1 /* 2 * hugetlbpage-backed filesystem. Based on ramfs. 3 * 4 * Nadia Yvette Chambers, 2002 5 * 6 * Copyright (C) 2002 Linus Torvalds. 7 * License: GPL 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/thread_info.h> 13 #include <asm/current.h> 14 #include <linux/falloc.h> 15 #include <linux/fs.h> 16 #include <linux/mount.h> 17 #include <linux/file.h> 18 #include <linux/kernel.h> 19 #include <linux/writeback.h> 20 #include <linux/pagemap.h> 21 #include <linux/highmem.h> 22 #include <linux/init.h> 23 #include <linux/string.h> 24 #include <linux/capability.h> 25 #include <linux/ctype.h> 26 #include <linux/backing-dev.h> 27 #include <linux/hugetlb.h> 28 #include <linux/pagevec.h> 29 #include <linux/fs_parser.h> 30 #include <linux/mman.h> 31 #include <linux/slab.h> 32 #include <linux/dnotify.h> 33 #include <linux/statfs.h> 34 #include <linux/security.h> 35 #include <linux/magic.h> 36 #include <linux/migrate.h> 37 #include <linux/uio.h> 38 39 #include <linux/uaccess.h> 40 #include <linux/sched/mm.h> 41 42 #define CREATE_TRACE_POINTS 43 #include <trace/events/hugetlbfs.h> 44 45 static const struct address_space_operations hugetlbfs_aops; 46 static const struct file_operations hugetlbfs_file_operations; 47 static const struct inode_operations hugetlbfs_dir_inode_operations; 48 static const struct inode_operations hugetlbfs_inode_operations; 49 50 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT }; 51 52 struct hugetlbfs_fs_context { 53 struct hstate *hstate; 54 unsigned long long max_size_opt; 55 unsigned long long min_size_opt; 56 long max_hpages; 57 long nr_inodes; 58 long min_hpages; 59 enum hugetlbfs_size_type max_val_type; 60 enum hugetlbfs_size_type min_val_type; 61 kuid_t uid; 62 kgid_t gid; 63 umode_t mode; 64 }; 65 66 int sysctl_hugetlb_shm_group; 67 68 enum hugetlb_param { 69 Opt_gid, 70 Opt_min_size, 71 Opt_mode, 72 Opt_nr_inodes, 73 Opt_pagesize, 74 Opt_size, 75 Opt_uid, 76 }; 77 78 static const struct fs_parameter_spec hugetlb_fs_parameters[] = { 79 fsparam_gid ("gid", Opt_gid), 80 fsparam_string("min_size", Opt_min_size), 81 fsparam_u32oct("mode", Opt_mode), 82 fsparam_string("nr_inodes", Opt_nr_inodes), 83 fsparam_string("pagesize", Opt_pagesize), 84 fsparam_string("size", Opt_size), 85 fsparam_uid ("uid", Opt_uid), 86 {} 87 }; 88 89 /* 90 * Mask used when checking the page offset value passed in via system 91 * calls. This value will be converted to a loff_t which is signed. 92 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the 93 * value. The extra bit (- 1 in the shift value) is to take the sign 94 * bit into account. 95 */ 96 #define PGOFF_LOFFT_MAX \ 97 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1))) 98 99 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma) 100 { 101 struct inode *inode = file_inode(file); 102 loff_t len, vma_len; 103 int ret; 104 struct hstate *h = hstate_file(file); 105 vm_flags_t vm_flags; 106 107 /* 108 * vma address alignment (but not the pgoff alignment) has 109 * already been checked by prepare_hugepage_range. If you add 110 * any error returns here, do so after setting VM_HUGETLB, so 111 * is_vm_hugetlb_page tests below unmap_region go the right 112 * way when do_mmap unwinds (may be important on powerpc 113 * and ia64). 114 */ 115 vm_flags_set(vma, VM_HUGETLB | VM_DONTEXPAND); 116 vma->vm_ops = &hugetlb_vm_ops; 117 118 /* 119 * page based offset in vm_pgoff could be sufficiently large to 120 * overflow a loff_t when converted to byte offset. This can 121 * only happen on architectures where sizeof(loff_t) == 122 * sizeof(unsigned long). So, only check in those instances. 123 */ 124 if (sizeof(unsigned long) == sizeof(loff_t)) { 125 if (vma->vm_pgoff & PGOFF_LOFFT_MAX) 126 return -EINVAL; 127 } 128 129 /* must be huge page aligned */ 130 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT)) 131 return -EINVAL; 132 133 vma_len = (loff_t)(vma->vm_end - vma->vm_start); 134 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 135 /* check for overflow */ 136 if (len < vma_len) 137 return -EINVAL; 138 139 inode_lock(inode); 140 file_accessed(file); 141 142 ret = -ENOMEM; 143 144 vm_flags = vma->vm_flags; 145 /* 146 * for SHM_HUGETLB, the pages are reserved in the shmget() call so skip 147 * reserving here. Note: only for SHM hugetlbfs file, the inode 148 * flag S_PRIVATE is set. 149 */ 150 if (inode->i_flags & S_PRIVATE) 151 vm_flags |= VM_NORESERVE; 152 153 if (!hugetlb_reserve_pages(inode, 154 vma->vm_pgoff >> huge_page_order(h), 155 len >> huge_page_shift(h), vma, 156 vm_flags)) 157 goto out; 158 159 ret = 0; 160 if (vma->vm_flags & VM_WRITE && inode->i_size < len) 161 i_size_write(inode, len); 162 out: 163 inode_unlock(inode); 164 165 return ret; 166 } 167 168 /* 169 * Called under mmap_write_lock(mm). 170 */ 171 172 unsigned long 173 hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 174 unsigned long len, unsigned long pgoff, 175 unsigned long flags) 176 { 177 unsigned long addr0 = 0; 178 struct hstate *h = hstate_file(file); 179 180 if (len & ~huge_page_mask(h)) 181 return -EINVAL; 182 if (flags & MAP_FIXED) { 183 if (addr & ~huge_page_mask(h)) 184 return -EINVAL; 185 if (prepare_hugepage_range(file, addr, len)) 186 return -EINVAL; 187 } 188 if (addr) 189 addr0 = ALIGN(addr, huge_page_size(h)); 190 191 return mm_get_unmapped_area_vmflags(current->mm, file, addr0, len, pgoff, 192 flags, 0); 193 } 194 195 /* 196 * Someone wants to read @bytes from a HWPOISON hugetlb @page from @offset. 197 * Returns the maximum number of bytes one can read without touching the 1st raw 198 * HWPOISON subpage. 199 * 200 * The implementation borrows the iteration logic from copy_page_to_iter*. 201 */ 202 static size_t adjust_range_hwpoison(struct page *page, size_t offset, size_t bytes) 203 { 204 size_t n = 0; 205 size_t res = 0; 206 207 /* First subpage to start the loop. */ 208 page = nth_page(page, offset / PAGE_SIZE); 209 offset %= PAGE_SIZE; 210 while (1) { 211 if (is_raw_hwpoison_page_in_hugepage(page)) 212 break; 213 214 /* Safe to read n bytes without touching HWPOISON subpage. */ 215 n = min(bytes, (size_t)PAGE_SIZE - offset); 216 res += n; 217 bytes -= n; 218 if (!bytes || !n) 219 break; 220 offset += n; 221 if (offset == PAGE_SIZE) { 222 page = nth_page(page, 1); 223 offset = 0; 224 } 225 } 226 227 return res; 228 } 229 230 /* 231 * Support for read() - Find the page attached to f_mapping and copy out the 232 * data. This provides functionality similar to filemap_read(). 233 */ 234 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to) 235 { 236 struct file *file = iocb->ki_filp; 237 struct hstate *h = hstate_file(file); 238 struct address_space *mapping = file->f_mapping; 239 struct inode *inode = mapping->host; 240 unsigned long index = iocb->ki_pos >> huge_page_shift(h); 241 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h); 242 unsigned long end_index; 243 loff_t isize; 244 ssize_t retval = 0; 245 246 while (iov_iter_count(to)) { 247 struct folio *folio; 248 size_t nr, copied, want; 249 250 /* nr is the maximum number of bytes to copy from this page */ 251 nr = huge_page_size(h); 252 isize = i_size_read(inode); 253 if (!isize) 254 break; 255 end_index = (isize - 1) >> huge_page_shift(h); 256 if (index > end_index) 257 break; 258 if (index == end_index) { 259 nr = ((isize - 1) & ~huge_page_mask(h)) + 1; 260 if (nr <= offset) 261 break; 262 } 263 nr = nr - offset; 264 265 /* Find the folio */ 266 folio = filemap_lock_hugetlb_folio(h, mapping, index); 267 if (IS_ERR(folio)) { 268 /* 269 * We have a HOLE, zero out the user-buffer for the 270 * length of the hole or request. 271 */ 272 copied = iov_iter_zero(nr, to); 273 } else { 274 folio_unlock(folio); 275 276 if (!folio_test_hwpoison(folio)) 277 want = nr; 278 else { 279 /* 280 * Adjust how many bytes safe to read without 281 * touching the 1st raw HWPOISON subpage after 282 * offset. 283 */ 284 want = adjust_range_hwpoison(&folio->page, offset, nr); 285 if (want == 0) { 286 folio_put(folio); 287 retval = -EIO; 288 break; 289 } 290 } 291 292 /* 293 * We have the folio, copy it to user space buffer. 294 */ 295 copied = copy_folio_to_iter(folio, offset, want, to); 296 folio_put(folio); 297 } 298 offset += copied; 299 retval += copied; 300 if (copied != nr && iov_iter_count(to)) { 301 if (!retval) 302 retval = -EFAULT; 303 break; 304 } 305 index += offset >> huge_page_shift(h); 306 offset &= ~huge_page_mask(h); 307 } 308 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset; 309 return retval; 310 } 311 312 static int hugetlbfs_write_begin(struct file *file, 313 struct address_space *mapping, 314 loff_t pos, unsigned len, 315 struct folio **foliop, void **fsdata) 316 { 317 return -EINVAL; 318 } 319 320 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping, 321 loff_t pos, unsigned len, unsigned copied, 322 struct folio *folio, void *fsdata) 323 { 324 BUG(); 325 return -EINVAL; 326 } 327 328 static void hugetlb_delete_from_page_cache(struct folio *folio) 329 { 330 folio_clear_dirty(folio); 331 folio_clear_uptodate(folio); 332 filemap_remove_folio(folio); 333 } 334 335 /* 336 * Called with i_mmap_rwsem held for inode based vma maps. This makes 337 * sure vma (and vm_mm) will not go away. We also hold the hugetlb fault 338 * mutex for the page in the mapping. So, we can not race with page being 339 * faulted into the vma. 340 */ 341 static bool hugetlb_vma_maps_page(struct vm_area_struct *vma, 342 unsigned long addr, struct page *page) 343 { 344 pte_t *ptep, pte; 345 346 ptep = hugetlb_walk(vma, addr, huge_page_size(hstate_vma(vma))); 347 if (!ptep) 348 return false; 349 350 pte = huge_ptep_get(vma->vm_mm, addr, ptep); 351 if (huge_pte_none(pte) || !pte_present(pte)) 352 return false; 353 354 if (pte_page(pte) == page) 355 return true; 356 357 return false; 358 } 359 360 /* 361 * Can vma_offset_start/vma_offset_end overflow on 32-bit arches? 362 * No, because the interval tree returns us only those vmas 363 * which overlap the truncated area starting at pgoff, 364 * and no vma on a 32-bit arch can span beyond the 4GB. 365 */ 366 static unsigned long vma_offset_start(struct vm_area_struct *vma, pgoff_t start) 367 { 368 unsigned long offset = 0; 369 370 if (vma->vm_pgoff < start) 371 offset = (start - vma->vm_pgoff) << PAGE_SHIFT; 372 373 return vma->vm_start + offset; 374 } 375 376 static unsigned long vma_offset_end(struct vm_area_struct *vma, pgoff_t end) 377 { 378 unsigned long t_end; 379 380 if (!end) 381 return vma->vm_end; 382 383 t_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) + vma->vm_start; 384 if (t_end > vma->vm_end) 385 t_end = vma->vm_end; 386 return t_end; 387 } 388 389 /* 390 * Called with hugetlb fault mutex held. Therefore, no more mappings to 391 * this folio can be created while executing the routine. 392 */ 393 static void hugetlb_unmap_file_folio(struct hstate *h, 394 struct address_space *mapping, 395 struct folio *folio, pgoff_t index) 396 { 397 struct rb_root_cached *root = &mapping->i_mmap; 398 struct hugetlb_vma_lock *vma_lock; 399 struct page *page = &folio->page; 400 struct vm_area_struct *vma; 401 unsigned long v_start; 402 unsigned long v_end; 403 pgoff_t start, end; 404 405 start = index * pages_per_huge_page(h); 406 end = (index + 1) * pages_per_huge_page(h); 407 408 i_mmap_lock_write(mapping); 409 retry: 410 vma_lock = NULL; 411 vma_interval_tree_foreach(vma, root, start, end - 1) { 412 v_start = vma_offset_start(vma, start); 413 v_end = vma_offset_end(vma, end); 414 415 if (!hugetlb_vma_maps_page(vma, v_start, page)) 416 continue; 417 418 if (!hugetlb_vma_trylock_write(vma)) { 419 vma_lock = vma->vm_private_data; 420 /* 421 * If we can not get vma lock, we need to drop 422 * immap_sema and take locks in order. First, 423 * take a ref on the vma_lock structure so that 424 * we can be guaranteed it will not go away when 425 * dropping immap_sema. 426 */ 427 kref_get(&vma_lock->refs); 428 break; 429 } 430 431 unmap_hugepage_range(vma, v_start, v_end, NULL, 432 ZAP_FLAG_DROP_MARKER); 433 hugetlb_vma_unlock_write(vma); 434 } 435 436 i_mmap_unlock_write(mapping); 437 438 if (vma_lock) { 439 /* 440 * Wait on vma_lock. We know it is still valid as we have 441 * a reference. We must 'open code' vma locking as we do 442 * not know if vma_lock is still attached to vma. 443 */ 444 down_write(&vma_lock->rw_sema); 445 i_mmap_lock_write(mapping); 446 447 vma = vma_lock->vma; 448 if (!vma) { 449 /* 450 * If lock is no longer attached to vma, then just 451 * unlock, drop our reference and retry looking for 452 * other vmas. 453 */ 454 up_write(&vma_lock->rw_sema); 455 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 456 goto retry; 457 } 458 459 /* 460 * vma_lock is still attached to vma. Check to see if vma 461 * still maps page and if so, unmap. 462 */ 463 v_start = vma_offset_start(vma, start); 464 v_end = vma_offset_end(vma, end); 465 if (hugetlb_vma_maps_page(vma, v_start, page)) 466 unmap_hugepage_range(vma, v_start, v_end, NULL, 467 ZAP_FLAG_DROP_MARKER); 468 469 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 470 hugetlb_vma_unlock_write(vma); 471 472 goto retry; 473 } 474 } 475 476 static void 477 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end, 478 zap_flags_t zap_flags) 479 { 480 struct vm_area_struct *vma; 481 482 /* 483 * end == 0 indicates that the entire range after start should be 484 * unmapped. Note, end is exclusive, whereas the interval tree takes 485 * an inclusive "last". 486 */ 487 vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) { 488 unsigned long v_start; 489 unsigned long v_end; 490 491 if (!hugetlb_vma_trylock_write(vma)) 492 continue; 493 494 v_start = vma_offset_start(vma, start); 495 v_end = vma_offset_end(vma, end); 496 497 unmap_hugepage_range(vma, v_start, v_end, NULL, zap_flags); 498 499 /* 500 * Note that vma lock only exists for shared/non-private 501 * vmas. Therefore, lock is not held when calling 502 * unmap_hugepage_range for private vmas. 503 */ 504 hugetlb_vma_unlock_write(vma); 505 } 506 } 507 508 /* 509 * Called with hugetlb fault mutex held. 510 * Returns true if page was actually removed, false otherwise. 511 */ 512 static bool remove_inode_single_folio(struct hstate *h, struct inode *inode, 513 struct address_space *mapping, 514 struct folio *folio, pgoff_t index, 515 bool truncate_op) 516 { 517 bool ret = false; 518 519 /* 520 * If folio is mapped, it was faulted in after being 521 * unmapped in caller. Unmap (again) while holding 522 * the fault mutex. The mutex will prevent faults 523 * until we finish removing the folio. 524 */ 525 if (unlikely(folio_mapped(folio))) 526 hugetlb_unmap_file_folio(h, mapping, folio, index); 527 528 folio_lock(folio); 529 /* 530 * We must remove the folio from page cache before removing 531 * the region/ reserve map (hugetlb_unreserve_pages). In 532 * rare out of memory conditions, removal of the region/reserve 533 * map could fail. Correspondingly, the subpool and global 534 * reserve usage count can need to be adjusted. 535 */ 536 VM_BUG_ON_FOLIO(folio_test_hugetlb_restore_reserve(folio), folio); 537 hugetlb_delete_from_page_cache(folio); 538 ret = true; 539 if (!truncate_op) { 540 if (unlikely(hugetlb_unreserve_pages(inode, index, 541 index + 1, 1))) 542 hugetlb_fix_reserve_counts(inode); 543 } 544 545 folio_unlock(folio); 546 return ret; 547 } 548 549 /* 550 * remove_inode_hugepages handles two distinct cases: truncation and hole 551 * punch. There are subtle differences in operation for each case. 552 * 553 * truncation is indicated by end of range being LLONG_MAX 554 * In this case, we first scan the range and release found pages. 555 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserve 556 * maps and global counts. Page faults can race with truncation. 557 * During faults, hugetlb_no_page() checks i_size before page allocation, 558 * and again after obtaining page table lock. It will 'back out' 559 * allocations in the truncated range. 560 * hole punch is indicated if end is not LLONG_MAX 561 * In the hole punch case we scan the range and release found pages. 562 * Only when releasing a page is the associated region/reserve map 563 * deleted. The region/reserve map for ranges without associated 564 * pages are not modified. Page faults can race with hole punch. 565 * This is indicated if we find a mapped page. 566 * Note: If the passed end of range value is beyond the end of file, but 567 * not LLONG_MAX this routine still performs a hole punch operation. 568 */ 569 static void remove_inode_hugepages(struct inode *inode, loff_t lstart, 570 loff_t lend) 571 { 572 struct hstate *h = hstate_inode(inode); 573 struct address_space *mapping = &inode->i_data; 574 const pgoff_t end = lend >> PAGE_SHIFT; 575 struct folio_batch fbatch; 576 pgoff_t next, index; 577 int i, freed = 0; 578 bool truncate_op = (lend == LLONG_MAX); 579 580 folio_batch_init(&fbatch); 581 next = lstart >> PAGE_SHIFT; 582 while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) { 583 for (i = 0; i < folio_batch_count(&fbatch); ++i) { 584 struct folio *folio = fbatch.folios[i]; 585 u32 hash = 0; 586 587 index = folio->index >> huge_page_order(h); 588 hash = hugetlb_fault_mutex_hash(mapping, index); 589 mutex_lock(&hugetlb_fault_mutex_table[hash]); 590 591 /* 592 * Remove folio that was part of folio_batch. 593 */ 594 if (remove_inode_single_folio(h, inode, mapping, folio, 595 index, truncate_op)) 596 freed++; 597 598 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 599 } 600 folio_batch_release(&fbatch); 601 cond_resched(); 602 } 603 604 if (truncate_op) 605 (void)hugetlb_unreserve_pages(inode, 606 lstart >> huge_page_shift(h), 607 LONG_MAX, freed); 608 } 609 610 static void hugetlbfs_evict_inode(struct inode *inode) 611 { 612 struct resv_map *resv_map; 613 614 trace_hugetlbfs_evict_inode(inode); 615 remove_inode_hugepages(inode, 0, LLONG_MAX); 616 617 /* 618 * Get the resv_map from the address space embedded in the inode. 619 * This is the address space which points to any resv_map allocated 620 * at inode creation time. If this is a device special inode, 621 * i_mapping may not point to the original address space. 622 */ 623 resv_map = (struct resv_map *)(&inode->i_data)->i_private_data; 624 /* Only regular and link inodes have associated reserve maps */ 625 if (resv_map) 626 resv_map_release(&resv_map->refs); 627 clear_inode(inode); 628 } 629 630 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset) 631 { 632 pgoff_t pgoff; 633 struct address_space *mapping = inode->i_mapping; 634 struct hstate *h = hstate_inode(inode); 635 636 BUG_ON(offset & ~huge_page_mask(h)); 637 pgoff = offset >> PAGE_SHIFT; 638 639 i_size_write(inode, offset); 640 i_mmap_lock_write(mapping); 641 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 642 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0, 643 ZAP_FLAG_DROP_MARKER); 644 i_mmap_unlock_write(mapping); 645 remove_inode_hugepages(inode, offset, LLONG_MAX); 646 } 647 648 static void hugetlbfs_zero_partial_page(struct hstate *h, 649 struct address_space *mapping, 650 loff_t start, 651 loff_t end) 652 { 653 pgoff_t idx = start >> huge_page_shift(h); 654 struct folio *folio; 655 656 folio = filemap_lock_hugetlb_folio(h, mapping, idx); 657 if (IS_ERR(folio)) 658 return; 659 660 start = start & ~huge_page_mask(h); 661 end = end & ~huge_page_mask(h); 662 if (!end) 663 end = huge_page_size(h); 664 665 folio_zero_segment(folio, (size_t)start, (size_t)end); 666 667 folio_unlock(folio); 668 folio_put(folio); 669 } 670 671 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 672 { 673 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 674 struct address_space *mapping = inode->i_mapping; 675 struct hstate *h = hstate_inode(inode); 676 loff_t hpage_size = huge_page_size(h); 677 loff_t hole_start, hole_end; 678 679 /* 680 * hole_start and hole_end indicate the full pages within the hole. 681 */ 682 hole_start = round_up(offset, hpage_size); 683 hole_end = round_down(offset + len, hpage_size); 684 685 inode_lock(inode); 686 687 /* protected by i_rwsem */ 688 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 689 inode_unlock(inode); 690 return -EPERM; 691 } 692 693 i_mmap_lock_write(mapping); 694 695 /* If range starts before first full page, zero partial page. */ 696 if (offset < hole_start) 697 hugetlbfs_zero_partial_page(h, mapping, 698 offset, min(offset + len, hole_start)); 699 700 /* Unmap users of full pages in the hole. */ 701 if (hole_end > hole_start) { 702 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 703 hugetlb_vmdelete_list(&mapping->i_mmap, 704 hole_start >> PAGE_SHIFT, 705 hole_end >> PAGE_SHIFT, 0); 706 } 707 708 /* If range extends beyond last full page, zero partial page. */ 709 if ((offset + len) > hole_end && (offset + len) > hole_start) 710 hugetlbfs_zero_partial_page(h, mapping, 711 hole_end, offset + len); 712 713 i_mmap_unlock_write(mapping); 714 715 /* Remove full pages from the file. */ 716 if (hole_end > hole_start) 717 remove_inode_hugepages(inode, hole_start, hole_end); 718 719 inode_unlock(inode); 720 721 return 0; 722 } 723 724 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset, 725 loff_t len) 726 { 727 struct inode *inode = file_inode(file); 728 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 729 struct address_space *mapping = inode->i_mapping; 730 struct hstate *h = hstate_inode(inode); 731 struct vm_area_struct pseudo_vma; 732 struct mm_struct *mm = current->mm; 733 loff_t hpage_size = huge_page_size(h); 734 unsigned long hpage_shift = huge_page_shift(h); 735 pgoff_t start, index, end; 736 int error; 737 u32 hash; 738 739 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 740 return -EOPNOTSUPP; 741 742 if (mode & FALLOC_FL_PUNCH_HOLE) { 743 error = hugetlbfs_punch_hole(inode, offset, len); 744 goto out_nolock; 745 } 746 747 /* 748 * Default preallocate case. 749 * For this range, start is rounded down and end is rounded up 750 * as well as being converted to page offsets. 751 */ 752 start = offset >> hpage_shift; 753 end = (offset + len + hpage_size - 1) >> hpage_shift; 754 755 inode_lock(inode); 756 757 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 758 error = inode_newsize_ok(inode, offset + len); 759 if (error) 760 goto out; 761 762 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 763 error = -EPERM; 764 goto out; 765 } 766 767 /* 768 * Initialize a pseudo vma as this is required by the huge page 769 * allocation routines. 770 */ 771 vma_init(&pseudo_vma, mm); 772 vm_flags_init(&pseudo_vma, VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 773 pseudo_vma.vm_file = file; 774 775 for (index = start; index < end; index++) { 776 /* 777 * This is supposed to be the vaddr where the page is being 778 * faulted in, but we have no vaddr here. 779 */ 780 struct folio *folio; 781 unsigned long addr; 782 783 cond_resched(); 784 785 /* 786 * fallocate(2) manpage permits EINTR; we may have been 787 * interrupted because we are using up too much memory. 788 */ 789 if (signal_pending(current)) { 790 error = -EINTR; 791 break; 792 } 793 794 /* addr is the offset within the file (zero based) */ 795 addr = index * hpage_size; 796 797 /* mutex taken here, fault path and hole punch */ 798 hash = hugetlb_fault_mutex_hash(mapping, index); 799 mutex_lock(&hugetlb_fault_mutex_table[hash]); 800 801 /* See if already present in mapping to avoid alloc/free */ 802 folio = filemap_get_folio(mapping, index << huge_page_order(h)); 803 if (!IS_ERR(folio)) { 804 folio_put(folio); 805 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 806 continue; 807 } 808 809 /* 810 * Allocate folio without setting the avoid_reserve argument. 811 * There certainly are no reserves associated with the 812 * pseudo_vma. However, there could be shared mappings with 813 * reserves for the file at the inode level. If we fallocate 814 * folios in these areas, we need to consume the reserves 815 * to keep reservation accounting consistent. 816 */ 817 folio = alloc_hugetlb_folio(&pseudo_vma, addr, false); 818 if (IS_ERR(folio)) { 819 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 820 error = PTR_ERR(folio); 821 goto out; 822 } 823 folio_zero_user(folio, addr); 824 __folio_mark_uptodate(folio); 825 error = hugetlb_add_to_page_cache(folio, mapping, index); 826 if (unlikely(error)) { 827 restore_reserve_on_error(h, &pseudo_vma, addr, folio); 828 folio_put(folio); 829 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 830 goto out; 831 } 832 833 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 834 835 folio_set_hugetlb_migratable(folio); 836 /* 837 * folio_unlock because locked by hugetlb_add_to_page_cache() 838 * folio_put() due to reference from alloc_hugetlb_folio() 839 */ 840 folio_unlock(folio); 841 folio_put(folio); 842 } 843 844 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 845 i_size_write(inode, offset + len); 846 inode_set_ctime_current(inode); 847 out: 848 inode_unlock(inode); 849 850 out_nolock: 851 trace_hugetlbfs_fallocate(inode, mode, offset, len, error); 852 return error; 853 } 854 855 static int hugetlbfs_setattr(struct mnt_idmap *idmap, 856 struct dentry *dentry, struct iattr *attr) 857 { 858 struct inode *inode = d_inode(dentry); 859 struct hstate *h = hstate_inode(inode); 860 int error; 861 unsigned int ia_valid = attr->ia_valid; 862 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 863 864 error = setattr_prepare(idmap, dentry, attr); 865 if (error) 866 return error; 867 868 trace_hugetlbfs_setattr(inode, dentry, attr); 869 870 if (ia_valid & ATTR_SIZE) { 871 loff_t oldsize = inode->i_size; 872 loff_t newsize = attr->ia_size; 873 874 if (newsize & ~huge_page_mask(h)) 875 return -EINVAL; 876 /* protected by i_rwsem */ 877 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 878 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 879 return -EPERM; 880 hugetlb_vmtruncate(inode, newsize); 881 } 882 883 setattr_copy(idmap, inode, attr); 884 mark_inode_dirty(inode); 885 return 0; 886 } 887 888 static struct inode *hugetlbfs_get_root(struct super_block *sb, 889 struct hugetlbfs_fs_context *ctx) 890 { 891 struct inode *inode; 892 893 inode = new_inode(sb); 894 if (inode) { 895 inode->i_ino = get_next_ino(); 896 inode->i_mode = S_IFDIR | ctx->mode; 897 inode->i_uid = ctx->uid; 898 inode->i_gid = ctx->gid; 899 simple_inode_init_ts(inode); 900 inode->i_op = &hugetlbfs_dir_inode_operations; 901 inode->i_fop = &simple_dir_operations; 902 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 903 inc_nlink(inode); 904 lockdep_annotate_inode_mutex_key(inode); 905 } 906 return inode; 907 } 908 909 /* 910 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never 911 * be taken from reclaim -- unlike regular filesystems. This needs an 912 * annotation because huge_pmd_share() does an allocation under hugetlb's 913 * i_mmap_rwsem. 914 */ 915 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key; 916 917 static struct inode *hugetlbfs_get_inode(struct super_block *sb, 918 struct mnt_idmap *idmap, 919 struct inode *dir, 920 umode_t mode, dev_t dev) 921 { 922 struct inode *inode; 923 struct resv_map *resv_map = NULL; 924 925 /* 926 * Reserve maps are only needed for inodes that can have associated 927 * page allocations. 928 */ 929 if (S_ISREG(mode) || S_ISLNK(mode)) { 930 resv_map = resv_map_alloc(); 931 if (!resv_map) 932 return NULL; 933 } 934 935 inode = new_inode(sb); 936 if (inode) { 937 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 938 939 inode->i_ino = get_next_ino(); 940 inode_init_owner(idmap, inode, dir, mode); 941 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem, 942 &hugetlbfs_i_mmap_rwsem_key); 943 inode->i_mapping->a_ops = &hugetlbfs_aops; 944 simple_inode_init_ts(inode); 945 inode->i_mapping->i_private_data = resv_map; 946 info->seals = F_SEAL_SEAL; 947 switch (mode & S_IFMT) { 948 default: 949 init_special_inode(inode, mode, dev); 950 break; 951 case S_IFREG: 952 inode->i_op = &hugetlbfs_inode_operations; 953 inode->i_fop = &hugetlbfs_file_operations; 954 break; 955 case S_IFDIR: 956 inode->i_op = &hugetlbfs_dir_inode_operations; 957 inode->i_fop = &simple_dir_operations; 958 959 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 960 inc_nlink(inode); 961 break; 962 case S_IFLNK: 963 inode->i_op = &page_symlink_inode_operations; 964 inode_nohighmem(inode); 965 break; 966 } 967 lockdep_annotate_inode_mutex_key(inode); 968 trace_hugetlbfs_alloc_inode(inode, dir, mode); 969 } else { 970 if (resv_map) 971 kref_put(&resv_map->refs, resv_map_release); 972 } 973 974 return inode; 975 } 976 977 /* 978 * File creation. Allocate an inode, and we're done.. 979 */ 980 static int hugetlbfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 981 struct dentry *dentry, umode_t mode, dev_t dev) 982 { 983 struct inode *inode; 984 985 inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, dev); 986 if (!inode) 987 return -ENOSPC; 988 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 989 d_instantiate(dentry, inode); 990 dget(dentry);/* Extra count - pin the dentry in core */ 991 return 0; 992 } 993 994 static int hugetlbfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 995 struct dentry *dentry, umode_t mode) 996 { 997 int retval = hugetlbfs_mknod(idmap, dir, dentry, 998 mode | S_IFDIR, 0); 999 if (!retval) 1000 inc_nlink(dir); 1001 return retval; 1002 } 1003 1004 static int hugetlbfs_create(struct mnt_idmap *idmap, 1005 struct inode *dir, struct dentry *dentry, 1006 umode_t mode, bool excl) 1007 { 1008 return hugetlbfs_mknod(idmap, dir, dentry, mode | S_IFREG, 0); 1009 } 1010 1011 static int hugetlbfs_tmpfile(struct mnt_idmap *idmap, 1012 struct inode *dir, struct file *file, 1013 umode_t mode) 1014 { 1015 struct inode *inode; 1016 1017 inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode | S_IFREG, 0); 1018 if (!inode) 1019 return -ENOSPC; 1020 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 1021 d_tmpfile(file, inode); 1022 return finish_open_simple(file, 0); 1023 } 1024 1025 static int hugetlbfs_symlink(struct mnt_idmap *idmap, 1026 struct inode *dir, struct dentry *dentry, 1027 const char *symname) 1028 { 1029 const umode_t mode = S_IFLNK|S_IRWXUGO; 1030 struct inode *inode; 1031 int error = -ENOSPC; 1032 1033 inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, 0); 1034 if (inode) { 1035 int l = strlen(symname)+1; 1036 error = page_symlink(inode, symname, l); 1037 if (!error) { 1038 d_instantiate(dentry, inode); 1039 dget(dentry); 1040 } else 1041 iput(inode); 1042 } 1043 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 1044 1045 return error; 1046 } 1047 1048 #ifdef CONFIG_MIGRATION 1049 static int hugetlbfs_migrate_folio(struct address_space *mapping, 1050 struct folio *dst, struct folio *src, 1051 enum migrate_mode mode) 1052 { 1053 int rc; 1054 1055 rc = migrate_huge_page_move_mapping(mapping, dst, src); 1056 if (rc != MIGRATEPAGE_SUCCESS) 1057 return rc; 1058 1059 if (hugetlb_folio_subpool(src)) { 1060 hugetlb_set_folio_subpool(dst, 1061 hugetlb_folio_subpool(src)); 1062 hugetlb_set_folio_subpool(src, NULL); 1063 } 1064 1065 folio_migrate_flags(dst, src); 1066 1067 return MIGRATEPAGE_SUCCESS; 1068 } 1069 #else 1070 #define hugetlbfs_migrate_folio NULL 1071 #endif 1072 1073 static int hugetlbfs_error_remove_folio(struct address_space *mapping, 1074 struct folio *folio) 1075 { 1076 return 0; 1077 } 1078 1079 /* 1080 * Display the mount options in /proc/mounts. 1081 */ 1082 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root) 1083 { 1084 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb); 1085 struct hugepage_subpool *spool = sbinfo->spool; 1086 unsigned long hpage_size = huge_page_size(sbinfo->hstate); 1087 unsigned hpage_shift = huge_page_shift(sbinfo->hstate); 1088 char mod; 1089 1090 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 1091 seq_printf(m, ",uid=%u", 1092 from_kuid_munged(&init_user_ns, sbinfo->uid)); 1093 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 1094 seq_printf(m, ",gid=%u", 1095 from_kgid_munged(&init_user_ns, sbinfo->gid)); 1096 if (sbinfo->mode != 0755) 1097 seq_printf(m, ",mode=%o", sbinfo->mode); 1098 if (sbinfo->max_inodes != -1) 1099 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes); 1100 1101 hpage_size /= 1024; 1102 mod = 'K'; 1103 if (hpage_size >= 1024) { 1104 hpage_size /= 1024; 1105 mod = 'M'; 1106 } 1107 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod); 1108 if (spool) { 1109 if (spool->max_hpages != -1) 1110 seq_printf(m, ",size=%llu", 1111 (unsigned long long)spool->max_hpages << hpage_shift); 1112 if (spool->min_hpages != -1) 1113 seq_printf(m, ",min_size=%llu", 1114 (unsigned long long)spool->min_hpages << hpage_shift); 1115 } 1116 return 0; 1117 } 1118 1119 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf) 1120 { 1121 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb); 1122 struct hstate *h = hstate_inode(d_inode(dentry)); 1123 u64 id = huge_encode_dev(dentry->d_sb->s_dev); 1124 1125 buf->f_fsid = u64_to_fsid(id); 1126 buf->f_type = HUGETLBFS_MAGIC; 1127 buf->f_bsize = huge_page_size(h); 1128 if (sbinfo) { 1129 spin_lock(&sbinfo->stat_lock); 1130 /* If no limits set, just report 0 or -1 for max/free/used 1131 * blocks, like simple_statfs() */ 1132 if (sbinfo->spool) { 1133 long free_pages; 1134 1135 spin_lock_irq(&sbinfo->spool->lock); 1136 buf->f_blocks = sbinfo->spool->max_hpages; 1137 free_pages = sbinfo->spool->max_hpages 1138 - sbinfo->spool->used_hpages; 1139 buf->f_bavail = buf->f_bfree = free_pages; 1140 spin_unlock_irq(&sbinfo->spool->lock); 1141 buf->f_files = sbinfo->max_inodes; 1142 buf->f_ffree = sbinfo->free_inodes; 1143 } 1144 spin_unlock(&sbinfo->stat_lock); 1145 } 1146 buf->f_namelen = NAME_MAX; 1147 return 0; 1148 } 1149 1150 static void hugetlbfs_put_super(struct super_block *sb) 1151 { 1152 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb); 1153 1154 if (sbi) { 1155 sb->s_fs_info = NULL; 1156 1157 if (sbi->spool) 1158 hugepage_put_subpool(sbi->spool); 1159 1160 kfree(sbi); 1161 } 1162 } 1163 1164 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1165 { 1166 if (sbinfo->free_inodes >= 0) { 1167 spin_lock(&sbinfo->stat_lock); 1168 if (unlikely(!sbinfo->free_inodes)) { 1169 spin_unlock(&sbinfo->stat_lock); 1170 return 0; 1171 } 1172 sbinfo->free_inodes--; 1173 spin_unlock(&sbinfo->stat_lock); 1174 } 1175 1176 return 1; 1177 } 1178 1179 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1180 { 1181 if (sbinfo->free_inodes >= 0) { 1182 spin_lock(&sbinfo->stat_lock); 1183 sbinfo->free_inodes++; 1184 spin_unlock(&sbinfo->stat_lock); 1185 } 1186 } 1187 1188 1189 static struct kmem_cache *hugetlbfs_inode_cachep; 1190 1191 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb) 1192 { 1193 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb); 1194 struct hugetlbfs_inode_info *p; 1195 1196 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo))) 1197 return NULL; 1198 p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL); 1199 if (unlikely(!p)) { 1200 hugetlbfs_inc_free_inodes(sbinfo); 1201 return NULL; 1202 } 1203 return &p->vfs_inode; 1204 } 1205 1206 static void hugetlbfs_free_inode(struct inode *inode) 1207 { 1208 trace_hugetlbfs_free_inode(inode); 1209 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode)); 1210 } 1211 1212 static void hugetlbfs_destroy_inode(struct inode *inode) 1213 { 1214 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb)); 1215 } 1216 1217 static const struct address_space_operations hugetlbfs_aops = { 1218 .write_begin = hugetlbfs_write_begin, 1219 .write_end = hugetlbfs_write_end, 1220 .dirty_folio = noop_dirty_folio, 1221 .migrate_folio = hugetlbfs_migrate_folio, 1222 .error_remove_folio = hugetlbfs_error_remove_folio, 1223 }; 1224 1225 1226 static void init_once(void *foo) 1227 { 1228 struct hugetlbfs_inode_info *ei = foo; 1229 1230 inode_init_once(&ei->vfs_inode); 1231 } 1232 1233 static const struct file_operations hugetlbfs_file_operations = { 1234 .read_iter = hugetlbfs_read_iter, 1235 .mmap = hugetlbfs_file_mmap, 1236 .fsync = noop_fsync, 1237 .get_unmapped_area = hugetlb_get_unmapped_area, 1238 .llseek = default_llseek, 1239 .fallocate = hugetlbfs_fallocate, 1240 .fop_flags = FOP_HUGE_PAGES, 1241 }; 1242 1243 static const struct inode_operations hugetlbfs_dir_inode_operations = { 1244 .create = hugetlbfs_create, 1245 .lookup = simple_lookup, 1246 .link = simple_link, 1247 .unlink = simple_unlink, 1248 .symlink = hugetlbfs_symlink, 1249 .mkdir = hugetlbfs_mkdir, 1250 .rmdir = simple_rmdir, 1251 .mknod = hugetlbfs_mknod, 1252 .rename = simple_rename, 1253 .setattr = hugetlbfs_setattr, 1254 .tmpfile = hugetlbfs_tmpfile, 1255 }; 1256 1257 static const struct inode_operations hugetlbfs_inode_operations = { 1258 .setattr = hugetlbfs_setattr, 1259 }; 1260 1261 static const struct super_operations hugetlbfs_ops = { 1262 .alloc_inode = hugetlbfs_alloc_inode, 1263 .free_inode = hugetlbfs_free_inode, 1264 .destroy_inode = hugetlbfs_destroy_inode, 1265 .evict_inode = hugetlbfs_evict_inode, 1266 .statfs = hugetlbfs_statfs, 1267 .put_super = hugetlbfs_put_super, 1268 .show_options = hugetlbfs_show_options, 1269 }; 1270 1271 /* 1272 * Convert size option passed from command line to number of huge pages 1273 * in the pool specified by hstate. Size option could be in bytes 1274 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT). 1275 */ 1276 static long 1277 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt, 1278 enum hugetlbfs_size_type val_type) 1279 { 1280 if (val_type == NO_SIZE) 1281 return -1; 1282 1283 if (val_type == SIZE_PERCENT) { 1284 size_opt <<= huge_page_shift(h); 1285 size_opt *= h->max_huge_pages; 1286 do_div(size_opt, 100); 1287 } 1288 1289 size_opt >>= huge_page_shift(h); 1290 return size_opt; 1291 } 1292 1293 /* 1294 * Parse one mount parameter. 1295 */ 1296 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param) 1297 { 1298 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1299 struct fs_parse_result result; 1300 struct hstate *h; 1301 char *rest; 1302 unsigned long ps; 1303 int opt; 1304 1305 opt = fs_parse(fc, hugetlb_fs_parameters, param, &result); 1306 if (opt < 0) 1307 return opt; 1308 1309 switch (opt) { 1310 case Opt_uid: 1311 ctx->uid = result.uid; 1312 return 0; 1313 1314 case Opt_gid: 1315 ctx->gid = result.gid; 1316 return 0; 1317 1318 case Opt_mode: 1319 ctx->mode = result.uint_32 & 01777U; 1320 return 0; 1321 1322 case Opt_size: 1323 /* memparse() will accept a K/M/G without a digit */ 1324 if (!param->string || !isdigit(param->string[0])) 1325 goto bad_val; 1326 ctx->max_size_opt = memparse(param->string, &rest); 1327 ctx->max_val_type = SIZE_STD; 1328 if (*rest == '%') 1329 ctx->max_val_type = SIZE_PERCENT; 1330 return 0; 1331 1332 case Opt_nr_inodes: 1333 /* memparse() will accept a K/M/G without a digit */ 1334 if (!param->string || !isdigit(param->string[0])) 1335 goto bad_val; 1336 ctx->nr_inodes = memparse(param->string, &rest); 1337 return 0; 1338 1339 case Opt_pagesize: 1340 ps = memparse(param->string, &rest); 1341 h = size_to_hstate(ps); 1342 if (!h) { 1343 pr_err("Unsupported page size %lu MB\n", ps / SZ_1M); 1344 return -EINVAL; 1345 } 1346 ctx->hstate = h; 1347 return 0; 1348 1349 case Opt_min_size: 1350 /* memparse() will accept a K/M/G without a digit */ 1351 if (!param->string || !isdigit(param->string[0])) 1352 goto bad_val; 1353 ctx->min_size_opt = memparse(param->string, &rest); 1354 ctx->min_val_type = SIZE_STD; 1355 if (*rest == '%') 1356 ctx->min_val_type = SIZE_PERCENT; 1357 return 0; 1358 1359 default: 1360 return -EINVAL; 1361 } 1362 1363 bad_val: 1364 return invalfc(fc, "Bad value '%s' for mount option '%s'\n", 1365 param->string, param->key); 1366 } 1367 1368 /* 1369 * Validate the parsed options. 1370 */ 1371 static int hugetlbfs_validate(struct fs_context *fc) 1372 { 1373 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1374 1375 /* 1376 * Use huge page pool size (in hstate) to convert the size 1377 * options to number of huge pages. If NO_SIZE, -1 is returned. 1378 */ 1379 ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1380 ctx->max_size_opt, 1381 ctx->max_val_type); 1382 ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1383 ctx->min_size_opt, 1384 ctx->min_val_type); 1385 1386 /* 1387 * If max_size was specified, then min_size must be smaller 1388 */ 1389 if (ctx->max_val_type > NO_SIZE && 1390 ctx->min_hpages > ctx->max_hpages) { 1391 pr_err("Minimum size can not be greater than maximum size\n"); 1392 return -EINVAL; 1393 } 1394 1395 return 0; 1396 } 1397 1398 static int 1399 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc) 1400 { 1401 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1402 struct hugetlbfs_sb_info *sbinfo; 1403 1404 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL); 1405 if (!sbinfo) 1406 return -ENOMEM; 1407 sb->s_fs_info = sbinfo; 1408 spin_lock_init(&sbinfo->stat_lock); 1409 sbinfo->hstate = ctx->hstate; 1410 sbinfo->max_inodes = ctx->nr_inodes; 1411 sbinfo->free_inodes = ctx->nr_inodes; 1412 sbinfo->spool = NULL; 1413 sbinfo->uid = ctx->uid; 1414 sbinfo->gid = ctx->gid; 1415 sbinfo->mode = ctx->mode; 1416 1417 /* 1418 * Allocate and initialize subpool if maximum or minimum size is 1419 * specified. Any needed reservations (for minimum size) are taken 1420 * when the subpool is created. 1421 */ 1422 if (ctx->max_hpages != -1 || ctx->min_hpages != -1) { 1423 sbinfo->spool = hugepage_new_subpool(ctx->hstate, 1424 ctx->max_hpages, 1425 ctx->min_hpages); 1426 if (!sbinfo->spool) 1427 goto out_free; 1428 } 1429 sb->s_maxbytes = MAX_LFS_FILESIZE; 1430 sb->s_blocksize = huge_page_size(ctx->hstate); 1431 sb->s_blocksize_bits = huge_page_shift(ctx->hstate); 1432 sb->s_magic = HUGETLBFS_MAGIC; 1433 sb->s_op = &hugetlbfs_ops; 1434 sb->s_time_gran = 1; 1435 1436 /* 1437 * Due to the special and limited functionality of hugetlbfs, it does 1438 * not work well as a stacking filesystem. 1439 */ 1440 sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH; 1441 sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx)); 1442 if (!sb->s_root) 1443 goto out_free; 1444 return 0; 1445 out_free: 1446 kfree(sbinfo->spool); 1447 kfree(sbinfo); 1448 return -ENOMEM; 1449 } 1450 1451 static int hugetlbfs_get_tree(struct fs_context *fc) 1452 { 1453 int err = hugetlbfs_validate(fc); 1454 if (err) 1455 return err; 1456 return get_tree_nodev(fc, hugetlbfs_fill_super); 1457 } 1458 1459 static void hugetlbfs_fs_context_free(struct fs_context *fc) 1460 { 1461 kfree(fc->fs_private); 1462 } 1463 1464 static const struct fs_context_operations hugetlbfs_fs_context_ops = { 1465 .free = hugetlbfs_fs_context_free, 1466 .parse_param = hugetlbfs_parse_param, 1467 .get_tree = hugetlbfs_get_tree, 1468 }; 1469 1470 static int hugetlbfs_init_fs_context(struct fs_context *fc) 1471 { 1472 struct hugetlbfs_fs_context *ctx; 1473 1474 ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL); 1475 if (!ctx) 1476 return -ENOMEM; 1477 1478 ctx->max_hpages = -1; /* No limit on size by default */ 1479 ctx->nr_inodes = -1; /* No limit on number of inodes by default */ 1480 ctx->uid = current_fsuid(); 1481 ctx->gid = current_fsgid(); 1482 ctx->mode = 0755; 1483 ctx->hstate = &default_hstate; 1484 ctx->min_hpages = -1; /* No default minimum size */ 1485 ctx->max_val_type = NO_SIZE; 1486 ctx->min_val_type = NO_SIZE; 1487 fc->fs_private = ctx; 1488 fc->ops = &hugetlbfs_fs_context_ops; 1489 return 0; 1490 } 1491 1492 static struct file_system_type hugetlbfs_fs_type = { 1493 .name = "hugetlbfs", 1494 .init_fs_context = hugetlbfs_init_fs_context, 1495 .parameters = hugetlb_fs_parameters, 1496 .kill_sb = kill_litter_super, 1497 .fs_flags = FS_ALLOW_IDMAP, 1498 }; 1499 1500 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE]; 1501 1502 static int can_do_hugetlb_shm(void) 1503 { 1504 kgid_t shm_group; 1505 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group); 1506 return capable(CAP_IPC_LOCK) || in_group_p(shm_group); 1507 } 1508 1509 static int get_hstate_idx(int page_size_log) 1510 { 1511 struct hstate *h = hstate_sizelog(page_size_log); 1512 1513 if (!h) 1514 return -1; 1515 return hstate_index(h); 1516 } 1517 1518 /* 1519 * Note that size should be aligned to proper hugepage size in caller side, 1520 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended. 1521 */ 1522 struct file *hugetlb_file_setup(const char *name, size_t size, 1523 vm_flags_t acctflag, int creat_flags, 1524 int page_size_log) 1525 { 1526 struct inode *inode; 1527 struct vfsmount *mnt; 1528 int hstate_idx; 1529 struct file *file; 1530 1531 hstate_idx = get_hstate_idx(page_size_log); 1532 if (hstate_idx < 0) 1533 return ERR_PTR(-ENODEV); 1534 1535 mnt = hugetlbfs_vfsmount[hstate_idx]; 1536 if (!mnt) 1537 return ERR_PTR(-ENOENT); 1538 1539 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) { 1540 struct ucounts *ucounts = current_ucounts(); 1541 1542 if (user_shm_lock(size, ucounts)) { 1543 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n", 1544 current->comm, current->pid); 1545 user_shm_unlock(size, ucounts); 1546 } 1547 return ERR_PTR(-EPERM); 1548 } 1549 1550 file = ERR_PTR(-ENOSPC); 1551 /* hugetlbfs_vfsmount[] mounts do not use idmapped mounts. */ 1552 inode = hugetlbfs_get_inode(mnt->mnt_sb, &nop_mnt_idmap, NULL, 1553 S_IFREG | S_IRWXUGO, 0); 1554 if (!inode) 1555 goto out; 1556 if (creat_flags == HUGETLB_SHMFS_INODE) 1557 inode->i_flags |= S_PRIVATE; 1558 1559 inode->i_size = size; 1560 clear_nlink(inode); 1561 1562 if (!hugetlb_reserve_pages(inode, 0, 1563 size >> huge_page_shift(hstate_inode(inode)), NULL, 1564 acctflag)) 1565 file = ERR_PTR(-ENOMEM); 1566 else 1567 file = alloc_file_pseudo(inode, mnt, name, O_RDWR, 1568 &hugetlbfs_file_operations); 1569 if (!IS_ERR(file)) 1570 return file; 1571 1572 iput(inode); 1573 out: 1574 return file; 1575 } 1576 1577 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h) 1578 { 1579 struct fs_context *fc; 1580 struct vfsmount *mnt; 1581 1582 fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT); 1583 if (IS_ERR(fc)) { 1584 mnt = ERR_CAST(fc); 1585 } else { 1586 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1587 ctx->hstate = h; 1588 mnt = fc_mount(fc); 1589 put_fs_context(fc); 1590 } 1591 if (IS_ERR(mnt)) 1592 pr_err("Cannot mount internal hugetlbfs for page size %luK", 1593 huge_page_size(h) / SZ_1K); 1594 return mnt; 1595 } 1596 1597 static int __init init_hugetlbfs_fs(void) 1598 { 1599 struct vfsmount *mnt; 1600 struct hstate *h; 1601 int error; 1602 int i; 1603 1604 if (!hugepages_supported()) { 1605 pr_info("disabling because there are no supported hugepage sizes\n"); 1606 return -ENOTSUPP; 1607 } 1608 1609 error = -ENOMEM; 1610 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache", 1611 sizeof(struct hugetlbfs_inode_info), 1612 0, SLAB_ACCOUNT, init_once); 1613 if (hugetlbfs_inode_cachep == NULL) 1614 goto out; 1615 1616 error = register_filesystem(&hugetlbfs_fs_type); 1617 if (error) 1618 goto out_free; 1619 1620 /* default hstate mount is required */ 1621 mnt = mount_one_hugetlbfs(&default_hstate); 1622 if (IS_ERR(mnt)) { 1623 error = PTR_ERR(mnt); 1624 goto out_unreg; 1625 } 1626 hugetlbfs_vfsmount[default_hstate_idx] = mnt; 1627 1628 /* other hstates are optional */ 1629 i = 0; 1630 for_each_hstate(h) { 1631 if (i == default_hstate_idx) { 1632 i++; 1633 continue; 1634 } 1635 1636 mnt = mount_one_hugetlbfs(h); 1637 if (IS_ERR(mnt)) 1638 hugetlbfs_vfsmount[i] = NULL; 1639 else 1640 hugetlbfs_vfsmount[i] = mnt; 1641 i++; 1642 } 1643 1644 return 0; 1645 1646 out_unreg: 1647 (void)unregister_filesystem(&hugetlbfs_fs_type); 1648 out_free: 1649 kmem_cache_destroy(hugetlbfs_inode_cachep); 1650 out: 1651 return error; 1652 } 1653 fs_initcall(init_hugetlbfs_fs) 1654