xref: /linux/fs/hfs/super.c (revision bcefe12eff5dca6fdfa94ed85e5bee66380d5cd9)
1 /*
2  *  linux/fs/hfs/super.c
3  *
4  * Copyright (C) 1995-1997  Paul H. Hargrove
5  * (C) 2003 Ardis Technologies <roman@ardistech.com>
6  * This file may be distributed under the terms of the GNU General Public License.
7  *
8  * This file contains hfs_read_super(), some of the super_ops and
9  * init_hfs_fs() and exit_hfs_fs().  The remaining super_ops are in
10  * inode.c since they deal with inodes.
11  *
12  * Based on the minix file system code, (C) 1991, 1992 by Linus Torvalds
13  */
14 
15 #include <linux/module.h>
16 #include <linux/blkdev.h>
17 #include <linux/mount.h>
18 #include <linux/init.h>
19 #include <linux/nls.h>
20 #include <linux/parser.h>
21 #include <linux/seq_file.h>
22 #include <linux/smp_lock.h>
23 #include <linux/vfs.h>
24 
25 #include "hfs_fs.h"
26 #include "btree.h"
27 
28 static struct kmem_cache *hfs_inode_cachep;
29 
30 MODULE_LICENSE("GPL");
31 
32 /*
33  * hfs_write_super()
34  *
35  * Description:
36  *   This function is called by the VFS only. When the filesystem
37  *   is mounted r/w it updates the MDB on disk.
38  * Input Variable(s):
39  *   struct super_block *sb: Pointer to the hfs superblock
40  * Output Variable(s):
41  *   NONE
42  * Returns:
43  *   void
44  * Preconditions:
45  *   'sb' points to a "valid" (struct super_block).
46  * Postconditions:
47  *   The MDB is marked 'unsuccessfully unmounted' by clearing bit 8 of drAtrb
48  *   (hfs_put_super() must set this flag!). Some MDB fields are updated
49  *   and the MDB buffer is written to disk by calling hfs_mdb_commit().
50  */
51 static void hfs_write_super(struct super_block *sb)
52 {
53 	lock_super(sb);
54 	sb->s_dirt = 0;
55 
56 	/* sync everything to the buffers */
57 	if (!(sb->s_flags & MS_RDONLY))
58 		hfs_mdb_commit(sb);
59 	unlock_super(sb);
60 }
61 
62 static int hfs_sync_fs(struct super_block *sb, int wait)
63 {
64 	lock_super(sb);
65 	hfs_mdb_commit(sb);
66 	sb->s_dirt = 0;
67 	unlock_super(sb);
68 
69 	return 0;
70 }
71 
72 /*
73  * hfs_put_super()
74  *
75  * This is the put_super() entry in the super_operations structure for
76  * HFS filesystems.  The purpose is to release the resources
77  * associated with the superblock sb.
78  */
79 static void hfs_put_super(struct super_block *sb)
80 {
81 	lock_kernel();
82 
83 	if (sb->s_dirt)
84 		hfs_write_super(sb);
85 	hfs_mdb_close(sb);
86 	/* release the MDB's resources */
87 	hfs_mdb_put(sb);
88 
89 	unlock_kernel();
90 }
91 
92 /*
93  * hfs_statfs()
94  *
95  * This is the statfs() entry in the super_operations structure for
96  * HFS filesystems.  The purpose is to return various data about the
97  * filesystem.
98  *
99  * changed f_files/f_ffree to reflect the fs_ablock/free_ablocks.
100  */
101 static int hfs_statfs(struct dentry *dentry, struct kstatfs *buf)
102 {
103 	struct super_block *sb = dentry->d_sb;
104 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
105 
106 	buf->f_type = HFS_SUPER_MAGIC;
107 	buf->f_bsize = sb->s_blocksize;
108 	buf->f_blocks = (u32)HFS_SB(sb)->fs_ablocks * HFS_SB(sb)->fs_div;
109 	buf->f_bfree = (u32)HFS_SB(sb)->free_ablocks * HFS_SB(sb)->fs_div;
110 	buf->f_bavail = buf->f_bfree;
111 	buf->f_files = HFS_SB(sb)->fs_ablocks;
112 	buf->f_ffree = HFS_SB(sb)->free_ablocks;
113 	buf->f_fsid.val[0] = (u32)id;
114 	buf->f_fsid.val[1] = (u32)(id >> 32);
115 	buf->f_namelen = HFS_NAMELEN;
116 
117 	return 0;
118 }
119 
120 static int hfs_remount(struct super_block *sb, int *flags, char *data)
121 {
122 	*flags |= MS_NODIRATIME;
123 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
124 		return 0;
125 	if (!(*flags & MS_RDONLY)) {
126 		if (!(HFS_SB(sb)->mdb->drAtrb & cpu_to_be16(HFS_SB_ATTRIB_UNMNT))) {
127 			printk(KERN_WARNING "hfs: filesystem was not cleanly unmounted, "
128 			       "running fsck.hfs is recommended.  leaving read-only.\n");
129 			sb->s_flags |= MS_RDONLY;
130 			*flags |= MS_RDONLY;
131 		} else if (HFS_SB(sb)->mdb->drAtrb & cpu_to_be16(HFS_SB_ATTRIB_SLOCK)) {
132 			printk(KERN_WARNING "hfs: filesystem is marked locked, leaving read-only.\n");
133 			sb->s_flags |= MS_RDONLY;
134 			*flags |= MS_RDONLY;
135 		}
136 	}
137 	return 0;
138 }
139 
140 static int hfs_show_options(struct seq_file *seq, struct vfsmount *mnt)
141 {
142 	struct hfs_sb_info *sbi = HFS_SB(mnt->mnt_sb);
143 
144 	if (sbi->s_creator != cpu_to_be32(0x3f3f3f3f))
145 		seq_printf(seq, ",creator=%.4s", (char *)&sbi->s_creator);
146 	if (sbi->s_type != cpu_to_be32(0x3f3f3f3f))
147 		seq_printf(seq, ",type=%.4s", (char *)&sbi->s_type);
148 	seq_printf(seq, ",uid=%u,gid=%u", sbi->s_uid, sbi->s_gid);
149 	if (sbi->s_file_umask != 0133)
150 		seq_printf(seq, ",file_umask=%o", sbi->s_file_umask);
151 	if (sbi->s_dir_umask != 0022)
152 		seq_printf(seq, ",dir_umask=%o", sbi->s_dir_umask);
153 	if (sbi->part >= 0)
154 		seq_printf(seq, ",part=%u", sbi->part);
155 	if (sbi->session >= 0)
156 		seq_printf(seq, ",session=%u", sbi->session);
157 	if (sbi->nls_disk)
158 		seq_printf(seq, ",codepage=%s", sbi->nls_disk->charset);
159 	if (sbi->nls_io)
160 		seq_printf(seq, ",iocharset=%s", sbi->nls_io->charset);
161 	if (sbi->s_quiet)
162 		seq_printf(seq, ",quiet");
163 	return 0;
164 }
165 
166 static struct inode *hfs_alloc_inode(struct super_block *sb)
167 {
168 	struct hfs_inode_info *i;
169 
170 	i = kmem_cache_alloc(hfs_inode_cachep, GFP_KERNEL);
171 	return i ? &i->vfs_inode : NULL;
172 }
173 
174 static void hfs_destroy_inode(struct inode *inode)
175 {
176 	kmem_cache_free(hfs_inode_cachep, HFS_I(inode));
177 }
178 
179 static const struct super_operations hfs_super_operations = {
180 	.alloc_inode	= hfs_alloc_inode,
181 	.destroy_inode	= hfs_destroy_inode,
182 	.write_inode	= hfs_write_inode,
183 	.clear_inode	= hfs_clear_inode,
184 	.put_super	= hfs_put_super,
185 	.write_super	= hfs_write_super,
186 	.sync_fs	= hfs_sync_fs,
187 	.statfs		= hfs_statfs,
188 	.remount_fs     = hfs_remount,
189 	.show_options	= hfs_show_options,
190 };
191 
192 enum {
193 	opt_uid, opt_gid, opt_umask, opt_file_umask, opt_dir_umask,
194 	opt_part, opt_session, opt_type, opt_creator, opt_quiet,
195 	opt_codepage, opt_iocharset,
196 	opt_err
197 };
198 
199 static const match_table_t tokens = {
200 	{ opt_uid, "uid=%u" },
201 	{ opt_gid, "gid=%u" },
202 	{ opt_umask, "umask=%o" },
203 	{ opt_file_umask, "file_umask=%o" },
204 	{ opt_dir_umask, "dir_umask=%o" },
205 	{ opt_part, "part=%u" },
206 	{ opt_session, "session=%u" },
207 	{ opt_type, "type=%s" },
208 	{ opt_creator, "creator=%s" },
209 	{ opt_quiet, "quiet" },
210 	{ opt_codepage, "codepage=%s" },
211 	{ opt_iocharset, "iocharset=%s" },
212 	{ opt_err, NULL }
213 };
214 
215 static inline int match_fourchar(substring_t *arg, u32 *result)
216 {
217 	if (arg->to - arg->from != 4)
218 		return -EINVAL;
219 	memcpy(result, arg->from, 4);
220 	return 0;
221 }
222 
223 /*
224  * parse_options()
225  *
226  * adapted from linux/fs/msdos/inode.c written 1992,93 by Werner Almesberger
227  * This function is called by hfs_read_super() to parse the mount options.
228  */
229 static int parse_options(char *options, struct hfs_sb_info *hsb)
230 {
231 	char *p;
232 	substring_t args[MAX_OPT_ARGS];
233 	int tmp, token;
234 
235 	/* initialize the sb with defaults */
236 	hsb->s_uid = current_uid();
237 	hsb->s_gid = current_gid();
238 	hsb->s_file_umask = 0133;
239 	hsb->s_dir_umask = 0022;
240 	hsb->s_type = hsb->s_creator = cpu_to_be32(0x3f3f3f3f);	/* == '????' */
241 	hsb->s_quiet = 0;
242 	hsb->part = -1;
243 	hsb->session = -1;
244 
245 	if (!options)
246 		return 1;
247 
248 	while ((p = strsep(&options, ",")) != NULL) {
249 		if (!*p)
250 			continue;
251 
252 		token = match_token(p, tokens, args);
253 		switch (token) {
254 		case opt_uid:
255 			if (match_int(&args[0], &tmp)) {
256 				printk(KERN_ERR "hfs: uid requires an argument\n");
257 				return 0;
258 			}
259 			hsb->s_uid = (uid_t)tmp;
260 			break;
261 		case opt_gid:
262 			if (match_int(&args[0], &tmp)) {
263 				printk(KERN_ERR "hfs: gid requires an argument\n");
264 				return 0;
265 			}
266 			hsb->s_gid = (gid_t)tmp;
267 			break;
268 		case opt_umask:
269 			if (match_octal(&args[0], &tmp)) {
270 				printk(KERN_ERR "hfs: umask requires a value\n");
271 				return 0;
272 			}
273 			hsb->s_file_umask = (umode_t)tmp;
274 			hsb->s_dir_umask = (umode_t)tmp;
275 			break;
276 		case opt_file_umask:
277 			if (match_octal(&args[0], &tmp)) {
278 				printk(KERN_ERR "hfs: file_umask requires a value\n");
279 				return 0;
280 			}
281 			hsb->s_file_umask = (umode_t)tmp;
282 			break;
283 		case opt_dir_umask:
284 			if (match_octal(&args[0], &tmp)) {
285 				printk(KERN_ERR "hfs: dir_umask requires a value\n");
286 				return 0;
287 			}
288 			hsb->s_dir_umask = (umode_t)tmp;
289 			break;
290 		case opt_part:
291 			if (match_int(&args[0], &hsb->part)) {
292 				printk(KERN_ERR "hfs: part requires an argument\n");
293 				return 0;
294 			}
295 			break;
296 		case opt_session:
297 			if (match_int(&args[0], &hsb->session)) {
298 				printk(KERN_ERR "hfs: session requires an argument\n");
299 				return 0;
300 			}
301 			break;
302 		case opt_type:
303 			if (match_fourchar(&args[0], &hsb->s_type)) {
304 				printk(KERN_ERR "hfs: type requires a 4 character value\n");
305 				return 0;
306 			}
307 			break;
308 		case opt_creator:
309 			if (match_fourchar(&args[0], &hsb->s_creator)) {
310 				printk(KERN_ERR "hfs: creator requires a 4 character value\n");
311 				return 0;
312 			}
313 			break;
314 		case opt_quiet:
315 			hsb->s_quiet = 1;
316 			break;
317 		case opt_codepage:
318 			if (hsb->nls_disk) {
319 				printk(KERN_ERR "hfs: unable to change codepage\n");
320 				return 0;
321 			}
322 			p = match_strdup(&args[0]);
323 			if (p)
324 				hsb->nls_disk = load_nls(p);
325 			if (!hsb->nls_disk) {
326 				printk(KERN_ERR "hfs: unable to load codepage \"%s\"\n", p);
327 				kfree(p);
328 				return 0;
329 			}
330 			kfree(p);
331 			break;
332 		case opt_iocharset:
333 			if (hsb->nls_io) {
334 				printk(KERN_ERR "hfs: unable to change iocharset\n");
335 				return 0;
336 			}
337 			p = match_strdup(&args[0]);
338 			if (p)
339 				hsb->nls_io = load_nls(p);
340 			if (!hsb->nls_io) {
341 				printk(KERN_ERR "hfs: unable to load iocharset \"%s\"\n", p);
342 				kfree(p);
343 				return 0;
344 			}
345 			kfree(p);
346 			break;
347 		default:
348 			return 0;
349 		}
350 	}
351 
352 	if (hsb->nls_disk && !hsb->nls_io) {
353 		hsb->nls_io = load_nls_default();
354 		if (!hsb->nls_io) {
355 			printk(KERN_ERR "hfs: unable to load default iocharset\n");
356 			return 0;
357 		}
358 	}
359 	hsb->s_dir_umask &= 0777;
360 	hsb->s_file_umask &= 0577;
361 
362 	return 1;
363 }
364 
365 /*
366  * hfs_read_super()
367  *
368  * This is the function that is responsible for mounting an HFS
369  * filesystem.	It performs all the tasks necessary to get enough data
370  * from the disk to read the root inode.  This includes parsing the
371  * mount options, dealing with Macintosh partitions, reading the
372  * superblock and the allocation bitmap blocks, calling
373  * hfs_btree_init() to get the necessary data about the extents and
374  * catalog B-trees and, finally, reading the root inode into memory.
375  */
376 static int hfs_fill_super(struct super_block *sb, void *data, int silent)
377 {
378 	struct hfs_sb_info *sbi;
379 	struct hfs_find_data fd;
380 	hfs_cat_rec rec;
381 	struct inode *root_inode;
382 	int res;
383 
384 	sbi = kzalloc(sizeof(struct hfs_sb_info), GFP_KERNEL);
385 	if (!sbi)
386 		return -ENOMEM;
387 	sb->s_fs_info = sbi;
388 	INIT_HLIST_HEAD(&sbi->rsrc_inodes);
389 
390 	res = -EINVAL;
391 	if (!parse_options((char *)data, sbi)) {
392 		printk(KERN_ERR "hfs: unable to parse mount options.\n");
393 		goto bail;
394 	}
395 
396 	sb->s_op = &hfs_super_operations;
397 	sb->s_flags |= MS_NODIRATIME;
398 	mutex_init(&sbi->bitmap_lock);
399 
400 	res = hfs_mdb_get(sb);
401 	if (res) {
402 		if (!silent)
403 			printk(KERN_WARNING "hfs: can't find a HFS filesystem on dev %s.\n",
404 				hfs_mdb_name(sb));
405 		res = -EINVAL;
406 		goto bail;
407 	}
408 
409 	/* try to get the root inode */
410 	hfs_find_init(HFS_SB(sb)->cat_tree, &fd);
411 	res = hfs_cat_find_brec(sb, HFS_ROOT_CNID, &fd);
412 	if (!res)
413 		hfs_bnode_read(fd.bnode, &rec, fd.entryoffset, fd.entrylength);
414 	if (res) {
415 		hfs_find_exit(&fd);
416 		goto bail_no_root;
417 	}
418 	res = -EINVAL;
419 	root_inode = hfs_iget(sb, &fd.search_key->cat, &rec);
420 	hfs_find_exit(&fd);
421 	if (!root_inode)
422 		goto bail_no_root;
423 
424 	res = -ENOMEM;
425 	sb->s_root = d_alloc_root(root_inode);
426 	if (!sb->s_root)
427 		goto bail_iput;
428 
429 	sb->s_root->d_op = &hfs_dentry_operations;
430 
431 	/* everything's okay */
432 	return 0;
433 
434 bail_iput:
435 	iput(root_inode);
436 bail_no_root:
437 	printk(KERN_ERR "hfs: get root inode failed.\n");
438 bail:
439 	hfs_mdb_put(sb);
440 	return res;
441 }
442 
443 static int hfs_get_sb(struct file_system_type *fs_type,
444 		      int flags, const char *dev_name, void *data,
445 		      struct vfsmount *mnt)
446 {
447 	return get_sb_bdev(fs_type, flags, dev_name, data, hfs_fill_super, mnt);
448 }
449 
450 static struct file_system_type hfs_fs_type = {
451 	.owner		= THIS_MODULE,
452 	.name		= "hfs",
453 	.get_sb		= hfs_get_sb,
454 	.kill_sb	= kill_block_super,
455 	.fs_flags	= FS_REQUIRES_DEV,
456 };
457 
458 static void hfs_init_once(void *p)
459 {
460 	struct hfs_inode_info *i = p;
461 
462 	inode_init_once(&i->vfs_inode);
463 }
464 
465 static int __init init_hfs_fs(void)
466 {
467 	int err;
468 
469 	hfs_inode_cachep = kmem_cache_create("hfs_inode_cache",
470 		sizeof(struct hfs_inode_info), 0, SLAB_HWCACHE_ALIGN,
471 		hfs_init_once);
472 	if (!hfs_inode_cachep)
473 		return -ENOMEM;
474 	err = register_filesystem(&hfs_fs_type);
475 	if (err)
476 		kmem_cache_destroy(hfs_inode_cachep);
477 	return err;
478 }
479 
480 static void __exit exit_hfs_fs(void)
481 {
482 	unregister_filesystem(&hfs_fs_type);
483 	kmem_cache_destroy(hfs_inode_cachep);
484 }
485 
486 module_init(init_hfs_fs)
487 module_exit(exit_hfs_fs)
488