xref: /linux/fs/hfs/btree.c (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /*
2  *  linux/fs/hfs/btree.c
3  *
4  * Copyright (C) 2001
5  * Brad Boyer (flar@allandria.com)
6  * (C) 2003 Ardis Technologies <roman@ardistech.com>
7  *
8  * Handle opening/closing btree
9  */
10 
11 #include <linux/pagemap.h>
12 #include <linux/log2.h>
13 
14 #include "btree.h"
15 
16 /* Get a reference to a B*Tree and do some initial checks */
17 struct hfs_btree *hfs_btree_open(struct super_block *sb, u32 id, btree_keycmp keycmp)
18 {
19 	struct hfs_btree *tree;
20 	struct hfs_btree_header_rec *head;
21 	struct address_space *mapping;
22 	struct page *page;
23 	unsigned int size;
24 
25 	tree = kzalloc(sizeof(*tree), GFP_KERNEL);
26 	if (!tree)
27 		return NULL;
28 
29 	init_MUTEX(&tree->tree_lock);
30 	spin_lock_init(&tree->hash_lock);
31 	/* Set the correct compare function */
32 	tree->sb = sb;
33 	tree->cnid = id;
34 	tree->keycmp = keycmp;
35 
36 	tree->inode = iget_locked(sb, id);
37 	if (!tree->inode)
38 		goto free_tree;
39 	BUG_ON(!(tree->inode->i_state & I_NEW));
40 	{
41 	struct hfs_mdb *mdb = HFS_SB(sb)->mdb;
42 	HFS_I(tree->inode)->flags = 0;
43 	mutex_init(&HFS_I(tree->inode)->extents_lock);
44 	switch (id) {
45 	case HFS_EXT_CNID:
46 		hfs_inode_read_fork(tree->inode, mdb->drXTExtRec, mdb->drXTFlSize,
47 				    mdb->drXTFlSize, be32_to_cpu(mdb->drXTClpSiz));
48 		tree->inode->i_mapping->a_ops = &hfs_btree_aops;
49 		break;
50 	case HFS_CAT_CNID:
51 		hfs_inode_read_fork(tree->inode, mdb->drCTExtRec, mdb->drCTFlSize,
52 				    mdb->drCTFlSize, be32_to_cpu(mdb->drCTClpSiz));
53 		tree->inode->i_mapping->a_ops = &hfs_btree_aops;
54 		break;
55 	default:
56 		BUG();
57 	}
58 	}
59 	unlock_new_inode(tree->inode);
60 
61 	mapping = tree->inode->i_mapping;
62 	page = read_mapping_page(mapping, 0, NULL);
63 	if (IS_ERR(page))
64 		goto free_inode;
65 
66 	/* Load the header */
67 	head = (struct hfs_btree_header_rec *)(kmap(page) + sizeof(struct hfs_bnode_desc));
68 	tree->root = be32_to_cpu(head->root);
69 	tree->leaf_count = be32_to_cpu(head->leaf_count);
70 	tree->leaf_head = be32_to_cpu(head->leaf_head);
71 	tree->leaf_tail = be32_to_cpu(head->leaf_tail);
72 	tree->node_count = be32_to_cpu(head->node_count);
73 	tree->free_nodes = be32_to_cpu(head->free_nodes);
74 	tree->attributes = be32_to_cpu(head->attributes);
75 	tree->node_size = be16_to_cpu(head->node_size);
76 	tree->max_key_len = be16_to_cpu(head->max_key_len);
77 	tree->depth = be16_to_cpu(head->depth);
78 
79 	size = tree->node_size;
80 	if (!is_power_of_2(size))
81 		goto fail_page;
82 	if (!tree->node_count)
83 		goto fail_page;
84 	switch (id) {
85 	case HFS_EXT_CNID:
86 		if (tree->max_key_len != HFS_MAX_EXT_KEYLEN) {
87 			printk(KERN_ERR "hfs: invalid extent max_key_len %d\n",
88 				tree->max_key_len);
89 			goto fail_page;
90 		}
91 		break;
92 	case HFS_CAT_CNID:
93 		if (tree->max_key_len != HFS_MAX_CAT_KEYLEN) {
94 			printk(KERN_ERR "hfs: invalid catalog max_key_len %d\n",
95 				tree->max_key_len);
96 			goto fail_page;
97 		}
98 		break;
99 	default:
100 		BUG();
101 	}
102 
103 	tree->node_size_shift = ffs(size) - 1;
104 	tree->pages_per_bnode = (tree->node_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
105 
106 	kunmap(page);
107 	page_cache_release(page);
108 	return tree;
109 
110 fail_page:
111 	page_cache_release(page);
112 free_inode:
113 	tree->inode->i_mapping->a_ops = &hfs_aops;
114 	iput(tree->inode);
115 free_tree:
116 	kfree(tree);
117 	return NULL;
118 }
119 
120 /* Release resources used by a btree */
121 void hfs_btree_close(struct hfs_btree *tree)
122 {
123 	struct hfs_bnode *node;
124 	int i;
125 
126 	if (!tree)
127 		return;
128 
129 	for (i = 0; i < NODE_HASH_SIZE; i++) {
130 		while ((node = tree->node_hash[i])) {
131 			tree->node_hash[i] = node->next_hash;
132 			if (atomic_read(&node->refcnt))
133 				printk(KERN_ERR "hfs: node %d:%d still has %d user(s)!\n",
134 					node->tree->cnid, node->this, atomic_read(&node->refcnt));
135 			hfs_bnode_free(node);
136 			tree->node_hash_cnt--;
137 		}
138 	}
139 	iput(tree->inode);
140 	kfree(tree);
141 }
142 
143 void hfs_btree_write(struct hfs_btree *tree)
144 {
145 	struct hfs_btree_header_rec *head;
146 	struct hfs_bnode *node;
147 	struct page *page;
148 
149 	node = hfs_bnode_find(tree, 0);
150 	if (IS_ERR(node))
151 		/* panic? */
152 		return;
153 	/* Load the header */
154 	page = node->page[0];
155 	head = (struct hfs_btree_header_rec *)(kmap(page) + sizeof(struct hfs_bnode_desc));
156 
157 	head->root = cpu_to_be32(tree->root);
158 	head->leaf_count = cpu_to_be32(tree->leaf_count);
159 	head->leaf_head = cpu_to_be32(tree->leaf_head);
160 	head->leaf_tail = cpu_to_be32(tree->leaf_tail);
161 	head->node_count = cpu_to_be32(tree->node_count);
162 	head->free_nodes = cpu_to_be32(tree->free_nodes);
163 	head->attributes = cpu_to_be32(tree->attributes);
164 	head->depth = cpu_to_be16(tree->depth);
165 
166 	kunmap(page);
167 	set_page_dirty(page);
168 	hfs_bnode_put(node);
169 }
170 
171 static struct hfs_bnode *hfs_bmap_new_bmap(struct hfs_bnode *prev, u32 idx)
172 {
173 	struct hfs_btree *tree = prev->tree;
174 	struct hfs_bnode *node;
175 	struct hfs_bnode_desc desc;
176 	__be32 cnid;
177 
178 	node = hfs_bnode_create(tree, idx);
179 	if (IS_ERR(node))
180 		return node;
181 
182 	if (!tree->free_nodes)
183 		panic("FIXME!!!");
184 	tree->free_nodes--;
185 	prev->next = idx;
186 	cnid = cpu_to_be32(idx);
187 	hfs_bnode_write(prev, &cnid, offsetof(struct hfs_bnode_desc, next), 4);
188 
189 	node->type = HFS_NODE_MAP;
190 	node->num_recs = 1;
191 	hfs_bnode_clear(node, 0, tree->node_size);
192 	desc.next = 0;
193 	desc.prev = 0;
194 	desc.type = HFS_NODE_MAP;
195 	desc.height = 0;
196 	desc.num_recs = cpu_to_be16(1);
197 	desc.reserved = 0;
198 	hfs_bnode_write(node, &desc, 0, sizeof(desc));
199 	hfs_bnode_write_u16(node, 14, 0x8000);
200 	hfs_bnode_write_u16(node, tree->node_size - 2, 14);
201 	hfs_bnode_write_u16(node, tree->node_size - 4, tree->node_size - 6);
202 
203 	return node;
204 }
205 
206 struct hfs_bnode *hfs_bmap_alloc(struct hfs_btree *tree)
207 {
208 	struct hfs_bnode *node, *next_node;
209 	struct page **pagep;
210 	u32 nidx, idx;
211 	unsigned off;
212 	u16 off16;
213 	u16 len;
214 	u8 *data, byte, m;
215 	int i;
216 
217 	while (!tree->free_nodes) {
218 		struct inode *inode = tree->inode;
219 		u32 count;
220 		int res;
221 
222 		res = hfs_extend_file(inode);
223 		if (res)
224 			return ERR_PTR(res);
225 		HFS_I(inode)->phys_size = inode->i_size =
226 				(loff_t)HFS_I(inode)->alloc_blocks *
227 				HFS_SB(tree->sb)->alloc_blksz;
228 		HFS_I(inode)->fs_blocks = inode->i_size >>
229 					  tree->sb->s_blocksize_bits;
230 		inode_set_bytes(inode, inode->i_size);
231 		count = inode->i_size >> tree->node_size_shift;
232 		tree->free_nodes = count - tree->node_count;
233 		tree->node_count = count;
234 	}
235 
236 	nidx = 0;
237 	node = hfs_bnode_find(tree, nidx);
238 	if (IS_ERR(node))
239 		return node;
240 	len = hfs_brec_lenoff(node, 2, &off16);
241 	off = off16;
242 
243 	off += node->page_offset;
244 	pagep = node->page + (off >> PAGE_CACHE_SHIFT);
245 	data = kmap(*pagep);
246 	off &= ~PAGE_CACHE_MASK;
247 	idx = 0;
248 
249 	for (;;) {
250 		while (len) {
251 			byte = data[off];
252 			if (byte != 0xff) {
253 				for (m = 0x80, i = 0; i < 8; m >>= 1, i++) {
254 					if (!(byte & m)) {
255 						idx += i;
256 						data[off] |= m;
257 						set_page_dirty(*pagep);
258 						kunmap(*pagep);
259 						tree->free_nodes--;
260 						mark_inode_dirty(tree->inode);
261 						hfs_bnode_put(node);
262 						return hfs_bnode_create(tree, idx);
263 					}
264 				}
265 			}
266 			if (++off >= PAGE_CACHE_SIZE) {
267 				kunmap(*pagep);
268 				data = kmap(*++pagep);
269 				off = 0;
270 			}
271 			idx += 8;
272 			len--;
273 		}
274 		kunmap(*pagep);
275 		nidx = node->next;
276 		if (!nidx) {
277 			printk(KERN_DEBUG "hfs: create new bmap node...\n");
278 			next_node = hfs_bmap_new_bmap(node, idx);
279 		} else
280 			next_node = hfs_bnode_find(tree, nidx);
281 		hfs_bnode_put(node);
282 		if (IS_ERR(next_node))
283 			return next_node;
284 		node = next_node;
285 
286 		len = hfs_brec_lenoff(node, 0, &off16);
287 		off = off16;
288 		off += node->page_offset;
289 		pagep = node->page + (off >> PAGE_CACHE_SHIFT);
290 		data = kmap(*pagep);
291 		off &= ~PAGE_CACHE_MASK;
292 	}
293 }
294 
295 void hfs_bmap_free(struct hfs_bnode *node)
296 {
297 	struct hfs_btree *tree;
298 	struct page *page;
299 	u16 off, len;
300 	u32 nidx;
301 	u8 *data, byte, m;
302 
303 	dprint(DBG_BNODE_MOD, "btree_free_node: %u\n", node->this);
304 	tree = node->tree;
305 	nidx = node->this;
306 	node = hfs_bnode_find(tree, 0);
307 	if (IS_ERR(node))
308 		return;
309 	len = hfs_brec_lenoff(node, 2, &off);
310 	while (nidx >= len * 8) {
311 		u32 i;
312 
313 		nidx -= len * 8;
314 		i = node->next;
315 		hfs_bnode_put(node);
316 		if (!i) {
317 			/* panic */;
318 			printk(KERN_CRIT "hfs: unable to free bnode %u. bmap not found!\n", node->this);
319 			return;
320 		}
321 		node = hfs_bnode_find(tree, i);
322 		if (IS_ERR(node))
323 			return;
324 		if (node->type != HFS_NODE_MAP) {
325 			/* panic */;
326 			printk(KERN_CRIT "hfs: invalid bmap found! (%u,%d)\n", node->this, node->type);
327 			hfs_bnode_put(node);
328 			return;
329 		}
330 		len = hfs_brec_lenoff(node, 0, &off);
331 	}
332 	off += node->page_offset + nidx / 8;
333 	page = node->page[off >> PAGE_CACHE_SHIFT];
334 	data = kmap(page);
335 	off &= ~PAGE_CACHE_MASK;
336 	m = 1 << (~nidx & 7);
337 	byte = data[off];
338 	if (!(byte & m)) {
339 		printk(KERN_CRIT "hfs: trying to free free bnode %u(%d)\n", node->this, node->type);
340 		kunmap(page);
341 		hfs_bnode_put(node);
342 		return;
343 	}
344 	data[off] = byte & ~m;
345 	set_page_dirty(page);
346 	kunmap(page);
347 	hfs_bnode_put(node);
348 	tree->free_nodes++;
349 	mark_inode_dirty(tree->inode);
350 }
351