1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 5 */ 6 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 9 #include <linux/slab.h> 10 #include <linux/spinlock.h> 11 #include <linux/completion.h> 12 #include <linux/buffer_head.h> 13 #include <linux/fs.h> 14 #include <linux/gfs2_ondisk.h> 15 #include <linux/prefetch.h> 16 #include <linux/blkdev.h> 17 #include <linux/rbtree.h> 18 #include <linux/random.h> 19 20 #include "gfs2.h" 21 #include "incore.h" 22 #include "glock.h" 23 #include "glops.h" 24 #include "lops.h" 25 #include "meta_io.h" 26 #include "quota.h" 27 #include "rgrp.h" 28 #include "super.h" 29 #include "trans.h" 30 #include "util.h" 31 #include "log.h" 32 #include "inode.h" 33 #include "trace_gfs2.h" 34 #include "dir.h" 35 36 #define BFITNOENT ((u32)~0) 37 #define NO_BLOCK ((u64)~0) 38 39 struct gfs2_rbm { 40 struct gfs2_rgrpd *rgd; 41 u32 offset; /* The offset is bitmap relative */ 42 int bii; /* Bitmap index */ 43 }; 44 45 static inline struct gfs2_bitmap *rbm_bi(const struct gfs2_rbm *rbm) 46 { 47 return rbm->rgd->rd_bits + rbm->bii; 48 } 49 50 static inline u64 gfs2_rbm_to_block(const struct gfs2_rbm *rbm) 51 { 52 BUG_ON(rbm->offset >= rbm->rgd->rd_data); 53 return rbm->rgd->rd_data0 + (rbm_bi(rbm)->bi_start * GFS2_NBBY) + 54 rbm->offset; 55 } 56 57 /* 58 * These routines are used by the resource group routines (rgrp.c) 59 * to keep track of block allocation. Each block is represented by two 60 * bits. So, each byte represents GFS2_NBBY (i.e. 4) blocks. 61 * 62 * 0 = Free 63 * 1 = Used (not metadata) 64 * 2 = Unlinked (still in use) inode 65 * 3 = Used (metadata) 66 */ 67 68 struct gfs2_extent { 69 struct gfs2_rbm rbm; 70 u32 len; 71 }; 72 73 static const char valid_change[16] = { 74 /* current */ 75 /* n */ 0, 1, 1, 1, 76 /* e */ 1, 0, 0, 0, 77 /* w */ 0, 0, 0, 1, 78 1, 0, 0, 0 79 }; 80 81 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext, 82 struct gfs2_blkreserv *rs, bool nowrap); 83 84 85 /** 86 * gfs2_setbit - Set a bit in the bitmaps 87 * @rbm: The position of the bit to set 88 * @do_clone: Also set the clone bitmap, if it exists 89 * @new_state: the new state of the block 90 * 91 */ 92 93 static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone, 94 unsigned char new_state) 95 { 96 unsigned char *byte1, *byte2, *end, cur_state; 97 struct gfs2_bitmap *bi = rbm_bi(rbm); 98 unsigned int buflen = bi->bi_bytes; 99 const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE; 100 101 byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY); 102 end = bi->bi_bh->b_data + bi->bi_offset + buflen; 103 104 BUG_ON(byte1 >= end); 105 106 cur_state = (*byte1 >> bit) & GFS2_BIT_MASK; 107 108 if (unlikely(!valid_change[new_state * 4 + cur_state])) { 109 struct gfs2_sbd *sdp = rbm->rgd->rd_sbd; 110 111 fs_warn(sdp, "buf_blk = 0x%x old_state=%d, new_state=%d\n", 112 rbm->offset, cur_state, new_state); 113 fs_warn(sdp, "rgrp=0x%llx bi_start=0x%x biblk: 0x%llx\n", 114 (unsigned long long)rbm->rgd->rd_addr, bi->bi_start, 115 (unsigned long long)bi->bi_bh->b_blocknr); 116 fs_warn(sdp, "bi_offset=0x%x bi_bytes=0x%x block=0x%llx\n", 117 bi->bi_offset, bi->bi_bytes, 118 (unsigned long long)gfs2_rbm_to_block(rbm)); 119 dump_stack(); 120 gfs2_consist_rgrpd(rbm->rgd); 121 return; 122 } 123 *byte1 ^= (cur_state ^ new_state) << bit; 124 125 if (do_clone && bi->bi_clone) { 126 byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY); 127 cur_state = (*byte2 >> bit) & GFS2_BIT_MASK; 128 *byte2 ^= (cur_state ^ new_state) << bit; 129 } 130 } 131 132 /** 133 * gfs2_testbit - test a bit in the bitmaps 134 * @rbm: The bit to test 135 * @use_clone: If true, test the clone bitmap, not the official bitmap. 136 * 137 * Some callers like gfs2_unaligned_extlen need to test the clone bitmaps, 138 * not the "real" bitmaps, to avoid allocating recently freed blocks. 139 * 140 * Returns: The two bit block state of the requested bit 141 */ 142 143 static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm, bool use_clone) 144 { 145 struct gfs2_bitmap *bi = rbm_bi(rbm); 146 const u8 *buffer; 147 const u8 *byte; 148 unsigned int bit; 149 150 if (use_clone && bi->bi_clone) 151 buffer = bi->bi_clone; 152 else 153 buffer = bi->bi_bh->b_data; 154 buffer += bi->bi_offset; 155 byte = buffer + (rbm->offset / GFS2_NBBY); 156 bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE; 157 158 return (*byte >> bit) & GFS2_BIT_MASK; 159 } 160 161 /** 162 * gfs2_bit_search 163 * @ptr: Pointer to bitmap data 164 * @mask: Mask to use (normally 0x55555.... but adjusted for search start) 165 * @state: The state we are searching for 166 * 167 * We xor the bitmap data with a patter which is the bitwise opposite 168 * of what we are looking for, this gives rise to a pattern of ones 169 * wherever there is a match. Since we have two bits per entry, we 170 * take this pattern, shift it down by one place and then and it with 171 * the original. All the even bit positions (0,2,4, etc) then represent 172 * successful matches, so we mask with 0x55555..... to remove the unwanted 173 * odd bit positions. 174 * 175 * This allows searching of a whole u64 at once (32 blocks) with a 176 * single test (on 64 bit arches). 177 */ 178 179 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state) 180 { 181 u64 tmp; 182 static const u64 search[] = { 183 [0] = 0xffffffffffffffffULL, 184 [1] = 0xaaaaaaaaaaaaaaaaULL, 185 [2] = 0x5555555555555555ULL, 186 [3] = 0x0000000000000000ULL, 187 }; 188 tmp = le64_to_cpu(*ptr) ^ search[state]; 189 tmp &= (tmp >> 1); 190 tmp &= mask; 191 return tmp; 192 } 193 194 /** 195 * rs_cmp - multi-block reservation range compare 196 * @start: start of the new reservation 197 * @len: number of blocks in the new reservation 198 * @rs: existing reservation to compare against 199 * 200 * returns: 1 if the block range is beyond the reach of the reservation 201 * -1 if the block range is before the start of the reservation 202 * 0 if the block range overlaps with the reservation 203 */ 204 static inline int rs_cmp(u64 start, u32 len, struct gfs2_blkreserv *rs) 205 { 206 if (start >= rs->rs_start + rs->rs_requested) 207 return 1; 208 if (rs->rs_start >= start + len) 209 return -1; 210 return 0; 211 } 212 213 /** 214 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing 215 * a block in a given allocation state. 216 * @buf: the buffer that holds the bitmaps 217 * @len: the length (in bytes) of the buffer 218 * @goal: start search at this block's bit-pair (within @buffer) 219 * @state: GFS2_BLKST_XXX the state of the block we're looking for. 220 * 221 * Scope of @goal and returned block number is only within this bitmap buffer, 222 * not entire rgrp or filesystem. @buffer will be offset from the actual 223 * beginning of a bitmap block buffer, skipping any header structures, but 224 * headers are always a multiple of 64 bits long so that the buffer is 225 * always aligned to a 64 bit boundary. 226 * 227 * The size of the buffer is in bytes, but is it assumed that it is 228 * always ok to read a complete multiple of 64 bits at the end 229 * of the block in case the end is no aligned to a natural boundary. 230 * 231 * Return: the block number (bitmap buffer scope) that was found 232 */ 233 234 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len, 235 u32 goal, u8 state) 236 { 237 u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1); 238 const __le64 *ptr = ((__le64 *)buf) + (goal >> 5); 239 const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64))); 240 u64 tmp; 241 u64 mask = 0x5555555555555555ULL; 242 u32 bit; 243 244 /* Mask off bits we don't care about at the start of the search */ 245 mask <<= spoint; 246 tmp = gfs2_bit_search(ptr, mask, state); 247 ptr++; 248 while(tmp == 0 && ptr < end) { 249 tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state); 250 ptr++; 251 } 252 /* Mask off any bits which are more than len bytes from the start */ 253 if (ptr == end && (len & (sizeof(u64) - 1))) 254 tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1)))); 255 /* Didn't find anything, so return */ 256 if (tmp == 0) 257 return BFITNOENT; 258 ptr--; 259 bit = __ffs64(tmp); 260 bit /= 2; /* two bits per entry in the bitmap */ 261 return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit; 262 } 263 264 /** 265 * gfs2_rbm_from_block - Set the rbm based upon rgd and block number 266 * @rbm: The rbm with rgd already set correctly 267 * @block: The block number (filesystem relative) 268 * 269 * This sets the bi and offset members of an rbm based on a 270 * resource group and a filesystem relative block number. The 271 * resource group must be set in the rbm on entry, the bi and 272 * offset members will be set by this function. 273 * 274 * Returns: 0 on success, or an error code 275 */ 276 277 static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block) 278 { 279 if (!rgrp_contains_block(rbm->rgd, block)) 280 return -E2BIG; 281 rbm->bii = 0; 282 rbm->offset = block - rbm->rgd->rd_data0; 283 /* Check if the block is within the first block */ 284 if (rbm->offset < rbm_bi(rbm)->bi_blocks) 285 return 0; 286 287 /* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */ 288 rbm->offset += (sizeof(struct gfs2_rgrp) - 289 sizeof(struct gfs2_meta_header)) * GFS2_NBBY; 290 rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap; 291 rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap; 292 return 0; 293 } 294 295 /** 296 * gfs2_rbm_add - add a number of blocks to an rbm 297 * @rbm: The rbm with rgd already set correctly 298 * @blocks: The number of blocks to add to rpm 299 * 300 * This function takes an existing rbm structure and adds a number of blocks to 301 * it. 302 * 303 * Returns: True if the new rbm would point past the end of the rgrp. 304 */ 305 306 static bool gfs2_rbm_add(struct gfs2_rbm *rbm, u32 blocks) 307 { 308 struct gfs2_rgrpd *rgd = rbm->rgd; 309 struct gfs2_bitmap *bi = rgd->rd_bits + rbm->bii; 310 311 if (rbm->offset + blocks < bi->bi_blocks) { 312 rbm->offset += blocks; 313 return false; 314 } 315 blocks -= bi->bi_blocks - rbm->offset; 316 317 for(;;) { 318 bi++; 319 if (bi == rgd->rd_bits + rgd->rd_length) 320 return true; 321 if (blocks < bi->bi_blocks) { 322 rbm->offset = blocks; 323 rbm->bii = bi - rgd->rd_bits; 324 return false; 325 } 326 blocks -= bi->bi_blocks; 327 } 328 } 329 330 /** 331 * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned 332 * @rbm: Position to search (value/result) 333 * @n_unaligned: Number of unaligned blocks to check 334 * @len: Decremented for each block found (terminate on zero) 335 * 336 * Returns: true if a non-free block is encountered or the end of the resource 337 * group is reached. 338 */ 339 340 static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len) 341 { 342 u32 n; 343 u8 res; 344 345 for (n = 0; n < n_unaligned; n++) { 346 res = gfs2_testbit(rbm, true); 347 if (res != GFS2_BLKST_FREE) 348 return true; 349 (*len)--; 350 if (*len == 0) 351 return true; 352 if (gfs2_rbm_add(rbm, 1)) 353 return true; 354 } 355 356 return false; 357 } 358 359 /** 360 * gfs2_free_extlen - Return extent length of free blocks 361 * @rrbm: Starting position 362 * @len: Max length to check 363 * 364 * Starting at the block specified by the rbm, see how many free blocks 365 * there are, not reading more than len blocks ahead. This can be done 366 * using memchr_inv when the blocks are byte aligned, but has to be done 367 * on a block by block basis in case of unaligned blocks. Also this 368 * function can cope with bitmap boundaries (although it must stop on 369 * a resource group boundary) 370 * 371 * Returns: Number of free blocks in the extent 372 */ 373 374 static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len) 375 { 376 struct gfs2_rbm rbm = *rrbm; 377 u32 n_unaligned = rbm.offset & 3; 378 u32 size = len; 379 u32 bytes; 380 u32 chunk_size; 381 u8 *ptr, *start, *end; 382 u64 block; 383 struct gfs2_bitmap *bi; 384 385 if (n_unaligned && 386 gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len)) 387 goto out; 388 389 n_unaligned = len & 3; 390 /* Start is now byte aligned */ 391 while (len > 3) { 392 bi = rbm_bi(&rbm); 393 start = bi->bi_bh->b_data; 394 if (bi->bi_clone) 395 start = bi->bi_clone; 396 start += bi->bi_offset; 397 end = start + bi->bi_bytes; 398 BUG_ON(rbm.offset & 3); 399 start += (rbm.offset / GFS2_NBBY); 400 bytes = min_t(u32, len / GFS2_NBBY, (end - start)); 401 ptr = memchr_inv(start, 0, bytes); 402 chunk_size = ((ptr == NULL) ? bytes : (ptr - start)); 403 chunk_size *= GFS2_NBBY; 404 BUG_ON(len < chunk_size); 405 len -= chunk_size; 406 block = gfs2_rbm_to_block(&rbm); 407 if (gfs2_rbm_from_block(&rbm, block + chunk_size)) { 408 n_unaligned = 0; 409 break; 410 } 411 if (ptr) { 412 n_unaligned = 3; 413 break; 414 } 415 n_unaligned = len & 3; 416 } 417 418 /* Deal with any bits left over at the end */ 419 if (n_unaligned) 420 gfs2_unaligned_extlen(&rbm, n_unaligned, &len); 421 out: 422 return size - len; 423 } 424 425 /** 426 * gfs2_bitcount - count the number of bits in a certain state 427 * @rgd: the resource group descriptor 428 * @buffer: the buffer that holds the bitmaps 429 * @buflen: the length (in bytes) of the buffer 430 * @state: the state of the block we're looking for 431 * 432 * Returns: The number of bits 433 */ 434 435 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer, 436 unsigned int buflen, u8 state) 437 { 438 const u8 *byte = buffer; 439 const u8 *end = buffer + buflen; 440 const u8 state1 = state << 2; 441 const u8 state2 = state << 4; 442 const u8 state3 = state << 6; 443 u32 count = 0; 444 445 for (; byte < end; byte++) { 446 if (((*byte) & 0x03) == state) 447 count++; 448 if (((*byte) & 0x0C) == state1) 449 count++; 450 if (((*byte) & 0x30) == state2) 451 count++; 452 if (((*byte) & 0xC0) == state3) 453 count++; 454 } 455 456 return count; 457 } 458 459 /** 460 * gfs2_rgrp_verify - Verify that a resource group is consistent 461 * @rgd: the rgrp 462 * 463 */ 464 465 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd) 466 { 467 struct gfs2_sbd *sdp = rgd->rd_sbd; 468 struct gfs2_bitmap *bi = NULL; 469 u32 length = rgd->rd_length; 470 u32 count[4], tmp; 471 int buf, x; 472 473 memset(count, 0, 4 * sizeof(u32)); 474 475 /* Count # blocks in each of 4 possible allocation states */ 476 for (buf = 0; buf < length; buf++) { 477 bi = rgd->rd_bits + buf; 478 for (x = 0; x < 4; x++) 479 count[x] += gfs2_bitcount(rgd, 480 bi->bi_bh->b_data + 481 bi->bi_offset, 482 bi->bi_bytes, x); 483 } 484 485 if (count[0] != rgd->rd_free) { 486 gfs2_lm(sdp, "free data mismatch: %u != %u\n", 487 count[0], rgd->rd_free); 488 gfs2_consist_rgrpd(rgd); 489 return; 490 } 491 492 tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes; 493 if (count[1] != tmp) { 494 gfs2_lm(sdp, "used data mismatch: %u != %u\n", 495 count[1], tmp); 496 gfs2_consist_rgrpd(rgd); 497 return; 498 } 499 500 if (count[2] + count[3] != rgd->rd_dinodes) { 501 gfs2_lm(sdp, "used metadata mismatch: %u != %u\n", 502 count[2] + count[3], rgd->rd_dinodes); 503 gfs2_consist_rgrpd(rgd); 504 return; 505 } 506 } 507 508 /** 509 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number 510 * @sdp: The GFS2 superblock 511 * @blk: The data block number 512 * @exact: True if this needs to be an exact match 513 * 514 * The @exact argument should be set to true by most callers. The exception 515 * is when we need to match blocks which are not represented by the rgrp 516 * bitmap, but which are part of the rgrp (i.e. padding blocks) which are 517 * there for alignment purposes. Another way of looking at it is that @exact 518 * matches only valid data/metadata blocks, but with @exact false, it will 519 * match any block within the extent of the rgrp. 520 * 521 * Returns: The resource group, or NULL if not found 522 */ 523 524 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact) 525 { 526 struct rb_node *n, *next; 527 struct gfs2_rgrpd *cur; 528 529 spin_lock(&sdp->sd_rindex_spin); 530 n = sdp->sd_rindex_tree.rb_node; 531 while (n) { 532 cur = rb_entry(n, struct gfs2_rgrpd, rd_node); 533 next = NULL; 534 if (blk < cur->rd_addr) 535 next = n->rb_left; 536 else if (blk >= cur->rd_data0 + cur->rd_data) 537 next = n->rb_right; 538 if (next == NULL) { 539 spin_unlock(&sdp->sd_rindex_spin); 540 if (exact) { 541 if (blk < cur->rd_addr) 542 return NULL; 543 if (blk >= cur->rd_data0 + cur->rd_data) 544 return NULL; 545 } 546 return cur; 547 } 548 n = next; 549 } 550 spin_unlock(&sdp->sd_rindex_spin); 551 552 return NULL; 553 } 554 555 /** 556 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem 557 * @sdp: The GFS2 superblock 558 * 559 * Returns: The first rgrp in the filesystem 560 */ 561 562 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp) 563 { 564 const struct rb_node *n; 565 struct gfs2_rgrpd *rgd; 566 567 spin_lock(&sdp->sd_rindex_spin); 568 n = rb_first(&sdp->sd_rindex_tree); 569 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 570 spin_unlock(&sdp->sd_rindex_spin); 571 572 return rgd; 573 } 574 575 /** 576 * gfs2_rgrpd_get_next - get the next RG 577 * @rgd: the resource group descriptor 578 * 579 * Returns: The next rgrp 580 */ 581 582 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd) 583 { 584 struct gfs2_sbd *sdp = rgd->rd_sbd; 585 const struct rb_node *n; 586 587 spin_lock(&sdp->sd_rindex_spin); 588 n = rb_next(&rgd->rd_node); 589 if (n == NULL) 590 n = rb_first(&sdp->sd_rindex_tree); 591 592 if (unlikely(&rgd->rd_node == n)) { 593 spin_unlock(&sdp->sd_rindex_spin); 594 return NULL; 595 } 596 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 597 spin_unlock(&sdp->sd_rindex_spin); 598 return rgd; 599 } 600 601 void check_and_update_goal(struct gfs2_inode *ip) 602 { 603 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 604 if (!ip->i_goal || gfs2_blk2rgrpd(sdp, ip->i_goal, 1) == NULL) 605 ip->i_goal = ip->i_no_addr; 606 } 607 608 void gfs2_free_clones(struct gfs2_rgrpd *rgd) 609 { 610 int x; 611 612 for (x = 0; x < rgd->rd_length; x++) { 613 struct gfs2_bitmap *bi = rgd->rd_bits + x; 614 kfree(bi->bi_clone); 615 bi->bi_clone = NULL; 616 } 617 } 618 619 static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs, 620 const char *fs_id_buf) 621 { 622 struct gfs2_inode *ip = container_of(rs, struct gfs2_inode, i_res); 623 624 gfs2_print_dbg(seq, "%s B: n:%llu s:%llu f:%u\n", 625 fs_id_buf, 626 (unsigned long long)ip->i_no_addr, 627 (unsigned long long)rs->rs_start, 628 rs->rs_requested); 629 } 630 631 /** 632 * __rs_deltree - remove a multi-block reservation from the rgd tree 633 * @rs: The reservation to remove 634 * 635 */ 636 static void __rs_deltree(struct gfs2_blkreserv *rs) 637 { 638 struct gfs2_rgrpd *rgd; 639 640 if (!gfs2_rs_active(rs)) 641 return; 642 643 rgd = rs->rs_rgd; 644 trace_gfs2_rs(rs, TRACE_RS_TREEDEL); 645 rb_erase(&rs->rs_node, &rgd->rd_rstree); 646 RB_CLEAR_NODE(&rs->rs_node); 647 648 if (rs->rs_requested) { 649 /* return requested blocks to the rgrp */ 650 BUG_ON(rs->rs_rgd->rd_requested < rs->rs_requested); 651 rs->rs_rgd->rd_requested -= rs->rs_requested; 652 653 /* The rgrp extent failure point is likely not to increase; 654 it will only do so if the freed blocks are somehow 655 contiguous with a span of free blocks that follows. Still, 656 it will force the number to be recalculated later. */ 657 rgd->rd_extfail_pt += rs->rs_requested; 658 rs->rs_requested = 0; 659 } 660 } 661 662 /** 663 * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree 664 * @rs: The reservation to remove 665 * 666 */ 667 void gfs2_rs_deltree(struct gfs2_blkreserv *rs) 668 { 669 struct gfs2_rgrpd *rgd; 670 671 rgd = rs->rs_rgd; 672 if (rgd) { 673 spin_lock(&rgd->rd_rsspin); 674 __rs_deltree(rs); 675 BUG_ON(rs->rs_requested); 676 spin_unlock(&rgd->rd_rsspin); 677 } 678 } 679 680 /** 681 * gfs2_rs_delete - delete a multi-block reservation 682 * @ip: The inode for this reservation 683 * 684 */ 685 void gfs2_rs_delete(struct gfs2_inode *ip) 686 { 687 struct inode *inode = &ip->i_inode; 688 689 down_write(&ip->i_rw_mutex); 690 if (atomic_read(&inode->i_writecount) <= 1) 691 gfs2_rs_deltree(&ip->i_res); 692 up_write(&ip->i_rw_mutex); 693 } 694 695 /** 696 * return_all_reservations - return all reserved blocks back to the rgrp. 697 * @rgd: the rgrp that needs its space back 698 * 699 * We previously reserved a bunch of blocks for allocation. Now we need to 700 * give them back. This leave the reservation structures in tact, but removes 701 * all of their corresponding "no-fly zones". 702 */ 703 static void return_all_reservations(struct gfs2_rgrpd *rgd) 704 { 705 struct rb_node *n; 706 struct gfs2_blkreserv *rs; 707 708 spin_lock(&rgd->rd_rsspin); 709 while ((n = rb_first(&rgd->rd_rstree))) { 710 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 711 __rs_deltree(rs); 712 } 713 spin_unlock(&rgd->rd_rsspin); 714 } 715 716 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp) 717 { 718 struct rb_node *n; 719 struct gfs2_rgrpd *rgd; 720 struct gfs2_glock *gl; 721 722 while ((n = rb_first(&sdp->sd_rindex_tree))) { 723 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 724 gl = rgd->rd_gl; 725 726 rb_erase(n, &sdp->sd_rindex_tree); 727 728 if (gl) { 729 if (gl->gl_state != LM_ST_UNLOCKED) { 730 gfs2_glock_cb(gl, LM_ST_UNLOCKED); 731 flush_delayed_work(&gl->gl_work); 732 } 733 gfs2_rgrp_brelse(rgd); 734 glock_clear_object(gl, rgd); 735 gfs2_glock_put(gl); 736 } 737 738 gfs2_free_clones(rgd); 739 return_all_reservations(rgd); 740 kfree(rgd->rd_bits); 741 rgd->rd_bits = NULL; 742 kmem_cache_free(gfs2_rgrpd_cachep, rgd); 743 } 744 } 745 746 /** 747 * compute_bitstructs - Compute the bitmap sizes 748 * @rgd: The resource group descriptor 749 * 750 * Calculates bitmap descriptors, one for each block that contains bitmap data 751 * 752 * Returns: errno 753 */ 754 755 static int compute_bitstructs(struct gfs2_rgrpd *rgd) 756 { 757 struct gfs2_sbd *sdp = rgd->rd_sbd; 758 struct gfs2_bitmap *bi; 759 u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */ 760 u32 bytes_left, bytes; 761 int x; 762 763 if (!length) 764 return -EINVAL; 765 766 rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS); 767 if (!rgd->rd_bits) 768 return -ENOMEM; 769 770 bytes_left = rgd->rd_bitbytes; 771 772 for (x = 0; x < length; x++) { 773 bi = rgd->rd_bits + x; 774 775 bi->bi_flags = 0; 776 /* small rgrp; bitmap stored completely in header block */ 777 if (length == 1) { 778 bytes = bytes_left; 779 bi->bi_offset = sizeof(struct gfs2_rgrp); 780 bi->bi_start = 0; 781 bi->bi_bytes = bytes; 782 bi->bi_blocks = bytes * GFS2_NBBY; 783 /* header block */ 784 } else if (x == 0) { 785 bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp); 786 bi->bi_offset = sizeof(struct gfs2_rgrp); 787 bi->bi_start = 0; 788 bi->bi_bytes = bytes; 789 bi->bi_blocks = bytes * GFS2_NBBY; 790 /* last block */ 791 } else if (x + 1 == length) { 792 bytes = bytes_left; 793 bi->bi_offset = sizeof(struct gfs2_meta_header); 794 bi->bi_start = rgd->rd_bitbytes - bytes_left; 795 bi->bi_bytes = bytes; 796 bi->bi_blocks = bytes * GFS2_NBBY; 797 /* other blocks */ 798 } else { 799 bytes = sdp->sd_sb.sb_bsize - 800 sizeof(struct gfs2_meta_header); 801 bi->bi_offset = sizeof(struct gfs2_meta_header); 802 bi->bi_start = rgd->rd_bitbytes - bytes_left; 803 bi->bi_bytes = bytes; 804 bi->bi_blocks = bytes * GFS2_NBBY; 805 } 806 807 bytes_left -= bytes; 808 } 809 810 if (bytes_left) { 811 gfs2_consist_rgrpd(rgd); 812 return -EIO; 813 } 814 bi = rgd->rd_bits + (length - 1); 815 if ((bi->bi_start + bi->bi_bytes) * GFS2_NBBY != rgd->rd_data) { 816 gfs2_lm(sdp, 817 "ri_addr = %llu\n" 818 "ri_length = %u\n" 819 "ri_data0 = %llu\n" 820 "ri_data = %u\n" 821 "ri_bitbytes = %u\n" 822 "start=%u len=%u offset=%u\n", 823 (unsigned long long)rgd->rd_addr, 824 rgd->rd_length, 825 (unsigned long long)rgd->rd_data0, 826 rgd->rd_data, 827 rgd->rd_bitbytes, 828 bi->bi_start, bi->bi_bytes, bi->bi_offset); 829 gfs2_consist_rgrpd(rgd); 830 return -EIO; 831 } 832 833 return 0; 834 } 835 836 /** 837 * gfs2_ri_total - Total up the file system space, according to the rindex. 838 * @sdp: the filesystem 839 * 840 */ 841 u64 gfs2_ri_total(struct gfs2_sbd *sdp) 842 { 843 u64 total_data = 0; 844 struct inode *inode = sdp->sd_rindex; 845 struct gfs2_inode *ip = GFS2_I(inode); 846 char buf[sizeof(struct gfs2_rindex)]; 847 int error, rgrps; 848 849 for (rgrps = 0;; rgrps++) { 850 loff_t pos = rgrps * sizeof(struct gfs2_rindex); 851 852 if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode)) 853 break; 854 error = gfs2_internal_read(ip, buf, &pos, 855 sizeof(struct gfs2_rindex)); 856 if (error != sizeof(struct gfs2_rindex)) 857 break; 858 total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data); 859 } 860 return total_data; 861 } 862 863 static int rgd_insert(struct gfs2_rgrpd *rgd) 864 { 865 struct gfs2_sbd *sdp = rgd->rd_sbd; 866 struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL; 867 868 /* Figure out where to put new node */ 869 while (*newn) { 870 struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd, 871 rd_node); 872 873 parent = *newn; 874 if (rgd->rd_addr < cur->rd_addr) 875 newn = &((*newn)->rb_left); 876 else if (rgd->rd_addr > cur->rd_addr) 877 newn = &((*newn)->rb_right); 878 else 879 return -EEXIST; 880 } 881 882 rb_link_node(&rgd->rd_node, parent, newn); 883 rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree); 884 sdp->sd_rgrps++; 885 return 0; 886 } 887 888 /** 889 * read_rindex_entry - Pull in a new resource index entry from the disk 890 * @ip: Pointer to the rindex inode 891 * 892 * Returns: 0 on success, > 0 on EOF, error code otherwise 893 */ 894 895 static int read_rindex_entry(struct gfs2_inode *ip) 896 { 897 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 898 loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex); 899 struct gfs2_rindex buf; 900 int error; 901 struct gfs2_rgrpd *rgd; 902 903 if (pos >= i_size_read(&ip->i_inode)) 904 return 1; 905 906 error = gfs2_internal_read(ip, (char *)&buf, &pos, 907 sizeof(struct gfs2_rindex)); 908 909 if (error != sizeof(struct gfs2_rindex)) 910 return (error == 0) ? 1 : error; 911 912 rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS); 913 error = -ENOMEM; 914 if (!rgd) 915 return error; 916 917 rgd->rd_sbd = sdp; 918 rgd->rd_addr = be64_to_cpu(buf.ri_addr); 919 rgd->rd_length = be32_to_cpu(buf.ri_length); 920 rgd->rd_data0 = be64_to_cpu(buf.ri_data0); 921 rgd->rd_data = be32_to_cpu(buf.ri_data); 922 rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes); 923 spin_lock_init(&rgd->rd_rsspin); 924 mutex_init(&rgd->rd_mutex); 925 926 error = gfs2_glock_get(sdp, rgd->rd_addr, 927 &gfs2_rgrp_glops, CREATE, &rgd->rd_gl); 928 if (error) 929 goto fail; 930 931 error = compute_bitstructs(rgd); 932 if (error) 933 goto fail_glock; 934 935 rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr; 936 rgd->rd_flags &= ~GFS2_RDF_PREFERRED; 937 if (rgd->rd_data > sdp->sd_max_rg_data) 938 sdp->sd_max_rg_data = rgd->rd_data; 939 spin_lock(&sdp->sd_rindex_spin); 940 error = rgd_insert(rgd); 941 spin_unlock(&sdp->sd_rindex_spin); 942 if (!error) { 943 glock_set_object(rgd->rd_gl, rgd); 944 return 0; 945 } 946 947 error = 0; /* someone else read in the rgrp; free it and ignore it */ 948 fail_glock: 949 gfs2_glock_put(rgd->rd_gl); 950 951 fail: 952 kfree(rgd->rd_bits); 953 rgd->rd_bits = NULL; 954 kmem_cache_free(gfs2_rgrpd_cachep, rgd); 955 return error; 956 } 957 958 /** 959 * set_rgrp_preferences - Run all the rgrps, selecting some we prefer to use 960 * @sdp: the GFS2 superblock 961 * 962 * The purpose of this function is to select a subset of the resource groups 963 * and mark them as PREFERRED. We do it in such a way that each node prefers 964 * to use a unique set of rgrps to minimize glock contention. 965 */ 966 static void set_rgrp_preferences(struct gfs2_sbd *sdp) 967 { 968 struct gfs2_rgrpd *rgd, *first; 969 int i; 970 971 /* Skip an initial number of rgrps, based on this node's journal ID. 972 That should start each node out on its own set. */ 973 rgd = gfs2_rgrpd_get_first(sdp); 974 for (i = 0; i < sdp->sd_lockstruct.ls_jid; i++) 975 rgd = gfs2_rgrpd_get_next(rgd); 976 first = rgd; 977 978 do { 979 rgd->rd_flags |= GFS2_RDF_PREFERRED; 980 for (i = 0; i < sdp->sd_journals; i++) { 981 rgd = gfs2_rgrpd_get_next(rgd); 982 if (!rgd || rgd == first) 983 break; 984 } 985 } while (rgd && rgd != first); 986 } 987 988 /** 989 * gfs2_ri_update - Pull in a new resource index from the disk 990 * @ip: pointer to the rindex inode 991 * 992 * Returns: 0 on successful update, error code otherwise 993 */ 994 995 static int gfs2_ri_update(struct gfs2_inode *ip) 996 { 997 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 998 int error; 999 1000 do { 1001 error = read_rindex_entry(ip); 1002 } while (error == 0); 1003 1004 if (error < 0) 1005 return error; 1006 1007 if (RB_EMPTY_ROOT(&sdp->sd_rindex_tree)) { 1008 fs_err(sdp, "no resource groups found in the file system.\n"); 1009 return -ENOENT; 1010 } 1011 set_rgrp_preferences(sdp); 1012 1013 sdp->sd_rindex_uptodate = 1; 1014 return 0; 1015 } 1016 1017 /** 1018 * gfs2_rindex_update - Update the rindex if required 1019 * @sdp: The GFS2 superblock 1020 * 1021 * We grab a lock on the rindex inode to make sure that it doesn't 1022 * change whilst we are performing an operation. We keep this lock 1023 * for quite long periods of time compared to other locks. This 1024 * doesn't matter, since it is shared and it is very, very rarely 1025 * accessed in the exclusive mode (i.e. only when expanding the filesystem). 1026 * 1027 * This makes sure that we're using the latest copy of the resource index 1028 * special file, which might have been updated if someone expanded the 1029 * filesystem (via gfs2_grow utility), which adds new resource groups. 1030 * 1031 * Returns: 0 on succeess, error code otherwise 1032 */ 1033 1034 int gfs2_rindex_update(struct gfs2_sbd *sdp) 1035 { 1036 struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex); 1037 struct gfs2_glock *gl = ip->i_gl; 1038 struct gfs2_holder ri_gh; 1039 int error = 0; 1040 int unlock_required = 0; 1041 1042 /* Read new copy from disk if we don't have the latest */ 1043 if (!sdp->sd_rindex_uptodate) { 1044 if (!gfs2_glock_is_locked_by_me(gl)) { 1045 error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh); 1046 if (error) 1047 return error; 1048 unlock_required = 1; 1049 } 1050 if (!sdp->sd_rindex_uptodate) 1051 error = gfs2_ri_update(ip); 1052 if (unlock_required) 1053 gfs2_glock_dq_uninit(&ri_gh); 1054 } 1055 1056 return error; 1057 } 1058 1059 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf) 1060 { 1061 const struct gfs2_rgrp *str = buf; 1062 u32 rg_flags; 1063 1064 rg_flags = be32_to_cpu(str->rg_flags); 1065 rg_flags &= ~GFS2_RDF_MASK; 1066 rgd->rd_flags &= GFS2_RDF_MASK; 1067 rgd->rd_flags |= rg_flags; 1068 rgd->rd_free = be32_to_cpu(str->rg_free); 1069 rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes); 1070 rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration); 1071 /* rd_data0, rd_data and rd_bitbytes already set from rindex */ 1072 } 1073 1074 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf) 1075 { 1076 const struct gfs2_rgrp *str = buf; 1077 1078 rgl->rl_magic = cpu_to_be32(GFS2_MAGIC); 1079 rgl->rl_flags = str->rg_flags; 1080 rgl->rl_free = str->rg_free; 1081 rgl->rl_dinodes = str->rg_dinodes; 1082 rgl->rl_igeneration = str->rg_igeneration; 1083 rgl->__pad = 0UL; 1084 } 1085 1086 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf) 1087 { 1088 struct gfs2_rgrpd *next = gfs2_rgrpd_get_next(rgd); 1089 struct gfs2_rgrp *str = buf; 1090 u32 crc; 1091 1092 str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK); 1093 str->rg_free = cpu_to_be32(rgd->rd_free); 1094 str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes); 1095 if (next == NULL) 1096 str->rg_skip = 0; 1097 else if (next->rd_addr > rgd->rd_addr) 1098 str->rg_skip = cpu_to_be32(next->rd_addr - rgd->rd_addr); 1099 str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration); 1100 str->rg_data0 = cpu_to_be64(rgd->rd_data0); 1101 str->rg_data = cpu_to_be32(rgd->rd_data); 1102 str->rg_bitbytes = cpu_to_be32(rgd->rd_bitbytes); 1103 str->rg_crc = 0; 1104 crc = gfs2_disk_hash(buf, sizeof(struct gfs2_rgrp)); 1105 str->rg_crc = cpu_to_be32(crc); 1106 1107 memset(&str->rg_reserved, 0, sizeof(str->rg_reserved)); 1108 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, buf); 1109 } 1110 1111 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd) 1112 { 1113 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl; 1114 struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data; 1115 struct gfs2_sbd *sdp = rgd->rd_sbd; 1116 int valid = 1; 1117 1118 if (rgl->rl_flags != str->rg_flags) { 1119 fs_warn(sdp, "GFS2: rgd: %llu lvb flag mismatch %u/%u", 1120 (unsigned long long)rgd->rd_addr, 1121 be32_to_cpu(rgl->rl_flags), be32_to_cpu(str->rg_flags)); 1122 valid = 0; 1123 } 1124 if (rgl->rl_free != str->rg_free) { 1125 fs_warn(sdp, "GFS2: rgd: %llu lvb free mismatch %u/%u", 1126 (unsigned long long)rgd->rd_addr, 1127 be32_to_cpu(rgl->rl_free), be32_to_cpu(str->rg_free)); 1128 valid = 0; 1129 } 1130 if (rgl->rl_dinodes != str->rg_dinodes) { 1131 fs_warn(sdp, "GFS2: rgd: %llu lvb dinode mismatch %u/%u", 1132 (unsigned long long)rgd->rd_addr, 1133 be32_to_cpu(rgl->rl_dinodes), 1134 be32_to_cpu(str->rg_dinodes)); 1135 valid = 0; 1136 } 1137 if (rgl->rl_igeneration != str->rg_igeneration) { 1138 fs_warn(sdp, "GFS2: rgd: %llu lvb igen mismatch %llu/%llu", 1139 (unsigned long long)rgd->rd_addr, 1140 (unsigned long long)be64_to_cpu(rgl->rl_igeneration), 1141 (unsigned long long)be64_to_cpu(str->rg_igeneration)); 1142 valid = 0; 1143 } 1144 return valid; 1145 } 1146 1147 static u32 count_unlinked(struct gfs2_rgrpd *rgd) 1148 { 1149 struct gfs2_bitmap *bi; 1150 const u32 length = rgd->rd_length; 1151 const u8 *buffer = NULL; 1152 u32 i, goal, count = 0; 1153 1154 for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) { 1155 goal = 0; 1156 buffer = bi->bi_bh->b_data + bi->bi_offset; 1157 WARN_ON(!buffer_uptodate(bi->bi_bh)); 1158 while (goal < bi->bi_blocks) { 1159 goal = gfs2_bitfit(buffer, bi->bi_bytes, goal, 1160 GFS2_BLKST_UNLINKED); 1161 if (goal == BFITNOENT) 1162 break; 1163 count++; 1164 goal++; 1165 } 1166 } 1167 1168 return count; 1169 } 1170 1171 static void rgrp_set_bitmap_flags(struct gfs2_rgrpd *rgd) 1172 { 1173 struct gfs2_bitmap *bi; 1174 int x; 1175 1176 if (rgd->rd_free) { 1177 for (x = 0; x < rgd->rd_length; x++) { 1178 bi = rgd->rd_bits + x; 1179 clear_bit(GBF_FULL, &bi->bi_flags); 1180 } 1181 } else { 1182 for (x = 0; x < rgd->rd_length; x++) { 1183 bi = rgd->rd_bits + x; 1184 set_bit(GBF_FULL, &bi->bi_flags); 1185 } 1186 } 1187 } 1188 1189 /** 1190 * gfs2_rgrp_go_instantiate - Read in a RG's header and bitmaps 1191 * @gh: the glock holder representing the rgrpd to read in 1192 * 1193 * Read in all of a Resource Group's header and bitmap blocks. 1194 * Caller must eventually call gfs2_rgrp_brelse() to free the bitmaps. 1195 * 1196 * Returns: errno 1197 */ 1198 1199 int gfs2_rgrp_go_instantiate(struct gfs2_holder *gh) 1200 { 1201 struct gfs2_glock *gl = gh->gh_gl; 1202 struct gfs2_rgrpd *rgd = gl->gl_object; 1203 struct gfs2_sbd *sdp = rgd->rd_sbd; 1204 unsigned int length = rgd->rd_length; 1205 struct gfs2_bitmap *bi; 1206 unsigned int x, y; 1207 int error; 1208 1209 if (rgd->rd_bits[0].bi_bh != NULL) 1210 return 0; 1211 1212 for (x = 0; x < length; x++) { 1213 bi = rgd->rd_bits + x; 1214 error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, 0, &bi->bi_bh); 1215 if (error) 1216 goto fail; 1217 } 1218 1219 for (y = length; y--;) { 1220 bi = rgd->rd_bits + y; 1221 error = gfs2_meta_wait(sdp, bi->bi_bh); 1222 if (error) 1223 goto fail; 1224 if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB : 1225 GFS2_METATYPE_RG)) { 1226 error = -EIO; 1227 goto fail; 1228 } 1229 } 1230 1231 gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data); 1232 rgrp_set_bitmap_flags(rgd); 1233 rgd->rd_flags |= GFS2_RDF_CHECK; 1234 rgd->rd_free_clone = rgd->rd_free; 1235 GLOCK_BUG_ON(rgd->rd_gl, rgd->rd_reserved); 1236 /* max out the rgrp allocation failure point */ 1237 rgd->rd_extfail_pt = rgd->rd_free; 1238 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) { 1239 rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd)); 1240 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, 1241 rgd->rd_bits[0].bi_bh->b_data); 1242 } else if (sdp->sd_args.ar_rgrplvb) { 1243 if (!gfs2_rgrp_lvb_valid(rgd)){ 1244 gfs2_consist_rgrpd(rgd); 1245 error = -EIO; 1246 goto fail; 1247 } 1248 if (rgd->rd_rgl->rl_unlinked == 0) 1249 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1250 } 1251 return 0; 1252 1253 fail: 1254 while (x--) { 1255 bi = rgd->rd_bits + x; 1256 brelse(bi->bi_bh); 1257 bi->bi_bh = NULL; 1258 gfs2_assert_warn(sdp, !bi->bi_clone); 1259 } 1260 return error; 1261 } 1262 1263 static int update_rgrp_lvb(struct gfs2_rgrpd *rgd, struct gfs2_holder *gh) 1264 { 1265 u32 rl_flags; 1266 1267 if (!test_bit(GLF_INSTANTIATE_NEEDED, &gh->gh_gl->gl_flags)) 1268 return 0; 1269 1270 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) 1271 return gfs2_instantiate(gh); 1272 1273 rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags); 1274 rl_flags &= ~GFS2_RDF_MASK; 1275 rgd->rd_flags &= GFS2_RDF_MASK; 1276 rgd->rd_flags |= (rl_flags | GFS2_RDF_CHECK); 1277 if (rgd->rd_rgl->rl_unlinked == 0) 1278 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1279 rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free); 1280 rgrp_set_bitmap_flags(rgd); 1281 rgd->rd_free_clone = rgd->rd_free; 1282 GLOCK_BUG_ON(rgd->rd_gl, rgd->rd_reserved); 1283 /* max out the rgrp allocation failure point */ 1284 rgd->rd_extfail_pt = rgd->rd_free; 1285 rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes); 1286 rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration); 1287 return 0; 1288 } 1289 1290 /** 1291 * gfs2_rgrp_brelse - Release RG bitmaps read in with gfs2_rgrp_bh_get() 1292 * @rgd: The resource group 1293 * 1294 */ 1295 1296 void gfs2_rgrp_brelse(struct gfs2_rgrpd *rgd) 1297 { 1298 int x, length = rgd->rd_length; 1299 1300 for (x = 0; x < length; x++) { 1301 struct gfs2_bitmap *bi = rgd->rd_bits + x; 1302 if (bi->bi_bh) { 1303 brelse(bi->bi_bh); 1304 bi->bi_bh = NULL; 1305 } 1306 } 1307 set_bit(GLF_INSTANTIATE_NEEDED, &rgd->rd_gl->gl_flags); 1308 } 1309 1310 int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset, 1311 struct buffer_head *bh, 1312 const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed) 1313 { 1314 struct super_block *sb = sdp->sd_vfs; 1315 u64 blk; 1316 sector_t start = 0; 1317 sector_t nr_blks = 0; 1318 int rv = -EIO; 1319 unsigned int x; 1320 u32 trimmed = 0; 1321 u8 diff; 1322 1323 for (x = 0; x < bi->bi_bytes; x++) { 1324 const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data; 1325 clone += bi->bi_offset; 1326 clone += x; 1327 if (bh) { 1328 const u8 *orig = bh->b_data + bi->bi_offset + x; 1329 diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1)); 1330 } else { 1331 diff = ~(*clone | (*clone >> 1)); 1332 } 1333 diff &= 0x55; 1334 if (diff == 0) 1335 continue; 1336 blk = offset + ((bi->bi_start + x) * GFS2_NBBY); 1337 while(diff) { 1338 if (diff & 1) { 1339 if (nr_blks == 0) 1340 goto start_new_extent; 1341 if ((start + nr_blks) != blk) { 1342 if (nr_blks >= minlen) { 1343 rv = sb_issue_discard(sb, 1344 start, nr_blks, 1345 GFP_NOFS, 0); 1346 if (rv) 1347 goto fail; 1348 trimmed += nr_blks; 1349 } 1350 nr_blks = 0; 1351 start_new_extent: 1352 start = blk; 1353 } 1354 nr_blks++; 1355 } 1356 diff >>= 2; 1357 blk++; 1358 } 1359 } 1360 if (nr_blks >= minlen) { 1361 rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0); 1362 if (rv) 1363 goto fail; 1364 trimmed += nr_blks; 1365 } 1366 if (ptrimmed) 1367 *ptrimmed = trimmed; 1368 return 0; 1369 1370 fail: 1371 if (sdp->sd_args.ar_discard) 1372 fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem\n", rv); 1373 sdp->sd_args.ar_discard = 0; 1374 return rv; 1375 } 1376 1377 /** 1378 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem 1379 * @filp: Any file on the filesystem 1380 * @argp: Pointer to the arguments (also used to pass result) 1381 * 1382 * Returns: 0 on success, otherwise error code 1383 */ 1384 1385 int gfs2_fitrim(struct file *filp, void __user *argp) 1386 { 1387 struct inode *inode = file_inode(filp); 1388 struct gfs2_sbd *sdp = GFS2_SB(inode); 1389 struct block_device *bdev = sdp->sd_vfs->s_bdev; 1390 struct buffer_head *bh; 1391 struct gfs2_rgrpd *rgd; 1392 struct gfs2_rgrpd *rgd_end; 1393 struct gfs2_holder gh; 1394 struct fstrim_range r; 1395 int ret = 0; 1396 u64 amt; 1397 u64 trimmed = 0; 1398 u64 start, end, minlen; 1399 unsigned int x; 1400 unsigned bs_shift = sdp->sd_sb.sb_bsize_shift; 1401 1402 if (!capable(CAP_SYS_ADMIN)) 1403 return -EPERM; 1404 1405 if (!test_bit(SDF_JOURNAL_LIVE, &sdp->sd_flags)) 1406 return -EROFS; 1407 1408 if (!bdev_max_discard_sectors(bdev)) 1409 return -EOPNOTSUPP; 1410 1411 if (copy_from_user(&r, argp, sizeof(r))) 1412 return -EFAULT; 1413 1414 ret = gfs2_rindex_update(sdp); 1415 if (ret) 1416 return ret; 1417 1418 start = r.start >> bs_shift; 1419 end = start + (r.len >> bs_shift); 1420 minlen = max_t(u64, r.minlen, sdp->sd_sb.sb_bsize); 1421 minlen = max_t(u64, minlen, bdev_discard_granularity(bdev)) >> bs_shift; 1422 1423 if (end <= start || minlen > sdp->sd_max_rg_data) 1424 return -EINVAL; 1425 1426 rgd = gfs2_blk2rgrpd(sdp, start, 0); 1427 rgd_end = gfs2_blk2rgrpd(sdp, end, 0); 1428 1429 if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end)) 1430 && (start > rgd_end->rd_data0 + rgd_end->rd_data)) 1431 return -EINVAL; /* start is beyond the end of the fs */ 1432 1433 while (1) { 1434 1435 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 1436 LM_FLAG_NODE_SCOPE, &gh); 1437 if (ret) 1438 goto out; 1439 1440 if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) { 1441 /* Trim each bitmap in the rgrp */ 1442 for (x = 0; x < rgd->rd_length; x++) { 1443 struct gfs2_bitmap *bi = rgd->rd_bits + x; 1444 rgrp_lock_local(rgd); 1445 ret = gfs2_rgrp_send_discards(sdp, 1446 rgd->rd_data0, NULL, bi, minlen, 1447 &amt); 1448 rgrp_unlock_local(rgd); 1449 if (ret) { 1450 gfs2_glock_dq_uninit(&gh); 1451 goto out; 1452 } 1453 trimmed += amt; 1454 } 1455 1456 /* Mark rgrp as having been trimmed */ 1457 ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0); 1458 if (ret == 0) { 1459 bh = rgd->rd_bits[0].bi_bh; 1460 rgrp_lock_local(rgd); 1461 rgd->rd_flags |= GFS2_RGF_TRIMMED; 1462 gfs2_trans_add_meta(rgd->rd_gl, bh); 1463 gfs2_rgrp_out(rgd, bh->b_data); 1464 rgrp_unlock_local(rgd); 1465 gfs2_trans_end(sdp); 1466 } 1467 } 1468 gfs2_glock_dq_uninit(&gh); 1469 1470 if (rgd == rgd_end) 1471 break; 1472 1473 rgd = gfs2_rgrpd_get_next(rgd); 1474 } 1475 1476 out: 1477 r.len = trimmed << bs_shift; 1478 if (copy_to_user(argp, &r, sizeof(r))) 1479 return -EFAULT; 1480 1481 return ret; 1482 } 1483 1484 /** 1485 * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree 1486 * @ip: the inode structure 1487 * 1488 */ 1489 static void rs_insert(struct gfs2_inode *ip) 1490 { 1491 struct rb_node **newn, *parent = NULL; 1492 int rc; 1493 struct gfs2_blkreserv *rs = &ip->i_res; 1494 struct gfs2_rgrpd *rgd = rs->rs_rgd; 1495 1496 BUG_ON(gfs2_rs_active(rs)); 1497 1498 spin_lock(&rgd->rd_rsspin); 1499 newn = &rgd->rd_rstree.rb_node; 1500 while (*newn) { 1501 struct gfs2_blkreserv *cur = 1502 rb_entry(*newn, struct gfs2_blkreserv, rs_node); 1503 1504 parent = *newn; 1505 rc = rs_cmp(rs->rs_start, rs->rs_requested, cur); 1506 if (rc > 0) 1507 newn = &((*newn)->rb_right); 1508 else if (rc < 0) 1509 newn = &((*newn)->rb_left); 1510 else { 1511 spin_unlock(&rgd->rd_rsspin); 1512 WARN_ON(1); 1513 return; 1514 } 1515 } 1516 1517 rb_link_node(&rs->rs_node, parent, newn); 1518 rb_insert_color(&rs->rs_node, &rgd->rd_rstree); 1519 1520 /* Do our rgrp accounting for the reservation */ 1521 rgd->rd_requested += rs->rs_requested; /* blocks requested */ 1522 spin_unlock(&rgd->rd_rsspin); 1523 trace_gfs2_rs(rs, TRACE_RS_INSERT); 1524 } 1525 1526 /** 1527 * rgd_free - return the number of free blocks we can allocate 1528 * @rgd: the resource group 1529 * @rs: The reservation to free 1530 * 1531 * This function returns the number of free blocks for an rgrp. 1532 * That's the clone-free blocks (blocks that are free, not including those 1533 * still being used for unlinked files that haven't been deleted.) 1534 * 1535 * It also subtracts any blocks reserved by someone else, but does not 1536 * include free blocks that are still part of our current reservation, 1537 * because obviously we can (and will) allocate them. 1538 */ 1539 static inline u32 rgd_free(struct gfs2_rgrpd *rgd, struct gfs2_blkreserv *rs) 1540 { 1541 u32 tot_reserved, tot_free; 1542 1543 if (WARN_ON_ONCE(rgd->rd_requested < rs->rs_requested)) 1544 return 0; 1545 tot_reserved = rgd->rd_requested - rs->rs_requested; 1546 1547 if (rgd->rd_free_clone < tot_reserved) 1548 tot_reserved = 0; 1549 1550 tot_free = rgd->rd_free_clone - tot_reserved; 1551 1552 return tot_free; 1553 } 1554 1555 /** 1556 * rg_mblk_search - find a group of multiple free blocks to form a reservation 1557 * @rgd: the resource group descriptor 1558 * @ip: pointer to the inode for which we're reserving blocks 1559 * @ap: the allocation parameters 1560 * 1561 */ 1562 1563 static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip, 1564 const struct gfs2_alloc_parms *ap) 1565 { 1566 struct gfs2_rbm rbm = { .rgd = rgd, }; 1567 u64 goal; 1568 struct gfs2_blkreserv *rs = &ip->i_res; 1569 u32 extlen; 1570 u32 free_blocks, blocks_available; 1571 int ret; 1572 struct inode *inode = &ip->i_inode; 1573 1574 spin_lock(&rgd->rd_rsspin); 1575 free_blocks = rgd_free(rgd, rs); 1576 if (rgd->rd_free_clone < rgd->rd_requested) 1577 free_blocks = 0; 1578 blocks_available = rgd->rd_free_clone - rgd->rd_reserved; 1579 if (rgd == rs->rs_rgd) 1580 blocks_available += rs->rs_reserved; 1581 spin_unlock(&rgd->rd_rsspin); 1582 1583 if (S_ISDIR(inode->i_mode)) 1584 extlen = 1; 1585 else { 1586 extlen = max_t(u32, atomic_read(&ip->i_sizehint), ap->target); 1587 extlen = clamp(extlen, (u32)RGRP_RSRV_MINBLKS, free_blocks); 1588 } 1589 if (free_blocks < extlen || blocks_available < extlen) 1590 return; 1591 1592 /* Find bitmap block that contains bits for goal block */ 1593 if (rgrp_contains_block(rgd, ip->i_goal)) 1594 goal = ip->i_goal; 1595 else 1596 goal = rgd->rd_last_alloc + rgd->rd_data0; 1597 1598 if (WARN_ON(gfs2_rbm_from_block(&rbm, goal))) 1599 return; 1600 1601 ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, &ip->i_res, true); 1602 if (ret == 0) { 1603 rs->rs_start = gfs2_rbm_to_block(&rbm); 1604 rs->rs_requested = extlen; 1605 rs_insert(ip); 1606 } else { 1607 if (goal == rgd->rd_last_alloc + rgd->rd_data0) 1608 rgd->rd_last_alloc = 0; 1609 } 1610 } 1611 1612 /** 1613 * gfs2_next_unreserved_block - Return next block that is not reserved 1614 * @rgd: The resource group 1615 * @block: The starting block 1616 * @length: The required length 1617 * @ignore_rs: Reservation to ignore 1618 * 1619 * If the block does not appear in any reservation, then return the 1620 * block number unchanged. If it does appear in the reservation, then 1621 * keep looking through the tree of reservations in order to find the 1622 * first block number which is not reserved. 1623 */ 1624 1625 static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block, 1626 u32 length, 1627 struct gfs2_blkreserv *ignore_rs) 1628 { 1629 struct gfs2_blkreserv *rs; 1630 struct rb_node *n; 1631 int rc; 1632 1633 spin_lock(&rgd->rd_rsspin); 1634 n = rgd->rd_rstree.rb_node; 1635 while (n) { 1636 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 1637 rc = rs_cmp(block, length, rs); 1638 if (rc < 0) 1639 n = n->rb_left; 1640 else if (rc > 0) 1641 n = n->rb_right; 1642 else 1643 break; 1644 } 1645 1646 if (n) { 1647 while (rs_cmp(block, length, rs) == 0 && rs != ignore_rs) { 1648 block = rs->rs_start + rs->rs_requested; 1649 n = n->rb_right; 1650 if (n == NULL) 1651 break; 1652 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 1653 } 1654 } 1655 1656 spin_unlock(&rgd->rd_rsspin); 1657 return block; 1658 } 1659 1660 /** 1661 * gfs2_reservation_check_and_update - Check for reservations during block alloc 1662 * @rbm: The current position in the resource group 1663 * @rs: Our own reservation 1664 * @minext: The minimum extent length 1665 * @maxext: A pointer to the maximum extent structure 1666 * 1667 * This checks the current position in the rgrp to see whether there is 1668 * a reservation covering this block. If not then this function is a 1669 * no-op. If there is, then the position is moved to the end of the 1670 * contiguous reservation(s) so that we are pointing at the first 1671 * non-reserved block. 1672 * 1673 * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error 1674 */ 1675 1676 static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm, 1677 struct gfs2_blkreserv *rs, 1678 u32 minext, 1679 struct gfs2_extent *maxext) 1680 { 1681 u64 block = gfs2_rbm_to_block(rbm); 1682 u32 extlen = 1; 1683 u64 nblock; 1684 1685 /* 1686 * If we have a minimum extent length, then skip over any extent 1687 * which is less than the min extent length in size. 1688 */ 1689 if (minext > 1) { 1690 extlen = gfs2_free_extlen(rbm, minext); 1691 if (extlen <= maxext->len) 1692 goto fail; 1693 } 1694 1695 /* 1696 * Check the extent which has been found against the reservations 1697 * and skip if parts of it are already reserved 1698 */ 1699 nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, rs); 1700 if (nblock == block) { 1701 if (!minext || extlen >= minext) 1702 return 0; 1703 1704 if (extlen > maxext->len) { 1705 maxext->len = extlen; 1706 maxext->rbm = *rbm; 1707 } 1708 } else { 1709 u64 len = nblock - block; 1710 if (len >= (u64)1 << 32) 1711 return -E2BIG; 1712 extlen = len; 1713 } 1714 fail: 1715 if (gfs2_rbm_add(rbm, extlen)) 1716 return -E2BIG; 1717 return 1; 1718 } 1719 1720 /** 1721 * gfs2_rbm_find - Look for blocks of a particular state 1722 * @rbm: Value/result starting position and final position 1723 * @state: The state which we want to find 1724 * @minext: Pointer to the requested extent length 1725 * This is updated to be the actual reservation size. 1726 * @rs: Our own reservation (NULL to skip checking for reservations) 1727 * @nowrap: Stop looking at the end of the rgrp, rather than wrapping 1728 * around until we've reached the starting point. 1729 * 1730 * Side effects: 1731 * - If looking for free blocks, we set GBF_FULL on each bitmap which 1732 * has no free blocks in it. 1733 * - If looking for free blocks, we set rd_extfail_pt on each rgrp which 1734 * has come up short on a free block search. 1735 * 1736 * Returns: 0 on success, -ENOSPC if there is no block of the requested state 1737 */ 1738 1739 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext, 1740 struct gfs2_blkreserv *rs, bool nowrap) 1741 { 1742 bool scan_from_start = rbm->bii == 0 && rbm->offset == 0; 1743 struct buffer_head *bh; 1744 int last_bii; 1745 u32 offset; 1746 u8 *buffer; 1747 bool wrapped = false; 1748 int ret; 1749 struct gfs2_bitmap *bi; 1750 struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, }; 1751 1752 /* 1753 * Determine the last bitmap to search. If we're not starting at the 1754 * beginning of a bitmap, we need to search that bitmap twice to scan 1755 * the entire resource group. 1756 */ 1757 last_bii = rbm->bii - (rbm->offset == 0); 1758 1759 while(1) { 1760 bi = rbm_bi(rbm); 1761 if (test_bit(GBF_FULL, &bi->bi_flags) && 1762 (state == GFS2_BLKST_FREE)) 1763 goto next_bitmap; 1764 1765 bh = bi->bi_bh; 1766 buffer = bh->b_data + bi->bi_offset; 1767 WARN_ON(!buffer_uptodate(bh)); 1768 if (state != GFS2_BLKST_UNLINKED && bi->bi_clone) 1769 buffer = bi->bi_clone + bi->bi_offset; 1770 offset = gfs2_bitfit(buffer, bi->bi_bytes, rbm->offset, state); 1771 if (offset == BFITNOENT) { 1772 if (state == GFS2_BLKST_FREE && rbm->offset == 0) 1773 set_bit(GBF_FULL, &bi->bi_flags); 1774 goto next_bitmap; 1775 } 1776 rbm->offset = offset; 1777 if (!rs || !minext) 1778 return 0; 1779 1780 ret = gfs2_reservation_check_and_update(rbm, rs, *minext, 1781 &maxext); 1782 if (ret == 0) 1783 return 0; 1784 if (ret > 0) 1785 goto next_iter; 1786 if (ret == -E2BIG) { 1787 rbm->bii = 0; 1788 rbm->offset = 0; 1789 goto res_covered_end_of_rgrp; 1790 } 1791 return ret; 1792 1793 next_bitmap: /* Find next bitmap in the rgrp */ 1794 rbm->offset = 0; 1795 rbm->bii++; 1796 if (rbm->bii == rbm->rgd->rd_length) 1797 rbm->bii = 0; 1798 res_covered_end_of_rgrp: 1799 if (rbm->bii == 0) { 1800 if (wrapped) 1801 break; 1802 wrapped = true; 1803 if (nowrap) 1804 break; 1805 } 1806 next_iter: 1807 /* Have we scanned the entire resource group? */ 1808 if (wrapped && rbm->bii > last_bii) 1809 break; 1810 } 1811 1812 if (state != GFS2_BLKST_FREE) 1813 return -ENOSPC; 1814 1815 /* If the extent was too small, and it's smaller than the smallest 1816 to have failed before, remember for future reference that it's 1817 useless to search this rgrp again for this amount or more. */ 1818 if (wrapped && (scan_from_start || rbm->bii > last_bii) && 1819 *minext < rbm->rgd->rd_extfail_pt) 1820 rbm->rgd->rd_extfail_pt = *minext - 1; 1821 1822 /* If the maximum extent we found is big enough to fulfill the 1823 minimum requirements, use it anyway. */ 1824 if (maxext.len) { 1825 *rbm = maxext.rbm; 1826 *minext = maxext.len; 1827 return 0; 1828 } 1829 1830 return -ENOSPC; 1831 } 1832 1833 /** 1834 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes 1835 * @rgd: The rgrp 1836 * @last_unlinked: block address of the last dinode we unlinked 1837 * @skip: block address we should explicitly not unlink 1838 * 1839 * Returns: 0 if no error 1840 * The inode, if one has been found, in inode. 1841 */ 1842 1843 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip) 1844 { 1845 u64 block; 1846 struct gfs2_sbd *sdp = rgd->rd_sbd; 1847 struct gfs2_glock *gl; 1848 struct gfs2_inode *ip; 1849 int error; 1850 int found = 0; 1851 struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 }; 1852 1853 while (1) { 1854 error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL, 1855 true); 1856 if (error == -ENOSPC) 1857 break; 1858 if (WARN_ON_ONCE(error)) 1859 break; 1860 1861 block = gfs2_rbm_to_block(&rbm); 1862 if (gfs2_rbm_from_block(&rbm, block + 1)) 1863 break; 1864 if (*last_unlinked != NO_BLOCK && block <= *last_unlinked) 1865 continue; 1866 if (block == skip) 1867 continue; 1868 *last_unlinked = block; 1869 1870 error = gfs2_glock_get(sdp, block, &gfs2_iopen_glops, CREATE, &gl); 1871 if (error) 1872 continue; 1873 1874 /* If the inode is already in cache, we can ignore it here 1875 * because the existing inode disposal code will deal with 1876 * it when all refs have gone away. Accessing gl_object like 1877 * this is not safe in general. Here it is ok because we do 1878 * not dereference the pointer, and we only need an approx 1879 * answer to whether it is NULL or not. 1880 */ 1881 ip = gl->gl_object; 1882 1883 if (ip || !gfs2_queue_delete_work(gl, 0)) 1884 gfs2_glock_put(gl); 1885 else 1886 found++; 1887 1888 /* Limit reclaim to sensible number of tasks */ 1889 if (found > NR_CPUS) 1890 return; 1891 } 1892 1893 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1894 return; 1895 } 1896 1897 /** 1898 * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested 1899 * @rgd: The rgrp in question 1900 * @loops: An indication of how picky we can be (0=very, 1=less so) 1901 * 1902 * This function uses the recently added glock statistics in order to 1903 * figure out whether a parciular resource group is suffering from 1904 * contention from multiple nodes. This is done purely on the basis 1905 * of timings, since this is the only data we have to work with and 1906 * our aim here is to reject a resource group which is highly contended 1907 * but (very important) not to do this too often in order to ensure that 1908 * we do not land up introducing fragmentation by changing resource 1909 * groups when not actually required. 1910 * 1911 * The calculation is fairly simple, we want to know whether the SRTTB 1912 * (i.e. smoothed round trip time for blocking operations) to acquire 1913 * the lock for this rgrp's glock is significantly greater than the 1914 * time taken for resource groups on average. We introduce a margin in 1915 * the form of the variable @var which is computed as the sum of the two 1916 * respective variences, and multiplied by a factor depending on @loops 1917 * and whether we have a lot of data to base the decision on. This is 1918 * then tested against the square difference of the means in order to 1919 * decide whether the result is statistically significant or not. 1920 * 1921 * Returns: A boolean verdict on the congestion status 1922 */ 1923 1924 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops) 1925 { 1926 const struct gfs2_glock *gl = rgd->rd_gl; 1927 const struct gfs2_sbd *sdp = gl->gl_name.ln_sbd; 1928 struct gfs2_lkstats *st; 1929 u64 r_dcount, l_dcount; 1930 u64 l_srttb, a_srttb = 0; 1931 s64 srttb_diff; 1932 u64 sqr_diff; 1933 u64 var; 1934 int cpu, nonzero = 0; 1935 1936 preempt_disable(); 1937 for_each_present_cpu(cpu) { 1938 st = &per_cpu_ptr(sdp->sd_lkstats, cpu)->lkstats[LM_TYPE_RGRP]; 1939 if (st->stats[GFS2_LKS_SRTTB]) { 1940 a_srttb += st->stats[GFS2_LKS_SRTTB]; 1941 nonzero++; 1942 } 1943 } 1944 st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP]; 1945 if (nonzero) 1946 do_div(a_srttb, nonzero); 1947 r_dcount = st->stats[GFS2_LKS_DCOUNT]; 1948 var = st->stats[GFS2_LKS_SRTTVARB] + 1949 gl->gl_stats.stats[GFS2_LKS_SRTTVARB]; 1950 preempt_enable(); 1951 1952 l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB]; 1953 l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT]; 1954 1955 if ((l_dcount < 1) || (r_dcount < 1) || (a_srttb == 0)) 1956 return false; 1957 1958 srttb_diff = a_srttb - l_srttb; 1959 sqr_diff = srttb_diff * srttb_diff; 1960 1961 var *= 2; 1962 if (l_dcount < 8 || r_dcount < 8) 1963 var *= 2; 1964 if (loops == 1) 1965 var *= 2; 1966 1967 return ((srttb_diff < 0) && (sqr_diff > var)); 1968 } 1969 1970 /** 1971 * gfs2_rgrp_used_recently 1972 * @rs: The block reservation with the rgrp to test 1973 * @msecs: The time limit in milliseconds 1974 * 1975 * Returns: True if the rgrp glock has been used within the time limit 1976 */ 1977 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs, 1978 u64 msecs) 1979 { 1980 u64 tdiff; 1981 1982 tdiff = ktime_to_ns(ktime_sub(ktime_get_real(), 1983 rs->rs_rgd->rd_gl->gl_dstamp)); 1984 1985 return tdiff > (msecs * 1000 * 1000); 1986 } 1987 1988 static u32 gfs2_orlov_skip(const struct gfs2_inode *ip) 1989 { 1990 const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1991 u32 skip; 1992 1993 get_random_bytes(&skip, sizeof(skip)); 1994 return skip % sdp->sd_rgrps; 1995 } 1996 1997 static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin) 1998 { 1999 struct gfs2_rgrpd *rgd = *pos; 2000 struct gfs2_sbd *sdp = rgd->rd_sbd; 2001 2002 rgd = gfs2_rgrpd_get_next(rgd); 2003 if (rgd == NULL) 2004 rgd = gfs2_rgrpd_get_first(sdp); 2005 *pos = rgd; 2006 if (rgd != begin) /* If we didn't wrap */ 2007 return true; 2008 return false; 2009 } 2010 2011 /** 2012 * fast_to_acquire - determine if a resource group will be fast to acquire 2013 * @rgd: The rgrp 2014 * 2015 * If this is one of our preferred rgrps, it should be quicker to acquire, 2016 * because we tried to set ourselves up as dlm lock master. 2017 */ 2018 static inline int fast_to_acquire(struct gfs2_rgrpd *rgd) 2019 { 2020 struct gfs2_glock *gl = rgd->rd_gl; 2021 2022 if (gl->gl_state != LM_ST_UNLOCKED && list_empty(&gl->gl_holders) && 2023 !test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags) && 2024 !test_bit(GLF_DEMOTE, &gl->gl_flags)) 2025 return 1; 2026 if (rgd->rd_flags & GFS2_RDF_PREFERRED) 2027 return 1; 2028 return 0; 2029 } 2030 2031 /** 2032 * gfs2_inplace_reserve - Reserve space in the filesystem 2033 * @ip: the inode to reserve space for 2034 * @ap: the allocation parameters 2035 * 2036 * We try our best to find an rgrp that has at least ap->target blocks 2037 * available. After a couple of passes (loops == 2), the prospects of finding 2038 * such an rgrp diminish. At this stage, we return the first rgrp that has 2039 * at least ap->min_target blocks available. 2040 * 2041 * Returns: 0 on success, 2042 * -ENOMEM if a suitable rgrp can't be found 2043 * errno otherwise 2044 */ 2045 2046 int gfs2_inplace_reserve(struct gfs2_inode *ip, struct gfs2_alloc_parms *ap) 2047 { 2048 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2049 struct gfs2_rgrpd *begin = NULL; 2050 struct gfs2_blkreserv *rs = &ip->i_res; 2051 int error = 0, flags = LM_FLAG_NODE_SCOPE; 2052 bool rg_locked; 2053 u64 last_unlinked = NO_BLOCK; 2054 u32 target = ap->target; 2055 int loops = 0; 2056 u32 free_blocks, blocks_available, skip = 0; 2057 2058 BUG_ON(rs->rs_reserved); 2059 2060 if (sdp->sd_args.ar_rgrplvb) 2061 flags |= GL_SKIP; 2062 if (gfs2_assert_warn(sdp, target)) 2063 return -EINVAL; 2064 if (gfs2_rs_active(rs)) { 2065 begin = rs->rs_rgd; 2066 } else if (rs->rs_rgd && 2067 rgrp_contains_block(rs->rs_rgd, ip->i_goal)) { 2068 begin = rs->rs_rgd; 2069 } else { 2070 check_and_update_goal(ip); 2071 rs->rs_rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1); 2072 } 2073 if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV)) 2074 skip = gfs2_orlov_skip(ip); 2075 if (rs->rs_rgd == NULL) 2076 return -EBADSLT; 2077 2078 while (loops < 3) { 2079 struct gfs2_rgrpd *rgd; 2080 2081 rg_locked = gfs2_glock_is_locked_by_me(rs->rs_rgd->rd_gl); 2082 if (rg_locked) { 2083 rgrp_lock_local(rs->rs_rgd); 2084 } else { 2085 if (skip && skip--) 2086 goto next_rgrp; 2087 if (!gfs2_rs_active(rs)) { 2088 if (loops == 0 && 2089 !fast_to_acquire(rs->rs_rgd)) 2090 goto next_rgrp; 2091 if ((loops < 2) && 2092 gfs2_rgrp_used_recently(rs, 1000) && 2093 gfs2_rgrp_congested(rs->rs_rgd, loops)) 2094 goto next_rgrp; 2095 } 2096 error = gfs2_glock_nq_init(rs->rs_rgd->rd_gl, 2097 LM_ST_EXCLUSIVE, flags, 2098 &ip->i_rgd_gh); 2099 if (unlikely(error)) 2100 return error; 2101 rgrp_lock_local(rs->rs_rgd); 2102 if (!gfs2_rs_active(rs) && (loops < 2) && 2103 gfs2_rgrp_congested(rs->rs_rgd, loops)) 2104 goto skip_rgrp; 2105 if (sdp->sd_args.ar_rgrplvb) { 2106 error = update_rgrp_lvb(rs->rs_rgd, 2107 &ip->i_rgd_gh); 2108 if (unlikely(error)) { 2109 rgrp_unlock_local(rs->rs_rgd); 2110 gfs2_glock_dq_uninit(&ip->i_rgd_gh); 2111 return error; 2112 } 2113 } 2114 } 2115 2116 /* Skip unusable resource groups */ 2117 if ((rs->rs_rgd->rd_flags & (GFS2_RGF_NOALLOC | 2118 GFS2_RDF_ERROR)) || 2119 (loops == 0 && target > rs->rs_rgd->rd_extfail_pt)) 2120 goto skip_rgrp; 2121 2122 if (sdp->sd_args.ar_rgrplvb) { 2123 error = gfs2_instantiate(&ip->i_rgd_gh); 2124 if (error) 2125 goto skip_rgrp; 2126 } 2127 2128 /* Get a reservation if we don't already have one */ 2129 if (!gfs2_rs_active(rs)) 2130 rg_mblk_search(rs->rs_rgd, ip, ap); 2131 2132 /* Skip rgrps when we can't get a reservation on first pass */ 2133 if (!gfs2_rs_active(rs) && (loops < 1)) 2134 goto check_rgrp; 2135 2136 /* If rgrp has enough free space, use it */ 2137 rgd = rs->rs_rgd; 2138 spin_lock(&rgd->rd_rsspin); 2139 free_blocks = rgd_free(rgd, rs); 2140 blocks_available = rgd->rd_free_clone - rgd->rd_reserved; 2141 if (free_blocks < target || blocks_available < target) { 2142 spin_unlock(&rgd->rd_rsspin); 2143 goto check_rgrp; 2144 } 2145 rs->rs_reserved = ap->target; 2146 if (rs->rs_reserved > blocks_available) 2147 rs->rs_reserved = blocks_available; 2148 rgd->rd_reserved += rs->rs_reserved; 2149 spin_unlock(&rgd->rd_rsspin); 2150 rgrp_unlock_local(rs->rs_rgd); 2151 return 0; 2152 check_rgrp: 2153 /* Check for unlinked inodes which can be reclaimed */ 2154 if (rs->rs_rgd->rd_flags & GFS2_RDF_CHECK) 2155 try_rgrp_unlink(rs->rs_rgd, &last_unlinked, 2156 ip->i_no_addr); 2157 skip_rgrp: 2158 rgrp_unlock_local(rs->rs_rgd); 2159 2160 /* Drop reservation, if we couldn't use reserved rgrp */ 2161 if (gfs2_rs_active(rs)) 2162 gfs2_rs_deltree(rs); 2163 2164 /* Unlock rgrp if required */ 2165 if (!rg_locked) 2166 gfs2_glock_dq_uninit(&ip->i_rgd_gh); 2167 next_rgrp: 2168 /* Find the next rgrp, and continue looking */ 2169 if (gfs2_select_rgrp(&rs->rs_rgd, begin)) 2170 continue; 2171 if (skip) 2172 continue; 2173 2174 /* If we've scanned all the rgrps, but found no free blocks 2175 * then this checks for some less likely conditions before 2176 * trying again. 2177 */ 2178 loops++; 2179 /* Check that fs hasn't grown if writing to rindex */ 2180 if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) { 2181 error = gfs2_ri_update(ip); 2182 if (error) 2183 return error; 2184 } 2185 /* Flushing the log may release space */ 2186 if (loops == 2) { 2187 if (ap->min_target) 2188 target = ap->min_target; 2189 gfs2_log_flush(sdp, NULL, GFS2_LOG_HEAD_FLUSH_NORMAL | 2190 GFS2_LFC_INPLACE_RESERVE); 2191 } 2192 } 2193 2194 return -ENOSPC; 2195 } 2196 2197 /** 2198 * gfs2_inplace_release - release an inplace reservation 2199 * @ip: the inode the reservation was taken out on 2200 * 2201 * Release a reservation made by gfs2_inplace_reserve(). 2202 */ 2203 2204 void gfs2_inplace_release(struct gfs2_inode *ip) 2205 { 2206 struct gfs2_blkreserv *rs = &ip->i_res; 2207 2208 if (rs->rs_reserved) { 2209 struct gfs2_rgrpd *rgd = rs->rs_rgd; 2210 2211 spin_lock(&rgd->rd_rsspin); 2212 GLOCK_BUG_ON(rgd->rd_gl, rgd->rd_reserved < rs->rs_reserved); 2213 rgd->rd_reserved -= rs->rs_reserved; 2214 spin_unlock(&rgd->rd_rsspin); 2215 rs->rs_reserved = 0; 2216 } 2217 if (gfs2_holder_initialized(&ip->i_rgd_gh)) 2218 gfs2_glock_dq_uninit(&ip->i_rgd_gh); 2219 } 2220 2221 /** 2222 * gfs2_alloc_extent - allocate an extent from a given bitmap 2223 * @rbm: the resource group information 2224 * @dinode: TRUE if the first block we allocate is for a dinode 2225 * @n: The extent length (value/result) 2226 * 2227 * Add the bitmap buffer to the transaction. 2228 * Set the found bits to @new_state to change block's allocation state. 2229 */ 2230 static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode, 2231 unsigned int *n) 2232 { 2233 struct gfs2_rbm pos = { .rgd = rbm->rgd, }; 2234 const unsigned int elen = *n; 2235 u64 block; 2236 int ret; 2237 2238 *n = 1; 2239 block = gfs2_rbm_to_block(rbm); 2240 gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh); 2241 gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED); 2242 block++; 2243 while (*n < elen) { 2244 ret = gfs2_rbm_from_block(&pos, block); 2245 if (ret || gfs2_testbit(&pos, true) != GFS2_BLKST_FREE) 2246 break; 2247 gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh); 2248 gfs2_setbit(&pos, true, GFS2_BLKST_USED); 2249 (*n)++; 2250 block++; 2251 } 2252 } 2253 2254 /** 2255 * rgblk_free - Change alloc state of given block(s) 2256 * @sdp: the filesystem 2257 * @rgd: the resource group the blocks are in 2258 * @bstart: the start of a run of blocks to free 2259 * @blen: the length of the block run (all must lie within ONE RG!) 2260 * @new_state: GFS2_BLKST_XXX the after-allocation block state 2261 */ 2262 2263 static void rgblk_free(struct gfs2_sbd *sdp, struct gfs2_rgrpd *rgd, 2264 u64 bstart, u32 blen, unsigned char new_state) 2265 { 2266 struct gfs2_rbm rbm; 2267 struct gfs2_bitmap *bi, *bi_prev = NULL; 2268 2269 rbm.rgd = rgd; 2270 if (WARN_ON_ONCE(gfs2_rbm_from_block(&rbm, bstart))) 2271 return; 2272 while (blen--) { 2273 bi = rbm_bi(&rbm); 2274 if (bi != bi_prev) { 2275 if (!bi->bi_clone) { 2276 bi->bi_clone = kmalloc(bi->bi_bh->b_size, 2277 GFP_NOFS | __GFP_NOFAIL); 2278 memcpy(bi->bi_clone + bi->bi_offset, 2279 bi->bi_bh->b_data + bi->bi_offset, 2280 bi->bi_bytes); 2281 } 2282 gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh); 2283 bi_prev = bi; 2284 } 2285 gfs2_setbit(&rbm, false, new_state); 2286 gfs2_rbm_add(&rbm, 1); 2287 } 2288 } 2289 2290 /** 2291 * gfs2_rgrp_dump - print out an rgrp 2292 * @seq: The iterator 2293 * @rgd: The rgrp in question 2294 * @fs_id_buf: pointer to file system id (if requested) 2295 * 2296 */ 2297 2298 void gfs2_rgrp_dump(struct seq_file *seq, struct gfs2_rgrpd *rgd, 2299 const char *fs_id_buf) 2300 { 2301 struct gfs2_blkreserv *trs; 2302 const struct rb_node *n; 2303 2304 spin_lock(&rgd->rd_rsspin); 2305 gfs2_print_dbg(seq, "%s R: n:%llu f:%02x b:%u/%u i:%u q:%u r:%u e:%u\n", 2306 fs_id_buf, 2307 (unsigned long long)rgd->rd_addr, rgd->rd_flags, 2308 rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes, 2309 rgd->rd_requested, rgd->rd_reserved, rgd->rd_extfail_pt); 2310 if (rgd->rd_sbd->sd_args.ar_rgrplvb) { 2311 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl; 2312 2313 gfs2_print_dbg(seq, "%s L: f:%02x b:%u i:%u\n", fs_id_buf, 2314 be32_to_cpu(rgl->rl_flags), 2315 be32_to_cpu(rgl->rl_free), 2316 be32_to_cpu(rgl->rl_dinodes)); 2317 } 2318 for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) { 2319 trs = rb_entry(n, struct gfs2_blkreserv, rs_node); 2320 dump_rs(seq, trs, fs_id_buf); 2321 } 2322 spin_unlock(&rgd->rd_rsspin); 2323 } 2324 2325 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd) 2326 { 2327 struct gfs2_sbd *sdp = rgd->rd_sbd; 2328 char fs_id_buf[sizeof(sdp->sd_fsname) + 7]; 2329 2330 fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n", 2331 (unsigned long long)rgd->rd_addr); 2332 fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n"); 2333 sprintf(fs_id_buf, "fsid=%s: ", sdp->sd_fsname); 2334 gfs2_rgrp_dump(NULL, rgd, fs_id_buf); 2335 rgd->rd_flags |= GFS2_RDF_ERROR; 2336 } 2337 2338 /** 2339 * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation 2340 * @ip: The inode we have just allocated blocks for 2341 * @rbm: The start of the allocated blocks 2342 * @len: The extent length 2343 * 2344 * Adjusts a reservation after an allocation has taken place. If the 2345 * reservation does not match the allocation, or if it is now empty 2346 * then it is removed. 2347 */ 2348 2349 static void gfs2_adjust_reservation(struct gfs2_inode *ip, 2350 const struct gfs2_rbm *rbm, unsigned len) 2351 { 2352 struct gfs2_blkreserv *rs = &ip->i_res; 2353 struct gfs2_rgrpd *rgd = rbm->rgd; 2354 2355 BUG_ON(rs->rs_reserved < len); 2356 rs->rs_reserved -= len; 2357 if (gfs2_rs_active(rs)) { 2358 u64 start = gfs2_rbm_to_block(rbm); 2359 2360 if (rs->rs_start == start) { 2361 unsigned int rlen; 2362 2363 rs->rs_start += len; 2364 rlen = min(rs->rs_requested, len); 2365 rs->rs_requested -= rlen; 2366 rgd->rd_requested -= rlen; 2367 trace_gfs2_rs(rs, TRACE_RS_CLAIM); 2368 if (rs->rs_start < rgd->rd_data0 + rgd->rd_data && 2369 rs->rs_requested) 2370 return; 2371 /* We used up our block reservation, so we should 2372 reserve more blocks next time. */ 2373 atomic_add(RGRP_RSRV_ADDBLKS, &ip->i_sizehint); 2374 } 2375 __rs_deltree(rs); 2376 } 2377 } 2378 2379 /** 2380 * gfs2_set_alloc_start - Set starting point for block allocation 2381 * @rbm: The rbm which will be set to the required location 2382 * @ip: The gfs2 inode 2383 * @dinode: Flag to say if allocation includes a new inode 2384 * 2385 * This sets the starting point from the reservation if one is active 2386 * otherwise it falls back to guessing a start point based on the 2387 * inode's goal block or the last allocation point in the rgrp. 2388 */ 2389 2390 static void gfs2_set_alloc_start(struct gfs2_rbm *rbm, 2391 const struct gfs2_inode *ip, bool dinode) 2392 { 2393 u64 goal; 2394 2395 if (gfs2_rs_active(&ip->i_res)) { 2396 goal = ip->i_res.rs_start; 2397 } else { 2398 if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal)) 2399 goal = ip->i_goal; 2400 else 2401 goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0; 2402 } 2403 if (WARN_ON_ONCE(gfs2_rbm_from_block(rbm, goal))) { 2404 rbm->bii = 0; 2405 rbm->offset = 0; 2406 } 2407 } 2408 2409 /** 2410 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode 2411 * @ip: the inode to allocate the block for 2412 * @bn: Used to return the starting block number 2413 * @nblocks: requested number of blocks/extent length (value/result) 2414 * @dinode: 1 if we're allocating a dinode block, else 0 2415 * @generation: the generation number of the inode 2416 * 2417 * Returns: 0 or error 2418 */ 2419 2420 int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks, 2421 bool dinode, u64 *generation) 2422 { 2423 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2424 struct buffer_head *dibh; 2425 struct gfs2_rbm rbm = { .rgd = ip->i_res.rs_rgd, }; 2426 u64 block; /* block, within the file system scope */ 2427 u32 minext = 1; 2428 int error = -ENOSPC; 2429 2430 BUG_ON(ip->i_res.rs_reserved < *nblocks); 2431 2432 rgrp_lock_local(rbm.rgd); 2433 if (gfs2_rs_active(&ip->i_res)) { 2434 gfs2_set_alloc_start(&rbm, ip, dinode); 2435 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &minext, &ip->i_res, false); 2436 } 2437 if (error == -ENOSPC) { 2438 gfs2_set_alloc_start(&rbm, ip, dinode); 2439 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &minext, NULL, false); 2440 } 2441 2442 /* Since all blocks are reserved in advance, this shouldn't happen */ 2443 if (error) { 2444 fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n", 2445 (unsigned long long)ip->i_no_addr, error, *nblocks, 2446 test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags), 2447 rbm.rgd->rd_extfail_pt); 2448 goto rgrp_error; 2449 } 2450 2451 gfs2_alloc_extent(&rbm, dinode, nblocks); 2452 block = gfs2_rbm_to_block(&rbm); 2453 rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0; 2454 if (!dinode) { 2455 ip->i_goal = block + *nblocks - 1; 2456 error = gfs2_meta_inode_buffer(ip, &dibh); 2457 if (error == 0) { 2458 struct gfs2_dinode *di = 2459 (struct gfs2_dinode *)dibh->b_data; 2460 gfs2_trans_add_meta(ip->i_gl, dibh); 2461 di->di_goal_meta = di->di_goal_data = 2462 cpu_to_be64(ip->i_goal); 2463 brelse(dibh); 2464 } 2465 } 2466 spin_lock(&rbm.rgd->rd_rsspin); 2467 gfs2_adjust_reservation(ip, &rbm, *nblocks); 2468 if (rbm.rgd->rd_free < *nblocks || rbm.rgd->rd_reserved < *nblocks) { 2469 fs_warn(sdp, "nblocks=%u\n", *nblocks); 2470 spin_unlock(&rbm.rgd->rd_rsspin); 2471 goto rgrp_error; 2472 } 2473 GLOCK_BUG_ON(rbm.rgd->rd_gl, rbm.rgd->rd_reserved < *nblocks); 2474 GLOCK_BUG_ON(rbm.rgd->rd_gl, rbm.rgd->rd_free_clone < *nblocks); 2475 GLOCK_BUG_ON(rbm.rgd->rd_gl, rbm.rgd->rd_free < *nblocks); 2476 rbm.rgd->rd_reserved -= *nblocks; 2477 rbm.rgd->rd_free_clone -= *nblocks; 2478 rbm.rgd->rd_free -= *nblocks; 2479 spin_unlock(&rbm.rgd->rd_rsspin); 2480 if (dinode) { 2481 rbm.rgd->rd_dinodes++; 2482 *generation = rbm.rgd->rd_igeneration++; 2483 if (*generation == 0) 2484 *generation = rbm.rgd->rd_igeneration++; 2485 } 2486 2487 gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh); 2488 gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data); 2489 rgrp_unlock_local(rbm.rgd); 2490 2491 gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0); 2492 if (dinode) 2493 gfs2_trans_remove_revoke(sdp, block, *nblocks); 2494 2495 gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid); 2496 2497 trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks, 2498 dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED); 2499 *bn = block; 2500 return 0; 2501 2502 rgrp_error: 2503 rgrp_unlock_local(rbm.rgd); 2504 gfs2_rgrp_error(rbm.rgd); 2505 return -EIO; 2506 } 2507 2508 /** 2509 * __gfs2_free_blocks - free a contiguous run of block(s) 2510 * @ip: the inode these blocks are being freed from 2511 * @rgd: the resource group the blocks are in 2512 * @bstart: first block of a run of contiguous blocks 2513 * @blen: the length of the block run 2514 * @meta: 1 if the blocks represent metadata 2515 * 2516 */ 2517 2518 void __gfs2_free_blocks(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd, 2519 u64 bstart, u32 blen, int meta) 2520 { 2521 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2522 2523 rgrp_lock_local(rgd); 2524 rgblk_free(sdp, rgd, bstart, blen, GFS2_BLKST_FREE); 2525 trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE); 2526 rgd->rd_free += blen; 2527 rgd->rd_flags &= ~GFS2_RGF_TRIMMED; 2528 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2529 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2530 rgrp_unlock_local(rgd); 2531 2532 /* Directories keep their data in the metadata address space */ 2533 if (meta || ip->i_depth || gfs2_is_jdata(ip)) 2534 gfs2_journal_wipe(ip, bstart, blen); 2535 } 2536 2537 /** 2538 * gfs2_free_meta - free a contiguous run of data block(s) 2539 * @ip: the inode these blocks are being freed from 2540 * @rgd: the resource group the blocks are in 2541 * @bstart: first block of a run of contiguous blocks 2542 * @blen: the length of the block run 2543 * 2544 */ 2545 2546 void gfs2_free_meta(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd, 2547 u64 bstart, u32 blen) 2548 { 2549 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2550 2551 __gfs2_free_blocks(ip, rgd, bstart, blen, 1); 2552 gfs2_statfs_change(sdp, 0, +blen, 0); 2553 gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid); 2554 } 2555 2556 void gfs2_unlink_di(struct inode *inode) 2557 { 2558 struct gfs2_inode *ip = GFS2_I(inode); 2559 struct gfs2_sbd *sdp = GFS2_SB(inode); 2560 struct gfs2_rgrpd *rgd; 2561 u64 blkno = ip->i_no_addr; 2562 2563 rgd = gfs2_blk2rgrpd(sdp, blkno, true); 2564 if (!rgd) 2565 return; 2566 rgrp_lock_local(rgd); 2567 rgblk_free(sdp, rgd, blkno, 1, GFS2_BLKST_UNLINKED); 2568 trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED); 2569 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2570 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2571 be32_add_cpu(&rgd->rd_rgl->rl_unlinked, 1); 2572 rgrp_unlock_local(rgd); 2573 } 2574 2575 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip) 2576 { 2577 struct gfs2_sbd *sdp = rgd->rd_sbd; 2578 2579 rgrp_lock_local(rgd); 2580 rgblk_free(sdp, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE); 2581 if (!rgd->rd_dinodes) 2582 gfs2_consist_rgrpd(rgd); 2583 rgd->rd_dinodes--; 2584 rgd->rd_free++; 2585 2586 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2587 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2588 rgrp_unlock_local(rgd); 2589 be32_add_cpu(&rgd->rd_rgl->rl_unlinked, -1); 2590 2591 gfs2_statfs_change(sdp, 0, +1, -1); 2592 trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE); 2593 gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid); 2594 gfs2_journal_wipe(ip, ip->i_no_addr, 1); 2595 } 2596 2597 /** 2598 * gfs2_check_blk_type - Check the type of a block 2599 * @sdp: The superblock 2600 * @no_addr: The block number to check 2601 * @type: The block type we are looking for 2602 * 2603 * The inode glock of @no_addr must be held. The @type to check for is either 2604 * GFS2_BLKST_DINODE or GFS2_BLKST_UNLINKED; checking for type GFS2_BLKST_FREE 2605 * or GFS2_BLKST_USED would make no sense. 2606 * 2607 * Returns: 0 if the block type matches the expected type 2608 * -ESTALE if it doesn't match 2609 * or -ve errno if something went wrong while checking 2610 */ 2611 2612 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type) 2613 { 2614 struct gfs2_rgrpd *rgd; 2615 struct gfs2_holder rgd_gh; 2616 struct gfs2_rbm rbm; 2617 int error = -EINVAL; 2618 2619 rgd = gfs2_blk2rgrpd(sdp, no_addr, 1); 2620 if (!rgd) 2621 goto fail; 2622 2623 error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh); 2624 if (error) 2625 goto fail; 2626 2627 rbm.rgd = rgd; 2628 error = gfs2_rbm_from_block(&rbm, no_addr); 2629 if (!WARN_ON_ONCE(error)) { 2630 /* 2631 * No need to take the local resource group lock here; the 2632 * inode glock of @no_addr provides the necessary 2633 * synchronization in case the block is an inode. (In case 2634 * the block is not an inode, the block type will not match 2635 * the @type we are looking for.) 2636 */ 2637 if (gfs2_testbit(&rbm, false) != type) 2638 error = -ESTALE; 2639 } 2640 2641 gfs2_glock_dq_uninit(&rgd_gh); 2642 2643 fail: 2644 return error; 2645 } 2646 2647 /** 2648 * gfs2_rlist_add - add a RG to a list of RGs 2649 * @ip: the inode 2650 * @rlist: the list of resource groups 2651 * @block: the block 2652 * 2653 * Figure out what RG a block belongs to and add that RG to the list 2654 * 2655 * FIXME: Don't use NOFAIL 2656 * 2657 */ 2658 2659 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist, 2660 u64 block) 2661 { 2662 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2663 struct gfs2_rgrpd *rgd; 2664 struct gfs2_rgrpd **tmp; 2665 unsigned int new_space; 2666 unsigned int x; 2667 2668 if (gfs2_assert_warn(sdp, !rlist->rl_ghs)) 2669 return; 2670 2671 /* 2672 * The resource group last accessed is kept in the last position. 2673 */ 2674 2675 if (rlist->rl_rgrps) { 2676 rgd = rlist->rl_rgd[rlist->rl_rgrps - 1]; 2677 if (rgrp_contains_block(rgd, block)) 2678 return; 2679 rgd = gfs2_blk2rgrpd(sdp, block, 1); 2680 } else { 2681 rgd = ip->i_res.rs_rgd; 2682 if (!rgd || !rgrp_contains_block(rgd, block)) 2683 rgd = gfs2_blk2rgrpd(sdp, block, 1); 2684 } 2685 2686 if (!rgd) { 2687 fs_err(sdp, "rlist_add: no rgrp for block %llu\n", 2688 (unsigned long long)block); 2689 return; 2690 } 2691 2692 for (x = 0; x < rlist->rl_rgrps; x++) { 2693 if (rlist->rl_rgd[x] == rgd) { 2694 swap(rlist->rl_rgd[x], 2695 rlist->rl_rgd[rlist->rl_rgrps - 1]); 2696 return; 2697 } 2698 } 2699 2700 if (rlist->rl_rgrps == rlist->rl_space) { 2701 new_space = rlist->rl_space + 10; 2702 2703 tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *), 2704 GFP_NOFS | __GFP_NOFAIL); 2705 2706 if (rlist->rl_rgd) { 2707 memcpy(tmp, rlist->rl_rgd, 2708 rlist->rl_space * sizeof(struct gfs2_rgrpd *)); 2709 kfree(rlist->rl_rgd); 2710 } 2711 2712 rlist->rl_space = new_space; 2713 rlist->rl_rgd = tmp; 2714 } 2715 2716 rlist->rl_rgd[rlist->rl_rgrps++] = rgd; 2717 } 2718 2719 /** 2720 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate 2721 * and initialize an array of glock holders for them 2722 * @rlist: the list of resource groups 2723 * 2724 * FIXME: Don't use NOFAIL 2725 * 2726 */ 2727 2728 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist) 2729 { 2730 unsigned int x; 2731 2732 rlist->rl_ghs = kmalloc_array(rlist->rl_rgrps, 2733 sizeof(struct gfs2_holder), 2734 GFP_NOFS | __GFP_NOFAIL); 2735 for (x = 0; x < rlist->rl_rgrps; x++) 2736 gfs2_holder_init(rlist->rl_rgd[x]->rd_gl, LM_ST_EXCLUSIVE, 2737 LM_FLAG_NODE_SCOPE, &rlist->rl_ghs[x]); 2738 } 2739 2740 /** 2741 * gfs2_rlist_free - free a resource group list 2742 * @rlist: the list of resource groups 2743 * 2744 */ 2745 2746 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist) 2747 { 2748 unsigned int x; 2749 2750 kfree(rlist->rl_rgd); 2751 2752 if (rlist->rl_ghs) { 2753 for (x = 0; x < rlist->rl_rgrps; x++) 2754 gfs2_holder_uninit(&rlist->rl_ghs[x]); 2755 kfree(rlist->rl_ghs); 2756 rlist->rl_ghs = NULL; 2757 } 2758 } 2759 2760 void rgrp_lock_local(struct gfs2_rgrpd *rgd) 2761 { 2762 mutex_lock(&rgd->rd_mutex); 2763 } 2764 2765 void rgrp_unlock_local(struct gfs2_rgrpd *rgd) 2766 { 2767 mutex_unlock(&rgd->rd_mutex); 2768 } 2769