1 /* 2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This copyrighted material is made available to anyone wishing to use, 6 * modify, copy, or redistribute it subject to the terms and conditions 7 * of the GNU General Public License version 2. 8 */ 9 10 #include <linux/slab.h> 11 #include <linux/spinlock.h> 12 #include <linux/completion.h> 13 #include <linux/buffer_head.h> 14 #include <linux/fs.h> 15 #include <linux/gfs2_ondisk.h> 16 #include <linux/prefetch.h> 17 #include <linux/blkdev.h> 18 #include <linux/rbtree.h> 19 #include <linux/random.h> 20 21 #include "gfs2.h" 22 #include "incore.h" 23 #include "glock.h" 24 #include "glops.h" 25 #include "lops.h" 26 #include "meta_io.h" 27 #include "quota.h" 28 #include "rgrp.h" 29 #include "super.h" 30 #include "trans.h" 31 #include "util.h" 32 #include "log.h" 33 #include "inode.h" 34 #include "trace_gfs2.h" 35 36 #define BFITNOENT ((u32)~0) 37 #define NO_BLOCK ((u64)~0) 38 39 #if BITS_PER_LONG == 32 40 #define LBITMASK (0x55555555UL) 41 #define LBITSKIP55 (0x55555555UL) 42 #define LBITSKIP00 (0x00000000UL) 43 #else 44 #define LBITMASK (0x5555555555555555UL) 45 #define LBITSKIP55 (0x5555555555555555UL) 46 #define LBITSKIP00 (0x0000000000000000UL) 47 #endif 48 49 /* 50 * These routines are used by the resource group routines (rgrp.c) 51 * to keep track of block allocation. Each block is represented by two 52 * bits. So, each byte represents GFS2_NBBY (i.e. 4) blocks. 53 * 54 * 0 = Free 55 * 1 = Used (not metadata) 56 * 2 = Unlinked (still in use) inode 57 * 3 = Used (metadata) 58 */ 59 60 static const char valid_change[16] = { 61 /* current */ 62 /* n */ 0, 1, 1, 1, 63 /* e */ 1, 0, 0, 0, 64 /* w */ 0, 0, 0, 1, 65 1, 0, 0, 0 66 }; 67 68 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 minext, 69 const struct gfs2_inode *ip, bool nowrap); 70 71 72 /** 73 * gfs2_setbit - Set a bit in the bitmaps 74 * @rbm: The position of the bit to set 75 * @do_clone: Also set the clone bitmap, if it exists 76 * @new_state: the new state of the block 77 * 78 */ 79 80 static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone, 81 unsigned char new_state) 82 { 83 unsigned char *byte1, *byte2, *end, cur_state; 84 unsigned int buflen = rbm->bi->bi_len; 85 const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE; 86 87 byte1 = rbm->bi->bi_bh->b_data + rbm->bi->bi_offset + (rbm->offset / GFS2_NBBY); 88 end = rbm->bi->bi_bh->b_data + rbm->bi->bi_offset + buflen; 89 90 BUG_ON(byte1 >= end); 91 92 cur_state = (*byte1 >> bit) & GFS2_BIT_MASK; 93 94 if (unlikely(!valid_change[new_state * 4 + cur_state])) { 95 printk(KERN_WARNING "GFS2: buf_blk = 0x%x old_state=%d, " 96 "new_state=%d\n", rbm->offset, cur_state, new_state); 97 printk(KERN_WARNING "GFS2: rgrp=0x%llx bi_start=0x%x\n", 98 (unsigned long long)rbm->rgd->rd_addr, 99 rbm->bi->bi_start); 100 printk(KERN_WARNING "GFS2: bi_offset=0x%x bi_len=0x%x\n", 101 rbm->bi->bi_offset, rbm->bi->bi_len); 102 dump_stack(); 103 gfs2_consist_rgrpd(rbm->rgd); 104 return; 105 } 106 *byte1 ^= (cur_state ^ new_state) << bit; 107 108 if (do_clone && rbm->bi->bi_clone) { 109 byte2 = rbm->bi->bi_clone + rbm->bi->bi_offset + (rbm->offset / GFS2_NBBY); 110 cur_state = (*byte2 >> bit) & GFS2_BIT_MASK; 111 *byte2 ^= (cur_state ^ new_state) << bit; 112 } 113 } 114 115 /** 116 * gfs2_testbit - test a bit in the bitmaps 117 * @rbm: The bit to test 118 * 119 * Returns: The two bit block state of the requested bit 120 */ 121 122 static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm) 123 { 124 const u8 *buffer = rbm->bi->bi_bh->b_data + rbm->bi->bi_offset; 125 const u8 *byte; 126 unsigned int bit; 127 128 byte = buffer + (rbm->offset / GFS2_NBBY); 129 bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE; 130 131 return (*byte >> bit) & GFS2_BIT_MASK; 132 } 133 134 /** 135 * gfs2_bit_search 136 * @ptr: Pointer to bitmap data 137 * @mask: Mask to use (normally 0x55555.... but adjusted for search start) 138 * @state: The state we are searching for 139 * 140 * We xor the bitmap data with a patter which is the bitwise opposite 141 * of what we are looking for, this gives rise to a pattern of ones 142 * wherever there is a match. Since we have two bits per entry, we 143 * take this pattern, shift it down by one place and then and it with 144 * the original. All the even bit positions (0,2,4, etc) then represent 145 * successful matches, so we mask with 0x55555..... to remove the unwanted 146 * odd bit positions. 147 * 148 * This allows searching of a whole u64 at once (32 blocks) with a 149 * single test (on 64 bit arches). 150 */ 151 152 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state) 153 { 154 u64 tmp; 155 static const u64 search[] = { 156 [0] = 0xffffffffffffffffULL, 157 [1] = 0xaaaaaaaaaaaaaaaaULL, 158 [2] = 0x5555555555555555ULL, 159 [3] = 0x0000000000000000ULL, 160 }; 161 tmp = le64_to_cpu(*ptr) ^ search[state]; 162 tmp &= (tmp >> 1); 163 tmp &= mask; 164 return tmp; 165 } 166 167 /** 168 * rs_cmp - multi-block reservation range compare 169 * @blk: absolute file system block number of the new reservation 170 * @len: number of blocks in the new reservation 171 * @rs: existing reservation to compare against 172 * 173 * returns: 1 if the block range is beyond the reach of the reservation 174 * -1 if the block range is before the start of the reservation 175 * 0 if the block range overlaps with the reservation 176 */ 177 static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs) 178 { 179 u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm); 180 181 if (blk >= startblk + rs->rs_free) 182 return 1; 183 if (blk + len - 1 < startblk) 184 return -1; 185 return 0; 186 } 187 188 /** 189 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing 190 * a block in a given allocation state. 191 * @buf: the buffer that holds the bitmaps 192 * @len: the length (in bytes) of the buffer 193 * @goal: start search at this block's bit-pair (within @buffer) 194 * @state: GFS2_BLKST_XXX the state of the block we're looking for. 195 * 196 * Scope of @goal and returned block number is only within this bitmap buffer, 197 * not entire rgrp or filesystem. @buffer will be offset from the actual 198 * beginning of a bitmap block buffer, skipping any header structures, but 199 * headers are always a multiple of 64 bits long so that the buffer is 200 * always aligned to a 64 bit boundary. 201 * 202 * The size of the buffer is in bytes, but is it assumed that it is 203 * always ok to read a complete multiple of 64 bits at the end 204 * of the block in case the end is no aligned to a natural boundary. 205 * 206 * Return: the block number (bitmap buffer scope) that was found 207 */ 208 209 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len, 210 u32 goal, u8 state) 211 { 212 u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1); 213 const __le64 *ptr = ((__le64 *)buf) + (goal >> 5); 214 const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64))); 215 u64 tmp; 216 u64 mask = 0x5555555555555555ULL; 217 u32 bit; 218 219 /* Mask off bits we don't care about at the start of the search */ 220 mask <<= spoint; 221 tmp = gfs2_bit_search(ptr, mask, state); 222 ptr++; 223 while(tmp == 0 && ptr < end) { 224 tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state); 225 ptr++; 226 } 227 /* Mask off any bits which are more than len bytes from the start */ 228 if (ptr == end && (len & (sizeof(u64) - 1))) 229 tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1)))); 230 /* Didn't find anything, so return */ 231 if (tmp == 0) 232 return BFITNOENT; 233 ptr--; 234 bit = __ffs64(tmp); 235 bit /= 2; /* two bits per entry in the bitmap */ 236 return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit; 237 } 238 239 /** 240 * gfs2_rbm_from_block - Set the rbm based upon rgd and block number 241 * @rbm: The rbm with rgd already set correctly 242 * @block: The block number (filesystem relative) 243 * 244 * This sets the bi and offset members of an rbm based on a 245 * resource group and a filesystem relative block number. The 246 * resource group must be set in the rbm on entry, the bi and 247 * offset members will be set by this function. 248 * 249 * Returns: 0 on success, or an error code 250 */ 251 252 static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block) 253 { 254 u64 rblock = block - rbm->rgd->rd_data0; 255 u32 x; 256 257 if (WARN_ON_ONCE(rblock > UINT_MAX)) 258 return -EINVAL; 259 if (block >= rbm->rgd->rd_data0 + rbm->rgd->rd_data) 260 return -E2BIG; 261 262 rbm->bi = rbm->rgd->rd_bits; 263 rbm->offset = (u32)(rblock); 264 /* Check if the block is within the first block */ 265 if (rbm->offset < (rbm->bi->bi_start + rbm->bi->bi_len) * GFS2_NBBY) 266 return 0; 267 268 /* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */ 269 rbm->offset += (sizeof(struct gfs2_rgrp) - 270 sizeof(struct gfs2_meta_header)) * GFS2_NBBY; 271 x = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap; 272 rbm->offset -= x * rbm->rgd->rd_sbd->sd_blocks_per_bitmap; 273 rbm->bi += x; 274 return 0; 275 } 276 277 /** 278 * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned 279 * @rbm: Position to search (value/result) 280 * @n_unaligned: Number of unaligned blocks to check 281 * @len: Decremented for each block found (terminate on zero) 282 * 283 * Returns: true if a non-free block is encountered 284 */ 285 286 static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len) 287 { 288 u64 block; 289 u32 n; 290 u8 res; 291 292 for (n = 0; n < n_unaligned; n++) { 293 res = gfs2_testbit(rbm); 294 if (res != GFS2_BLKST_FREE) 295 return true; 296 (*len)--; 297 if (*len == 0) 298 return true; 299 block = gfs2_rbm_to_block(rbm); 300 if (gfs2_rbm_from_block(rbm, block + 1)) 301 return true; 302 } 303 304 return false; 305 } 306 307 /** 308 * gfs2_free_extlen - Return extent length of free blocks 309 * @rbm: Starting position 310 * @len: Max length to check 311 * 312 * Starting at the block specified by the rbm, see how many free blocks 313 * there are, not reading more than len blocks ahead. This can be done 314 * using memchr_inv when the blocks are byte aligned, but has to be done 315 * on a block by block basis in case of unaligned blocks. Also this 316 * function can cope with bitmap boundaries (although it must stop on 317 * a resource group boundary) 318 * 319 * Returns: Number of free blocks in the extent 320 */ 321 322 static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len) 323 { 324 struct gfs2_rbm rbm = *rrbm; 325 u32 n_unaligned = rbm.offset & 3; 326 u32 size = len; 327 u32 bytes; 328 u32 chunk_size; 329 u8 *ptr, *start, *end; 330 u64 block; 331 332 if (n_unaligned && 333 gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len)) 334 goto out; 335 336 n_unaligned = len & 3; 337 /* Start is now byte aligned */ 338 while (len > 3) { 339 start = rbm.bi->bi_bh->b_data; 340 if (rbm.bi->bi_clone) 341 start = rbm.bi->bi_clone; 342 end = start + rbm.bi->bi_bh->b_size; 343 start += rbm.bi->bi_offset; 344 BUG_ON(rbm.offset & 3); 345 start += (rbm.offset / GFS2_NBBY); 346 bytes = min_t(u32, len / GFS2_NBBY, (end - start)); 347 ptr = memchr_inv(start, 0, bytes); 348 chunk_size = ((ptr == NULL) ? bytes : (ptr - start)); 349 chunk_size *= GFS2_NBBY; 350 BUG_ON(len < chunk_size); 351 len -= chunk_size; 352 block = gfs2_rbm_to_block(&rbm); 353 if (gfs2_rbm_from_block(&rbm, block + chunk_size)) { 354 n_unaligned = 0; 355 break; 356 } 357 if (ptr) { 358 n_unaligned = 3; 359 break; 360 } 361 n_unaligned = len & 3; 362 } 363 364 /* Deal with any bits left over at the end */ 365 if (n_unaligned) 366 gfs2_unaligned_extlen(&rbm, n_unaligned, &len); 367 out: 368 return size - len; 369 } 370 371 /** 372 * gfs2_bitcount - count the number of bits in a certain state 373 * @rgd: the resource group descriptor 374 * @buffer: the buffer that holds the bitmaps 375 * @buflen: the length (in bytes) of the buffer 376 * @state: the state of the block we're looking for 377 * 378 * Returns: The number of bits 379 */ 380 381 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer, 382 unsigned int buflen, u8 state) 383 { 384 const u8 *byte = buffer; 385 const u8 *end = buffer + buflen; 386 const u8 state1 = state << 2; 387 const u8 state2 = state << 4; 388 const u8 state3 = state << 6; 389 u32 count = 0; 390 391 for (; byte < end; byte++) { 392 if (((*byte) & 0x03) == state) 393 count++; 394 if (((*byte) & 0x0C) == state1) 395 count++; 396 if (((*byte) & 0x30) == state2) 397 count++; 398 if (((*byte) & 0xC0) == state3) 399 count++; 400 } 401 402 return count; 403 } 404 405 /** 406 * gfs2_rgrp_verify - Verify that a resource group is consistent 407 * @rgd: the rgrp 408 * 409 */ 410 411 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd) 412 { 413 struct gfs2_sbd *sdp = rgd->rd_sbd; 414 struct gfs2_bitmap *bi = NULL; 415 u32 length = rgd->rd_length; 416 u32 count[4], tmp; 417 int buf, x; 418 419 memset(count, 0, 4 * sizeof(u32)); 420 421 /* Count # blocks in each of 4 possible allocation states */ 422 for (buf = 0; buf < length; buf++) { 423 bi = rgd->rd_bits + buf; 424 for (x = 0; x < 4; x++) 425 count[x] += gfs2_bitcount(rgd, 426 bi->bi_bh->b_data + 427 bi->bi_offset, 428 bi->bi_len, x); 429 } 430 431 if (count[0] != rgd->rd_free) { 432 if (gfs2_consist_rgrpd(rgd)) 433 fs_err(sdp, "free data mismatch: %u != %u\n", 434 count[0], rgd->rd_free); 435 return; 436 } 437 438 tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes; 439 if (count[1] != tmp) { 440 if (gfs2_consist_rgrpd(rgd)) 441 fs_err(sdp, "used data mismatch: %u != %u\n", 442 count[1], tmp); 443 return; 444 } 445 446 if (count[2] + count[3] != rgd->rd_dinodes) { 447 if (gfs2_consist_rgrpd(rgd)) 448 fs_err(sdp, "used metadata mismatch: %u != %u\n", 449 count[2] + count[3], rgd->rd_dinodes); 450 return; 451 } 452 } 453 454 static inline int rgrp_contains_block(struct gfs2_rgrpd *rgd, u64 block) 455 { 456 u64 first = rgd->rd_data0; 457 u64 last = first + rgd->rd_data; 458 return first <= block && block < last; 459 } 460 461 /** 462 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number 463 * @sdp: The GFS2 superblock 464 * @blk: The data block number 465 * @exact: True if this needs to be an exact match 466 * 467 * Returns: The resource group, or NULL if not found 468 */ 469 470 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact) 471 { 472 struct rb_node *n, *next; 473 struct gfs2_rgrpd *cur; 474 475 spin_lock(&sdp->sd_rindex_spin); 476 n = sdp->sd_rindex_tree.rb_node; 477 while (n) { 478 cur = rb_entry(n, struct gfs2_rgrpd, rd_node); 479 next = NULL; 480 if (blk < cur->rd_addr) 481 next = n->rb_left; 482 else if (blk >= cur->rd_data0 + cur->rd_data) 483 next = n->rb_right; 484 if (next == NULL) { 485 spin_unlock(&sdp->sd_rindex_spin); 486 if (exact) { 487 if (blk < cur->rd_addr) 488 return NULL; 489 if (blk >= cur->rd_data0 + cur->rd_data) 490 return NULL; 491 } 492 return cur; 493 } 494 n = next; 495 } 496 spin_unlock(&sdp->sd_rindex_spin); 497 498 return NULL; 499 } 500 501 /** 502 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem 503 * @sdp: The GFS2 superblock 504 * 505 * Returns: The first rgrp in the filesystem 506 */ 507 508 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp) 509 { 510 const struct rb_node *n; 511 struct gfs2_rgrpd *rgd; 512 513 spin_lock(&sdp->sd_rindex_spin); 514 n = rb_first(&sdp->sd_rindex_tree); 515 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 516 spin_unlock(&sdp->sd_rindex_spin); 517 518 return rgd; 519 } 520 521 /** 522 * gfs2_rgrpd_get_next - get the next RG 523 * @rgd: the resource group descriptor 524 * 525 * Returns: The next rgrp 526 */ 527 528 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd) 529 { 530 struct gfs2_sbd *sdp = rgd->rd_sbd; 531 const struct rb_node *n; 532 533 spin_lock(&sdp->sd_rindex_spin); 534 n = rb_next(&rgd->rd_node); 535 if (n == NULL) 536 n = rb_first(&sdp->sd_rindex_tree); 537 538 if (unlikely(&rgd->rd_node == n)) { 539 spin_unlock(&sdp->sd_rindex_spin); 540 return NULL; 541 } 542 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 543 spin_unlock(&sdp->sd_rindex_spin); 544 return rgd; 545 } 546 547 void gfs2_free_clones(struct gfs2_rgrpd *rgd) 548 { 549 int x; 550 551 for (x = 0; x < rgd->rd_length; x++) { 552 struct gfs2_bitmap *bi = rgd->rd_bits + x; 553 kfree(bi->bi_clone); 554 bi->bi_clone = NULL; 555 } 556 } 557 558 /** 559 * gfs2_rs_alloc - make sure we have a reservation assigned to the inode 560 * @ip: the inode for this reservation 561 */ 562 int gfs2_rs_alloc(struct gfs2_inode *ip) 563 { 564 int error = 0; 565 566 down_write(&ip->i_rw_mutex); 567 if (ip->i_res) 568 goto out; 569 570 ip->i_res = kmem_cache_zalloc(gfs2_rsrv_cachep, GFP_NOFS); 571 if (!ip->i_res) { 572 error = -ENOMEM; 573 goto out; 574 } 575 576 RB_CLEAR_NODE(&ip->i_res->rs_node); 577 out: 578 up_write(&ip->i_rw_mutex); 579 return error; 580 } 581 582 static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs) 583 { 584 gfs2_print_dbg(seq, " B: n:%llu s:%llu b:%u f:%u\n", 585 (unsigned long long)rs->rs_inum, 586 (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm), 587 rs->rs_rbm.offset, rs->rs_free); 588 } 589 590 /** 591 * __rs_deltree - remove a multi-block reservation from the rgd tree 592 * @rs: The reservation to remove 593 * 594 */ 595 static void __rs_deltree(struct gfs2_blkreserv *rs) 596 { 597 struct gfs2_rgrpd *rgd; 598 599 if (!gfs2_rs_active(rs)) 600 return; 601 602 rgd = rs->rs_rbm.rgd; 603 trace_gfs2_rs(rs, TRACE_RS_TREEDEL); 604 rb_erase(&rs->rs_node, &rgd->rd_rstree); 605 RB_CLEAR_NODE(&rs->rs_node); 606 607 if (rs->rs_free) { 608 /* return reserved blocks to the rgrp */ 609 BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free); 610 rs->rs_rbm.rgd->rd_reserved -= rs->rs_free; 611 rs->rs_free = 0; 612 clear_bit(GBF_FULL, &rs->rs_rbm.bi->bi_flags); 613 smp_mb__after_clear_bit(); 614 } 615 } 616 617 /** 618 * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree 619 * @rs: The reservation to remove 620 * 621 */ 622 void gfs2_rs_deltree(struct gfs2_blkreserv *rs) 623 { 624 struct gfs2_rgrpd *rgd; 625 626 rgd = rs->rs_rbm.rgd; 627 if (rgd) { 628 spin_lock(&rgd->rd_rsspin); 629 __rs_deltree(rs); 630 spin_unlock(&rgd->rd_rsspin); 631 } 632 } 633 634 /** 635 * gfs2_rs_delete - delete a multi-block reservation 636 * @ip: The inode for this reservation 637 * 638 */ 639 void gfs2_rs_delete(struct gfs2_inode *ip) 640 { 641 down_write(&ip->i_rw_mutex); 642 if (ip->i_res) { 643 gfs2_rs_deltree(ip->i_res); 644 BUG_ON(ip->i_res->rs_free); 645 kmem_cache_free(gfs2_rsrv_cachep, ip->i_res); 646 ip->i_res = NULL; 647 } 648 up_write(&ip->i_rw_mutex); 649 } 650 651 /** 652 * return_all_reservations - return all reserved blocks back to the rgrp. 653 * @rgd: the rgrp that needs its space back 654 * 655 * We previously reserved a bunch of blocks for allocation. Now we need to 656 * give them back. This leave the reservation structures in tact, but removes 657 * all of their corresponding "no-fly zones". 658 */ 659 static void return_all_reservations(struct gfs2_rgrpd *rgd) 660 { 661 struct rb_node *n; 662 struct gfs2_blkreserv *rs; 663 664 spin_lock(&rgd->rd_rsspin); 665 while ((n = rb_first(&rgd->rd_rstree))) { 666 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 667 __rs_deltree(rs); 668 } 669 spin_unlock(&rgd->rd_rsspin); 670 } 671 672 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp) 673 { 674 struct rb_node *n; 675 struct gfs2_rgrpd *rgd; 676 struct gfs2_glock *gl; 677 678 while ((n = rb_first(&sdp->sd_rindex_tree))) { 679 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 680 gl = rgd->rd_gl; 681 682 rb_erase(n, &sdp->sd_rindex_tree); 683 684 if (gl) { 685 spin_lock(&gl->gl_spin); 686 gl->gl_object = NULL; 687 spin_unlock(&gl->gl_spin); 688 gfs2_glock_add_to_lru(gl); 689 gfs2_glock_put(gl); 690 } 691 692 gfs2_free_clones(rgd); 693 kfree(rgd->rd_bits); 694 return_all_reservations(rgd); 695 kmem_cache_free(gfs2_rgrpd_cachep, rgd); 696 } 697 } 698 699 static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd) 700 { 701 printk(KERN_INFO " ri_addr = %llu\n", (unsigned long long)rgd->rd_addr); 702 printk(KERN_INFO " ri_length = %u\n", rgd->rd_length); 703 printk(KERN_INFO " ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0); 704 printk(KERN_INFO " ri_data = %u\n", rgd->rd_data); 705 printk(KERN_INFO " ri_bitbytes = %u\n", rgd->rd_bitbytes); 706 } 707 708 /** 709 * gfs2_compute_bitstructs - Compute the bitmap sizes 710 * @rgd: The resource group descriptor 711 * 712 * Calculates bitmap descriptors, one for each block that contains bitmap data 713 * 714 * Returns: errno 715 */ 716 717 static int compute_bitstructs(struct gfs2_rgrpd *rgd) 718 { 719 struct gfs2_sbd *sdp = rgd->rd_sbd; 720 struct gfs2_bitmap *bi; 721 u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */ 722 u32 bytes_left, bytes; 723 int x; 724 725 if (!length) 726 return -EINVAL; 727 728 rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS); 729 if (!rgd->rd_bits) 730 return -ENOMEM; 731 732 bytes_left = rgd->rd_bitbytes; 733 734 for (x = 0; x < length; x++) { 735 bi = rgd->rd_bits + x; 736 737 bi->bi_flags = 0; 738 /* small rgrp; bitmap stored completely in header block */ 739 if (length == 1) { 740 bytes = bytes_left; 741 bi->bi_offset = sizeof(struct gfs2_rgrp); 742 bi->bi_start = 0; 743 bi->bi_len = bytes; 744 /* header block */ 745 } else if (x == 0) { 746 bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp); 747 bi->bi_offset = sizeof(struct gfs2_rgrp); 748 bi->bi_start = 0; 749 bi->bi_len = bytes; 750 /* last block */ 751 } else if (x + 1 == length) { 752 bytes = bytes_left; 753 bi->bi_offset = sizeof(struct gfs2_meta_header); 754 bi->bi_start = rgd->rd_bitbytes - bytes_left; 755 bi->bi_len = bytes; 756 /* other blocks */ 757 } else { 758 bytes = sdp->sd_sb.sb_bsize - 759 sizeof(struct gfs2_meta_header); 760 bi->bi_offset = sizeof(struct gfs2_meta_header); 761 bi->bi_start = rgd->rd_bitbytes - bytes_left; 762 bi->bi_len = bytes; 763 } 764 765 bytes_left -= bytes; 766 } 767 768 if (bytes_left) { 769 gfs2_consist_rgrpd(rgd); 770 return -EIO; 771 } 772 bi = rgd->rd_bits + (length - 1); 773 if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) { 774 if (gfs2_consist_rgrpd(rgd)) { 775 gfs2_rindex_print(rgd); 776 fs_err(sdp, "start=%u len=%u offset=%u\n", 777 bi->bi_start, bi->bi_len, bi->bi_offset); 778 } 779 return -EIO; 780 } 781 782 return 0; 783 } 784 785 /** 786 * gfs2_ri_total - Total up the file system space, according to the rindex. 787 * @sdp: the filesystem 788 * 789 */ 790 u64 gfs2_ri_total(struct gfs2_sbd *sdp) 791 { 792 u64 total_data = 0; 793 struct inode *inode = sdp->sd_rindex; 794 struct gfs2_inode *ip = GFS2_I(inode); 795 char buf[sizeof(struct gfs2_rindex)]; 796 int error, rgrps; 797 798 for (rgrps = 0;; rgrps++) { 799 loff_t pos = rgrps * sizeof(struct gfs2_rindex); 800 801 if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode)) 802 break; 803 error = gfs2_internal_read(ip, buf, &pos, 804 sizeof(struct gfs2_rindex)); 805 if (error != sizeof(struct gfs2_rindex)) 806 break; 807 total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data); 808 } 809 return total_data; 810 } 811 812 static int rgd_insert(struct gfs2_rgrpd *rgd) 813 { 814 struct gfs2_sbd *sdp = rgd->rd_sbd; 815 struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL; 816 817 /* Figure out where to put new node */ 818 while (*newn) { 819 struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd, 820 rd_node); 821 822 parent = *newn; 823 if (rgd->rd_addr < cur->rd_addr) 824 newn = &((*newn)->rb_left); 825 else if (rgd->rd_addr > cur->rd_addr) 826 newn = &((*newn)->rb_right); 827 else 828 return -EEXIST; 829 } 830 831 rb_link_node(&rgd->rd_node, parent, newn); 832 rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree); 833 sdp->sd_rgrps++; 834 return 0; 835 } 836 837 /** 838 * read_rindex_entry - Pull in a new resource index entry from the disk 839 * @ip: Pointer to the rindex inode 840 * 841 * Returns: 0 on success, > 0 on EOF, error code otherwise 842 */ 843 844 static int read_rindex_entry(struct gfs2_inode *ip) 845 { 846 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 847 loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex); 848 struct gfs2_rindex buf; 849 int error; 850 struct gfs2_rgrpd *rgd; 851 852 if (pos >= i_size_read(&ip->i_inode)) 853 return 1; 854 855 error = gfs2_internal_read(ip, (char *)&buf, &pos, 856 sizeof(struct gfs2_rindex)); 857 858 if (error != sizeof(struct gfs2_rindex)) 859 return (error == 0) ? 1 : error; 860 861 rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS); 862 error = -ENOMEM; 863 if (!rgd) 864 return error; 865 866 rgd->rd_sbd = sdp; 867 rgd->rd_addr = be64_to_cpu(buf.ri_addr); 868 rgd->rd_length = be32_to_cpu(buf.ri_length); 869 rgd->rd_data0 = be64_to_cpu(buf.ri_data0); 870 rgd->rd_data = be32_to_cpu(buf.ri_data); 871 rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes); 872 spin_lock_init(&rgd->rd_rsspin); 873 874 error = compute_bitstructs(rgd); 875 if (error) 876 goto fail; 877 878 error = gfs2_glock_get(sdp, rgd->rd_addr, 879 &gfs2_rgrp_glops, CREATE, &rgd->rd_gl); 880 if (error) 881 goto fail; 882 883 rgd->rd_gl->gl_object = rgd; 884 rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr; 885 rgd->rd_flags &= ~GFS2_RDF_UPTODATE; 886 if (rgd->rd_data > sdp->sd_max_rg_data) 887 sdp->sd_max_rg_data = rgd->rd_data; 888 spin_lock(&sdp->sd_rindex_spin); 889 error = rgd_insert(rgd); 890 spin_unlock(&sdp->sd_rindex_spin); 891 if (!error) 892 return 0; 893 894 error = 0; /* someone else read in the rgrp; free it and ignore it */ 895 gfs2_glock_put(rgd->rd_gl); 896 897 fail: 898 kfree(rgd->rd_bits); 899 kmem_cache_free(gfs2_rgrpd_cachep, rgd); 900 return error; 901 } 902 903 /** 904 * gfs2_ri_update - Pull in a new resource index from the disk 905 * @ip: pointer to the rindex inode 906 * 907 * Returns: 0 on successful update, error code otherwise 908 */ 909 910 static int gfs2_ri_update(struct gfs2_inode *ip) 911 { 912 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 913 int error; 914 915 do { 916 error = read_rindex_entry(ip); 917 } while (error == 0); 918 919 if (error < 0) 920 return error; 921 922 sdp->sd_rindex_uptodate = 1; 923 return 0; 924 } 925 926 /** 927 * gfs2_rindex_update - Update the rindex if required 928 * @sdp: The GFS2 superblock 929 * 930 * We grab a lock on the rindex inode to make sure that it doesn't 931 * change whilst we are performing an operation. We keep this lock 932 * for quite long periods of time compared to other locks. This 933 * doesn't matter, since it is shared and it is very, very rarely 934 * accessed in the exclusive mode (i.e. only when expanding the filesystem). 935 * 936 * This makes sure that we're using the latest copy of the resource index 937 * special file, which might have been updated if someone expanded the 938 * filesystem (via gfs2_grow utility), which adds new resource groups. 939 * 940 * Returns: 0 on succeess, error code otherwise 941 */ 942 943 int gfs2_rindex_update(struct gfs2_sbd *sdp) 944 { 945 struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex); 946 struct gfs2_glock *gl = ip->i_gl; 947 struct gfs2_holder ri_gh; 948 int error = 0; 949 int unlock_required = 0; 950 951 /* Read new copy from disk if we don't have the latest */ 952 if (!sdp->sd_rindex_uptodate) { 953 if (!gfs2_glock_is_locked_by_me(gl)) { 954 error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh); 955 if (error) 956 return error; 957 unlock_required = 1; 958 } 959 if (!sdp->sd_rindex_uptodate) 960 error = gfs2_ri_update(ip); 961 if (unlock_required) 962 gfs2_glock_dq_uninit(&ri_gh); 963 } 964 965 return error; 966 } 967 968 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf) 969 { 970 const struct gfs2_rgrp *str = buf; 971 u32 rg_flags; 972 973 rg_flags = be32_to_cpu(str->rg_flags); 974 rg_flags &= ~GFS2_RDF_MASK; 975 rgd->rd_flags &= GFS2_RDF_MASK; 976 rgd->rd_flags |= rg_flags; 977 rgd->rd_free = be32_to_cpu(str->rg_free); 978 rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes); 979 rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration); 980 } 981 982 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf) 983 { 984 struct gfs2_rgrp *str = buf; 985 986 str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK); 987 str->rg_free = cpu_to_be32(rgd->rd_free); 988 str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes); 989 str->__pad = cpu_to_be32(0); 990 str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration); 991 memset(&str->rg_reserved, 0, sizeof(str->rg_reserved)); 992 } 993 994 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd) 995 { 996 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl; 997 struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data; 998 999 if (rgl->rl_flags != str->rg_flags || rgl->rl_free != str->rg_free || 1000 rgl->rl_dinodes != str->rg_dinodes || 1001 rgl->rl_igeneration != str->rg_igeneration) 1002 return 0; 1003 return 1; 1004 } 1005 1006 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf) 1007 { 1008 const struct gfs2_rgrp *str = buf; 1009 1010 rgl->rl_magic = cpu_to_be32(GFS2_MAGIC); 1011 rgl->rl_flags = str->rg_flags; 1012 rgl->rl_free = str->rg_free; 1013 rgl->rl_dinodes = str->rg_dinodes; 1014 rgl->rl_igeneration = str->rg_igeneration; 1015 rgl->__pad = 0UL; 1016 } 1017 1018 static void update_rgrp_lvb_unlinked(struct gfs2_rgrpd *rgd, u32 change) 1019 { 1020 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl; 1021 u32 unlinked = be32_to_cpu(rgl->rl_unlinked) + change; 1022 rgl->rl_unlinked = cpu_to_be32(unlinked); 1023 } 1024 1025 static u32 count_unlinked(struct gfs2_rgrpd *rgd) 1026 { 1027 struct gfs2_bitmap *bi; 1028 const u32 length = rgd->rd_length; 1029 const u8 *buffer = NULL; 1030 u32 i, goal, count = 0; 1031 1032 for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) { 1033 goal = 0; 1034 buffer = bi->bi_bh->b_data + bi->bi_offset; 1035 WARN_ON(!buffer_uptodate(bi->bi_bh)); 1036 while (goal < bi->bi_len * GFS2_NBBY) { 1037 goal = gfs2_bitfit(buffer, bi->bi_len, goal, 1038 GFS2_BLKST_UNLINKED); 1039 if (goal == BFITNOENT) 1040 break; 1041 count++; 1042 goal++; 1043 } 1044 } 1045 1046 return count; 1047 } 1048 1049 1050 /** 1051 * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps 1052 * @rgd: the struct gfs2_rgrpd describing the RG to read in 1053 * 1054 * Read in all of a Resource Group's header and bitmap blocks. 1055 * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps. 1056 * 1057 * Returns: errno 1058 */ 1059 1060 int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd) 1061 { 1062 struct gfs2_sbd *sdp = rgd->rd_sbd; 1063 struct gfs2_glock *gl = rgd->rd_gl; 1064 unsigned int length = rgd->rd_length; 1065 struct gfs2_bitmap *bi; 1066 unsigned int x, y; 1067 int error; 1068 1069 if (rgd->rd_bits[0].bi_bh != NULL) 1070 return 0; 1071 1072 for (x = 0; x < length; x++) { 1073 bi = rgd->rd_bits + x; 1074 error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, &bi->bi_bh); 1075 if (error) 1076 goto fail; 1077 } 1078 1079 for (y = length; y--;) { 1080 bi = rgd->rd_bits + y; 1081 error = gfs2_meta_wait(sdp, bi->bi_bh); 1082 if (error) 1083 goto fail; 1084 if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB : 1085 GFS2_METATYPE_RG)) { 1086 error = -EIO; 1087 goto fail; 1088 } 1089 } 1090 1091 if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) { 1092 for (x = 0; x < length; x++) 1093 clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags); 1094 gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data); 1095 rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK); 1096 rgd->rd_free_clone = rgd->rd_free; 1097 } 1098 if (be32_to_cpu(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) { 1099 rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd)); 1100 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, 1101 rgd->rd_bits[0].bi_bh->b_data); 1102 } 1103 else if (sdp->sd_args.ar_rgrplvb) { 1104 if (!gfs2_rgrp_lvb_valid(rgd)){ 1105 gfs2_consist_rgrpd(rgd); 1106 error = -EIO; 1107 goto fail; 1108 } 1109 if (rgd->rd_rgl->rl_unlinked == 0) 1110 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1111 } 1112 return 0; 1113 1114 fail: 1115 while (x--) { 1116 bi = rgd->rd_bits + x; 1117 brelse(bi->bi_bh); 1118 bi->bi_bh = NULL; 1119 gfs2_assert_warn(sdp, !bi->bi_clone); 1120 } 1121 1122 return error; 1123 } 1124 1125 int update_rgrp_lvb(struct gfs2_rgrpd *rgd) 1126 { 1127 u32 rl_flags; 1128 1129 if (rgd->rd_flags & GFS2_RDF_UPTODATE) 1130 return 0; 1131 1132 if (be32_to_cpu(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) 1133 return gfs2_rgrp_bh_get(rgd); 1134 1135 rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags); 1136 rl_flags &= ~GFS2_RDF_MASK; 1137 rgd->rd_flags &= GFS2_RDF_MASK; 1138 rgd->rd_flags |= (rl_flags | GFS2_RDF_UPTODATE | GFS2_RDF_CHECK); 1139 if (rgd->rd_rgl->rl_unlinked == 0) 1140 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1141 rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free); 1142 rgd->rd_free_clone = rgd->rd_free; 1143 rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes); 1144 rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration); 1145 return 0; 1146 } 1147 1148 int gfs2_rgrp_go_lock(struct gfs2_holder *gh) 1149 { 1150 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object; 1151 struct gfs2_sbd *sdp = rgd->rd_sbd; 1152 1153 if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb) 1154 return 0; 1155 return gfs2_rgrp_bh_get((struct gfs2_rgrpd *)gh->gh_gl->gl_object); 1156 } 1157 1158 /** 1159 * gfs2_rgrp_go_unlock - Release RG bitmaps read in with gfs2_rgrp_bh_get() 1160 * @gh: The glock holder for the resource group 1161 * 1162 */ 1163 1164 void gfs2_rgrp_go_unlock(struct gfs2_holder *gh) 1165 { 1166 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object; 1167 int x, length = rgd->rd_length; 1168 1169 for (x = 0; x < length; x++) { 1170 struct gfs2_bitmap *bi = rgd->rd_bits + x; 1171 if (bi->bi_bh) { 1172 brelse(bi->bi_bh); 1173 bi->bi_bh = NULL; 1174 } 1175 } 1176 1177 } 1178 1179 int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset, 1180 struct buffer_head *bh, 1181 const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed) 1182 { 1183 struct super_block *sb = sdp->sd_vfs; 1184 u64 blk; 1185 sector_t start = 0; 1186 sector_t nr_blks = 0; 1187 int rv; 1188 unsigned int x; 1189 u32 trimmed = 0; 1190 u8 diff; 1191 1192 for (x = 0; x < bi->bi_len; x++) { 1193 const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data; 1194 clone += bi->bi_offset; 1195 clone += x; 1196 if (bh) { 1197 const u8 *orig = bh->b_data + bi->bi_offset + x; 1198 diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1)); 1199 } else { 1200 diff = ~(*clone | (*clone >> 1)); 1201 } 1202 diff &= 0x55; 1203 if (diff == 0) 1204 continue; 1205 blk = offset + ((bi->bi_start + x) * GFS2_NBBY); 1206 while(diff) { 1207 if (diff & 1) { 1208 if (nr_blks == 0) 1209 goto start_new_extent; 1210 if ((start + nr_blks) != blk) { 1211 if (nr_blks >= minlen) { 1212 rv = sb_issue_discard(sb, 1213 start, nr_blks, 1214 GFP_NOFS, 0); 1215 if (rv) 1216 goto fail; 1217 trimmed += nr_blks; 1218 } 1219 nr_blks = 0; 1220 start_new_extent: 1221 start = blk; 1222 } 1223 nr_blks++; 1224 } 1225 diff >>= 2; 1226 blk++; 1227 } 1228 } 1229 if (nr_blks >= minlen) { 1230 rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0); 1231 if (rv) 1232 goto fail; 1233 trimmed += nr_blks; 1234 } 1235 if (ptrimmed) 1236 *ptrimmed = trimmed; 1237 return 0; 1238 1239 fail: 1240 if (sdp->sd_args.ar_discard) 1241 fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv); 1242 sdp->sd_args.ar_discard = 0; 1243 return -EIO; 1244 } 1245 1246 /** 1247 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem 1248 * @filp: Any file on the filesystem 1249 * @argp: Pointer to the arguments (also used to pass result) 1250 * 1251 * Returns: 0 on success, otherwise error code 1252 */ 1253 1254 int gfs2_fitrim(struct file *filp, void __user *argp) 1255 { 1256 struct inode *inode = file_inode(filp); 1257 struct gfs2_sbd *sdp = GFS2_SB(inode); 1258 struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev); 1259 struct buffer_head *bh; 1260 struct gfs2_rgrpd *rgd; 1261 struct gfs2_rgrpd *rgd_end; 1262 struct gfs2_holder gh; 1263 struct fstrim_range r; 1264 int ret = 0; 1265 u64 amt; 1266 u64 trimmed = 0; 1267 u64 start, end, minlen; 1268 unsigned int x; 1269 unsigned bs_shift = sdp->sd_sb.sb_bsize_shift; 1270 1271 if (!capable(CAP_SYS_ADMIN)) 1272 return -EPERM; 1273 1274 if (!blk_queue_discard(q)) 1275 return -EOPNOTSUPP; 1276 1277 if (copy_from_user(&r, argp, sizeof(r))) 1278 return -EFAULT; 1279 1280 ret = gfs2_rindex_update(sdp); 1281 if (ret) 1282 return ret; 1283 1284 start = r.start >> bs_shift; 1285 end = start + (r.len >> bs_shift); 1286 minlen = max_t(u64, r.minlen, 1287 q->limits.discard_granularity) >> bs_shift; 1288 1289 rgd = gfs2_blk2rgrpd(sdp, start, 0); 1290 rgd_end = gfs2_blk2rgrpd(sdp, end - 1, 0); 1291 1292 if (end <= start || 1293 minlen > sdp->sd_max_rg_data || 1294 start > rgd_end->rd_data0 + rgd_end->rd_data) 1295 return -EINVAL; 1296 1297 while (1) { 1298 1299 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh); 1300 if (ret) 1301 goto out; 1302 1303 if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) { 1304 /* Trim each bitmap in the rgrp */ 1305 for (x = 0; x < rgd->rd_length; x++) { 1306 struct gfs2_bitmap *bi = rgd->rd_bits + x; 1307 ret = gfs2_rgrp_send_discards(sdp, 1308 rgd->rd_data0, NULL, bi, minlen, 1309 &amt); 1310 if (ret) { 1311 gfs2_glock_dq_uninit(&gh); 1312 goto out; 1313 } 1314 trimmed += amt; 1315 } 1316 1317 /* Mark rgrp as having been trimmed */ 1318 ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0); 1319 if (ret == 0) { 1320 bh = rgd->rd_bits[0].bi_bh; 1321 rgd->rd_flags |= GFS2_RGF_TRIMMED; 1322 gfs2_trans_add_meta(rgd->rd_gl, bh); 1323 gfs2_rgrp_out(rgd, bh->b_data); 1324 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, bh->b_data); 1325 gfs2_trans_end(sdp); 1326 } 1327 } 1328 gfs2_glock_dq_uninit(&gh); 1329 1330 if (rgd == rgd_end) 1331 break; 1332 1333 rgd = gfs2_rgrpd_get_next(rgd); 1334 } 1335 1336 out: 1337 r.len = trimmed << 9; 1338 if (copy_to_user(argp, &r, sizeof(r))) 1339 return -EFAULT; 1340 1341 return ret; 1342 } 1343 1344 /** 1345 * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree 1346 * @ip: the inode structure 1347 * 1348 */ 1349 static void rs_insert(struct gfs2_inode *ip) 1350 { 1351 struct rb_node **newn, *parent = NULL; 1352 int rc; 1353 struct gfs2_blkreserv *rs = ip->i_res; 1354 struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd; 1355 u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm); 1356 1357 BUG_ON(gfs2_rs_active(rs)); 1358 1359 spin_lock(&rgd->rd_rsspin); 1360 newn = &rgd->rd_rstree.rb_node; 1361 while (*newn) { 1362 struct gfs2_blkreserv *cur = 1363 rb_entry(*newn, struct gfs2_blkreserv, rs_node); 1364 1365 parent = *newn; 1366 rc = rs_cmp(fsblock, rs->rs_free, cur); 1367 if (rc > 0) 1368 newn = &((*newn)->rb_right); 1369 else if (rc < 0) 1370 newn = &((*newn)->rb_left); 1371 else { 1372 spin_unlock(&rgd->rd_rsspin); 1373 WARN_ON(1); 1374 return; 1375 } 1376 } 1377 1378 rb_link_node(&rs->rs_node, parent, newn); 1379 rb_insert_color(&rs->rs_node, &rgd->rd_rstree); 1380 1381 /* Do our rgrp accounting for the reservation */ 1382 rgd->rd_reserved += rs->rs_free; /* blocks reserved */ 1383 spin_unlock(&rgd->rd_rsspin); 1384 trace_gfs2_rs(rs, TRACE_RS_INSERT); 1385 } 1386 1387 /** 1388 * rg_mblk_search - find a group of multiple free blocks to form a reservation 1389 * @rgd: the resource group descriptor 1390 * @ip: pointer to the inode for which we're reserving blocks 1391 * @requested: number of blocks required for this allocation 1392 * 1393 */ 1394 1395 static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip, 1396 unsigned requested) 1397 { 1398 struct gfs2_rbm rbm = { .rgd = rgd, }; 1399 u64 goal; 1400 struct gfs2_blkreserv *rs = ip->i_res; 1401 u32 extlen; 1402 u32 free_blocks = rgd->rd_free_clone - rgd->rd_reserved; 1403 int ret; 1404 struct inode *inode = &ip->i_inode; 1405 1406 if (S_ISDIR(inode->i_mode)) 1407 extlen = 1; 1408 else { 1409 extlen = max_t(u32, atomic_read(&rs->rs_sizehint), requested); 1410 extlen = clamp(extlen, RGRP_RSRV_MINBLKS, free_blocks); 1411 } 1412 if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen)) 1413 return; 1414 1415 /* Find bitmap block that contains bits for goal block */ 1416 if (rgrp_contains_block(rgd, ip->i_goal)) 1417 goal = ip->i_goal; 1418 else 1419 goal = rgd->rd_last_alloc + rgd->rd_data0; 1420 1421 if (WARN_ON(gfs2_rbm_from_block(&rbm, goal))) 1422 return; 1423 1424 ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, extlen, ip, true); 1425 if (ret == 0) { 1426 rs->rs_rbm = rbm; 1427 rs->rs_free = extlen; 1428 rs->rs_inum = ip->i_no_addr; 1429 rs_insert(ip); 1430 } else { 1431 if (goal == rgd->rd_last_alloc + rgd->rd_data0) 1432 rgd->rd_last_alloc = 0; 1433 } 1434 } 1435 1436 /** 1437 * gfs2_next_unreserved_block - Return next block that is not reserved 1438 * @rgd: The resource group 1439 * @block: The starting block 1440 * @length: The required length 1441 * @ip: Ignore any reservations for this inode 1442 * 1443 * If the block does not appear in any reservation, then return the 1444 * block number unchanged. If it does appear in the reservation, then 1445 * keep looking through the tree of reservations in order to find the 1446 * first block number which is not reserved. 1447 */ 1448 1449 static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block, 1450 u32 length, 1451 const struct gfs2_inode *ip) 1452 { 1453 struct gfs2_blkreserv *rs; 1454 struct rb_node *n; 1455 int rc; 1456 1457 spin_lock(&rgd->rd_rsspin); 1458 n = rgd->rd_rstree.rb_node; 1459 while (n) { 1460 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 1461 rc = rs_cmp(block, length, rs); 1462 if (rc < 0) 1463 n = n->rb_left; 1464 else if (rc > 0) 1465 n = n->rb_right; 1466 else 1467 break; 1468 } 1469 1470 if (n) { 1471 while ((rs_cmp(block, length, rs) == 0) && (ip->i_res != rs)) { 1472 block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free; 1473 n = n->rb_right; 1474 if (n == NULL) 1475 break; 1476 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 1477 } 1478 } 1479 1480 spin_unlock(&rgd->rd_rsspin); 1481 return block; 1482 } 1483 1484 /** 1485 * gfs2_reservation_check_and_update - Check for reservations during block alloc 1486 * @rbm: The current position in the resource group 1487 * @ip: The inode for which we are searching for blocks 1488 * @minext: The minimum extent length 1489 * 1490 * This checks the current position in the rgrp to see whether there is 1491 * a reservation covering this block. If not then this function is a 1492 * no-op. If there is, then the position is moved to the end of the 1493 * contiguous reservation(s) so that we are pointing at the first 1494 * non-reserved block. 1495 * 1496 * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error 1497 */ 1498 1499 static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm, 1500 const struct gfs2_inode *ip, 1501 u32 minext) 1502 { 1503 u64 block = gfs2_rbm_to_block(rbm); 1504 u32 extlen = 1; 1505 u64 nblock; 1506 int ret; 1507 1508 /* 1509 * If we have a minimum extent length, then skip over any extent 1510 * which is less than the min extent length in size. 1511 */ 1512 if (minext) { 1513 extlen = gfs2_free_extlen(rbm, minext); 1514 nblock = block + extlen; 1515 if (extlen < minext) 1516 goto fail; 1517 } 1518 1519 /* 1520 * Check the extent which has been found against the reservations 1521 * and skip if parts of it are already reserved 1522 */ 1523 nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip); 1524 if (nblock == block) 1525 return 0; 1526 fail: 1527 ret = gfs2_rbm_from_block(rbm, nblock); 1528 if (ret < 0) 1529 return ret; 1530 return 1; 1531 } 1532 1533 /** 1534 * gfs2_rbm_find - Look for blocks of a particular state 1535 * @rbm: Value/result starting position and final position 1536 * @state: The state which we want to find 1537 * @minext: The requested extent length (0 for a single block) 1538 * @ip: If set, check for reservations 1539 * @nowrap: Stop looking at the end of the rgrp, rather than wrapping 1540 * around until we've reached the starting point. 1541 * 1542 * Side effects: 1543 * - If looking for free blocks, we set GBF_FULL on each bitmap which 1544 * has no free blocks in it. 1545 * 1546 * Returns: 0 on success, -ENOSPC if there is no block of the requested state 1547 */ 1548 1549 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 minext, 1550 const struct gfs2_inode *ip, bool nowrap) 1551 { 1552 struct buffer_head *bh; 1553 struct gfs2_bitmap *initial_bi; 1554 u32 initial_offset; 1555 u32 offset; 1556 u8 *buffer; 1557 int index; 1558 int n = 0; 1559 int iters = rbm->rgd->rd_length; 1560 int ret; 1561 1562 /* If we are not starting at the beginning of a bitmap, then we 1563 * need to add one to the bitmap count to ensure that we search 1564 * the starting bitmap twice. 1565 */ 1566 if (rbm->offset != 0) 1567 iters++; 1568 1569 while(1) { 1570 if (test_bit(GBF_FULL, &rbm->bi->bi_flags) && 1571 (state == GFS2_BLKST_FREE)) 1572 goto next_bitmap; 1573 1574 bh = rbm->bi->bi_bh; 1575 buffer = bh->b_data + rbm->bi->bi_offset; 1576 WARN_ON(!buffer_uptodate(bh)); 1577 if (state != GFS2_BLKST_UNLINKED && rbm->bi->bi_clone) 1578 buffer = rbm->bi->bi_clone + rbm->bi->bi_offset; 1579 initial_offset = rbm->offset; 1580 offset = gfs2_bitfit(buffer, rbm->bi->bi_len, rbm->offset, state); 1581 if (offset == BFITNOENT) 1582 goto bitmap_full; 1583 rbm->offset = offset; 1584 if (ip == NULL) 1585 return 0; 1586 1587 initial_bi = rbm->bi; 1588 ret = gfs2_reservation_check_and_update(rbm, ip, minext); 1589 if (ret == 0) 1590 return 0; 1591 if (ret > 0) { 1592 n += (rbm->bi - initial_bi); 1593 goto next_iter; 1594 } 1595 if (ret == -E2BIG) { 1596 index = 0; 1597 rbm->offset = 0; 1598 n += (rbm->bi - initial_bi); 1599 goto res_covered_end_of_rgrp; 1600 } 1601 return ret; 1602 1603 bitmap_full: /* Mark bitmap as full and fall through */ 1604 if ((state == GFS2_BLKST_FREE) && initial_offset == 0) 1605 set_bit(GBF_FULL, &rbm->bi->bi_flags); 1606 1607 next_bitmap: /* Find next bitmap in the rgrp */ 1608 rbm->offset = 0; 1609 index = rbm->bi - rbm->rgd->rd_bits; 1610 index++; 1611 if (index == rbm->rgd->rd_length) 1612 index = 0; 1613 res_covered_end_of_rgrp: 1614 rbm->bi = &rbm->rgd->rd_bits[index]; 1615 if ((index == 0) && nowrap) 1616 break; 1617 n++; 1618 next_iter: 1619 if (n >= iters) 1620 break; 1621 } 1622 1623 return -ENOSPC; 1624 } 1625 1626 /** 1627 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes 1628 * @rgd: The rgrp 1629 * @last_unlinked: block address of the last dinode we unlinked 1630 * @skip: block address we should explicitly not unlink 1631 * 1632 * Returns: 0 if no error 1633 * The inode, if one has been found, in inode. 1634 */ 1635 1636 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip) 1637 { 1638 u64 block; 1639 struct gfs2_sbd *sdp = rgd->rd_sbd; 1640 struct gfs2_glock *gl; 1641 struct gfs2_inode *ip; 1642 int error; 1643 int found = 0; 1644 struct gfs2_rbm rbm = { .rgd = rgd, .bi = rgd->rd_bits, .offset = 0 }; 1645 1646 while (1) { 1647 down_write(&sdp->sd_log_flush_lock); 1648 error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, 0, NULL, true); 1649 up_write(&sdp->sd_log_flush_lock); 1650 if (error == -ENOSPC) 1651 break; 1652 if (WARN_ON_ONCE(error)) 1653 break; 1654 1655 block = gfs2_rbm_to_block(&rbm); 1656 if (gfs2_rbm_from_block(&rbm, block + 1)) 1657 break; 1658 if (*last_unlinked != NO_BLOCK && block <= *last_unlinked) 1659 continue; 1660 if (block == skip) 1661 continue; 1662 *last_unlinked = block; 1663 1664 error = gfs2_glock_get(sdp, block, &gfs2_inode_glops, CREATE, &gl); 1665 if (error) 1666 continue; 1667 1668 /* If the inode is already in cache, we can ignore it here 1669 * because the existing inode disposal code will deal with 1670 * it when all refs have gone away. Accessing gl_object like 1671 * this is not safe in general. Here it is ok because we do 1672 * not dereference the pointer, and we only need an approx 1673 * answer to whether it is NULL or not. 1674 */ 1675 ip = gl->gl_object; 1676 1677 if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0) 1678 gfs2_glock_put(gl); 1679 else 1680 found++; 1681 1682 /* Limit reclaim to sensible number of tasks */ 1683 if (found > NR_CPUS) 1684 return; 1685 } 1686 1687 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1688 return; 1689 } 1690 1691 /** 1692 * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested 1693 * @rgd: The rgrp in question 1694 * @loops: An indication of how picky we can be (0=very, 1=less so) 1695 * 1696 * This function uses the recently added glock statistics in order to 1697 * figure out whether a parciular resource group is suffering from 1698 * contention from multiple nodes. This is done purely on the basis 1699 * of timings, since this is the only data we have to work with and 1700 * our aim here is to reject a resource group which is highly contended 1701 * but (very important) not to do this too often in order to ensure that 1702 * we do not land up introducing fragmentation by changing resource 1703 * groups when not actually required. 1704 * 1705 * The calculation is fairly simple, we want to know whether the SRTTB 1706 * (i.e. smoothed round trip time for blocking operations) to acquire 1707 * the lock for this rgrp's glock is significantly greater than the 1708 * time taken for resource groups on average. We introduce a margin in 1709 * the form of the variable @var which is computed as the sum of the two 1710 * respective variences, and multiplied by a factor depending on @loops 1711 * and whether we have a lot of data to base the decision on. This is 1712 * then tested against the square difference of the means in order to 1713 * decide whether the result is statistically significant or not. 1714 * 1715 * Returns: A boolean verdict on the congestion status 1716 */ 1717 1718 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops) 1719 { 1720 const struct gfs2_glock *gl = rgd->rd_gl; 1721 const struct gfs2_sbd *sdp = gl->gl_sbd; 1722 struct gfs2_lkstats *st; 1723 s64 r_dcount, l_dcount; 1724 s64 r_srttb, l_srttb; 1725 s64 srttb_diff; 1726 s64 sqr_diff; 1727 s64 var; 1728 1729 preempt_disable(); 1730 st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP]; 1731 r_srttb = st->stats[GFS2_LKS_SRTTB]; 1732 r_dcount = st->stats[GFS2_LKS_DCOUNT]; 1733 var = st->stats[GFS2_LKS_SRTTVARB] + 1734 gl->gl_stats.stats[GFS2_LKS_SRTTVARB]; 1735 preempt_enable(); 1736 1737 l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB]; 1738 l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT]; 1739 1740 if ((l_dcount < 1) || (r_dcount < 1) || (r_srttb == 0)) 1741 return false; 1742 1743 srttb_diff = r_srttb - l_srttb; 1744 sqr_diff = srttb_diff * srttb_diff; 1745 1746 var *= 2; 1747 if (l_dcount < 8 || r_dcount < 8) 1748 var *= 2; 1749 if (loops == 1) 1750 var *= 2; 1751 1752 return ((srttb_diff < 0) && (sqr_diff > var)); 1753 } 1754 1755 /** 1756 * gfs2_rgrp_used_recently 1757 * @rs: The block reservation with the rgrp to test 1758 * @msecs: The time limit in milliseconds 1759 * 1760 * Returns: True if the rgrp glock has been used within the time limit 1761 */ 1762 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs, 1763 u64 msecs) 1764 { 1765 u64 tdiff; 1766 1767 tdiff = ktime_to_ns(ktime_sub(ktime_get_real(), 1768 rs->rs_rbm.rgd->rd_gl->gl_dstamp)); 1769 1770 return tdiff > (msecs * 1000 * 1000); 1771 } 1772 1773 static u32 gfs2_orlov_skip(const struct gfs2_inode *ip) 1774 { 1775 const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1776 u32 skip; 1777 1778 get_random_bytes(&skip, sizeof(skip)); 1779 return skip % sdp->sd_rgrps; 1780 } 1781 1782 static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin) 1783 { 1784 struct gfs2_rgrpd *rgd = *pos; 1785 struct gfs2_sbd *sdp = rgd->rd_sbd; 1786 1787 rgd = gfs2_rgrpd_get_next(rgd); 1788 if (rgd == NULL) 1789 rgd = gfs2_rgrpd_get_first(sdp); 1790 *pos = rgd; 1791 if (rgd != begin) /* If we didn't wrap */ 1792 return true; 1793 return false; 1794 } 1795 1796 /** 1797 * gfs2_inplace_reserve - Reserve space in the filesystem 1798 * @ip: the inode to reserve space for 1799 * @requested: the number of blocks to be reserved 1800 * 1801 * Returns: errno 1802 */ 1803 1804 int gfs2_inplace_reserve(struct gfs2_inode *ip, u32 requested, u32 aflags) 1805 { 1806 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1807 struct gfs2_rgrpd *begin = NULL; 1808 struct gfs2_blkreserv *rs = ip->i_res; 1809 int error = 0, rg_locked, flags = 0; 1810 u64 last_unlinked = NO_BLOCK; 1811 int loops = 0; 1812 u32 skip = 0; 1813 1814 if (sdp->sd_args.ar_rgrplvb) 1815 flags |= GL_SKIP; 1816 if (gfs2_assert_warn(sdp, requested)) 1817 return -EINVAL; 1818 if (gfs2_rs_active(rs)) { 1819 begin = rs->rs_rbm.rgd; 1820 flags = 0; /* Yoda: Do or do not. There is no try */ 1821 } else if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal)) { 1822 rs->rs_rbm.rgd = begin = ip->i_rgd; 1823 } else { 1824 rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1); 1825 } 1826 if (S_ISDIR(ip->i_inode.i_mode) && (aflags & GFS2_AF_ORLOV)) 1827 skip = gfs2_orlov_skip(ip); 1828 if (rs->rs_rbm.rgd == NULL) 1829 return -EBADSLT; 1830 1831 while (loops < 3) { 1832 rg_locked = 1; 1833 1834 if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) { 1835 rg_locked = 0; 1836 if (skip && skip--) 1837 goto next_rgrp; 1838 if (!gfs2_rs_active(rs) && (loops < 2) && 1839 gfs2_rgrp_used_recently(rs, 1000) && 1840 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops)) 1841 goto next_rgrp; 1842 error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl, 1843 LM_ST_EXCLUSIVE, flags, 1844 &rs->rs_rgd_gh); 1845 if (unlikely(error)) 1846 return error; 1847 if (!gfs2_rs_active(rs) && (loops < 2) && 1848 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops)) 1849 goto skip_rgrp; 1850 if (sdp->sd_args.ar_rgrplvb) { 1851 error = update_rgrp_lvb(rs->rs_rbm.rgd); 1852 if (unlikely(error)) { 1853 gfs2_glock_dq_uninit(&rs->rs_rgd_gh); 1854 return error; 1855 } 1856 } 1857 } 1858 1859 /* Skip unuseable resource groups */ 1860 if (rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC | GFS2_RDF_ERROR)) 1861 goto skip_rgrp; 1862 1863 if (sdp->sd_args.ar_rgrplvb) 1864 gfs2_rgrp_bh_get(rs->rs_rbm.rgd); 1865 1866 /* Get a reservation if we don't already have one */ 1867 if (!gfs2_rs_active(rs)) 1868 rg_mblk_search(rs->rs_rbm.rgd, ip, requested); 1869 1870 /* Skip rgrps when we can't get a reservation on first pass */ 1871 if (!gfs2_rs_active(rs) && (loops < 1)) 1872 goto check_rgrp; 1873 1874 /* If rgrp has enough free space, use it */ 1875 if (rs->rs_rbm.rgd->rd_free_clone >= requested) { 1876 ip->i_rgd = rs->rs_rbm.rgd; 1877 return 0; 1878 } 1879 1880 /* Drop reservation, if we couldn't use reserved rgrp */ 1881 if (gfs2_rs_active(rs)) 1882 gfs2_rs_deltree(rs); 1883 check_rgrp: 1884 /* Check for unlinked inodes which can be reclaimed */ 1885 if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK) 1886 try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked, 1887 ip->i_no_addr); 1888 skip_rgrp: 1889 /* Unlock rgrp if required */ 1890 if (!rg_locked) 1891 gfs2_glock_dq_uninit(&rs->rs_rgd_gh); 1892 next_rgrp: 1893 /* Find the next rgrp, and continue looking */ 1894 if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin)) 1895 continue; 1896 if (skip) 1897 continue; 1898 1899 /* If we've scanned all the rgrps, but found no free blocks 1900 * then this checks for some less likely conditions before 1901 * trying again. 1902 */ 1903 loops++; 1904 /* Check that fs hasn't grown if writing to rindex */ 1905 if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) { 1906 error = gfs2_ri_update(ip); 1907 if (error) 1908 return error; 1909 } 1910 /* Flushing the log may release space */ 1911 if (loops == 2) 1912 gfs2_log_flush(sdp, NULL); 1913 } 1914 1915 return -ENOSPC; 1916 } 1917 1918 /** 1919 * gfs2_inplace_release - release an inplace reservation 1920 * @ip: the inode the reservation was taken out on 1921 * 1922 * Release a reservation made by gfs2_inplace_reserve(). 1923 */ 1924 1925 void gfs2_inplace_release(struct gfs2_inode *ip) 1926 { 1927 struct gfs2_blkreserv *rs = ip->i_res; 1928 1929 if (rs->rs_rgd_gh.gh_gl) 1930 gfs2_glock_dq_uninit(&rs->rs_rgd_gh); 1931 } 1932 1933 /** 1934 * gfs2_get_block_type - Check a block in a RG is of given type 1935 * @rgd: the resource group holding the block 1936 * @block: the block number 1937 * 1938 * Returns: The block type (GFS2_BLKST_*) 1939 */ 1940 1941 static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block) 1942 { 1943 struct gfs2_rbm rbm = { .rgd = rgd, }; 1944 int ret; 1945 1946 ret = gfs2_rbm_from_block(&rbm, block); 1947 WARN_ON_ONCE(ret != 0); 1948 1949 return gfs2_testbit(&rbm); 1950 } 1951 1952 1953 /** 1954 * gfs2_alloc_extent - allocate an extent from a given bitmap 1955 * @rbm: the resource group information 1956 * @dinode: TRUE if the first block we allocate is for a dinode 1957 * @n: The extent length (value/result) 1958 * 1959 * Add the bitmap buffer to the transaction. 1960 * Set the found bits to @new_state to change block's allocation state. 1961 */ 1962 static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode, 1963 unsigned int *n) 1964 { 1965 struct gfs2_rbm pos = { .rgd = rbm->rgd, }; 1966 const unsigned int elen = *n; 1967 u64 block; 1968 int ret; 1969 1970 *n = 1; 1971 block = gfs2_rbm_to_block(rbm); 1972 gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm->bi->bi_bh); 1973 gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED); 1974 block++; 1975 while (*n < elen) { 1976 ret = gfs2_rbm_from_block(&pos, block); 1977 if (ret || gfs2_testbit(&pos) != GFS2_BLKST_FREE) 1978 break; 1979 gfs2_trans_add_meta(pos.rgd->rd_gl, pos.bi->bi_bh); 1980 gfs2_setbit(&pos, true, GFS2_BLKST_USED); 1981 (*n)++; 1982 block++; 1983 } 1984 } 1985 1986 /** 1987 * rgblk_free - Change alloc state of given block(s) 1988 * @sdp: the filesystem 1989 * @bstart: the start of a run of blocks to free 1990 * @blen: the length of the block run (all must lie within ONE RG!) 1991 * @new_state: GFS2_BLKST_XXX the after-allocation block state 1992 * 1993 * Returns: Resource group containing the block(s) 1994 */ 1995 1996 static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart, 1997 u32 blen, unsigned char new_state) 1998 { 1999 struct gfs2_rbm rbm; 2000 2001 rbm.rgd = gfs2_blk2rgrpd(sdp, bstart, 1); 2002 if (!rbm.rgd) { 2003 if (gfs2_consist(sdp)) 2004 fs_err(sdp, "block = %llu\n", (unsigned long long)bstart); 2005 return NULL; 2006 } 2007 2008 while (blen--) { 2009 gfs2_rbm_from_block(&rbm, bstart); 2010 bstart++; 2011 if (!rbm.bi->bi_clone) { 2012 rbm.bi->bi_clone = kmalloc(rbm.bi->bi_bh->b_size, 2013 GFP_NOFS | __GFP_NOFAIL); 2014 memcpy(rbm.bi->bi_clone + rbm.bi->bi_offset, 2015 rbm.bi->bi_bh->b_data + rbm.bi->bi_offset, 2016 rbm.bi->bi_len); 2017 } 2018 gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.bi->bi_bh); 2019 gfs2_setbit(&rbm, false, new_state); 2020 } 2021 2022 return rbm.rgd; 2023 } 2024 2025 /** 2026 * gfs2_rgrp_dump - print out an rgrp 2027 * @seq: The iterator 2028 * @gl: The glock in question 2029 * 2030 */ 2031 2032 int gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl) 2033 { 2034 struct gfs2_rgrpd *rgd = gl->gl_object; 2035 struct gfs2_blkreserv *trs; 2036 const struct rb_node *n; 2037 2038 if (rgd == NULL) 2039 return 0; 2040 gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u r:%u\n", 2041 (unsigned long long)rgd->rd_addr, rgd->rd_flags, 2042 rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes, 2043 rgd->rd_reserved); 2044 spin_lock(&rgd->rd_rsspin); 2045 for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) { 2046 trs = rb_entry(n, struct gfs2_blkreserv, rs_node); 2047 dump_rs(seq, trs); 2048 } 2049 spin_unlock(&rgd->rd_rsspin); 2050 return 0; 2051 } 2052 2053 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd) 2054 { 2055 struct gfs2_sbd *sdp = rgd->rd_sbd; 2056 fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n", 2057 (unsigned long long)rgd->rd_addr); 2058 fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n"); 2059 gfs2_rgrp_dump(NULL, rgd->rd_gl); 2060 rgd->rd_flags |= GFS2_RDF_ERROR; 2061 } 2062 2063 /** 2064 * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation 2065 * @ip: The inode we have just allocated blocks for 2066 * @rbm: The start of the allocated blocks 2067 * @len: The extent length 2068 * 2069 * Adjusts a reservation after an allocation has taken place. If the 2070 * reservation does not match the allocation, or if it is now empty 2071 * then it is removed. 2072 */ 2073 2074 static void gfs2_adjust_reservation(struct gfs2_inode *ip, 2075 const struct gfs2_rbm *rbm, unsigned len) 2076 { 2077 struct gfs2_blkreserv *rs = ip->i_res; 2078 struct gfs2_rgrpd *rgd = rbm->rgd; 2079 unsigned rlen; 2080 u64 block; 2081 int ret; 2082 2083 spin_lock(&rgd->rd_rsspin); 2084 if (gfs2_rs_active(rs)) { 2085 if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) { 2086 block = gfs2_rbm_to_block(rbm); 2087 ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len); 2088 rlen = min(rs->rs_free, len); 2089 rs->rs_free -= rlen; 2090 rgd->rd_reserved -= rlen; 2091 trace_gfs2_rs(rs, TRACE_RS_CLAIM); 2092 if (rs->rs_free && !ret) 2093 goto out; 2094 } 2095 __rs_deltree(rs); 2096 } 2097 out: 2098 spin_unlock(&rgd->rd_rsspin); 2099 } 2100 2101 /** 2102 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode 2103 * @ip: the inode to allocate the block for 2104 * @bn: Used to return the starting block number 2105 * @nblocks: requested number of blocks/extent length (value/result) 2106 * @dinode: 1 if we're allocating a dinode block, else 0 2107 * @generation: the generation number of the inode 2108 * 2109 * Returns: 0 or error 2110 */ 2111 2112 int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks, 2113 bool dinode, u64 *generation) 2114 { 2115 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2116 struct buffer_head *dibh; 2117 struct gfs2_rbm rbm = { .rgd = ip->i_rgd, }; 2118 unsigned int ndata; 2119 u64 goal; 2120 u64 block; /* block, within the file system scope */ 2121 int error; 2122 2123 if (gfs2_rs_active(ip->i_res)) 2124 goal = gfs2_rbm_to_block(&ip->i_res->rs_rbm); 2125 else if (!dinode && rgrp_contains_block(rbm.rgd, ip->i_goal)) 2126 goal = ip->i_goal; 2127 else 2128 goal = rbm.rgd->rd_last_alloc + rbm.rgd->rd_data0; 2129 2130 gfs2_rbm_from_block(&rbm, goal); 2131 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, 0, ip, false); 2132 2133 if (error == -ENOSPC) { 2134 gfs2_rbm_from_block(&rbm, goal); 2135 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, 0, NULL, false); 2136 } 2137 2138 /* Since all blocks are reserved in advance, this shouldn't happen */ 2139 if (error) { 2140 fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d\n", 2141 (unsigned long long)ip->i_no_addr, error, *nblocks, 2142 test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags)); 2143 goto rgrp_error; 2144 } 2145 2146 gfs2_alloc_extent(&rbm, dinode, nblocks); 2147 block = gfs2_rbm_to_block(&rbm); 2148 rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0; 2149 if (gfs2_rs_active(ip->i_res)) 2150 gfs2_adjust_reservation(ip, &rbm, *nblocks); 2151 ndata = *nblocks; 2152 if (dinode) 2153 ndata--; 2154 2155 if (!dinode) { 2156 ip->i_goal = block + ndata - 1; 2157 error = gfs2_meta_inode_buffer(ip, &dibh); 2158 if (error == 0) { 2159 struct gfs2_dinode *di = 2160 (struct gfs2_dinode *)dibh->b_data; 2161 gfs2_trans_add_meta(ip->i_gl, dibh); 2162 di->di_goal_meta = di->di_goal_data = 2163 cpu_to_be64(ip->i_goal); 2164 brelse(dibh); 2165 } 2166 } 2167 if (rbm.rgd->rd_free < *nblocks) { 2168 printk(KERN_WARNING "nblocks=%u\n", *nblocks); 2169 goto rgrp_error; 2170 } 2171 2172 rbm.rgd->rd_free -= *nblocks; 2173 if (dinode) { 2174 rbm.rgd->rd_dinodes++; 2175 *generation = rbm.rgd->rd_igeneration++; 2176 if (*generation == 0) 2177 *generation = rbm.rgd->rd_igeneration++; 2178 } 2179 2180 gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh); 2181 gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data); 2182 gfs2_rgrp_ondisk2lvb(rbm.rgd->rd_rgl, rbm.rgd->rd_bits[0].bi_bh->b_data); 2183 2184 gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0); 2185 if (dinode) 2186 gfs2_trans_add_unrevoke(sdp, block, 1); 2187 2188 gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid); 2189 2190 rbm.rgd->rd_free_clone -= *nblocks; 2191 trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks, 2192 dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED); 2193 *bn = block; 2194 return 0; 2195 2196 rgrp_error: 2197 gfs2_rgrp_error(rbm.rgd); 2198 return -EIO; 2199 } 2200 2201 /** 2202 * __gfs2_free_blocks - free a contiguous run of block(s) 2203 * @ip: the inode these blocks are being freed from 2204 * @bstart: first block of a run of contiguous blocks 2205 * @blen: the length of the block run 2206 * @meta: 1 if the blocks represent metadata 2207 * 2208 */ 2209 2210 void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta) 2211 { 2212 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2213 struct gfs2_rgrpd *rgd; 2214 2215 rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE); 2216 if (!rgd) 2217 return; 2218 trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE); 2219 rgd->rd_free += blen; 2220 rgd->rd_flags &= ~GFS2_RGF_TRIMMED; 2221 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2222 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2223 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data); 2224 2225 /* Directories keep their data in the metadata address space */ 2226 if (meta || ip->i_depth) 2227 gfs2_meta_wipe(ip, bstart, blen); 2228 } 2229 2230 /** 2231 * gfs2_free_meta - free a contiguous run of data block(s) 2232 * @ip: the inode these blocks are being freed from 2233 * @bstart: first block of a run of contiguous blocks 2234 * @blen: the length of the block run 2235 * 2236 */ 2237 2238 void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen) 2239 { 2240 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2241 2242 __gfs2_free_blocks(ip, bstart, blen, 1); 2243 gfs2_statfs_change(sdp, 0, +blen, 0); 2244 gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid); 2245 } 2246 2247 void gfs2_unlink_di(struct inode *inode) 2248 { 2249 struct gfs2_inode *ip = GFS2_I(inode); 2250 struct gfs2_sbd *sdp = GFS2_SB(inode); 2251 struct gfs2_rgrpd *rgd; 2252 u64 blkno = ip->i_no_addr; 2253 2254 rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED); 2255 if (!rgd) 2256 return; 2257 trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED); 2258 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2259 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2260 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data); 2261 update_rgrp_lvb_unlinked(rgd, 1); 2262 } 2263 2264 static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno) 2265 { 2266 struct gfs2_sbd *sdp = rgd->rd_sbd; 2267 struct gfs2_rgrpd *tmp_rgd; 2268 2269 tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE); 2270 if (!tmp_rgd) 2271 return; 2272 gfs2_assert_withdraw(sdp, rgd == tmp_rgd); 2273 2274 if (!rgd->rd_dinodes) 2275 gfs2_consist_rgrpd(rgd); 2276 rgd->rd_dinodes--; 2277 rgd->rd_free++; 2278 2279 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2280 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2281 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data); 2282 update_rgrp_lvb_unlinked(rgd, -1); 2283 2284 gfs2_statfs_change(sdp, 0, +1, -1); 2285 } 2286 2287 2288 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip) 2289 { 2290 gfs2_free_uninit_di(rgd, ip->i_no_addr); 2291 trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE); 2292 gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid); 2293 gfs2_meta_wipe(ip, ip->i_no_addr, 1); 2294 } 2295 2296 /** 2297 * gfs2_check_blk_type - Check the type of a block 2298 * @sdp: The superblock 2299 * @no_addr: The block number to check 2300 * @type: The block type we are looking for 2301 * 2302 * Returns: 0 if the block type matches the expected type 2303 * -ESTALE if it doesn't match 2304 * or -ve errno if something went wrong while checking 2305 */ 2306 2307 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type) 2308 { 2309 struct gfs2_rgrpd *rgd; 2310 struct gfs2_holder rgd_gh; 2311 int error = -EINVAL; 2312 2313 rgd = gfs2_blk2rgrpd(sdp, no_addr, 1); 2314 if (!rgd) 2315 goto fail; 2316 2317 error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh); 2318 if (error) 2319 goto fail; 2320 2321 if (gfs2_get_block_type(rgd, no_addr) != type) 2322 error = -ESTALE; 2323 2324 gfs2_glock_dq_uninit(&rgd_gh); 2325 fail: 2326 return error; 2327 } 2328 2329 /** 2330 * gfs2_rlist_add - add a RG to a list of RGs 2331 * @ip: the inode 2332 * @rlist: the list of resource groups 2333 * @block: the block 2334 * 2335 * Figure out what RG a block belongs to and add that RG to the list 2336 * 2337 * FIXME: Don't use NOFAIL 2338 * 2339 */ 2340 2341 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist, 2342 u64 block) 2343 { 2344 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2345 struct gfs2_rgrpd *rgd; 2346 struct gfs2_rgrpd **tmp; 2347 unsigned int new_space; 2348 unsigned int x; 2349 2350 if (gfs2_assert_warn(sdp, !rlist->rl_ghs)) 2351 return; 2352 2353 if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block)) 2354 rgd = ip->i_rgd; 2355 else 2356 rgd = gfs2_blk2rgrpd(sdp, block, 1); 2357 if (!rgd) { 2358 fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block); 2359 return; 2360 } 2361 ip->i_rgd = rgd; 2362 2363 for (x = 0; x < rlist->rl_rgrps; x++) 2364 if (rlist->rl_rgd[x] == rgd) 2365 return; 2366 2367 if (rlist->rl_rgrps == rlist->rl_space) { 2368 new_space = rlist->rl_space + 10; 2369 2370 tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *), 2371 GFP_NOFS | __GFP_NOFAIL); 2372 2373 if (rlist->rl_rgd) { 2374 memcpy(tmp, rlist->rl_rgd, 2375 rlist->rl_space * sizeof(struct gfs2_rgrpd *)); 2376 kfree(rlist->rl_rgd); 2377 } 2378 2379 rlist->rl_space = new_space; 2380 rlist->rl_rgd = tmp; 2381 } 2382 2383 rlist->rl_rgd[rlist->rl_rgrps++] = rgd; 2384 } 2385 2386 /** 2387 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate 2388 * and initialize an array of glock holders for them 2389 * @rlist: the list of resource groups 2390 * @state: the lock state to acquire the RG lock in 2391 * 2392 * FIXME: Don't use NOFAIL 2393 * 2394 */ 2395 2396 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state) 2397 { 2398 unsigned int x; 2399 2400 rlist->rl_ghs = kcalloc(rlist->rl_rgrps, sizeof(struct gfs2_holder), 2401 GFP_NOFS | __GFP_NOFAIL); 2402 for (x = 0; x < rlist->rl_rgrps; x++) 2403 gfs2_holder_init(rlist->rl_rgd[x]->rd_gl, 2404 state, 0, 2405 &rlist->rl_ghs[x]); 2406 } 2407 2408 /** 2409 * gfs2_rlist_free - free a resource group list 2410 * @list: the list of resource groups 2411 * 2412 */ 2413 2414 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist) 2415 { 2416 unsigned int x; 2417 2418 kfree(rlist->rl_rgd); 2419 2420 if (rlist->rl_ghs) { 2421 for (x = 0; x < rlist->rl_rgrps; x++) 2422 gfs2_holder_uninit(&rlist->rl_ghs[x]); 2423 kfree(rlist->rl_ghs); 2424 rlist->rl_ghs = NULL; 2425 } 2426 } 2427 2428