1 /* 2 * hugetlbpage-backed filesystem. Based on ramfs. 3 * 4 * Nadia Yvette Chambers, 2002 5 * 6 * Copyright (C) 2002 Linus Torvalds. 7 * License: GPL 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/thread_info.h> 13 #include <asm/current.h> 14 #include <linux/falloc.h> 15 #include <linux/fs.h> 16 #include <linux/mount.h> 17 #include <linux/file.h> 18 #include <linux/kernel.h> 19 #include <linux/writeback.h> 20 #include <linux/pagemap.h> 21 #include <linux/highmem.h> 22 #include <linux/init.h> 23 #include <linux/string.h> 24 #include <linux/capability.h> 25 #include <linux/ctype.h> 26 #include <linux/backing-dev.h> 27 #include <linux/hugetlb.h> 28 #include <linux/pagevec.h> 29 #include <linux/fs_parser.h> 30 #include <linux/mman.h> 31 #include <linux/slab.h> 32 #include <linux/dnotify.h> 33 #include <linux/statfs.h> 34 #include <linux/security.h> 35 #include <linux/magic.h> 36 #include <linux/migrate.h> 37 #include <linux/uio.h> 38 39 #include <linux/uaccess.h> 40 #include <linux/sched/mm.h> 41 42 #define CREATE_TRACE_POINTS 43 #include <trace/events/hugetlbfs.h> 44 45 static const struct address_space_operations hugetlbfs_aops; 46 static const struct file_operations hugetlbfs_file_operations; 47 static const struct inode_operations hugetlbfs_dir_inode_operations; 48 static const struct inode_operations hugetlbfs_inode_operations; 49 50 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT }; 51 52 struct hugetlbfs_fs_context { 53 struct hstate *hstate; 54 unsigned long long max_size_opt; 55 unsigned long long min_size_opt; 56 long max_hpages; 57 long nr_inodes; 58 long min_hpages; 59 enum hugetlbfs_size_type max_val_type; 60 enum hugetlbfs_size_type min_val_type; 61 kuid_t uid; 62 kgid_t gid; 63 umode_t mode; 64 }; 65 66 int sysctl_hugetlb_shm_group; 67 68 enum hugetlb_param { 69 Opt_gid, 70 Opt_min_size, 71 Opt_mode, 72 Opt_nr_inodes, 73 Opt_pagesize, 74 Opt_size, 75 Opt_uid, 76 }; 77 78 static const struct fs_parameter_spec hugetlb_fs_parameters[] = { 79 fsparam_gid ("gid", Opt_gid), 80 fsparam_string("min_size", Opt_min_size), 81 fsparam_u32oct("mode", Opt_mode), 82 fsparam_string("nr_inodes", Opt_nr_inodes), 83 fsparam_string("pagesize", Opt_pagesize), 84 fsparam_string("size", Opt_size), 85 fsparam_uid ("uid", Opt_uid), 86 {} 87 }; 88 89 /* 90 * Mask used when checking the page offset value passed in via system 91 * calls. This value will be converted to a loff_t which is signed. 92 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the 93 * value. The extra bit (- 1 in the shift value) is to take the sign 94 * bit into account. 95 */ 96 #define PGOFF_LOFFT_MAX \ 97 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1))) 98 99 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma) 100 { 101 struct inode *inode = file_inode(file); 102 loff_t len, vma_len; 103 int ret; 104 struct hstate *h = hstate_file(file); 105 vm_flags_t vm_flags; 106 107 /* 108 * vma address alignment (but not the pgoff alignment) has 109 * already been checked by prepare_hugepage_range. If you add 110 * any error returns here, do so after setting VM_HUGETLB, so 111 * is_vm_hugetlb_page tests below unmap_region go the right 112 * way when do_mmap unwinds (may be important on powerpc 113 * and ia64). 114 */ 115 vm_flags_set(vma, VM_HUGETLB | VM_DONTEXPAND); 116 vma->vm_ops = &hugetlb_vm_ops; 117 118 /* 119 * page based offset in vm_pgoff could be sufficiently large to 120 * overflow a loff_t when converted to byte offset. This can 121 * only happen on architectures where sizeof(loff_t) == 122 * sizeof(unsigned long). So, only check in those instances. 123 */ 124 if (sizeof(unsigned long) == sizeof(loff_t)) { 125 if (vma->vm_pgoff & PGOFF_LOFFT_MAX) 126 return -EINVAL; 127 } 128 129 /* must be huge page aligned */ 130 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT)) 131 return -EINVAL; 132 133 vma_len = (loff_t)(vma->vm_end - vma->vm_start); 134 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 135 /* check for overflow */ 136 if (len < vma_len) 137 return -EINVAL; 138 139 inode_lock(inode); 140 file_accessed(file); 141 142 ret = -ENOMEM; 143 144 vm_flags = vma->vm_flags; 145 /* 146 * for SHM_HUGETLB, the pages are reserved in the shmget() call so skip 147 * reserving here. Note: only for SHM hugetlbfs file, the inode 148 * flag S_PRIVATE is set. 149 */ 150 if (inode->i_flags & S_PRIVATE) 151 vm_flags |= VM_NORESERVE; 152 153 if (hugetlb_reserve_pages(inode, 154 vma->vm_pgoff >> huge_page_order(h), 155 len >> huge_page_shift(h), vma, 156 vm_flags) < 0) 157 goto out; 158 159 ret = 0; 160 if (vma->vm_flags & VM_WRITE && inode->i_size < len) 161 i_size_write(inode, len); 162 out: 163 inode_unlock(inode); 164 165 return ret; 166 } 167 168 /* 169 * Called under mmap_write_lock(mm). 170 */ 171 172 unsigned long 173 hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 174 unsigned long len, unsigned long pgoff, 175 unsigned long flags) 176 { 177 unsigned long addr0 = 0; 178 struct hstate *h = hstate_file(file); 179 180 if (len & ~huge_page_mask(h)) 181 return -EINVAL; 182 if ((flags & MAP_FIXED) && (addr & ~huge_page_mask(h))) 183 return -EINVAL; 184 if (addr) 185 addr0 = ALIGN(addr, huge_page_size(h)); 186 187 return mm_get_unmapped_area_vmflags(current->mm, file, addr0, len, pgoff, 188 flags, 0); 189 } 190 191 /* 192 * Someone wants to read @bytes from a HWPOISON hugetlb @folio from @offset. 193 * Returns the maximum number of bytes one can read without touching the 1st raw 194 * HWPOISON page. 195 * 196 * The implementation borrows the iteration logic from copy_page_to_iter*. 197 */ 198 static size_t adjust_range_hwpoison(struct folio *folio, size_t offset, 199 size_t bytes) 200 { 201 struct page *page; 202 size_t n = 0; 203 size_t res = 0; 204 205 /* First page to start the loop. */ 206 page = folio_page(folio, offset / PAGE_SIZE); 207 offset %= PAGE_SIZE; 208 while (1) { 209 if (is_raw_hwpoison_page_in_hugepage(page)) 210 break; 211 212 /* Safe to read n bytes without touching HWPOISON subpage. */ 213 n = min(bytes, (size_t)PAGE_SIZE - offset); 214 res += n; 215 bytes -= n; 216 if (!bytes || !n) 217 break; 218 offset += n; 219 if (offset == PAGE_SIZE) { 220 page = nth_page(page, 1); 221 offset = 0; 222 } 223 } 224 225 return res; 226 } 227 228 /* 229 * Support for read() - Find the page attached to f_mapping and copy out the 230 * data. This provides functionality similar to filemap_read(). 231 */ 232 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to) 233 { 234 struct file *file = iocb->ki_filp; 235 struct hstate *h = hstate_file(file); 236 struct address_space *mapping = file->f_mapping; 237 struct inode *inode = mapping->host; 238 unsigned long index = iocb->ki_pos >> huge_page_shift(h); 239 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h); 240 unsigned long end_index; 241 loff_t isize; 242 ssize_t retval = 0; 243 244 while (iov_iter_count(to)) { 245 struct folio *folio; 246 size_t nr, copied, want; 247 248 /* nr is the maximum number of bytes to copy from this page */ 249 nr = huge_page_size(h); 250 isize = i_size_read(inode); 251 if (!isize) 252 break; 253 end_index = (isize - 1) >> huge_page_shift(h); 254 if (index > end_index) 255 break; 256 if (index == end_index) { 257 nr = ((isize - 1) & ~huge_page_mask(h)) + 1; 258 if (nr <= offset) 259 break; 260 } 261 nr = nr - offset; 262 263 /* Find the folio */ 264 folio = filemap_lock_hugetlb_folio(h, mapping, index); 265 if (IS_ERR(folio)) { 266 /* 267 * We have a HOLE, zero out the user-buffer for the 268 * length of the hole or request. 269 */ 270 copied = iov_iter_zero(nr, to); 271 } else { 272 folio_unlock(folio); 273 274 if (!folio_test_hwpoison(folio)) 275 want = nr; 276 else { 277 /* 278 * Adjust how many bytes safe to read without 279 * touching the 1st raw HWPOISON page after 280 * offset. 281 */ 282 want = adjust_range_hwpoison(folio, offset, nr); 283 if (want == 0) { 284 folio_put(folio); 285 retval = -EIO; 286 break; 287 } 288 } 289 290 /* 291 * We have the folio, copy it to user space buffer. 292 */ 293 copied = copy_folio_to_iter(folio, offset, want, to); 294 folio_put(folio); 295 } 296 offset += copied; 297 retval += copied; 298 if (copied != nr && iov_iter_count(to)) { 299 if (!retval) 300 retval = -EFAULT; 301 break; 302 } 303 index += offset >> huge_page_shift(h); 304 offset &= ~huge_page_mask(h); 305 } 306 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset; 307 return retval; 308 } 309 310 static int hugetlbfs_write_begin(const struct kiocb *iocb, 311 struct address_space *mapping, 312 loff_t pos, unsigned len, 313 struct folio **foliop, void **fsdata) 314 { 315 return -EINVAL; 316 } 317 318 static int hugetlbfs_write_end(const struct kiocb *iocb, 319 struct address_space *mapping, 320 loff_t pos, unsigned len, unsigned copied, 321 struct folio *folio, void *fsdata) 322 { 323 BUG(); 324 return -EINVAL; 325 } 326 327 static void hugetlb_delete_from_page_cache(struct folio *folio) 328 { 329 folio_clear_dirty(folio); 330 folio_clear_uptodate(folio); 331 filemap_remove_folio(folio); 332 } 333 334 /* 335 * Called with i_mmap_rwsem held for inode based vma maps. This makes 336 * sure vma (and vm_mm) will not go away. We also hold the hugetlb fault 337 * mutex for the page in the mapping. So, we can not race with page being 338 * faulted into the vma. 339 */ 340 static bool hugetlb_vma_maps_pfn(struct vm_area_struct *vma, 341 unsigned long addr, unsigned long pfn) 342 { 343 pte_t *ptep, pte; 344 345 ptep = hugetlb_walk(vma, addr, huge_page_size(hstate_vma(vma))); 346 if (!ptep) 347 return false; 348 349 pte = huge_ptep_get(vma->vm_mm, addr, ptep); 350 if (huge_pte_none(pte) || !pte_present(pte)) 351 return false; 352 353 if (pte_pfn(pte) == pfn) 354 return true; 355 356 return false; 357 } 358 359 /* 360 * Can vma_offset_start/vma_offset_end overflow on 32-bit arches? 361 * No, because the interval tree returns us only those vmas 362 * which overlap the truncated area starting at pgoff, 363 * and no vma on a 32-bit arch can span beyond the 4GB. 364 */ 365 static unsigned long vma_offset_start(struct vm_area_struct *vma, pgoff_t start) 366 { 367 unsigned long offset = 0; 368 369 if (vma->vm_pgoff < start) 370 offset = (start - vma->vm_pgoff) << PAGE_SHIFT; 371 372 return vma->vm_start + offset; 373 } 374 375 static unsigned long vma_offset_end(struct vm_area_struct *vma, pgoff_t end) 376 { 377 unsigned long t_end; 378 379 if (!end) 380 return vma->vm_end; 381 382 t_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) + vma->vm_start; 383 if (t_end > vma->vm_end) 384 t_end = vma->vm_end; 385 return t_end; 386 } 387 388 /* 389 * Called with hugetlb fault mutex held. Therefore, no more mappings to 390 * this folio can be created while executing the routine. 391 */ 392 static void hugetlb_unmap_file_folio(struct hstate *h, 393 struct address_space *mapping, 394 struct folio *folio, pgoff_t index) 395 { 396 struct rb_root_cached *root = &mapping->i_mmap; 397 struct hugetlb_vma_lock *vma_lock; 398 unsigned long pfn = folio_pfn(folio); 399 struct vm_area_struct *vma; 400 unsigned long v_start; 401 unsigned long v_end; 402 pgoff_t start, end; 403 404 start = index * pages_per_huge_page(h); 405 end = (index + 1) * pages_per_huge_page(h); 406 407 i_mmap_lock_write(mapping); 408 retry: 409 vma_lock = NULL; 410 vma_interval_tree_foreach(vma, root, start, end - 1) { 411 v_start = vma_offset_start(vma, start); 412 v_end = vma_offset_end(vma, end); 413 414 if (!hugetlb_vma_maps_pfn(vma, v_start, pfn)) 415 continue; 416 417 if (!hugetlb_vma_trylock_write(vma)) { 418 vma_lock = vma->vm_private_data; 419 /* 420 * If we can not get vma lock, we need to drop 421 * immap_sema and take locks in order. First, 422 * take a ref on the vma_lock structure so that 423 * we can be guaranteed it will not go away when 424 * dropping immap_sema. 425 */ 426 kref_get(&vma_lock->refs); 427 break; 428 } 429 430 unmap_hugepage_range(vma, v_start, v_end, NULL, 431 ZAP_FLAG_DROP_MARKER); 432 hugetlb_vma_unlock_write(vma); 433 } 434 435 i_mmap_unlock_write(mapping); 436 437 if (vma_lock) { 438 /* 439 * Wait on vma_lock. We know it is still valid as we have 440 * a reference. We must 'open code' vma locking as we do 441 * not know if vma_lock is still attached to vma. 442 */ 443 down_write(&vma_lock->rw_sema); 444 i_mmap_lock_write(mapping); 445 446 vma = vma_lock->vma; 447 if (!vma) { 448 /* 449 * If lock is no longer attached to vma, then just 450 * unlock, drop our reference and retry looking for 451 * other vmas. 452 */ 453 up_write(&vma_lock->rw_sema); 454 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 455 goto retry; 456 } 457 458 /* 459 * vma_lock is still attached to vma. Check to see if vma 460 * still maps page and if so, unmap. 461 */ 462 v_start = vma_offset_start(vma, start); 463 v_end = vma_offset_end(vma, end); 464 if (hugetlb_vma_maps_pfn(vma, v_start, pfn)) 465 unmap_hugepage_range(vma, v_start, v_end, NULL, 466 ZAP_FLAG_DROP_MARKER); 467 468 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 469 hugetlb_vma_unlock_write(vma); 470 471 goto retry; 472 } 473 } 474 475 static void 476 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end, 477 zap_flags_t zap_flags) 478 { 479 struct vm_area_struct *vma; 480 481 /* 482 * end == 0 indicates that the entire range after start should be 483 * unmapped. Note, end is exclusive, whereas the interval tree takes 484 * an inclusive "last". 485 */ 486 vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) { 487 unsigned long v_start; 488 unsigned long v_end; 489 490 if (!hugetlb_vma_trylock_write(vma)) 491 continue; 492 493 v_start = vma_offset_start(vma, start); 494 v_end = vma_offset_end(vma, end); 495 496 unmap_hugepage_range(vma, v_start, v_end, NULL, zap_flags); 497 498 /* 499 * Note that vma lock only exists for shared/non-private 500 * vmas. Therefore, lock is not held when calling 501 * unmap_hugepage_range for private vmas. 502 */ 503 hugetlb_vma_unlock_write(vma); 504 } 505 } 506 507 /* 508 * Called with hugetlb fault mutex held. 509 * Returns true if page was actually removed, false otherwise. 510 */ 511 static bool remove_inode_single_folio(struct hstate *h, struct inode *inode, 512 struct address_space *mapping, 513 struct folio *folio, pgoff_t index, 514 bool truncate_op) 515 { 516 bool ret = false; 517 518 /* 519 * If folio is mapped, it was faulted in after being 520 * unmapped in caller or hugetlb_vmdelete_list() skips 521 * unmapping it due to fail to grab lock. Unmap (again) 522 * while holding the fault mutex. The mutex will prevent 523 * faults until we finish removing the folio. Hold folio 524 * lock to guarantee no concurrent migration. 525 */ 526 folio_lock(folio); 527 if (unlikely(folio_mapped(folio))) 528 hugetlb_unmap_file_folio(h, mapping, folio, index); 529 530 /* 531 * We must remove the folio from page cache before removing 532 * the region/ reserve map (hugetlb_unreserve_pages). In 533 * rare out of memory conditions, removal of the region/reserve 534 * map could fail. Correspondingly, the subpool and global 535 * reserve usage count can need to be adjusted. 536 */ 537 VM_BUG_ON_FOLIO(folio_test_hugetlb_restore_reserve(folio), folio); 538 hugetlb_delete_from_page_cache(folio); 539 ret = true; 540 if (!truncate_op) { 541 if (unlikely(hugetlb_unreserve_pages(inode, index, 542 index + 1, 1))) 543 hugetlb_fix_reserve_counts(inode); 544 } 545 546 folio_unlock(folio); 547 return ret; 548 } 549 550 /* 551 * remove_inode_hugepages handles two distinct cases: truncation and hole 552 * punch. There are subtle differences in operation for each case. 553 * 554 * truncation is indicated by end of range being LLONG_MAX 555 * In this case, we first scan the range and release found pages. 556 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserve 557 * maps and global counts. Page faults can race with truncation. 558 * During faults, hugetlb_no_page() checks i_size before page allocation, 559 * and again after obtaining page table lock. It will 'back out' 560 * allocations in the truncated range. 561 * hole punch is indicated if end is not LLONG_MAX 562 * In the hole punch case we scan the range and release found pages. 563 * Only when releasing a page is the associated region/reserve map 564 * deleted. The region/reserve map for ranges without associated 565 * pages are not modified. Page faults can race with hole punch. 566 * This is indicated if we find a mapped page. 567 * Note: If the passed end of range value is beyond the end of file, but 568 * not LLONG_MAX this routine still performs a hole punch operation. 569 */ 570 static void remove_inode_hugepages(struct inode *inode, loff_t lstart, 571 loff_t lend) 572 { 573 struct hstate *h = hstate_inode(inode); 574 struct address_space *mapping = &inode->i_data; 575 const pgoff_t end = lend >> PAGE_SHIFT; 576 struct folio_batch fbatch; 577 pgoff_t next, index; 578 int i, freed = 0; 579 bool truncate_op = (lend == LLONG_MAX); 580 581 folio_batch_init(&fbatch); 582 next = lstart >> PAGE_SHIFT; 583 while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) { 584 for (i = 0; i < folio_batch_count(&fbatch); ++i) { 585 struct folio *folio = fbatch.folios[i]; 586 u32 hash = 0; 587 588 index = folio->index >> huge_page_order(h); 589 hash = hugetlb_fault_mutex_hash(mapping, index); 590 mutex_lock(&hugetlb_fault_mutex_table[hash]); 591 592 /* 593 * Remove folio that was part of folio_batch. 594 */ 595 if (remove_inode_single_folio(h, inode, mapping, folio, 596 index, truncate_op)) 597 freed++; 598 599 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 600 } 601 folio_batch_release(&fbatch); 602 cond_resched(); 603 } 604 605 if (truncate_op) 606 (void)hugetlb_unreserve_pages(inode, 607 lstart >> huge_page_shift(h), 608 LONG_MAX, freed); 609 } 610 611 static void hugetlbfs_evict_inode(struct inode *inode) 612 { 613 struct resv_map *resv_map; 614 615 trace_hugetlbfs_evict_inode(inode); 616 remove_inode_hugepages(inode, 0, LLONG_MAX); 617 618 /* 619 * Get the resv_map from the address space embedded in the inode. 620 * This is the address space which points to any resv_map allocated 621 * at inode creation time. If this is a device special inode, 622 * i_mapping may not point to the original address space. 623 */ 624 resv_map = (struct resv_map *)(&inode->i_data)->i_private_data; 625 /* Only regular and link inodes have associated reserve maps */ 626 if (resv_map) 627 resv_map_release(&resv_map->refs); 628 clear_inode(inode); 629 } 630 631 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset) 632 { 633 pgoff_t pgoff; 634 struct address_space *mapping = inode->i_mapping; 635 struct hstate *h = hstate_inode(inode); 636 637 BUG_ON(offset & ~huge_page_mask(h)); 638 pgoff = offset >> PAGE_SHIFT; 639 640 i_size_write(inode, offset); 641 i_mmap_lock_write(mapping); 642 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 643 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0, 644 ZAP_FLAG_DROP_MARKER); 645 i_mmap_unlock_write(mapping); 646 remove_inode_hugepages(inode, offset, LLONG_MAX); 647 } 648 649 static void hugetlbfs_zero_partial_page(struct hstate *h, 650 struct address_space *mapping, 651 loff_t start, 652 loff_t end) 653 { 654 pgoff_t idx = start >> huge_page_shift(h); 655 struct folio *folio; 656 657 folio = filemap_lock_hugetlb_folio(h, mapping, idx); 658 if (IS_ERR(folio)) 659 return; 660 661 start = start & ~huge_page_mask(h); 662 end = end & ~huge_page_mask(h); 663 if (!end) 664 end = huge_page_size(h); 665 666 folio_zero_segment(folio, (size_t)start, (size_t)end); 667 668 folio_unlock(folio); 669 folio_put(folio); 670 } 671 672 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 673 { 674 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 675 struct address_space *mapping = inode->i_mapping; 676 struct hstate *h = hstate_inode(inode); 677 loff_t hpage_size = huge_page_size(h); 678 loff_t hole_start, hole_end; 679 680 /* 681 * hole_start and hole_end indicate the full pages within the hole. 682 */ 683 hole_start = round_up(offset, hpage_size); 684 hole_end = round_down(offset + len, hpage_size); 685 686 inode_lock(inode); 687 688 /* protected by i_rwsem */ 689 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 690 inode_unlock(inode); 691 return -EPERM; 692 } 693 694 i_mmap_lock_write(mapping); 695 696 /* If range starts before first full page, zero partial page. */ 697 if (offset < hole_start) 698 hugetlbfs_zero_partial_page(h, mapping, 699 offset, min(offset + len, hole_start)); 700 701 /* Unmap users of full pages in the hole. */ 702 if (hole_end > hole_start) { 703 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 704 hugetlb_vmdelete_list(&mapping->i_mmap, 705 hole_start >> PAGE_SHIFT, 706 hole_end >> PAGE_SHIFT, 0); 707 } 708 709 /* If range extends beyond last full page, zero partial page. */ 710 if ((offset + len) > hole_end && (offset + len) > hole_start) 711 hugetlbfs_zero_partial_page(h, mapping, 712 hole_end, offset + len); 713 714 i_mmap_unlock_write(mapping); 715 716 /* Remove full pages from the file. */ 717 if (hole_end > hole_start) 718 remove_inode_hugepages(inode, hole_start, hole_end); 719 720 inode_unlock(inode); 721 722 return 0; 723 } 724 725 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset, 726 loff_t len) 727 { 728 struct inode *inode = file_inode(file); 729 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 730 struct address_space *mapping = inode->i_mapping; 731 struct hstate *h = hstate_inode(inode); 732 struct vm_area_struct pseudo_vma; 733 struct mm_struct *mm = current->mm; 734 loff_t hpage_size = huge_page_size(h); 735 unsigned long hpage_shift = huge_page_shift(h); 736 pgoff_t start, index, end; 737 int error; 738 u32 hash; 739 740 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 741 return -EOPNOTSUPP; 742 743 if (mode & FALLOC_FL_PUNCH_HOLE) { 744 error = hugetlbfs_punch_hole(inode, offset, len); 745 goto out_nolock; 746 } 747 748 /* 749 * Default preallocate case. 750 * For this range, start is rounded down and end is rounded up 751 * as well as being converted to page offsets. 752 */ 753 start = offset >> hpage_shift; 754 end = (offset + len + hpage_size - 1) >> hpage_shift; 755 756 inode_lock(inode); 757 758 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 759 error = inode_newsize_ok(inode, offset + len); 760 if (error) 761 goto out; 762 763 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 764 error = -EPERM; 765 goto out; 766 } 767 768 /* 769 * Initialize a pseudo vma as this is required by the huge page 770 * allocation routines. 771 */ 772 vma_init(&pseudo_vma, mm); 773 vm_flags_init(&pseudo_vma, VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 774 pseudo_vma.vm_file = file; 775 776 for (index = start; index < end; index++) { 777 /* 778 * This is supposed to be the vaddr where the page is being 779 * faulted in, but we have no vaddr here. 780 */ 781 struct folio *folio; 782 unsigned long addr; 783 784 cond_resched(); 785 786 /* 787 * fallocate(2) manpage permits EINTR; we may have been 788 * interrupted because we are using up too much memory. 789 */ 790 if (signal_pending(current)) { 791 error = -EINTR; 792 break; 793 } 794 795 /* addr is the offset within the file (zero based) */ 796 addr = index * hpage_size; 797 798 /* mutex taken here, fault path and hole punch */ 799 hash = hugetlb_fault_mutex_hash(mapping, index); 800 mutex_lock(&hugetlb_fault_mutex_table[hash]); 801 802 /* See if already present in mapping to avoid alloc/free */ 803 folio = filemap_get_folio(mapping, index << huge_page_order(h)); 804 if (!IS_ERR(folio)) { 805 folio_put(folio); 806 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 807 continue; 808 } 809 810 /* 811 * Allocate folio without setting the avoid_reserve argument. 812 * There certainly are no reserves associated with the 813 * pseudo_vma. However, there could be shared mappings with 814 * reserves for the file at the inode level. If we fallocate 815 * folios in these areas, we need to consume the reserves 816 * to keep reservation accounting consistent. 817 */ 818 folio = alloc_hugetlb_folio(&pseudo_vma, addr, false); 819 if (IS_ERR(folio)) { 820 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 821 error = PTR_ERR(folio); 822 goto out; 823 } 824 folio_zero_user(folio, addr); 825 __folio_mark_uptodate(folio); 826 error = hugetlb_add_to_page_cache(folio, mapping, index); 827 if (unlikely(error)) { 828 restore_reserve_on_error(h, &pseudo_vma, addr, folio); 829 folio_put(folio); 830 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 831 goto out; 832 } 833 834 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 835 836 folio_set_hugetlb_migratable(folio); 837 /* 838 * folio_unlock because locked by hugetlb_add_to_page_cache() 839 * folio_put() due to reference from alloc_hugetlb_folio() 840 */ 841 folio_unlock(folio); 842 folio_put(folio); 843 } 844 845 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 846 i_size_write(inode, offset + len); 847 inode_set_ctime_current(inode); 848 out: 849 inode_unlock(inode); 850 851 out_nolock: 852 trace_hugetlbfs_fallocate(inode, mode, offset, len, error); 853 return error; 854 } 855 856 static int hugetlbfs_setattr(struct mnt_idmap *idmap, 857 struct dentry *dentry, struct iattr *attr) 858 { 859 struct inode *inode = d_inode(dentry); 860 struct hstate *h = hstate_inode(inode); 861 int error; 862 unsigned int ia_valid = attr->ia_valid; 863 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 864 865 error = setattr_prepare(idmap, dentry, attr); 866 if (error) 867 return error; 868 869 trace_hugetlbfs_setattr(inode, dentry, attr); 870 871 if (ia_valid & ATTR_SIZE) { 872 loff_t oldsize = inode->i_size; 873 loff_t newsize = attr->ia_size; 874 875 if (newsize & ~huge_page_mask(h)) 876 return -EINVAL; 877 /* protected by i_rwsem */ 878 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 879 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 880 return -EPERM; 881 hugetlb_vmtruncate(inode, newsize); 882 } 883 884 setattr_copy(idmap, inode, attr); 885 mark_inode_dirty(inode); 886 return 0; 887 } 888 889 static struct inode *hugetlbfs_get_root(struct super_block *sb, 890 struct hugetlbfs_fs_context *ctx) 891 { 892 struct inode *inode; 893 894 inode = new_inode(sb); 895 if (inode) { 896 inode->i_ino = get_next_ino(); 897 inode->i_mode = S_IFDIR | ctx->mode; 898 inode->i_uid = ctx->uid; 899 inode->i_gid = ctx->gid; 900 simple_inode_init_ts(inode); 901 inode->i_op = &hugetlbfs_dir_inode_operations; 902 inode->i_fop = &simple_dir_operations; 903 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 904 inc_nlink(inode); 905 lockdep_annotate_inode_mutex_key(inode); 906 } 907 return inode; 908 } 909 910 /* 911 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never 912 * be taken from reclaim -- unlike regular filesystems. This needs an 913 * annotation because huge_pmd_share() does an allocation under hugetlb's 914 * i_mmap_rwsem. 915 */ 916 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key; 917 918 static struct inode *hugetlbfs_get_inode(struct super_block *sb, 919 struct mnt_idmap *idmap, 920 struct inode *dir, 921 umode_t mode, dev_t dev) 922 { 923 struct inode *inode; 924 struct resv_map *resv_map = NULL; 925 926 /* 927 * Reserve maps are only needed for inodes that can have associated 928 * page allocations. 929 */ 930 if (S_ISREG(mode) || S_ISLNK(mode)) { 931 resv_map = resv_map_alloc(); 932 if (!resv_map) 933 return NULL; 934 } 935 936 inode = new_inode(sb); 937 if (inode) { 938 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 939 940 inode->i_ino = get_next_ino(); 941 inode_init_owner(idmap, inode, dir, mode); 942 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem, 943 &hugetlbfs_i_mmap_rwsem_key); 944 inode->i_mapping->a_ops = &hugetlbfs_aops; 945 simple_inode_init_ts(inode); 946 inode->i_mapping->i_private_data = resv_map; 947 info->seals = F_SEAL_SEAL; 948 switch (mode & S_IFMT) { 949 default: 950 init_special_inode(inode, mode, dev); 951 break; 952 case S_IFREG: 953 inode->i_op = &hugetlbfs_inode_operations; 954 inode->i_fop = &hugetlbfs_file_operations; 955 break; 956 case S_IFDIR: 957 inode->i_op = &hugetlbfs_dir_inode_operations; 958 inode->i_fop = &simple_dir_operations; 959 960 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 961 inc_nlink(inode); 962 break; 963 case S_IFLNK: 964 inode->i_op = &page_symlink_inode_operations; 965 inode_nohighmem(inode); 966 break; 967 } 968 lockdep_annotate_inode_mutex_key(inode); 969 trace_hugetlbfs_alloc_inode(inode, dir, mode); 970 } else { 971 if (resv_map) 972 kref_put(&resv_map->refs, resv_map_release); 973 } 974 975 return inode; 976 } 977 978 /* 979 * File creation. Allocate an inode, and we're done.. 980 */ 981 static int hugetlbfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 982 struct dentry *dentry, umode_t mode, dev_t dev) 983 { 984 struct inode *inode; 985 986 inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, dev); 987 if (!inode) 988 return -ENOSPC; 989 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 990 d_instantiate(dentry, inode); 991 dget(dentry);/* Extra count - pin the dentry in core */ 992 return 0; 993 } 994 995 static struct dentry *hugetlbfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 996 struct dentry *dentry, umode_t mode) 997 { 998 int retval = hugetlbfs_mknod(idmap, dir, dentry, 999 mode | S_IFDIR, 0); 1000 if (!retval) 1001 inc_nlink(dir); 1002 return ERR_PTR(retval); 1003 } 1004 1005 static int hugetlbfs_create(struct mnt_idmap *idmap, 1006 struct inode *dir, struct dentry *dentry, 1007 umode_t mode, bool excl) 1008 { 1009 return hugetlbfs_mknod(idmap, dir, dentry, mode | S_IFREG, 0); 1010 } 1011 1012 static int hugetlbfs_tmpfile(struct mnt_idmap *idmap, 1013 struct inode *dir, struct file *file, 1014 umode_t mode) 1015 { 1016 struct inode *inode; 1017 1018 inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode | S_IFREG, 0); 1019 if (!inode) 1020 return -ENOSPC; 1021 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 1022 d_tmpfile(file, inode); 1023 return finish_open_simple(file, 0); 1024 } 1025 1026 static int hugetlbfs_symlink(struct mnt_idmap *idmap, 1027 struct inode *dir, struct dentry *dentry, 1028 const char *symname) 1029 { 1030 const umode_t mode = S_IFLNK|S_IRWXUGO; 1031 struct inode *inode; 1032 int error = -ENOSPC; 1033 1034 inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, 0); 1035 if (inode) { 1036 int l = strlen(symname)+1; 1037 error = page_symlink(inode, symname, l); 1038 if (!error) { 1039 d_instantiate(dentry, inode); 1040 dget(dentry); 1041 } else 1042 iput(inode); 1043 } 1044 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 1045 1046 return error; 1047 } 1048 1049 #ifdef CONFIG_MIGRATION 1050 static int hugetlbfs_migrate_folio(struct address_space *mapping, 1051 struct folio *dst, struct folio *src, 1052 enum migrate_mode mode) 1053 { 1054 int rc; 1055 1056 rc = migrate_huge_page_move_mapping(mapping, dst, src); 1057 if (rc != MIGRATEPAGE_SUCCESS) 1058 return rc; 1059 1060 if (hugetlb_folio_subpool(src)) { 1061 hugetlb_set_folio_subpool(dst, 1062 hugetlb_folio_subpool(src)); 1063 hugetlb_set_folio_subpool(src, NULL); 1064 } 1065 1066 folio_migrate_flags(dst, src); 1067 1068 return MIGRATEPAGE_SUCCESS; 1069 } 1070 #else 1071 #define hugetlbfs_migrate_folio NULL 1072 #endif 1073 1074 static int hugetlbfs_error_remove_folio(struct address_space *mapping, 1075 struct folio *folio) 1076 { 1077 return 0; 1078 } 1079 1080 /* 1081 * Display the mount options in /proc/mounts. 1082 */ 1083 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root) 1084 { 1085 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb); 1086 struct hugepage_subpool *spool = sbinfo->spool; 1087 unsigned long hpage_size = huge_page_size(sbinfo->hstate); 1088 unsigned hpage_shift = huge_page_shift(sbinfo->hstate); 1089 char mod; 1090 1091 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 1092 seq_printf(m, ",uid=%u", 1093 from_kuid_munged(&init_user_ns, sbinfo->uid)); 1094 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 1095 seq_printf(m, ",gid=%u", 1096 from_kgid_munged(&init_user_ns, sbinfo->gid)); 1097 if (sbinfo->mode != 0755) 1098 seq_printf(m, ",mode=%o", sbinfo->mode); 1099 if (sbinfo->max_inodes != -1) 1100 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes); 1101 1102 hpage_size /= 1024; 1103 mod = 'K'; 1104 if (hpage_size >= 1024) { 1105 hpage_size /= 1024; 1106 mod = 'M'; 1107 } 1108 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod); 1109 if (spool) { 1110 if (spool->max_hpages != -1) 1111 seq_printf(m, ",size=%llu", 1112 (unsigned long long)spool->max_hpages << hpage_shift); 1113 if (spool->min_hpages != -1) 1114 seq_printf(m, ",min_size=%llu", 1115 (unsigned long long)spool->min_hpages << hpage_shift); 1116 } 1117 return 0; 1118 } 1119 1120 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf) 1121 { 1122 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb); 1123 struct hstate *h = hstate_inode(d_inode(dentry)); 1124 u64 id = huge_encode_dev(dentry->d_sb->s_dev); 1125 1126 buf->f_fsid = u64_to_fsid(id); 1127 buf->f_type = HUGETLBFS_MAGIC; 1128 buf->f_bsize = huge_page_size(h); 1129 if (sbinfo) { 1130 spin_lock(&sbinfo->stat_lock); 1131 /* If no limits set, just report 0 or -1 for max/free/used 1132 * blocks, like simple_statfs() */ 1133 if (sbinfo->spool) { 1134 long free_pages; 1135 1136 spin_lock_irq(&sbinfo->spool->lock); 1137 buf->f_blocks = sbinfo->spool->max_hpages; 1138 free_pages = sbinfo->spool->max_hpages 1139 - sbinfo->spool->used_hpages; 1140 buf->f_bavail = buf->f_bfree = free_pages; 1141 spin_unlock_irq(&sbinfo->spool->lock); 1142 buf->f_files = sbinfo->max_inodes; 1143 buf->f_ffree = sbinfo->free_inodes; 1144 } 1145 spin_unlock(&sbinfo->stat_lock); 1146 } 1147 buf->f_namelen = NAME_MAX; 1148 return 0; 1149 } 1150 1151 static void hugetlbfs_put_super(struct super_block *sb) 1152 { 1153 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb); 1154 1155 if (sbi) { 1156 sb->s_fs_info = NULL; 1157 1158 if (sbi->spool) 1159 hugepage_put_subpool(sbi->spool); 1160 1161 kfree(sbi); 1162 } 1163 } 1164 1165 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1166 { 1167 if (sbinfo->free_inodes >= 0) { 1168 spin_lock(&sbinfo->stat_lock); 1169 if (unlikely(!sbinfo->free_inodes)) { 1170 spin_unlock(&sbinfo->stat_lock); 1171 return 0; 1172 } 1173 sbinfo->free_inodes--; 1174 spin_unlock(&sbinfo->stat_lock); 1175 } 1176 1177 return 1; 1178 } 1179 1180 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1181 { 1182 if (sbinfo->free_inodes >= 0) { 1183 spin_lock(&sbinfo->stat_lock); 1184 sbinfo->free_inodes++; 1185 spin_unlock(&sbinfo->stat_lock); 1186 } 1187 } 1188 1189 1190 static struct kmem_cache *hugetlbfs_inode_cachep; 1191 1192 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb) 1193 { 1194 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb); 1195 struct hugetlbfs_inode_info *p; 1196 1197 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo))) 1198 return NULL; 1199 p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL); 1200 if (unlikely(!p)) { 1201 hugetlbfs_inc_free_inodes(sbinfo); 1202 return NULL; 1203 } 1204 return &p->vfs_inode; 1205 } 1206 1207 static void hugetlbfs_free_inode(struct inode *inode) 1208 { 1209 trace_hugetlbfs_free_inode(inode); 1210 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode)); 1211 } 1212 1213 static void hugetlbfs_destroy_inode(struct inode *inode) 1214 { 1215 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb)); 1216 } 1217 1218 static const struct address_space_operations hugetlbfs_aops = { 1219 .write_begin = hugetlbfs_write_begin, 1220 .write_end = hugetlbfs_write_end, 1221 .dirty_folio = noop_dirty_folio, 1222 .migrate_folio = hugetlbfs_migrate_folio, 1223 .error_remove_folio = hugetlbfs_error_remove_folio, 1224 }; 1225 1226 1227 static void init_once(void *foo) 1228 { 1229 struct hugetlbfs_inode_info *ei = foo; 1230 1231 inode_init_once(&ei->vfs_inode); 1232 } 1233 1234 static const struct file_operations hugetlbfs_file_operations = { 1235 .read_iter = hugetlbfs_read_iter, 1236 .mmap = hugetlbfs_file_mmap, 1237 .fsync = noop_fsync, 1238 .get_unmapped_area = hugetlb_get_unmapped_area, 1239 .llseek = default_llseek, 1240 .fallocate = hugetlbfs_fallocate, 1241 .fop_flags = FOP_HUGE_PAGES, 1242 }; 1243 1244 static const struct inode_operations hugetlbfs_dir_inode_operations = { 1245 .create = hugetlbfs_create, 1246 .lookup = simple_lookup, 1247 .link = simple_link, 1248 .unlink = simple_unlink, 1249 .symlink = hugetlbfs_symlink, 1250 .mkdir = hugetlbfs_mkdir, 1251 .rmdir = simple_rmdir, 1252 .mknod = hugetlbfs_mknod, 1253 .rename = simple_rename, 1254 .setattr = hugetlbfs_setattr, 1255 .tmpfile = hugetlbfs_tmpfile, 1256 }; 1257 1258 static const struct inode_operations hugetlbfs_inode_operations = { 1259 .setattr = hugetlbfs_setattr, 1260 }; 1261 1262 static const struct super_operations hugetlbfs_ops = { 1263 .alloc_inode = hugetlbfs_alloc_inode, 1264 .free_inode = hugetlbfs_free_inode, 1265 .destroy_inode = hugetlbfs_destroy_inode, 1266 .evict_inode = hugetlbfs_evict_inode, 1267 .statfs = hugetlbfs_statfs, 1268 .put_super = hugetlbfs_put_super, 1269 .show_options = hugetlbfs_show_options, 1270 }; 1271 1272 /* 1273 * Convert size option passed from command line to number of huge pages 1274 * in the pool specified by hstate. Size option could be in bytes 1275 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT). 1276 */ 1277 static long 1278 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt, 1279 enum hugetlbfs_size_type val_type) 1280 { 1281 if (val_type == NO_SIZE) 1282 return -1; 1283 1284 if (val_type == SIZE_PERCENT) { 1285 size_opt <<= huge_page_shift(h); 1286 size_opt *= h->max_huge_pages; 1287 do_div(size_opt, 100); 1288 } 1289 1290 size_opt >>= huge_page_shift(h); 1291 return size_opt; 1292 } 1293 1294 /* 1295 * Parse one mount parameter. 1296 */ 1297 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param) 1298 { 1299 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1300 struct fs_parse_result result; 1301 struct hstate *h; 1302 char *rest; 1303 unsigned long ps; 1304 int opt; 1305 1306 opt = fs_parse(fc, hugetlb_fs_parameters, param, &result); 1307 if (opt < 0) 1308 return opt; 1309 1310 switch (opt) { 1311 case Opt_uid: 1312 ctx->uid = result.uid; 1313 return 0; 1314 1315 case Opt_gid: 1316 ctx->gid = result.gid; 1317 return 0; 1318 1319 case Opt_mode: 1320 ctx->mode = result.uint_32 & 01777U; 1321 return 0; 1322 1323 case Opt_size: 1324 /* memparse() will accept a K/M/G without a digit */ 1325 if (!param->string || !isdigit(param->string[0])) 1326 goto bad_val; 1327 ctx->max_size_opt = memparse(param->string, &rest); 1328 ctx->max_val_type = SIZE_STD; 1329 if (*rest == '%') 1330 ctx->max_val_type = SIZE_PERCENT; 1331 return 0; 1332 1333 case Opt_nr_inodes: 1334 /* memparse() will accept a K/M/G without a digit */ 1335 if (!param->string || !isdigit(param->string[0])) 1336 goto bad_val; 1337 ctx->nr_inodes = memparse(param->string, &rest); 1338 return 0; 1339 1340 case Opt_pagesize: 1341 ps = memparse(param->string, &rest); 1342 h = size_to_hstate(ps); 1343 if (!h) { 1344 pr_err("Unsupported page size %lu MB\n", ps / SZ_1M); 1345 return -EINVAL; 1346 } 1347 ctx->hstate = h; 1348 return 0; 1349 1350 case Opt_min_size: 1351 /* memparse() will accept a K/M/G without a digit */ 1352 if (!param->string || !isdigit(param->string[0])) 1353 goto bad_val; 1354 ctx->min_size_opt = memparse(param->string, &rest); 1355 ctx->min_val_type = SIZE_STD; 1356 if (*rest == '%') 1357 ctx->min_val_type = SIZE_PERCENT; 1358 return 0; 1359 1360 default: 1361 return -EINVAL; 1362 } 1363 1364 bad_val: 1365 return invalfc(fc, "Bad value '%s' for mount option '%s'\n", 1366 param->string, param->key); 1367 } 1368 1369 /* 1370 * Validate the parsed options. 1371 */ 1372 static int hugetlbfs_validate(struct fs_context *fc) 1373 { 1374 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1375 1376 /* 1377 * Use huge page pool size (in hstate) to convert the size 1378 * options to number of huge pages. If NO_SIZE, -1 is returned. 1379 */ 1380 ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1381 ctx->max_size_opt, 1382 ctx->max_val_type); 1383 ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1384 ctx->min_size_opt, 1385 ctx->min_val_type); 1386 1387 /* 1388 * If max_size was specified, then min_size must be smaller 1389 */ 1390 if (ctx->max_val_type > NO_SIZE && 1391 ctx->min_hpages > ctx->max_hpages) { 1392 pr_err("Minimum size can not be greater than maximum size\n"); 1393 return -EINVAL; 1394 } 1395 1396 return 0; 1397 } 1398 1399 static int 1400 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc) 1401 { 1402 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1403 struct hugetlbfs_sb_info *sbinfo; 1404 1405 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL); 1406 if (!sbinfo) 1407 return -ENOMEM; 1408 sb->s_fs_info = sbinfo; 1409 spin_lock_init(&sbinfo->stat_lock); 1410 sbinfo->hstate = ctx->hstate; 1411 sbinfo->max_inodes = ctx->nr_inodes; 1412 sbinfo->free_inodes = ctx->nr_inodes; 1413 sbinfo->spool = NULL; 1414 sbinfo->uid = ctx->uid; 1415 sbinfo->gid = ctx->gid; 1416 sbinfo->mode = ctx->mode; 1417 1418 /* 1419 * Allocate and initialize subpool if maximum or minimum size is 1420 * specified. Any needed reservations (for minimum size) are taken 1421 * when the subpool is created. 1422 */ 1423 if (ctx->max_hpages != -1 || ctx->min_hpages != -1) { 1424 sbinfo->spool = hugepage_new_subpool(ctx->hstate, 1425 ctx->max_hpages, 1426 ctx->min_hpages); 1427 if (!sbinfo->spool) 1428 goto out_free; 1429 } 1430 sb->s_maxbytes = MAX_LFS_FILESIZE; 1431 sb->s_blocksize = huge_page_size(ctx->hstate); 1432 sb->s_blocksize_bits = huge_page_shift(ctx->hstate); 1433 sb->s_magic = HUGETLBFS_MAGIC; 1434 sb->s_op = &hugetlbfs_ops; 1435 sb->s_d_flags = DCACHE_DONTCACHE; 1436 sb->s_time_gran = 1; 1437 1438 /* 1439 * Due to the special and limited functionality of hugetlbfs, it does 1440 * not work well as a stacking filesystem. 1441 */ 1442 sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH; 1443 sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx)); 1444 if (!sb->s_root) 1445 goto out_free; 1446 return 0; 1447 out_free: 1448 kfree(sbinfo->spool); 1449 kfree(sbinfo); 1450 return -ENOMEM; 1451 } 1452 1453 static int hugetlbfs_get_tree(struct fs_context *fc) 1454 { 1455 int err = hugetlbfs_validate(fc); 1456 if (err) 1457 return err; 1458 return get_tree_nodev(fc, hugetlbfs_fill_super); 1459 } 1460 1461 static void hugetlbfs_fs_context_free(struct fs_context *fc) 1462 { 1463 kfree(fc->fs_private); 1464 } 1465 1466 static const struct fs_context_operations hugetlbfs_fs_context_ops = { 1467 .free = hugetlbfs_fs_context_free, 1468 .parse_param = hugetlbfs_parse_param, 1469 .get_tree = hugetlbfs_get_tree, 1470 }; 1471 1472 static int hugetlbfs_init_fs_context(struct fs_context *fc) 1473 { 1474 struct hugetlbfs_fs_context *ctx; 1475 1476 ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL); 1477 if (!ctx) 1478 return -ENOMEM; 1479 1480 ctx->max_hpages = -1; /* No limit on size by default */ 1481 ctx->nr_inodes = -1; /* No limit on number of inodes by default */ 1482 ctx->uid = current_fsuid(); 1483 ctx->gid = current_fsgid(); 1484 ctx->mode = 0755; 1485 ctx->hstate = &default_hstate; 1486 ctx->min_hpages = -1; /* No default minimum size */ 1487 ctx->max_val_type = NO_SIZE; 1488 ctx->min_val_type = NO_SIZE; 1489 fc->fs_private = ctx; 1490 fc->ops = &hugetlbfs_fs_context_ops; 1491 return 0; 1492 } 1493 1494 static struct file_system_type hugetlbfs_fs_type = { 1495 .name = "hugetlbfs", 1496 .init_fs_context = hugetlbfs_init_fs_context, 1497 .parameters = hugetlb_fs_parameters, 1498 .kill_sb = kill_litter_super, 1499 .fs_flags = FS_ALLOW_IDMAP, 1500 }; 1501 1502 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE]; 1503 1504 static int can_do_hugetlb_shm(void) 1505 { 1506 kgid_t shm_group; 1507 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group); 1508 return capable(CAP_IPC_LOCK) || in_group_p(shm_group); 1509 } 1510 1511 static int get_hstate_idx(int page_size_log) 1512 { 1513 struct hstate *h = hstate_sizelog(page_size_log); 1514 1515 if (!h) 1516 return -1; 1517 return hstate_index(h); 1518 } 1519 1520 /* 1521 * Note that size should be aligned to proper hugepage size in caller side, 1522 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended. 1523 */ 1524 struct file *hugetlb_file_setup(const char *name, size_t size, 1525 vm_flags_t acctflag, int creat_flags, 1526 int page_size_log) 1527 { 1528 struct inode *inode; 1529 struct vfsmount *mnt; 1530 int hstate_idx; 1531 struct file *file; 1532 1533 hstate_idx = get_hstate_idx(page_size_log); 1534 if (hstate_idx < 0) 1535 return ERR_PTR(-ENODEV); 1536 1537 mnt = hugetlbfs_vfsmount[hstate_idx]; 1538 if (!mnt) 1539 return ERR_PTR(-ENOENT); 1540 1541 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) { 1542 struct ucounts *ucounts = current_ucounts(); 1543 1544 if (user_shm_lock(size, ucounts)) { 1545 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n", 1546 current->comm, current->pid); 1547 user_shm_unlock(size, ucounts); 1548 } 1549 return ERR_PTR(-EPERM); 1550 } 1551 1552 file = ERR_PTR(-ENOSPC); 1553 /* hugetlbfs_vfsmount[] mounts do not use idmapped mounts. */ 1554 inode = hugetlbfs_get_inode(mnt->mnt_sb, &nop_mnt_idmap, NULL, 1555 S_IFREG | S_IRWXUGO, 0); 1556 if (!inode) 1557 goto out; 1558 if (creat_flags == HUGETLB_SHMFS_INODE) 1559 inode->i_flags |= S_PRIVATE; 1560 1561 inode->i_size = size; 1562 clear_nlink(inode); 1563 1564 if (hugetlb_reserve_pages(inode, 0, 1565 size >> huge_page_shift(hstate_inode(inode)), NULL, 1566 acctflag) < 0) 1567 file = ERR_PTR(-ENOMEM); 1568 else 1569 file = alloc_file_pseudo(inode, mnt, name, O_RDWR, 1570 &hugetlbfs_file_operations); 1571 if (!IS_ERR(file)) 1572 return file; 1573 1574 iput(inode); 1575 out: 1576 return file; 1577 } 1578 1579 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h) 1580 { 1581 struct fs_context *fc; 1582 struct vfsmount *mnt; 1583 1584 fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT); 1585 if (IS_ERR(fc)) { 1586 mnt = ERR_CAST(fc); 1587 } else { 1588 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1589 ctx->hstate = h; 1590 mnt = fc_mount_longterm(fc); 1591 put_fs_context(fc); 1592 } 1593 if (IS_ERR(mnt)) 1594 pr_err("Cannot mount internal hugetlbfs for page size %luK", 1595 huge_page_size(h) / SZ_1K); 1596 return mnt; 1597 } 1598 1599 static int __init init_hugetlbfs_fs(void) 1600 { 1601 struct vfsmount *mnt; 1602 struct hstate *h; 1603 int error; 1604 int i; 1605 1606 if (!hugepages_supported()) { 1607 pr_info("disabling because there are no supported hugepage sizes\n"); 1608 return -ENOTSUPP; 1609 } 1610 1611 error = -ENOMEM; 1612 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache", 1613 sizeof(struct hugetlbfs_inode_info), 1614 0, SLAB_ACCOUNT, init_once); 1615 if (hugetlbfs_inode_cachep == NULL) 1616 goto out; 1617 1618 error = register_filesystem(&hugetlbfs_fs_type); 1619 if (error) 1620 goto out_free; 1621 1622 /* default hstate mount is required */ 1623 mnt = mount_one_hugetlbfs(&default_hstate); 1624 if (IS_ERR(mnt)) { 1625 error = PTR_ERR(mnt); 1626 goto out_unreg; 1627 } 1628 hugetlbfs_vfsmount[default_hstate_idx] = mnt; 1629 1630 /* other hstates are optional */ 1631 i = 0; 1632 for_each_hstate(h) { 1633 if (i == default_hstate_idx) { 1634 i++; 1635 continue; 1636 } 1637 1638 mnt = mount_one_hugetlbfs(h); 1639 if (IS_ERR(mnt)) 1640 hugetlbfs_vfsmount[i] = NULL; 1641 else 1642 hugetlbfs_vfsmount[i] = mnt; 1643 i++; 1644 } 1645 1646 return 0; 1647 1648 out_unreg: 1649 (void)unregister_filesystem(&hugetlbfs_fs_type); 1650 out_free: 1651 kmem_cache_destroy(hugetlbfs_inode_cachep); 1652 out: 1653 return error; 1654 } 1655 fs_initcall(init_hugetlbfs_fs) 1656