xref: /linux/fs/hugetlbfs/inode.c (revision 07fdad3a93756b872da7b53647715c48d0f4a2d0)
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/falloc.h>
15 #include <linux/fs.h>
16 #include <linux/mount.h>
17 #include <linux/file.h>
18 #include <linux/kernel.h>
19 #include <linux/writeback.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/init.h>
23 #include <linux/string.h>
24 #include <linux/capability.h>
25 #include <linux/ctype.h>
26 #include <linux/backing-dev.h>
27 #include <linux/hugetlb.h>
28 #include <linux/pagevec.h>
29 #include <linux/fs_parser.h>
30 #include <linux/mman.h>
31 #include <linux/slab.h>
32 #include <linux/dnotify.h>
33 #include <linux/statfs.h>
34 #include <linux/security.h>
35 #include <linux/magic.h>
36 #include <linux/migrate.h>
37 #include <linux/uio.h>
38 
39 #include <linux/uaccess.h>
40 #include <linux/sched/mm.h>
41 
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/hugetlbfs.h>
44 
45 static const struct address_space_operations hugetlbfs_aops;
46 static const struct file_operations hugetlbfs_file_operations;
47 static const struct inode_operations hugetlbfs_dir_inode_operations;
48 static const struct inode_operations hugetlbfs_inode_operations;
49 
50 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
51 
52 struct hugetlbfs_fs_context {
53 	struct hstate		*hstate;
54 	unsigned long long	max_size_opt;
55 	unsigned long long	min_size_opt;
56 	long			max_hpages;
57 	long			nr_inodes;
58 	long			min_hpages;
59 	enum hugetlbfs_size_type max_val_type;
60 	enum hugetlbfs_size_type min_val_type;
61 	kuid_t			uid;
62 	kgid_t			gid;
63 	umode_t			mode;
64 };
65 
66 int sysctl_hugetlb_shm_group;
67 
68 enum hugetlb_param {
69 	Opt_gid,
70 	Opt_min_size,
71 	Opt_mode,
72 	Opt_nr_inodes,
73 	Opt_pagesize,
74 	Opt_size,
75 	Opt_uid,
76 };
77 
78 static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
79 	fsparam_gid   ("gid",		Opt_gid),
80 	fsparam_string("min_size",	Opt_min_size),
81 	fsparam_u32oct("mode",		Opt_mode),
82 	fsparam_string("nr_inodes",	Opt_nr_inodes),
83 	fsparam_string("pagesize",	Opt_pagesize),
84 	fsparam_string("size",		Opt_size),
85 	fsparam_uid   ("uid",		Opt_uid),
86 	{}
87 };
88 
89 /*
90  * Mask used when checking the page offset value passed in via system
91  * calls.  This value will be converted to a loff_t which is signed.
92  * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
93  * value.  The extra bit (- 1 in the shift value) is to take the sign
94  * bit into account.
95  */
96 #define PGOFF_LOFFT_MAX \
97 	(((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
98 
99 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
100 {
101 	struct inode *inode = file_inode(file);
102 	loff_t len, vma_len;
103 	int ret;
104 	struct hstate *h = hstate_file(file);
105 	vm_flags_t vm_flags;
106 
107 	/*
108 	 * vma address alignment (but not the pgoff alignment) has
109 	 * already been checked by prepare_hugepage_range.  If you add
110 	 * any error returns here, do so after setting VM_HUGETLB, so
111 	 * is_vm_hugetlb_page tests below unmap_region go the right
112 	 * way when do_mmap unwinds (may be important on powerpc
113 	 * and ia64).
114 	 */
115 	vm_flags_set(vma, VM_HUGETLB | VM_DONTEXPAND);
116 	vma->vm_ops = &hugetlb_vm_ops;
117 
118 	/*
119 	 * page based offset in vm_pgoff could be sufficiently large to
120 	 * overflow a loff_t when converted to byte offset.  This can
121 	 * only happen on architectures where sizeof(loff_t) ==
122 	 * sizeof(unsigned long).  So, only check in those instances.
123 	 */
124 	if (sizeof(unsigned long) == sizeof(loff_t)) {
125 		if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
126 			return -EINVAL;
127 	}
128 
129 	/* must be huge page aligned */
130 	if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
131 		return -EINVAL;
132 
133 	vma_len = (loff_t)(vma->vm_end - vma->vm_start);
134 	len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
135 	/* check for overflow */
136 	if (len < vma_len)
137 		return -EINVAL;
138 
139 	inode_lock(inode);
140 	file_accessed(file);
141 
142 	ret = -ENOMEM;
143 
144 	vm_flags = vma->vm_flags;
145 	/*
146 	 * for SHM_HUGETLB, the pages are reserved in the shmget() call so skip
147 	 * reserving here. Note: only for SHM hugetlbfs file, the inode
148 	 * flag S_PRIVATE is set.
149 	 */
150 	if (inode->i_flags & S_PRIVATE)
151 		vm_flags |= VM_NORESERVE;
152 
153 	if (hugetlb_reserve_pages(inode,
154 				vma->vm_pgoff >> huge_page_order(h),
155 				len >> huge_page_shift(h), vma,
156 				vm_flags) < 0)
157 		goto out;
158 
159 	ret = 0;
160 	if (vma->vm_flags & VM_WRITE && inode->i_size < len)
161 		i_size_write(inode, len);
162 out:
163 	inode_unlock(inode);
164 
165 	return ret;
166 }
167 
168 /*
169  * Called under mmap_write_lock(mm).
170  */
171 
172 unsigned long
173 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
174 			    unsigned long len, unsigned long pgoff,
175 			    unsigned long flags)
176 {
177 	unsigned long addr0 = 0;
178 	struct hstate *h = hstate_file(file);
179 
180 	if (len & ~huge_page_mask(h))
181 		return -EINVAL;
182 	if ((flags & MAP_FIXED) && (addr & ~huge_page_mask(h)))
183 		return -EINVAL;
184 	if (addr)
185 		addr0 = ALIGN(addr, huge_page_size(h));
186 
187 	return mm_get_unmapped_area_vmflags(current->mm, file, addr0, len, pgoff,
188 					    flags, 0);
189 }
190 
191 /*
192  * Someone wants to read @bytes from a HWPOISON hugetlb @folio from @offset.
193  * Returns the maximum number of bytes one can read without touching the 1st raw
194  * HWPOISON page.
195  *
196  * The implementation borrows the iteration logic from copy_page_to_iter*.
197  */
198 static size_t adjust_range_hwpoison(struct folio *folio, size_t offset,
199 		size_t bytes)
200 {
201 	struct page *page;
202 	size_t n = 0;
203 	size_t res = 0;
204 
205 	/* First page to start the loop. */
206 	page = folio_page(folio, offset / PAGE_SIZE);
207 	offset %= PAGE_SIZE;
208 	while (1) {
209 		if (is_raw_hwpoison_page_in_hugepage(page))
210 			break;
211 
212 		/* Safe to read n bytes without touching HWPOISON subpage. */
213 		n = min(bytes, (size_t)PAGE_SIZE - offset);
214 		res += n;
215 		bytes -= n;
216 		if (!bytes || !n)
217 			break;
218 		offset += n;
219 		if (offset == PAGE_SIZE) {
220 			page = nth_page(page, 1);
221 			offset = 0;
222 		}
223 	}
224 
225 	return res;
226 }
227 
228 /*
229  * Support for read() - Find the page attached to f_mapping and copy out the
230  * data. This provides functionality similar to filemap_read().
231  */
232 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
233 {
234 	struct file *file = iocb->ki_filp;
235 	struct hstate *h = hstate_file(file);
236 	struct address_space *mapping = file->f_mapping;
237 	struct inode *inode = mapping->host;
238 	unsigned long index = iocb->ki_pos >> huge_page_shift(h);
239 	unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
240 	unsigned long end_index;
241 	loff_t isize;
242 	ssize_t retval = 0;
243 
244 	while (iov_iter_count(to)) {
245 		struct folio *folio;
246 		size_t nr, copied, want;
247 
248 		/* nr is the maximum number of bytes to copy from this page */
249 		nr = huge_page_size(h);
250 		isize = i_size_read(inode);
251 		if (!isize)
252 			break;
253 		end_index = (isize - 1) >> huge_page_shift(h);
254 		if (index > end_index)
255 			break;
256 		if (index == end_index) {
257 			nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
258 			if (nr <= offset)
259 				break;
260 		}
261 		nr = nr - offset;
262 
263 		/* Find the folio */
264 		folio = filemap_lock_hugetlb_folio(h, mapping, index);
265 		if (IS_ERR(folio)) {
266 			/*
267 			 * We have a HOLE, zero out the user-buffer for the
268 			 * length of the hole or request.
269 			 */
270 			copied = iov_iter_zero(nr, to);
271 		} else {
272 			folio_unlock(folio);
273 
274 			if (!folio_test_hwpoison(folio))
275 				want = nr;
276 			else {
277 				/*
278 				 * Adjust how many bytes safe to read without
279 				 * touching the 1st raw HWPOISON page after
280 				 * offset.
281 				 */
282 				want = adjust_range_hwpoison(folio, offset, nr);
283 				if (want == 0) {
284 					folio_put(folio);
285 					retval = -EIO;
286 					break;
287 				}
288 			}
289 
290 			/*
291 			 * We have the folio, copy it to user space buffer.
292 			 */
293 			copied = copy_folio_to_iter(folio, offset, want, to);
294 			folio_put(folio);
295 		}
296 		offset += copied;
297 		retval += copied;
298 		if (copied != nr && iov_iter_count(to)) {
299 			if (!retval)
300 				retval = -EFAULT;
301 			break;
302 		}
303 		index += offset >> huge_page_shift(h);
304 		offset &= ~huge_page_mask(h);
305 	}
306 	iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
307 	return retval;
308 }
309 
310 static int hugetlbfs_write_begin(const struct kiocb *iocb,
311 			struct address_space *mapping,
312 			loff_t pos, unsigned len,
313 			struct folio **foliop, void **fsdata)
314 {
315 	return -EINVAL;
316 }
317 
318 static int hugetlbfs_write_end(const struct kiocb *iocb,
319 			       struct address_space *mapping,
320 			       loff_t pos, unsigned len, unsigned copied,
321 			       struct folio *folio, void *fsdata)
322 {
323 	BUG();
324 	return -EINVAL;
325 }
326 
327 static void hugetlb_delete_from_page_cache(struct folio *folio)
328 {
329 	folio_clear_dirty(folio);
330 	folio_clear_uptodate(folio);
331 	filemap_remove_folio(folio);
332 }
333 
334 /*
335  * Called with i_mmap_rwsem held for inode based vma maps.  This makes
336  * sure vma (and vm_mm) will not go away.  We also hold the hugetlb fault
337  * mutex for the page in the mapping.  So, we can not race with page being
338  * faulted into the vma.
339  */
340 static bool hugetlb_vma_maps_pfn(struct vm_area_struct *vma,
341 				unsigned long addr, unsigned long pfn)
342 {
343 	pte_t *ptep, pte;
344 
345 	ptep = hugetlb_walk(vma, addr, huge_page_size(hstate_vma(vma)));
346 	if (!ptep)
347 		return false;
348 
349 	pte = huge_ptep_get(vma->vm_mm, addr, ptep);
350 	if (huge_pte_none(pte) || !pte_present(pte))
351 		return false;
352 
353 	if (pte_pfn(pte) == pfn)
354 		return true;
355 
356 	return false;
357 }
358 
359 /*
360  * Can vma_offset_start/vma_offset_end overflow on 32-bit arches?
361  * No, because the interval tree returns us only those vmas
362  * which overlap the truncated area starting at pgoff,
363  * and no vma on a 32-bit arch can span beyond the 4GB.
364  */
365 static unsigned long vma_offset_start(struct vm_area_struct *vma, pgoff_t start)
366 {
367 	unsigned long offset = 0;
368 
369 	if (vma->vm_pgoff < start)
370 		offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
371 
372 	return vma->vm_start + offset;
373 }
374 
375 static unsigned long vma_offset_end(struct vm_area_struct *vma, pgoff_t end)
376 {
377 	unsigned long t_end;
378 
379 	if (!end)
380 		return vma->vm_end;
381 
382 	t_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) + vma->vm_start;
383 	if (t_end > vma->vm_end)
384 		t_end = vma->vm_end;
385 	return t_end;
386 }
387 
388 /*
389  * Called with hugetlb fault mutex held.  Therefore, no more mappings to
390  * this folio can be created while executing the routine.
391  */
392 static void hugetlb_unmap_file_folio(struct hstate *h,
393 					struct address_space *mapping,
394 					struct folio *folio, pgoff_t index)
395 {
396 	struct rb_root_cached *root = &mapping->i_mmap;
397 	struct hugetlb_vma_lock *vma_lock;
398 	unsigned long pfn = folio_pfn(folio);
399 	struct vm_area_struct *vma;
400 	unsigned long v_start;
401 	unsigned long v_end;
402 	pgoff_t start, end;
403 
404 	start = index * pages_per_huge_page(h);
405 	end = (index + 1) * pages_per_huge_page(h);
406 
407 	i_mmap_lock_write(mapping);
408 retry:
409 	vma_lock = NULL;
410 	vma_interval_tree_foreach(vma, root, start, end - 1) {
411 		v_start = vma_offset_start(vma, start);
412 		v_end = vma_offset_end(vma, end);
413 
414 		if (!hugetlb_vma_maps_pfn(vma, v_start, pfn))
415 			continue;
416 
417 		if (!hugetlb_vma_trylock_write(vma)) {
418 			vma_lock = vma->vm_private_data;
419 			/*
420 			 * If we can not get vma lock, we need to drop
421 			 * immap_sema and take locks in order.  First,
422 			 * take a ref on the vma_lock structure so that
423 			 * we can be guaranteed it will not go away when
424 			 * dropping immap_sema.
425 			 */
426 			kref_get(&vma_lock->refs);
427 			break;
428 		}
429 
430 		unmap_hugepage_range(vma, v_start, v_end, NULL,
431 				     ZAP_FLAG_DROP_MARKER);
432 		hugetlb_vma_unlock_write(vma);
433 	}
434 
435 	i_mmap_unlock_write(mapping);
436 
437 	if (vma_lock) {
438 		/*
439 		 * Wait on vma_lock.  We know it is still valid as we have
440 		 * a reference.  We must 'open code' vma locking as we do
441 		 * not know if vma_lock is still attached to vma.
442 		 */
443 		down_write(&vma_lock->rw_sema);
444 		i_mmap_lock_write(mapping);
445 
446 		vma = vma_lock->vma;
447 		if (!vma) {
448 			/*
449 			 * If lock is no longer attached to vma, then just
450 			 * unlock, drop our reference and retry looking for
451 			 * other vmas.
452 			 */
453 			up_write(&vma_lock->rw_sema);
454 			kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
455 			goto retry;
456 		}
457 
458 		/*
459 		 * vma_lock is still attached to vma.  Check to see if vma
460 		 * still maps page and if so, unmap.
461 		 */
462 		v_start = vma_offset_start(vma, start);
463 		v_end = vma_offset_end(vma, end);
464 		if (hugetlb_vma_maps_pfn(vma, v_start, pfn))
465 			unmap_hugepage_range(vma, v_start, v_end, NULL,
466 					     ZAP_FLAG_DROP_MARKER);
467 
468 		kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
469 		hugetlb_vma_unlock_write(vma);
470 
471 		goto retry;
472 	}
473 }
474 
475 static void
476 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end,
477 		      zap_flags_t zap_flags)
478 {
479 	struct vm_area_struct *vma;
480 
481 	/*
482 	 * end == 0 indicates that the entire range after start should be
483 	 * unmapped.  Note, end is exclusive, whereas the interval tree takes
484 	 * an inclusive "last".
485 	 */
486 	vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) {
487 		unsigned long v_start;
488 		unsigned long v_end;
489 
490 		if (!hugetlb_vma_trylock_write(vma))
491 			continue;
492 
493 		v_start = vma_offset_start(vma, start);
494 		v_end = vma_offset_end(vma, end);
495 
496 		unmap_hugepage_range(vma, v_start, v_end, NULL, zap_flags);
497 
498 		/*
499 		 * Note that vma lock only exists for shared/non-private
500 		 * vmas.  Therefore, lock is not held when calling
501 		 * unmap_hugepage_range for private vmas.
502 		 */
503 		hugetlb_vma_unlock_write(vma);
504 	}
505 }
506 
507 /*
508  * Called with hugetlb fault mutex held.
509  * Returns true if page was actually removed, false otherwise.
510  */
511 static bool remove_inode_single_folio(struct hstate *h, struct inode *inode,
512 					struct address_space *mapping,
513 					struct folio *folio, pgoff_t index,
514 					bool truncate_op)
515 {
516 	bool ret = false;
517 
518 	/*
519 	 * If folio is mapped, it was faulted in after being
520 	 * unmapped in caller or hugetlb_vmdelete_list() skips
521 	 * unmapping it due to fail to grab lock.  Unmap (again)
522 	 * while holding the fault mutex.  The mutex will prevent
523 	 * faults until we finish removing the folio.  Hold folio
524 	 * lock to guarantee no concurrent migration.
525 	 */
526 	folio_lock(folio);
527 	if (unlikely(folio_mapped(folio)))
528 		hugetlb_unmap_file_folio(h, mapping, folio, index);
529 
530 	/*
531 	 * We must remove the folio from page cache before removing
532 	 * the region/ reserve map (hugetlb_unreserve_pages).  In
533 	 * rare out of memory conditions, removal of the region/reserve
534 	 * map could fail.  Correspondingly, the subpool and global
535 	 * reserve usage count can need to be adjusted.
536 	 */
537 	VM_BUG_ON_FOLIO(folio_test_hugetlb_restore_reserve(folio), folio);
538 	hugetlb_delete_from_page_cache(folio);
539 	ret = true;
540 	if (!truncate_op) {
541 		if (unlikely(hugetlb_unreserve_pages(inode, index,
542 							index + 1, 1)))
543 			hugetlb_fix_reserve_counts(inode);
544 	}
545 
546 	folio_unlock(folio);
547 	return ret;
548 }
549 
550 /*
551  * remove_inode_hugepages handles two distinct cases: truncation and hole
552  * punch.  There are subtle differences in operation for each case.
553  *
554  * truncation is indicated by end of range being LLONG_MAX
555  *	In this case, we first scan the range and release found pages.
556  *	After releasing pages, hugetlb_unreserve_pages cleans up region/reserve
557  *	maps and global counts.  Page faults can race with truncation.
558  *	During faults, hugetlb_no_page() checks i_size before page allocation,
559  *	and again after obtaining page table lock.  It will 'back out'
560  *	allocations in the truncated range.
561  * hole punch is indicated if end is not LLONG_MAX
562  *	In the hole punch case we scan the range and release found pages.
563  *	Only when releasing a page is the associated region/reserve map
564  *	deleted.  The region/reserve map for ranges without associated
565  *	pages are not modified.  Page faults can race with hole punch.
566  *	This is indicated if we find a mapped page.
567  * Note: If the passed end of range value is beyond the end of file, but
568  * not LLONG_MAX this routine still performs a hole punch operation.
569  */
570 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
571 				   loff_t lend)
572 {
573 	struct hstate *h = hstate_inode(inode);
574 	struct address_space *mapping = &inode->i_data;
575 	const pgoff_t end = lend >> PAGE_SHIFT;
576 	struct folio_batch fbatch;
577 	pgoff_t next, index;
578 	int i, freed = 0;
579 	bool truncate_op = (lend == LLONG_MAX);
580 
581 	folio_batch_init(&fbatch);
582 	next = lstart >> PAGE_SHIFT;
583 	while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) {
584 		for (i = 0; i < folio_batch_count(&fbatch); ++i) {
585 			struct folio *folio = fbatch.folios[i];
586 			u32 hash = 0;
587 
588 			index = folio->index >> huge_page_order(h);
589 			hash = hugetlb_fault_mutex_hash(mapping, index);
590 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
591 
592 			/*
593 			 * Remove folio that was part of folio_batch.
594 			 */
595 			if (remove_inode_single_folio(h, inode, mapping, folio,
596 							index, truncate_op))
597 				freed++;
598 
599 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
600 		}
601 		folio_batch_release(&fbatch);
602 		cond_resched();
603 	}
604 
605 	if (truncate_op)
606 		(void)hugetlb_unreserve_pages(inode,
607 				lstart >> huge_page_shift(h),
608 				LONG_MAX, freed);
609 }
610 
611 static void hugetlbfs_evict_inode(struct inode *inode)
612 {
613 	struct resv_map *resv_map;
614 
615 	trace_hugetlbfs_evict_inode(inode);
616 	remove_inode_hugepages(inode, 0, LLONG_MAX);
617 
618 	/*
619 	 * Get the resv_map from the address space embedded in the inode.
620 	 * This is the address space which points to any resv_map allocated
621 	 * at inode creation time.  If this is a device special inode,
622 	 * i_mapping may not point to the original address space.
623 	 */
624 	resv_map = (struct resv_map *)(&inode->i_data)->i_private_data;
625 	/* Only regular and link inodes have associated reserve maps */
626 	if (resv_map)
627 		resv_map_release(&resv_map->refs);
628 	clear_inode(inode);
629 }
630 
631 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset)
632 {
633 	pgoff_t pgoff;
634 	struct address_space *mapping = inode->i_mapping;
635 	struct hstate *h = hstate_inode(inode);
636 
637 	BUG_ON(offset & ~huge_page_mask(h));
638 	pgoff = offset >> PAGE_SHIFT;
639 
640 	i_size_write(inode, offset);
641 	i_mmap_lock_write(mapping);
642 	if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
643 		hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0,
644 				      ZAP_FLAG_DROP_MARKER);
645 	i_mmap_unlock_write(mapping);
646 	remove_inode_hugepages(inode, offset, LLONG_MAX);
647 }
648 
649 static void hugetlbfs_zero_partial_page(struct hstate *h,
650 					struct address_space *mapping,
651 					loff_t start,
652 					loff_t end)
653 {
654 	pgoff_t idx = start >> huge_page_shift(h);
655 	struct folio *folio;
656 
657 	folio = filemap_lock_hugetlb_folio(h, mapping, idx);
658 	if (IS_ERR(folio))
659 		return;
660 
661 	start = start & ~huge_page_mask(h);
662 	end = end & ~huge_page_mask(h);
663 	if (!end)
664 		end = huge_page_size(h);
665 
666 	folio_zero_segment(folio, (size_t)start, (size_t)end);
667 
668 	folio_unlock(folio);
669 	folio_put(folio);
670 }
671 
672 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
673 {
674 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
675 	struct address_space *mapping = inode->i_mapping;
676 	struct hstate *h = hstate_inode(inode);
677 	loff_t hpage_size = huge_page_size(h);
678 	loff_t hole_start, hole_end;
679 
680 	/*
681 	 * hole_start and hole_end indicate the full pages within the hole.
682 	 */
683 	hole_start = round_up(offset, hpage_size);
684 	hole_end = round_down(offset + len, hpage_size);
685 
686 	inode_lock(inode);
687 
688 	/* protected by i_rwsem */
689 	if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
690 		inode_unlock(inode);
691 		return -EPERM;
692 	}
693 
694 	i_mmap_lock_write(mapping);
695 
696 	/* If range starts before first full page, zero partial page. */
697 	if (offset < hole_start)
698 		hugetlbfs_zero_partial_page(h, mapping,
699 				offset, min(offset + len, hole_start));
700 
701 	/* Unmap users of full pages in the hole. */
702 	if (hole_end > hole_start) {
703 		if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
704 			hugetlb_vmdelete_list(&mapping->i_mmap,
705 					      hole_start >> PAGE_SHIFT,
706 					      hole_end >> PAGE_SHIFT, 0);
707 	}
708 
709 	/* If range extends beyond last full page, zero partial page. */
710 	if ((offset + len) > hole_end && (offset + len) > hole_start)
711 		hugetlbfs_zero_partial_page(h, mapping,
712 				hole_end, offset + len);
713 
714 	i_mmap_unlock_write(mapping);
715 
716 	/* Remove full pages from the file. */
717 	if (hole_end > hole_start)
718 		remove_inode_hugepages(inode, hole_start, hole_end);
719 
720 	inode_unlock(inode);
721 
722 	return 0;
723 }
724 
725 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
726 				loff_t len)
727 {
728 	struct inode *inode = file_inode(file);
729 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
730 	struct address_space *mapping = inode->i_mapping;
731 	struct hstate *h = hstate_inode(inode);
732 	struct vm_area_struct pseudo_vma;
733 	struct mm_struct *mm = current->mm;
734 	loff_t hpage_size = huge_page_size(h);
735 	unsigned long hpage_shift = huge_page_shift(h);
736 	pgoff_t start, index, end;
737 	int error;
738 	u32 hash;
739 
740 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
741 		return -EOPNOTSUPP;
742 
743 	if (mode & FALLOC_FL_PUNCH_HOLE) {
744 		error = hugetlbfs_punch_hole(inode, offset, len);
745 		goto out_nolock;
746 	}
747 
748 	/*
749 	 * Default preallocate case.
750 	 * For this range, start is rounded down and end is rounded up
751 	 * as well as being converted to page offsets.
752 	 */
753 	start = offset >> hpage_shift;
754 	end = (offset + len + hpage_size - 1) >> hpage_shift;
755 
756 	inode_lock(inode);
757 
758 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
759 	error = inode_newsize_ok(inode, offset + len);
760 	if (error)
761 		goto out;
762 
763 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
764 		error = -EPERM;
765 		goto out;
766 	}
767 
768 	/*
769 	 * Initialize a pseudo vma as this is required by the huge page
770 	 * allocation routines.
771 	 */
772 	vma_init(&pseudo_vma, mm);
773 	vm_flags_init(&pseudo_vma, VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
774 	pseudo_vma.vm_file = file;
775 
776 	for (index = start; index < end; index++) {
777 		/*
778 		 * This is supposed to be the vaddr where the page is being
779 		 * faulted in, but we have no vaddr here.
780 		 */
781 		struct folio *folio;
782 		unsigned long addr;
783 
784 		cond_resched();
785 
786 		/*
787 		 * fallocate(2) manpage permits EINTR; we may have been
788 		 * interrupted because we are using up too much memory.
789 		 */
790 		if (signal_pending(current)) {
791 			error = -EINTR;
792 			break;
793 		}
794 
795 		/* addr is the offset within the file (zero based) */
796 		addr = index * hpage_size;
797 
798 		/* mutex taken here, fault path and hole punch */
799 		hash = hugetlb_fault_mutex_hash(mapping, index);
800 		mutex_lock(&hugetlb_fault_mutex_table[hash]);
801 
802 		/* See if already present in mapping to avoid alloc/free */
803 		folio = filemap_get_folio(mapping, index << huge_page_order(h));
804 		if (!IS_ERR(folio)) {
805 			folio_put(folio);
806 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
807 			continue;
808 		}
809 
810 		/*
811 		 * Allocate folio without setting the avoid_reserve argument.
812 		 * There certainly are no reserves associated with the
813 		 * pseudo_vma.  However, there could be shared mappings with
814 		 * reserves for the file at the inode level.  If we fallocate
815 		 * folios in these areas, we need to consume the reserves
816 		 * to keep reservation accounting consistent.
817 		 */
818 		folio = alloc_hugetlb_folio(&pseudo_vma, addr, false);
819 		if (IS_ERR(folio)) {
820 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
821 			error = PTR_ERR(folio);
822 			goto out;
823 		}
824 		folio_zero_user(folio, addr);
825 		__folio_mark_uptodate(folio);
826 		error = hugetlb_add_to_page_cache(folio, mapping, index);
827 		if (unlikely(error)) {
828 			restore_reserve_on_error(h, &pseudo_vma, addr, folio);
829 			folio_put(folio);
830 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
831 			goto out;
832 		}
833 
834 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
835 
836 		folio_set_hugetlb_migratable(folio);
837 		/*
838 		 * folio_unlock because locked by hugetlb_add_to_page_cache()
839 		 * folio_put() due to reference from alloc_hugetlb_folio()
840 		 */
841 		folio_unlock(folio);
842 		folio_put(folio);
843 	}
844 
845 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
846 		i_size_write(inode, offset + len);
847 	inode_set_ctime_current(inode);
848 out:
849 	inode_unlock(inode);
850 
851 out_nolock:
852 	trace_hugetlbfs_fallocate(inode, mode, offset, len, error);
853 	return error;
854 }
855 
856 static int hugetlbfs_setattr(struct mnt_idmap *idmap,
857 			     struct dentry *dentry, struct iattr *attr)
858 {
859 	struct inode *inode = d_inode(dentry);
860 	struct hstate *h = hstate_inode(inode);
861 	int error;
862 	unsigned int ia_valid = attr->ia_valid;
863 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
864 
865 	error = setattr_prepare(idmap, dentry, attr);
866 	if (error)
867 		return error;
868 
869 	trace_hugetlbfs_setattr(inode, dentry, attr);
870 
871 	if (ia_valid & ATTR_SIZE) {
872 		loff_t oldsize = inode->i_size;
873 		loff_t newsize = attr->ia_size;
874 
875 		if (newsize & ~huge_page_mask(h))
876 			return -EINVAL;
877 		/* protected by i_rwsem */
878 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
879 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
880 			return -EPERM;
881 		hugetlb_vmtruncate(inode, newsize);
882 	}
883 
884 	setattr_copy(idmap, inode, attr);
885 	mark_inode_dirty(inode);
886 	return 0;
887 }
888 
889 static struct inode *hugetlbfs_get_root(struct super_block *sb,
890 					struct hugetlbfs_fs_context *ctx)
891 {
892 	struct inode *inode;
893 
894 	inode = new_inode(sb);
895 	if (inode) {
896 		inode->i_ino = get_next_ino();
897 		inode->i_mode = S_IFDIR | ctx->mode;
898 		inode->i_uid = ctx->uid;
899 		inode->i_gid = ctx->gid;
900 		simple_inode_init_ts(inode);
901 		inode->i_op = &hugetlbfs_dir_inode_operations;
902 		inode->i_fop = &simple_dir_operations;
903 		/* directory inodes start off with i_nlink == 2 (for "." entry) */
904 		inc_nlink(inode);
905 		lockdep_annotate_inode_mutex_key(inode);
906 	}
907 	return inode;
908 }
909 
910 /*
911  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
912  * be taken from reclaim -- unlike regular filesystems. This needs an
913  * annotation because huge_pmd_share() does an allocation under hugetlb's
914  * i_mmap_rwsem.
915  */
916 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
917 
918 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
919 					struct mnt_idmap *idmap,
920 					struct inode *dir,
921 					umode_t mode, dev_t dev)
922 {
923 	struct inode *inode;
924 	struct resv_map *resv_map = NULL;
925 
926 	/*
927 	 * Reserve maps are only needed for inodes that can have associated
928 	 * page allocations.
929 	 */
930 	if (S_ISREG(mode) || S_ISLNK(mode)) {
931 		resv_map = resv_map_alloc();
932 		if (!resv_map)
933 			return NULL;
934 	}
935 
936 	inode = new_inode(sb);
937 	if (inode) {
938 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
939 
940 		inode->i_ino = get_next_ino();
941 		inode_init_owner(idmap, inode, dir, mode);
942 		lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
943 				&hugetlbfs_i_mmap_rwsem_key);
944 		inode->i_mapping->a_ops = &hugetlbfs_aops;
945 		simple_inode_init_ts(inode);
946 		inode->i_mapping->i_private_data = resv_map;
947 		info->seals = F_SEAL_SEAL;
948 		switch (mode & S_IFMT) {
949 		default:
950 			init_special_inode(inode, mode, dev);
951 			break;
952 		case S_IFREG:
953 			inode->i_op = &hugetlbfs_inode_operations;
954 			inode->i_fop = &hugetlbfs_file_operations;
955 			break;
956 		case S_IFDIR:
957 			inode->i_op = &hugetlbfs_dir_inode_operations;
958 			inode->i_fop = &simple_dir_operations;
959 
960 			/* directory inodes start off with i_nlink == 2 (for "." entry) */
961 			inc_nlink(inode);
962 			break;
963 		case S_IFLNK:
964 			inode->i_op = &page_symlink_inode_operations;
965 			inode_nohighmem(inode);
966 			break;
967 		}
968 		lockdep_annotate_inode_mutex_key(inode);
969 		trace_hugetlbfs_alloc_inode(inode, dir, mode);
970 	} else {
971 		if (resv_map)
972 			kref_put(&resv_map->refs, resv_map_release);
973 	}
974 
975 	return inode;
976 }
977 
978 /*
979  * File creation. Allocate an inode, and we're done..
980  */
981 static int hugetlbfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
982 			   struct dentry *dentry, umode_t mode, dev_t dev)
983 {
984 	struct inode *inode;
985 
986 	inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, dev);
987 	if (!inode)
988 		return -ENOSPC;
989 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
990 	d_instantiate(dentry, inode);
991 	dget(dentry);/* Extra count - pin the dentry in core */
992 	return 0;
993 }
994 
995 static struct dentry *hugetlbfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
996 				      struct dentry *dentry, umode_t mode)
997 {
998 	int retval = hugetlbfs_mknod(idmap, dir, dentry,
999 				     mode | S_IFDIR, 0);
1000 	if (!retval)
1001 		inc_nlink(dir);
1002 	return ERR_PTR(retval);
1003 }
1004 
1005 static int hugetlbfs_create(struct mnt_idmap *idmap,
1006 			    struct inode *dir, struct dentry *dentry,
1007 			    umode_t mode, bool excl)
1008 {
1009 	return hugetlbfs_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
1010 }
1011 
1012 static int hugetlbfs_tmpfile(struct mnt_idmap *idmap,
1013 			     struct inode *dir, struct file *file,
1014 			     umode_t mode)
1015 {
1016 	struct inode *inode;
1017 
1018 	inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode | S_IFREG, 0);
1019 	if (!inode)
1020 		return -ENOSPC;
1021 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
1022 	d_tmpfile(file, inode);
1023 	return finish_open_simple(file, 0);
1024 }
1025 
1026 static int hugetlbfs_symlink(struct mnt_idmap *idmap,
1027 			     struct inode *dir, struct dentry *dentry,
1028 			     const char *symname)
1029 {
1030 	const umode_t mode = S_IFLNK|S_IRWXUGO;
1031 	struct inode *inode;
1032 	int error = -ENOSPC;
1033 
1034 	inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, 0);
1035 	if (inode) {
1036 		int l = strlen(symname)+1;
1037 		error = page_symlink(inode, symname, l);
1038 		if (!error) {
1039 			d_instantiate(dentry, inode);
1040 			dget(dentry);
1041 		} else
1042 			iput(inode);
1043 	}
1044 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
1045 
1046 	return error;
1047 }
1048 
1049 #ifdef CONFIG_MIGRATION
1050 static int hugetlbfs_migrate_folio(struct address_space *mapping,
1051 				struct folio *dst, struct folio *src,
1052 				enum migrate_mode mode)
1053 {
1054 	int rc;
1055 
1056 	rc = migrate_huge_page_move_mapping(mapping, dst, src);
1057 	if (rc != MIGRATEPAGE_SUCCESS)
1058 		return rc;
1059 
1060 	if (hugetlb_folio_subpool(src)) {
1061 		hugetlb_set_folio_subpool(dst,
1062 					hugetlb_folio_subpool(src));
1063 		hugetlb_set_folio_subpool(src, NULL);
1064 	}
1065 
1066 	folio_migrate_flags(dst, src);
1067 
1068 	return MIGRATEPAGE_SUCCESS;
1069 }
1070 #else
1071 #define hugetlbfs_migrate_folio NULL
1072 #endif
1073 
1074 static int hugetlbfs_error_remove_folio(struct address_space *mapping,
1075 				struct folio *folio)
1076 {
1077 	return 0;
1078 }
1079 
1080 /*
1081  * Display the mount options in /proc/mounts.
1082  */
1083 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
1084 {
1085 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
1086 	struct hugepage_subpool *spool = sbinfo->spool;
1087 	unsigned long hpage_size = huge_page_size(sbinfo->hstate);
1088 	unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
1089 	char mod;
1090 
1091 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1092 		seq_printf(m, ",uid=%u",
1093 			   from_kuid_munged(&init_user_ns, sbinfo->uid));
1094 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1095 		seq_printf(m, ",gid=%u",
1096 			   from_kgid_munged(&init_user_ns, sbinfo->gid));
1097 	if (sbinfo->mode != 0755)
1098 		seq_printf(m, ",mode=%o", sbinfo->mode);
1099 	if (sbinfo->max_inodes != -1)
1100 		seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1101 
1102 	hpage_size /= 1024;
1103 	mod = 'K';
1104 	if (hpage_size >= 1024) {
1105 		hpage_size /= 1024;
1106 		mod = 'M';
1107 	}
1108 	seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1109 	if (spool) {
1110 		if (spool->max_hpages != -1)
1111 			seq_printf(m, ",size=%llu",
1112 				   (unsigned long long)spool->max_hpages << hpage_shift);
1113 		if (spool->min_hpages != -1)
1114 			seq_printf(m, ",min_size=%llu",
1115 				   (unsigned long long)spool->min_hpages << hpage_shift);
1116 	}
1117 	return 0;
1118 }
1119 
1120 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1121 {
1122 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
1123 	struct hstate *h = hstate_inode(d_inode(dentry));
1124 	u64 id = huge_encode_dev(dentry->d_sb->s_dev);
1125 
1126 	buf->f_fsid = u64_to_fsid(id);
1127 	buf->f_type = HUGETLBFS_MAGIC;
1128 	buf->f_bsize = huge_page_size(h);
1129 	if (sbinfo) {
1130 		spin_lock(&sbinfo->stat_lock);
1131 		/* If no limits set, just report 0 or -1 for max/free/used
1132 		 * blocks, like simple_statfs() */
1133 		if (sbinfo->spool) {
1134 			long free_pages;
1135 
1136 			spin_lock_irq(&sbinfo->spool->lock);
1137 			buf->f_blocks = sbinfo->spool->max_hpages;
1138 			free_pages = sbinfo->spool->max_hpages
1139 				- sbinfo->spool->used_hpages;
1140 			buf->f_bavail = buf->f_bfree = free_pages;
1141 			spin_unlock_irq(&sbinfo->spool->lock);
1142 			buf->f_files = sbinfo->max_inodes;
1143 			buf->f_ffree = sbinfo->free_inodes;
1144 		}
1145 		spin_unlock(&sbinfo->stat_lock);
1146 	}
1147 	buf->f_namelen = NAME_MAX;
1148 	return 0;
1149 }
1150 
1151 static void hugetlbfs_put_super(struct super_block *sb)
1152 {
1153 	struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1154 
1155 	if (sbi) {
1156 		sb->s_fs_info = NULL;
1157 
1158 		if (sbi->spool)
1159 			hugepage_put_subpool(sbi->spool);
1160 
1161 		kfree(sbi);
1162 	}
1163 }
1164 
1165 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1166 {
1167 	if (sbinfo->free_inodes >= 0) {
1168 		spin_lock(&sbinfo->stat_lock);
1169 		if (unlikely(!sbinfo->free_inodes)) {
1170 			spin_unlock(&sbinfo->stat_lock);
1171 			return 0;
1172 		}
1173 		sbinfo->free_inodes--;
1174 		spin_unlock(&sbinfo->stat_lock);
1175 	}
1176 
1177 	return 1;
1178 }
1179 
1180 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1181 {
1182 	if (sbinfo->free_inodes >= 0) {
1183 		spin_lock(&sbinfo->stat_lock);
1184 		sbinfo->free_inodes++;
1185 		spin_unlock(&sbinfo->stat_lock);
1186 	}
1187 }
1188 
1189 
1190 static struct kmem_cache *hugetlbfs_inode_cachep;
1191 
1192 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1193 {
1194 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1195 	struct hugetlbfs_inode_info *p;
1196 
1197 	if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1198 		return NULL;
1199 	p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL);
1200 	if (unlikely(!p)) {
1201 		hugetlbfs_inc_free_inodes(sbinfo);
1202 		return NULL;
1203 	}
1204 	return &p->vfs_inode;
1205 }
1206 
1207 static void hugetlbfs_free_inode(struct inode *inode)
1208 {
1209 	trace_hugetlbfs_free_inode(inode);
1210 	kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1211 }
1212 
1213 static void hugetlbfs_destroy_inode(struct inode *inode)
1214 {
1215 	hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1216 }
1217 
1218 static const struct address_space_operations hugetlbfs_aops = {
1219 	.write_begin	= hugetlbfs_write_begin,
1220 	.write_end	= hugetlbfs_write_end,
1221 	.dirty_folio	= noop_dirty_folio,
1222 	.migrate_folio  = hugetlbfs_migrate_folio,
1223 	.error_remove_folio	= hugetlbfs_error_remove_folio,
1224 };
1225 
1226 
1227 static void init_once(void *foo)
1228 {
1229 	struct hugetlbfs_inode_info *ei = foo;
1230 
1231 	inode_init_once(&ei->vfs_inode);
1232 }
1233 
1234 static const struct file_operations hugetlbfs_file_operations = {
1235 	.read_iter		= hugetlbfs_read_iter,
1236 	.mmap			= hugetlbfs_file_mmap,
1237 	.fsync			= noop_fsync,
1238 	.get_unmapped_area	= hugetlb_get_unmapped_area,
1239 	.llseek			= default_llseek,
1240 	.fallocate		= hugetlbfs_fallocate,
1241 	.fop_flags		= FOP_HUGE_PAGES,
1242 };
1243 
1244 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1245 	.create		= hugetlbfs_create,
1246 	.lookup		= simple_lookup,
1247 	.link		= simple_link,
1248 	.unlink		= simple_unlink,
1249 	.symlink	= hugetlbfs_symlink,
1250 	.mkdir		= hugetlbfs_mkdir,
1251 	.rmdir		= simple_rmdir,
1252 	.mknod		= hugetlbfs_mknod,
1253 	.rename		= simple_rename,
1254 	.setattr	= hugetlbfs_setattr,
1255 	.tmpfile	= hugetlbfs_tmpfile,
1256 };
1257 
1258 static const struct inode_operations hugetlbfs_inode_operations = {
1259 	.setattr	= hugetlbfs_setattr,
1260 };
1261 
1262 static const struct super_operations hugetlbfs_ops = {
1263 	.alloc_inode    = hugetlbfs_alloc_inode,
1264 	.free_inode     = hugetlbfs_free_inode,
1265 	.destroy_inode  = hugetlbfs_destroy_inode,
1266 	.evict_inode	= hugetlbfs_evict_inode,
1267 	.statfs		= hugetlbfs_statfs,
1268 	.put_super	= hugetlbfs_put_super,
1269 	.show_options	= hugetlbfs_show_options,
1270 };
1271 
1272 /*
1273  * Convert size option passed from command line to number of huge pages
1274  * in the pool specified by hstate.  Size option could be in bytes
1275  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1276  */
1277 static long
1278 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1279 			 enum hugetlbfs_size_type val_type)
1280 {
1281 	if (val_type == NO_SIZE)
1282 		return -1;
1283 
1284 	if (val_type == SIZE_PERCENT) {
1285 		size_opt <<= huge_page_shift(h);
1286 		size_opt *= h->max_huge_pages;
1287 		do_div(size_opt, 100);
1288 	}
1289 
1290 	size_opt >>= huge_page_shift(h);
1291 	return size_opt;
1292 }
1293 
1294 /*
1295  * Parse one mount parameter.
1296  */
1297 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1298 {
1299 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1300 	struct fs_parse_result result;
1301 	struct hstate *h;
1302 	char *rest;
1303 	unsigned long ps;
1304 	int opt;
1305 
1306 	opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1307 	if (opt < 0)
1308 		return opt;
1309 
1310 	switch (opt) {
1311 	case Opt_uid:
1312 		ctx->uid = result.uid;
1313 		return 0;
1314 
1315 	case Opt_gid:
1316 		ctx->gid = result.gid;
1317 		return 0;
1318 
1319 	case Opt_mode:
1320 		ctx->mode = result.uint_32 & 01777U;
1321 		return 0;
1322 
1323 	case Opt_size:
1324 		/* memparse() will accept a K/M/G without a digit */
1325 		if (!param->string || !isdigit(param->string[0]))
1326 			goto bad_val;
1327 		ctx->max_size_opt = memparse(param->string, &rest);
1328 		ctx->max_val_type = SIZE_STD;
1329 		if (*rest == '%')
1330 			ctx->max_val_type = SIZE_PERCENT;
1331 		return 0;
1332 
1333 	case Opt_nr_inodes:
1334 		/* memparse() will accept a K/M/G without a digit */
1335 		if (!param->string || !isdigit(param->string[0]))
1336 			goto bad_val;
1337 		ctx->nr_inodes = memparse(param->string, &rest);
1338 		return 0;
1339 
1340 	case Opt_pagesize:
1341 		ps = memparse(param->string, &rest);
1342 		h = size_to_hstate(ps);
1343 		if (!h) {
1344 			pr_err("Unsupported page size %lu MB\n", ps / SZ_1M);
1345 			return -EINVAL;
1346 		}
1347 		ctx->hstate = h;
1348 		return 0;
1349 
1350 	case Opt_min_size:
1351 		/* memparse() will accept a K/M/G without a digit */
1352 		if (!param->string || !isdigit(param->string[0]))
1353 			goto bad_val;
1354 		ctx->min_size_opt = memparse(param->string, &rest);
1355 		ctx->min_val_type = SIZE_STD;
1356 		if (*rest == '%')
1357 			ctx->min_val_type = SIZE_PERCENT;
1358 		return 0;
1359 
1360 	default:
1361 		return -EINVAL;
1362 	}
1363 
1364 bad_val:
1365 	return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1366 		      param->string, param->key);
1367 }
1368 
1369 /*
1370  * Validate the parsed options.
1371  */
1372 static int hugetlbfs_validate(struct fs_context *fc)
1373 {
1374 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1375 
1376 	/*
1377 	 * Use huge page pool size (in hstate) to convert the size
1378 	 * options to number of huge pages.  If NO_SIZE, -1 is returned.
1379 	 */
1380 	ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1381 						   ctx->max_size_opt,
1382 						   ctx->max_val_type);
1383 	ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1384 						   ctx->min_size_opt,
1385 						   ctx->min_val_type);
1386 
1387 	/*
1388 	 * If max_size was specified, then min_size must be smaller
1389 	 */
1390 	if (ctx->max_val_type > NO_SIZE &&
1391 	    ctx->min_hpages > ctx->max_hpages) {
1392 		pr_err("Minimum size can not be greater than maximum size\n");
1393 		return -EINVAL;
1394 	}
1395 
1396 	return 0;
1397 }
1398 
1399 static int
1400 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1401 {
1402 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1403 	struct hugetlbfs_sb_info *sbinfo;
1404 
1405 	sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1406 	if (!sbinfo)
1407 		return -ENOMEM;
1408 	sb->s_fs_info = sbinfo;
1409 	spin_lock_init(&sbinfo->stat_lock);
1410 	sbinfo->hstate		= ctx->hstate;
1411 	sbinfo->max_inodes	= ctx->nr_inodes;
1412 	sbinfo->free_inodes	= ctx->nr_inodes;
1413 	sbinfo->spool		= NULL;
1414 	sbinfo->uid		= ctx->uid;
1415 	sbinfo->gid		= ctx->gid;
1416 	sbinfo->mode		= ctx->mode;
1417 
1418 	/*
1419 	 * Allocate and initialize subpool if maximum or minimum size is
1420 	 * specified.  Any needed reservations (for minimum size) are taken
1421 	 * when the subpool is created.
1422 	 */
1423 	if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1424 		sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1425 						     ctx->max_hpages,
1426 						     ctx->min_hpages);
1427 		if (!sbinfo->spool)
1428 			goto out_free;
1429 	}
1430 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1431 	sb->s_blocksize = huge_page_size(ctx->hstate);
1432 	sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1433 	sb->s_magic = HUGETLBFS_MAGIC;
1434 	sb->s_op = &hugetlbfs_ops;
1435 	sb->s_d_flags = DCACHE_DONTCACHE;
1436 	sb->s_time_gran = 1;
1437 
1438 	/*
1439 	 * Due to the special and limited functionality of hugetlbfs, it does
1440 	 * not work well as a stacking filesystem.
1441 	 */
1442 	sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
1443 	sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1444 	if (!sb->s_root)
1445 		goto out_free;
1446 	return 0;
1447 out_free:
1448 	kfree(sbinfo->spool);
1449 	kfree(sbinfo);
1450 	return -ENOMEM;
1451 }
1452 
1453 static int hugetlbfs_get_tree(struct fs_context *fc)
1454 {
1455 	int err = hugetlbfs_validate(fc);
1456 	if (err)
1457 		return err;
1458 	return get_tree_nodev(fc, hugetlbfs_fill_super);
1459 }
1460 
1461 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1462 {
1463 	kfree(fc->fs_private);
1464 }
1465 
1466 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1467 	.free		= hugetlbfs_fs_context_free,
1468 	.parse_param	= hugetlbfs_parse_param,
1469 	.get_tree	= hugetlbfs_get_tree,
1470 };
1471 
1472 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1473 {
1474 	struct hugetlbfs_fs_context *ctx;
1475 
1476 	ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1477 	if (!ctx)
1478 		return -ENOMEM;
1479 
1480 	ctx->max_hpages	= -1; /* No limit on size by default */
1481 	ctx->nr_inodes	= -1; /* No limit on number of inodes by default */
1482 	ctx->uid	= current_fsuid();
1483 	ctx->gid	= current_fsgid();
1484 	ctx->mode	= 0755;
1485 	ctx->hstate	= &default_hstate;
1486 	ctx->min_hpages	= -1; /* No default minimum size */
1487 	ctx->max_val_type = NO_SIZE;
1488 	ctx->min_val_type = NO_SIZE;
1489 	fc->fs_private = ctx;
1490 	fc->ops	= &hugetlbfs_fs_context_ops;
1491 	return 0;
1492 }
1493 
1494 static struct file_system_type hugetlbfs_fs_type = {
1495 	.name			= "hugetlbfs",
1496 	.init_fs_context	= hugetlbfs_init_fs_context,
1497 	.parameters		= hugetlb_fs_parameters,
1498 	.kill_sb		= kill_litter_super,
1499 	.fs_flags               = FS_ALLOW_IDMAP,
1500 };
1501 
1502 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1503 
1504 static int can_do_hugetlb_shm(void)
1505 {
1506 	kgid_t shm_group;
1507 	shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1508 	return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1509 }
1510 
1511 static int get_hstate_idx(int page_size_log)
1512 {
1513 	struct hstate *h = hstate_sizelog(page_size_log);
1514 
1515 	if (!h)
1516 		return -1;
1517 	return hstate_index(h);
1518 }
1519 
1520 /*
1521  * Note that size should be aligned to proper hugepage size in caller side,
1522  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1523  */
1524 struct file *hugetlb_file_setup(const char *name, size_t size,
1525 				vm_flags_t acctflag, int creat_flags,
1526 				int page_size_log)
1527 {
1528 	struct inode *inode;
1529 	struct vfsmount *mnt;
1530 	int hstate_idx;
1531 	struct file *file;
1532 
1533 	hstate_idx = get_hstate_idx(page_size_log);
1534 	if (hstate_idx < 0)
1535 		return ERR_PTR(-ENODEV);
1536 
1537 	mnt = hugetlbfs_vfsmount[hstate_idx];
1538 	if (!mnt)
1539 		return ERR_PTR(-ENOENT);
1540 
1541 	if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1542 		struct ucounts *ucounts = current_ucounts();
1543 
1544 		if (user_shm_lock(size, ucounts)) {
1545 			pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n",
1546 				current->comm, current->pid);
1547 			user_shm_unlock(size, ucounts);
1548 		}
1549 		return ERR_PTR(-EPERM);
1550 	}
1551 
1552 	file = ERR_PTR(-ENOSPC);
1553 	/* hugetlbfs_vfsmount[] mounts do not use idmapped mounts.  */
1554 	inode = hugetlbfs_get_inode(mnt->mnt_sb, &nop_mnt_idmap, NULL,
1555 				    S_IFREG | S_IRWXUGO, 0);
1556 	if (!inode)
1557 		goto out;
1558 	if (creat_flags == HUGETLB_SHMFS_INODE)
1559 		inode->i_flags |= S_PRIVATE;
1560 
1561 	inode->i_size = size;
1562 	clear_nlink(inode);
1563 
1564 	if (hugetlb_reserve_pages(inode, 0,
1565 			size >> huge_page_shift(hstate_inode(inode)), NULL,
1566 			acctflag) < 0)
1567 		file = ERR_PTR(-ENOMEM);
1568 	else
1569 		file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1570 					&hugetlbfs_file_operations);
1571 	if (!IS_ERR(file))
1572 		return file;
1573 
1574 	iput(inode);
1575 out:
1576 	return file;
1577 }
1578 
1579 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1580 {
1581 	struct fs_context *fc;
1582 	struct vfsmount *mnt;
1583 
1584 	fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1585 	if (IS_ERR(fc)) {
1586 		mnt = ERR_CAST(fc);
1587 	} else {
1588 		struct hugetlbfs_fs_context *ctx = fc->fs_private;
1589 		ctx->hstate = h;
1590 		mnt = fc_mount_longterm(fc);
1591 		put_fs_context(fc);
1592 	}
1593 	if (IS_ERR(mnt))
1594 		pr_err("Cannot mount internal hugetlbfs for page size %luK",
1595 		       huge_page_size(h) / SZ_1K);
1596 	return mnt;
1597 }
1598 
1599 static int __init init_hugetlbfs_fs(void)
1600 {
1601 	struct vfsmount *mnt;
1602 	struct hstate *h;
1603 	int error;
1604 	int i;
1605 
1606 	if (!hugepages_supported()) {
1607 		pr_info("disabling because there are no supported hugepage sizes\n");
1608 		return -ENOTSUPP;
1609 	}
1610 
1611 	error = -ENOMEM;
1612 	hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1613 					sizeof(struct hugetlbfs_inode_info),
1614 					0, SLAB_ACCOUNT, init_once);
1615 	if (hugetlbfs_inode_cachep == NULL)
1616 		goto out;
1617 
1618 	error = register_filesystem(&hugetlbfs_fs_type);
1619 	if (error)
1620 		goto out_free;
1621 
1622 	/* default hstate mount is required */
1623 	mnt = mount_one_hugetlbfs(&default_hstate);
1624 	if (IS_ERR(mnt)) {
1625 		error = PTR_ERR(mnt);
1626 		goto out_unreg;
1627 	}
1628 	hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1629 
1630 	/* other hstates are optional */
1631 	i = 0;
1632 	for_each_hstate(h) {
1633 		if (i == default_hstate_idx) {
1634 			i++;
1635 			continue;
1636 		}
1637 
1638 		mnt = mount_one_hugetlbfs(h);
1639 		if (IS_ERR(mnt))
1640 			hugetlbfs_vfsmount[i] = NULL;
1641 		else
1642 			hugetlbfs_vfsmount[i] = mnt;
1643 		i++;
1644 	}
1645 
1646 	return 0;
1647 
1648  out_unreg:
1649 	(void)unregister_filesystem(&hugetlbfs_fs_type);
1650  out_free:
1651 	kmem_cache_destroy(hugetlbfs_inode_cachep);
1652  out:
1653 	return error;
1654 }
1655 fs_initcall(init_hugetlbfs_fs)
1656