1 /* 2 * linux/fs/hfsplus/btree.c 3 * 4 * Copyright (C) 2001 5 * Brad Boyer (flar@allandria.com) 6 * (C) 2003 Ardis Technologies <roman@ardistech.com> 7 * 8 * Handle opening/closing btree 9 */ 10 11 #include <linux/slab.h> 12 #include <linux/pagemap.h> 13 #include <linux/log2.h> 14 15 #include "hfsplus_fs.h" 16 #include "hfsplus_raw.h" 17 18 19 /* Get a reference to a B*Tree and do some initial checks */ 20 struct hfs_btree *hfs_btree_open(struct super_block *sb, u32 id) 21 { 22 struct hfs_btree *tree; 23 struct hfs_btree_header_rec *head; 24 struct address_space *mapping; 25 struct inode *inode; 26 struct page *page; 27 unsigned int size; 28 29 tree = kzalloc(sizeof(*tree), GFP_KERNEL); 30 if (!tree) 31 return NULL; 32 33 init_MUTEX(&tree->tree_lock); 34 spin_lock_init(&tree->hash_lock); 35 tree->sb = sb; 36 tree->cnid = id; 37 inode = hfsplus_iget(sb, id); 38 if (IS_ERR(inode)) 39 goto free_tree; 40 tree->inode = inode; 41 42 mapping = tree->inode->i_mapping; 43 page = read_mapping_page(mapping, 0, NULL); 44 if (IS_ERR(page)) 45 goto free_tree; 46 47 /* Load the header */ 48 head = (struct hfs_btree_header_rec *)(kmap(page) + sizeof(struct hfs_bnode_desc)); 49 tree->root = be32_to_cpu(head->root); 50 tree->leaf_count = be32_to_cpu(head->leaf_count); 51 tree->leaf_head = be32_to_cpu(head->leaf_head); 52 tree->leaf_tail = be32_to_cpu(head->leaf_tail); 53 tree->node_count = be32_to_cpu(head->node_count); 54 tree->free_nodes = be32_to_cpu(head->free_nodes); 55 tree->attributes = be32_to_cpu(head->attributes); 56 tree->node_size = be16_to_cpu(head->node_size); 57 tree->max_key_len = be16_to_cpu(head->max_key_len); 58 tree->depth = be16_to_cpu(head->depth); 59 60 /* Set the correct compare function */ 61 if (id == HFSPLUS_EXT_CNID) { 62 tree->keycmp = hfsplus_ext_cmp_key; 63 } else if (id == HFSPLUS_CAT_CNID) { 64 if ((HFSPLUS_SB(sb).flags & HFSPLUS_SB_HFSX) && 65 (head->key_type == HFSPLUS_KEY_BINARY)) 66 tree->keycmp = hfsplus_cat_bin_cmp_key; 67 else { 68 tree->keycmp = hfsplus_cat_case_cmp_key; 69 HFSPLUS_SB(sb).flags |= HFSPLUS_SB_CASEFOLD; 70 } 71 } else { 72 printk(KERN_ERR "hfs: unknown B*Tree requested\n"); 73 goto fail_page; 74 } 75 76 size = tree->node_size; 77 if (!is_power_of_2(size)) 78 goto fail_page; 79 if (!tree->node_count) 80 goto fail_page; 81 tree->node_size_shift = ffs(size) - 1; 82 83 tree->pages_per_bnode = (tree->node_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 84 85 kunmap(page); 86 page_cache_release(page); 87 return tree; 88 89 fail_page: 90 tree->inode->i_mapping->a_ops = &hfsplus_aops; 91 page_cache_release(page); 92 free_tree: 93 iput(tree->inode); 94 kfree(tree); 95 return NULL; 96 } 97 98 /* Release resources used by a btree */ 99 void hfs_btree_close(struct hfs_btree *tree) 100 { 101 struct hfs_bnode *node; 102 int i; 103 104 if (!tree) 105 return; 106 107 for (i = 0; i < NODE_HASH_SIZE; i++) { 108 while ((node = tree->node_hash[i])) { 109 tree->node_hash[i] = node->next_hash; 110 if (atomic_read(&node->refcnt)) 111 printk(KERN_CRIT "hfs: node %d:%d still has %d user(s)!\n", 112 node->tree->cnid, node->this, atomic_read(&node->refcnt)); 113 hfs_bnode_free(node); 114 tree->node_hash_cnt--; 115 } 116 } 117 iput(tree->inode); 118 kfree(tree); 119 } 120 121 void hfs_btree_write(struct hfs_btree *tree) 122 { 123 struct hfs_btree_header_rec *head; 124 struct hfs_bnode *node; 125 struct page *page; 126 127 node = hfs_bnode_find(tree, 0); 128 if (IS_ERR(node)) 129 /* panic? */ 130 return; 131 /* Load the header */ 132 page = node->page[0]; 133 head = (struct hfs_btree_header_rec *)(kmap(page) + sizeof(struct hfs_bnode_desc)); 134 135 head->root = cpu_to_be32(tree->root); 136 head->leaf_count = cpu_to_be32(tree->leaf_count); 137 head->leaf_head = cpu_to_be32(tree->leaf_head); 138 head->leaf_tail = cpu_to_be32(tree->leaf_tail); 139 head->node_count = cpu_to_be32(tree->node_count); 140 head->free_nodes = cpu_to_be32(tree->free_nodes); 141 head->attributes = cpu_to_be32(tree->attributes); 142 head->depth = cpu_to_be16(tree->depth); 143 144 kunmap(page); 145 set_page_dirty(page); 146 hfs_bnode_put(node); 147 } 148 149 static struct hfs_bnode *hfs_bmap_new_bmap(struct hfs_bnode *prev, u32 idx) 150 { 151 struct hfs_btree *tree = prev->tree; 152 struct hfs_bnode *node; 153 struct hfs_bnode_desc desc; 154 __be32 cnid; 155 156 node = hfs_bnode_create(tree, idx); 157 if (IS_ERR(node)) 158 return node; 159 160 tree->free_nodes--; 161 prev->next = idx; 162 cnid = cpu_to_be32(idx); 163 hfs_bnode_write(prev, &cnid, offsetof(struct hfs_bnode_desc, next), 4); 164 165 node->type = HFS_NODE_MAP; 166 node->num_recs = 1; 167 hfs_bnode_clear(node, 0, tree->node_size); 168 desc.next = 0; 169 desc.prev = 0; 170 desc.type = HFS_NODE_MAP; 171 desc.height = 0; 172 desc.num_recs = cpu_to_be16(1); 173 desc.reserved = 0; 174 hfs_bnode_write(node, &desc, 0, sizeof(desc)); 175 hfs_bnode_write_u16(node, 14, 0x8000); 176 hfs_bnode_write_u16(node, tree->node_size - 2, 14); 177 hfs_bnode_write_u16(node, tree->node_size - 4, tree->node_size - 6); 178 179 return node; 180 } 181 182 struct hfs_bnode *hfs_bmap_alloc(struct hfs_btree *tree) 183 { 184 struct hfs_bnode *node, *next_node; 185 struct page **pagep; 186 u32 nidx, idx; 187 unsigned off; 188 u16 off16; 189 u16 len; 190 u8 *data, byte, m; 191 int i; 192 193 while (!tree->free_nodes) { 194 struct inode *inode = tree->inode; 195 u32 count; 196 int res; 197 198 res = hfsplus_file_extend(inode); 199 if (res) 200 return ERR_PTR(res); 201 HFSPLUS_I(inode).phys_size = inode->i_size = 202 (loff_t)HFSPLUS_I(inode).alloc_blocks << 203 HFSPLUS_SB(tree->sb).alloc_blksz_shift; 204 HFSPLUS_I(inode).fs_blocks = HFSPLUS_I(inode).alloc_blocks << 205 HFSPLUS_SB(tree->sb).fs_shift; 206 inode_set_bytes(inode, inode->i_size); 207 count = inode->i_size >> tree->node_size_shift; 208 tree->free_nodes = count - tree->node_count; 209 tree->node_count = count; 210 } 211 212 nidx = 0; 213 node = hfs_bnode_find(tree, nidx); 214 if (IS_ERR(node)) 215 return node; 216 len = hfs_brec_lenoff(node, 2, &off16); 217 off = off16; 218 219 off += node->page_offset; 220 pagep = node->page + (off >> PAGE_CACHE_SHIFT); 221 data = kmap(*pagep); 222 off &= ~PAGE_CACHE_MASK; 223 idx = 0; 224 225 for (;;) { 226 while (len) { 227 byte = data[off]; 228 if (byte != 0xff) { 229 for (m = 0x80, i = 0; i < 8; m >>= 1, i++) { 230 if (!(byte & m)) { 231 idx += i; 232 data[off] |= m; 233 set_page_dirty(*pagep); 234 kunmap(*pagep); 235 tree->free_nodes--; 236 mark_inode_dirty(tree->inode); 237 hfs_bnode_put(node); 238 return hfs_bnode_create(tree, idx); 239 } 240 } 241 } 242 if (++off >= PAGE_CACHE_SIZE) { 243 kunmap(*pagep); 244 data = kmap(*++pagep); 245 off = 0; 246 } 247 idx += 8; 248 len--; 249 } 250 kunmap(*pagep); 251 nidx = node->next; 252 if (!nidx) { 253 printk(KERN_DEBUG "hfs: create new bmap node...\n"); 254 next_node = hfs_bmap_new_bmap(node, idx); 255 } else 256 next_node = hfs_bnode_find(tree, nidx); 257 hfs_bnode_put(node); 258 if (IS_ERR(next_node)) 259 return next_node; 260 node = next_node; 261 262 len = hfs_brec_lenoff(node, 0, &off16); 263 off = off16; 264 off += node->page_offset; 265 pagep = node->page + (off >> PAGE_CACHE_SHIFT); 266 data = kmap(*pagep); 267 off &= ~PAGE_CACHE_MASK; 268 } 269 } 270 271 void hfs_bmap_free(struct hfs_bnode *node) 272 { 273 struct hfs_btree *tree; 274 struct page *page; 275 u16 off, len; 276 u32 nidx; 277 u8 *data, byte, m; 278 279 dprint(DBG_BNODE_MOD, "btree_free_node: %u\n", node->this); 280 BUG_ON(!node->this); 281 tree = node->tree; 282 nidx = node->this; 283 node = hfs_bnode_find(tree, 0); 284 if (IS_ERR(node)) 285 return; 286 len = hfs_brec_lenoff(node, 2, &off); 287 while (nidx >= len * 8) { 288 u32 i; 289 290 nidx -= len * 8; 291 i = node->next; 292 hfs_bnode_put(node); 293 if (!i) { 294 /* panic */; 295 printk(KERN_CRIT "hfs: unable to free bnode %u. bmap not found!\n", node->this); 296 return; 297 } 298 node = hfs_bnode_find(tree, i); 299 if (IS_ERR(node)) 300 return; 301 if (node->type != HFS_NODE_MAP) { 302 /* panic */; 303 printk(KERN_CRIT "hfs: invalid bmap found! (%u,%d)\n", node->this, node->type); 304 hfs_bnode_put(node); 305 return; 306 } 307 len = hfs_brec_lenoff(node, 0, &off); 308 } 309 off += node->page_offset + nidx / 8; 310 page = node->page[off >> PAGE_CACHE_SHIFT]; 311 data = kmap(page); 312 off &= ~PAGE_CACHE_MASK; 313 m = 1 << (~nidx & 7); 314 byte = data[off]; 315 if (!(byte & m)) { 316 printk(KERN_CRIT "hfs: trying to free free bnode %u(%d)\n", node->this, node->type); 317 kunmap(page); 318 hfs_bnode_put(node); 319 return; 320 } 321 data[off] = byte & ~m; 322 set_page_dirty(page); 323 kunmap(page); 324 hfs_bnode_put(node); 325 tree->free_nodes++; 326 mark_inode_dirty(tree->inode); 327 } 328