf->f_bfree = free_pages;
1106 			spin_unlock_irq(&sbinfo->spool->lock);
1107 			buf->f_files = sbinfo->max_inodes;
1108 			buf->f_ffree = sbinfo->free_inodes;
1109 		}
1110 		spin_unlock(&sbinfo->stat_lock);
1111 	}
1112 	buf->f_namelen = NAME_MAX;
1113 	return 0;
1114 }
1115 
1116 static void hugetlbfs_put_super(struct super_block *sb)
1117 {
1118 	struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1119 
1120 	if (sbi) {
1121 		sb->s_fs_info = NULL;
1122 
1123 		if (sbi->spool)
1124 			hugepage_put_subpool(sbi->spool);
1125 
1126 		kfree(sbi);
1127 	}
1128 }
1129 
1130 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1131 {
1132 	if (sbinfo->free_inodes >= 0) {
1133 		spin_lock(&sbinfo->stat_lock);
1134 		if (unlikely(!sbinfo->free_inodes)) {
1135 			spin_unlock(&sbinfo->stat_lock);
1136 			return 0;
1137 		}
1138 		sbinfo->free_inodes--;
1139 		spin_unlock(&sbinfo->stat_lock);
1140 	}
1141 
1142 	return 1;
1143 }
1144 
1145 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1146 {
1147 	if (sbinfo->free_inodes >= 0) {
1148 		spin_lock(&sbinfo->stat_lock);
1149 		sbinfo->free_inodes++;
1150 		spin_unlock(&sbinfo->stat_lock);
1151 	}
1152 }
1153 
1154 
1155 static struct kmem_cache *hugetlbfs_inode_cachep;
1156 
1157 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1158 {
1159 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1160 	struct hugetlbfs_inode_info *p;
1161 
1162 	if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1163 		return NULL;
1164 	p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL);
1165 	if (unlikely(!p)) {
1166 		hugetlbfs_inc_free_inodes(sbinfo);
1167 		return NULL;
1168 	}
1169 
1170 	/*
1171 	 * Any time after allocation, hugetlbfs_destroy_inode can be called
1172 	 * for the inode.  mpol_free_shared_policy is unconditionally called
1173 	 * as part of hugetlbfs_destroy_inode.  So, initialize policy here
1174 	 * in case of a quick call to destroy.
1175 	 *
1176 	 * Note that the policy is initialized even if we are creating a
1177 	 * private inode.  This simplifies hugetlbfs_destroy_inode.
1178 	 */
1179 	mpol_shared_policy_init(&p->policy, NULL);
1180 
1181 	return &p->vfs_inode;
1182 }
1183 
1184 static void hugetlbfs_free_inode(struct inode *inode)
1185 {
1186 	kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1187 }
1188 
1189 static void hugetlbfs_destroy_inode(struct inode *inode)
1190 {
1191 	hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1192 	mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1193 }
1194 
1195 static const struct address_space_operations hugetlbfs_aops = {
1196 	.write_begin	= hugetlbfs_write_begin,
1197 	.write_end	= hugetlbfs_write_end,
1198 	.dirty_folio	= noop_dirty_folio,
1199 	.migratepage    = hugetlbfs_migrate_page,
1200 	.error_remove_page	= hugetlbfs_error_remove_page,
1201 };
1202 
1203 
1204 static void init_once(void *foo)
1205 {
1206 	struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1207 
1208 	inode_init_once(&ei->vfs_inode);
1209 }
1210 
1211 const struct file_operations hugetlbfs_file_operations = {
1212 	.read_iter		= hugetlbfs_read_iter,
1213 	.mmap			= hugetlbfs_file_mmap,
1214 	.fsync			= noop_fsync,
1215 	.get_unmapped_area	= hugetlb_get_unmapped_area,
1216 	.llseek			= default_llseek,
1217 	.fallocate		= hugetlbfs_fallocate,
1218 };
1219 
1220 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1221 	.create		= hugetlbfs_create,
1222 	.lookup		= simple_lookup,
1223 	.link		= simple_link,
1224 	.unlink		= simple_unlink,
1225 	.symlink	= hugetlbfs_symlink,
1226 	.mkdir		= hugetlbfs_mkdir,
1227 	.rmdir		= simple_rmdir,
1228 	.mknod		= hugetlbfs_mknod,
1229 	.rename		= simple_rename,
1230 	.setattr	= hugetlbfs_setattr,
1231 	.tmpfile	= hugetlbfs_tmpfile,
1232 };
1233 
1234 static const struct inode_operations hugetlbfs_inode_operations = {
1235 	.setattr	= hugetlbfs_setattr,
1236 };
1237 
1238 static const struct super_operations hugetlbfs_ops = {
1239 	.alloc_inode    = hugetlbfs_alloc_inode,
1240 	.free_inode     = hugetlbfs_free_inode,
1241 	.destroy_inode  = hugetlbfs_destroy_inode,
1242 	.evict_inode	= hugetlbfs_evict_inode,
1243 	.statfs		= hugetlbfs_statfs,
1244 	.put_super	= hugetlbfs_put_super,
1245 	.show_options	= hugetlbfs_show_options,
1246 };
1247 
1248 /*
1249  * Convert size option passed from command line to number of huge pages
1250  * in the pool specified by hstate.  Size option could be in bytes
1251  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1252  */
1253 static long
1254 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1255 			 enum hugetlbfs_size_type val_type)
1256 {
1257 	if (val_type == NO_SIZE)
1258 		return -1;
1259 
1260 	if (val_type == SIZE_PERCENT) {
1261 		size_opt <<= huge_page_shift(h);
1262 		size_opt *= h->max_huge_pages;
1263 		do_div(size_opt, 100);
1264 	}
1265 
1266 	size_opt >>= huge_page_shift(h);
1267 	return size_opt;
1268 }
1269 
1270 /*
1271  * Parse one mount parameter.
1272  */
1273 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1274 {
1275 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1276 	struct fs_parse_result result;
1277 	char *rest;
1278 	unsigned long ps;
1279 	int opt;
1280 
1281 	opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1282 	if (opt < 0)
1283 		return opt;
1284 
1285 	switch (opt) {
1286 	case Opt_uid:
1287 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
1288 		if (!uid_valid(ctx->uid))
1289 			goto bad_val;
1290 		return 0;
1291 
1292 	case Opt_gid:
1293 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
1294 		if (!gid_valid(ctx->gid))
1295 			goto bad_val;
1296 		return 0;
1297 
1298 	case Opt_mode:
1299 		ctx->mode = result.uint_32 & 01777U;
1300 		return 0;
1301 
1302 	case Opt_size:
1303 		/* memparse() will accept a K/M/G without a digit */
1304 		if (!isdigit(param->string[0]))
1305 			goto bad_val;
1306 		ctx->max_size_opt = memparse(param->string, &rest);
1307 		ctx->max_val_type = SIZE_STD;
1308 		if (*rest == '%')
1309 			ctx->max_val_type = SIZE_PERCENT;
1310 		return 0;
1311 
1312 	case Opt_nr_inodes:
1313 		/* memparse() will accept a K/M/G without a digit */
1314 		if (!isdigit(param->string[0]))
1315 			goto bad_val;
1316 		ctx->nr_inodes = memparse(param->string, &rest);
1317 		return 0;
1318 
1319 	case Opt_pagesize:
1320 		ps = memparse(param->string, &rest);
1321 		ctx->hstate = size_to_hstate(ps);
1322 		if (!ctx->hstate) {
1323 			pr_err("Unsupported page size %lu MB\n", ps >> 20);
1324 			return -EINVAL;
1325 		}
1326 		return 0;
1327 
1328 	case Opt_min_size:
1329 		/* memparse() will accept a K/M/G without a digit */
1330 		if (!isdigit(param->string[0]))
1331 			goto bad_val;
1332 		ctx->min_size_opt = memparse(param->string, &rest);
1333 		ctx->min_val_type = SIZE_STD;
1334 		if (*rest == '%')
1335 			ctx->min_val_type = SIZE_PERCENT;
1336 		return 0;
1337 
1338 	default:
1339 		return -EINVAL;
1340 	}
1341 
1342 bad_val:
1343 	return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1344 		      param->string, param->key);
1345 }
1346 
1347 /*
1348  * Validate the parsed options.
1349  */
1350 static int hugetlbfs_validate(struct fs_context *fc)
1351 {
1352 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1353 
1354 	/*
1355 	 * Use huge page pool size (in hstate) to convert the size
1356 	 * options to number of huge pages.  If NO_SIZE, -1 is returned.
1357 	 */
1358 	ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1359 						   ctx->max_size_opt,
1360 						   ctx->max_val_type);
1361 	ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1362 						   ctx->min_size_opt,
1363 						   ctx->min_val_type);
1364 
1365 	/*
1366 	 * If max_size was specified, then min_size must be smaller
1367 	 */
1368 	if (ctx->max_val_type > NO_SIZE &&
1369 	    ctx->min_hpages > ctx->max_hpages) {
1370 		pr_err("Minimum size can not be greater than maximum size\n");
1371 		return -EINVAL;
1372 	}
1373 
1374 	return 0;
1375 }
1376 
1377 static int
1378 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1379 {
1380 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1381 	struct hugetlbfs_sb_info *sbinfo;
1382 
1383 	sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1384 	if (!sbinfo)
1385 		return -ENOMEM;
1386 	sb->s_fs_info = sbinfo;
1387 	spin_lock_init(&sbinfo->stat_lock);
1388 	sbinfo->hstate		= ctx->hstate;
1389 	sbinfo->max_inodes	= ctx->nr_inodes;
1390 	sbinfo->free_inodes	= ctx->nr_inodes;
1391 	sbinfo->spool		= NULL;
1392 	sbinfo->uid		= ctx->uid;
1393 	sbinfo->gid		= ctx->gid;
1394 	sbinfo->mode		= ctx->mode;
1395 
1396 	/*
1397 	 * Allocate and initialize subpool if maximum or minimum size is
1398 	 * specified.  Any needed reservations (for minimum size) are taken
1399 	 * taken when the subpool is created.
1400 	 */
1401 	if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1402 		sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1403 						     ctx->max_hpages,
1404 						     ctx->min_hpages);
1405 		if (!sbinfo->spool)
1406 			goto out_free;
1407 	}
1408 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1409 	sb->s_blocksize = huge_page_size(ctx->hstate);
1410 	sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1411 	sb->s_magic = HUGETLBFS_MAGIC;
1412 	sb->s_op = &hugetlbfs_ops;
1413 	sb->s_time_gran = 1;
1414 
1415 	/*
1416 	 * Due to the special and limited functionality of hugetlbfs, it does
1417 	 * not work well as a stacking filesystem.
1418 	 */
1419 	sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
1420 	sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1421 	if (!sb->s_root)
1422 		goto out_free;
1423 	return 0;
1424 out_free:
1425 	kfree(sbinfo->spool);
1426 	kfree(sbinfo);
1427 	return -ENOMEM;
1428 }
1429 
1430 static int hugetlbfs_get_tree(struct fs_context *fc)
1431 {
1432 	int err = hugetlbfs_validate(fc);
1433 	if (err)
1434 		return err;
1435 	return get_tree_nodev(fc, hugetlbfs_fill_super);
1436 }
1437 
1438 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1439 {
1440 	kfree(fc->fs_private);
1441 }
1442 
1443 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1444 	.free		= hugetlbfs_fs_context_free,
1445 	.parse_param	= hugetlbfs_parse_param,
1446 	.get_tree	= hugetlbfs_get_tree,
1447 };
1448 
1449 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1450 {
1451 	struct hugetlbfs_fs_context *ctx;
1452 
1453 	ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1454 	if (!ctx)
1455 		return -ENOMEM;
1456 
1457 	ctx->max_hpages	= -1; /* No limit on size by default */
1458 	ctx->nr_inodes	= -1; /* No limit on number of inodes by default */
1459 	ctx->uid	= current_fsuid();
1460 	ctx->gid	= current_fsgid();
1461 	ctx->mode	= 0755;
1462 	ctx->hstate	= &default_hstate;
1463 	ctx->min_hpages	= -1; /* No default minimum size */
1464 	ctx->max_val_type = NO_SIZE;
1465 	ctx->min_val_type = NO_SIZE;
1466 	fc->fs_private = ctx;
1467 	fc->ops	= &hugetlbfs_fs_context_ops;
1468 	return 0;
1469 }
1470 
1471 static struct file_system_type hugetlbfs_fs_type = {
1472 	.name			= "hugetlbfs",
1473 	.init_fs_context	= hugetlbfs_init_fs_context,
1474 	.parameters		= hugetlb_fs_parameters,
1475 	.kill_sb		= kill_litter_super,
1476 };
1477 
1478 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1479 
1480 static int can_do_hugetlb_shm(void)
1481 {
1482 	kgid_t shm_group;
1483 	shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1484 	return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1485 }
1486 
1487 static int get_hstate_idx(int page_size_log)
1488 {
1489 	struct hstate *h = hstate_sizelog(page_size_log);
1490 
1491 	if (!h)
1492 		return -1;
1493 	return hstate_index(h);
1494 }
1495 
1496 /*
1497  * Note that size should be aligned to proper hugepage size in caller side,
1498  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1499  */
1500 struct file *hugetlb_file_setup(const char *name, size_t size,
1501 				vm_flags_t acctflag, int creat_flags,
1502 				int page_size_log)
1503 {
1504 	struct inode *inode;
1505 	struct vfsmount *mnt;
1506 	int hstate_idx;
1507 	struct file *file;
1508 
1509 	hstate_idx = get_hstate_idx(page_size_log);
1510 	if (hstate_idx < 0)
1511 		return ERR_PTR(-ENODEV);
1512 
1513 	mnt = hugetlbfs_vfsmount[hstate_idx];
1514 	if (!mnt)
1515 		return ERR_PTR(-ENOENT);
1516 
1517 	if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1518 		struct ucounts *ucounts = current_ucounts();
1519 
1520 		if (user_shm_lock(size, ucounts)) {
1521 			pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n",
1522 				current->comm, current->pid);
1523 			user_shm_unlock(size, ucounts);
1524 		}
1525 		return ERR_PTR(-EPERM);
1526 	}
1527 
1528 	file = ERR_PTR(-ENOSPC);
1529 	inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
1530 	if (!inode)
1531 		goto out;
1532 	if (creat_flags == HUGETLB_SHMFS_INODE)
1533 		inode->i_flags |= S_PRIVATE;
1534 
1535 	inode->i_size = size;
1536 	clear_nlink(inode);
1537 
1538 	if (!hugetlb_reserve_pages(inode, 0,
1539 			size >> huge_page_shift(hstate_inode(inode)), NULL,
1540 			acctflag))
1541 		file = ERR_PTR(-ENOMEM);
1542 	else
1543 		file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1544 					&hugetlbfs_file_operations);
1545 	if (!IS_ERR(file))
1546 		return file;
1547 
1548 	iput(inode);
1549 out:
1550 	return file;
1551 }
1552 
1553 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1554 {
1555 	struct fs_context *fc;
1556 	struct vfsmount *mnt;
1557 
1558 	fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1559 	if (IS_ERR(fc)) {
1560 		mnt = ERR_CAST(fc);
1561 	} else {
1562 		struct hugetlbfs_fs_context *ctx = fc->fs_private;
1563 		ctx->hstate = h;
1564 		mnt = fc_mount(fc);
1565 		put_fs_context(fc);
1566 	}
1567 	if (IS_ERR(mnt))
1568 		pr_err("Cannot mount internal hugetlbfs for page size %luK",
1569 		       huge_page_size(h) >> 10);
1570 	return mnt;
1571 }
1572 
1573 static int __init init_hugetlbfs_fs(void)
1574 {
1575 	struct vfsmount *mnt;
1576 	struct hstate *h;
1577 	int error;
1578 	int i;
1579 
1580 	if (!hugepages_supported()) {
1581 		pr_info("disabling because there are no supported hugepage sizes\n");
1582 		return -ENOTSUPP;
1583 	}
1584 
1585 	error = -ENOMEM;
1586 	hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1587 					sizeof(struct hugetlbfs_inode_info),
1588 					0, SLAB_ACCOUNT, init_once);
1589 	if (hugetlbfs_inode_cachep == NULL)
1590 		goto out;
1591 
1592 	error = register_filesystem(&hugetlbfs_fs_type);
1593 	if (error)
1594 		goto out_free;
1595 
1596 	/* default hstate mount is required */
1597 	mnt = mount_one_hugetlbfs(&default_hstate);
1598 	if (IS_ERR(mnt)) {
1599 		error = PTR_ERR(mnt);
1600 		goto out_unreg;
1601 	}
1602 	hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1603 
1604 	/* other hstates are optional */
1605 	i = 0;
1606 	for_each_hstate(h) {
1607 		if (i == default_hstate_idx) {
1608 			i++;
1609 			continue;
1610 		}
1611 
1612 		mnt = mount_one_hugetlbfs(h);
1613 		if (IS_ERR(mnt))
1614 			hugetlbfs_vfsmount[i] = NULL;
1615 		else
1616 			hugetlbfs_vfsmount[i] = mnt;
1617 		i++;
1618 	}
1619 
1620 	return 0;
1621 
1622  out_unreg:
1623 	(void)unregister_filesystem(&hugetlbfs_fs_type);
1624  out_free:
1625 	kmem_cache_destroy(hugetlbfs_inode_cachep);
1626  out:
1627 	return error;
1628 }
1629 fs_initcall(init_hugetlbfs_fs)
1630