1 /* 2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This copyrighted material is made available to anyone wishing to use, 6 * modify, copy, or redistribute it subject to the terms and conditions 7 * of the GNU General Public License version 2. 8 */ 9 10 #include <linux/slab.h> 11 #include <linux/spinlock.h> 12 #include <linux/completion.h> 13 #include <linux/buffer_head.h> 14 #include <linux/fs.h> 15 #include <linux/gfs2_ondisk.h> 16 #include <linux/prefetch.h> 17 #include <linux/blkdev.h> 18 #include <linux/rbtree.h> 19 20 #include "gfs2.h" 21 #include "incore.h" 22 #include "glock.h" 23 #include "glops.h" 24 #include "lops.h" 25 #include "meta_io.h" 26 #include "quota.h" 27 #include "rgrp.h" 28 #include "super.h" 29 #include "trans.h" 30 #include "util.h" 31 #include "log.h" 32 #include "inode.h" 33 #include "trace_gfs2.h" 34 35 #define BFITNOENT ((u32)~0) 36 #define NO_BLOCK ((u64)~0) 37 38 #if BITS_PER_LONG == 32 39 #define LBITMASK (0x55555555UL) 40 #define LBITSKIP55 (0x55555555UL) 41 #define LBITSKIP00 (0x00000000UL) 42 #else 43 #define LBITMASK (0x5555555555555555UL) 44 #define LBITSKIP55 (0x5555555555555555UL) 45 #define LBITSKIP00 (0x0000000000000000UL) 46 #endif 47 48 /* 49 * These routines are used by the resource group routines (rgrp.c) 50 * to keep track of block allocation. Each block is represented by two 51 * bits. So, each byte represents GFS2_NBBY (i.e. 4) blocks. 52 * 53 * 0 = Free 54 * 1 = Used (not metadata) 55 * 2 = Unlinked (still in use) inode 56 * 3 = Used (metadata) 57 */ 58 59 static const char valid_change[16] = { 60 /* current */ 61 /* n */ 0, 1, 1, 1, 62 /* e */ 1, 0, 0, 0, 63 /* w */ 0, 0, 0, 1, 64 1, 0, 0, 0 65 }; 66 67 static u32 rgblk_search(struct gfs2_rgrpd *rgd, u32 goal, 68 unsigned char old_state, unsigned char new_state, 69 unsigned int *n); 70 71 /** 72 * gfs2_setbit - Set a bit in the bitmaps 73 * @buffer: the buffer that holds the bitmaps 74 * @buflen: the length (in bytes) of the buffer 75 * @block: the block to set 76 * @new_state: the new state of the block 77 * 78 */ 79 80 static inline void gfs2_setbit(struct gfs2_rgrpd *rgd, unsigned char *buf1, 81 unsigned char *buf2, unsigned int offset, 82 struct gfs2_bitmap *bi, u32 block, 83 unsigned char new_state) 84 { 85 unsigned char *byte1, *byte2, *end, cur_state; 86 unsigned int buflen = bi->bi_len; 87 const unsigned int bit = (block % GFS2_NBBY) * GFS2_BIT_SIZE; 88 89 byte1 = buf1 + offset + (block / GFS2_NBBY); 90 end = buf1 + offset + buflen; 91 92 BUG_ON(byte1 >= end); 93 94 cur_state = (*byte1 >> bit) & GFS2_BIT_MASK; 95 96 if (unlikely(!valid_change[new_state * 4 + cur_state])) { 97 printk(KERN_WARNING "GFS2: buf_blk = 0x%llx old_state=%d, " 98 "new_state=%d\n", 99 (unsigned long long)block, cur_state, new_state); 100 printk(KERN_WARNING "GFS2: rgrp=0x%llx bi_start=0x%lx\n", 101 (unsigned long long)rgd->rd_addr, 102 (unsigned long)bi->bi_start); 103 printk(KERN_WARNING "GFS2: bi_offset=0x%lx bi_len=0x%lx\n", 104 (unsigned long)bi->bi_offset, 105 (unsigned long)bi->bi_len); 106 dump_stack(); 107 gfs2_consist_rgrpd(rgd); 108 return; 109 } 110 *byte1 ^= (cur_state ^ new_state) << bit; 111 112 if (buf2) { 113 byte2 = buf2 + offset + (block / GFS2_NBBY); 114 cur_state = (*byte2 >> bit) & GFS2_BIT_MASK; 115 *byte2 ^= (cur_state ^ new_state) << bit; 116 } 117 } 118 119 /** 120 * gfs2_testbit - test a bit in the bitmaps 121 * @buffer: the buffer that holds the bitmaps 122 * @buflen: the length (in bytes) of the buffer 123 * @block: the block to read 124 * 125 */ 126 127 static inline unsigned char gfs2_testbit(struct gfs2_rgrpd *rgd, 128 const unsigned char *buffer, 129 unsigned int buflen, u32 block) 130 { 131 const unsigned char *byte, *end; 132 unsigned char cur_state; 133 unsigned int bit; 134 135 byte = buffer + (block / GFS2_NBBY); 136 bit = (block % GFS2_NBBY) * GFS2_BIT_SIZE; 137 end = buffer + buflen; 138 139 gfs2_assert(rgd->rd_sbd, byte < end); 140 141 cur_state = (*byte >> bit) & GFS2_BIT_MASK; 142 143 return cur_state; 144 } 145 146 /** 147 * gfs2_bit_search 148 * @ptr: Pointer to bitmap data 149 * @mask: Mask to use (normally 0x55555.... but adjusted for search start) 150 * @state: The state we are searching for 151 * 152 * We xor the bitmap data with a patter which is the bitwise opposite 153 * of what we are looking for, this gives rise to a pattern of ones 154 * wherever there is a match. Since we have two bits per entry, we 155 * take this pattern, shift it down by one place and then and it with 156 * the original. All the even bit positions (0,2,4, etc) then represent 157 * successful matches, so we mask with 0x55555..... to remove the unwanted 158 * odd bit positions. 159 * 160 * This allows searching of a whole u64 at once (32 blocks) with a 161 * single test (on 64 bit arches). 162 */ 163 164 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state) 165 { 166 u64 tmp; 167 static const u64 search[] = { 168 [0] = 0xffffffffffffffffULL, 169 [1] = 0xaaaaaaaaaaaaaaaaULL, 170 [2] = 0x5555555555555555ULL, 171 [3] = 0x0000000000000000ULL, 172 }; 173 tmp = le64_to_cpu(*ptr) ^ search[state]; 174 tmp &= (tmp >> 1); 175 tmp &= mask; 176 return tmp; 177 } 178 179 /** 180 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing 181 * a block in a given allocation state. 182 * @buffer: the buffer that holds the bitmaps 183 * @len: the length (in bytes) of the buffer 184 * @goal: start search at this block's bit-pair (within @buffer) 185 * @state: GFS2_BLKST_XXX the state of the block we're looking for. 186 * 187 * Scope of @goal and returned block number is only within this bitmap buffer, 188 * not entire rgrp or filesystem. @buffer will be offset from the actual 189 * beginning of a bitmap block buffer, skipping any header structures, but 190 * headers are always a multiple of 64 bits long so that the buffer is 191 * always aligned to a 64 bit boundary. 192 * 193 * The size of the buffer is in bytes, but is it assumed that it is 194 * always ok to read a complete multiple of 64 bits at the end 195 * of the block in case the end is no aligned to a natural boundary. 196 * 197 * Return: the block number (bitmap buffer scope) that was found 198 */ 199 200 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len, 201 u32 goal, u8 state) 202 { 203 u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1); 204 const __le64 *ptr = ((__le64 *)buf) + (goal >> 5); 205 const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64))); 206 u64 tmp; 207 u64 mask = 0x5555555555555555ULL; 208 u32 bit; 209 210 BUG_ON(state > 3); 211 212 /* Mask off bits we don't care about at the start of the search */ 213 mask <<= spoint; 214 tmp = gfs2_bit_search(ptr, mask, state); 215 ptr++; 216 while(tmp == 0 && ptr < end) { 217 tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state); 218 ptr++; 219 } 220 /* Mask off any bits which are more than len bytes from the start */ 221 if (ptr == end && (len & (sizeof(u64) - 1))) 222 tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1)))); 223 /* Didn't find anything, so return */ 224 if (tmp == 0) 225 return BFITNOENT; 226 ptr--; 227 bit = __ffs64(tmp); 228 bit /= 2; /* two bits per entry in the bitmap */ 229 return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit; 230 } 231 232 /** 233 * gfs2_bitcount - count the number of bits in a certain state 234 * @buffer: the buffer that holds the bitmaps 235 * @buflen: the length (in bytes) of the buffer 236 * @state: the state of the block we're looking for 237 * 238 * Returns: The number of bits 239 */ 240 241 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer, 242 unsigned int buflen, u8 state) 243 { 244 const u8 *byte = buffer; 245 const u8 *end = buffer + buflen; 246 const u8 state1 = state << 2; 247 const u8 state2 = state << 4; 248 const u8 state3 = state << 6; 249 u32 count = 0; 250 251 for (; byte < end; byte++) { 252 if (((*byte) & 0x03) == state) 253 count++; 254 if (((*byte) & 0x0C) == state1) 255 count++; 256 if (((*byte) & 0x30) == state2) 257 count++; 258 if (((*byte) & 0xC0) == state3) 259 count++; 260 } 261 262 return count; 263 } 264 265 /** 266 * gfs2_rgrp_verify - Verify that a resource group is consistent 267 * @sdp: the filesystem 268 * @rgd: the rgrp 269 * 270 */ 271 272 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd) 273 { 274 struct gfs2_sbd *sdp = rgd->rd_sbd; 275 struct gfs2_bitmap *bi = NULL; 276 u32 length = rgd->rd_length; 277 u32 count[4], tmp; 278 int buf, x; 279 280 memset(count, 0, 4 * sizeof(u32)); 281 282 /* Count # blocks in each of 4 possible allocation states */ 283 for (buf = 0; buf < length; buf++) { 284 bi = rgd->rd_bits + buf; 285 for (x = 0; x < 4; x++) 286 count[x] += gfs2_bitcount(rgd, 287 bi->bi_bh->b_data + 288 bi->bi_offset, 289 bi->bi_len, x); 290 } 291 292 if (count[0] != rgd->rd_free) { 293 if (gfs2_consist_rgrpd(rgd)) 294 fs_err(sdp, "free data mismatch: %u != %u\n", 295 count[0], rgd->rd_free); 296 return; 297 } 298 299 tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes; 300 if (count[1] != tmp) { 301 if (gfs2_consist_rgrpd(rgd)) 302 fs_err(sdp, "used data mismatch: %u != %u\n", 303 count[1], tmp); 304 return; 305 } 306 307 if (count[2] + count[3] != rgd->rd_dinodes) { 308 if (gfs2_consist_rgrpd(rgd)) 309 fs_err(sdp, "used metadata mismatch: %u != %u\n", 310 count[2] + count[3], rgd->rd_dinodes); 311 return; 312 } 313 } 314 315 static inline int rgrp_contains_block(struct gfs2_rgrpd *rgd, u64 block) 316 { 317 u64 first = rgd->rd_data0; 318 u64 last = first + rgd->rd_data; 319 return first <= block && block < last; 320 } 321 322 /** 323 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number 324 * @sdp: The GFS2 superblock 325 * @n: The data block number 326 * 327 * Returns: The resource group, or NULL if not found 328 */ 329 330 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk) 331 { 332 struct rb_node **newn; 333 struct gfs2_rgrpd *cur; 334 335 spin_lock(&sdp->sd_rindex_spin); 336 newn = &sdp->sd_rindex_tree.rb_node; 337 while (*newn) { 338 cur = rb_entry(*newn, struct gfs2_rgrpd, rd_node); 339 if (blk < cur->rd_addr) 340 newn = &((*newn)->rb_left); 341 else if (blk >= cur->rd_data0 + cur->rd_data) 342 newn = &((*newn)->rb_right); 343 else { 344 spin_unlock(&sdp->sd_rindex_spin); 345 return cur; 346 } 347 } 348 spin_unlock(&sdp->sd_rindex_spin); 349 350 return NULL; 351 } 352 353 /** 354 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem 355 * @sdp: The GFS2 superblock 356 * 357 * Returns: The first rgrp in the filesystem 358 */ 359 360 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp) 361 { 362 const struct rb_node *n; 363 struct gfs2_rgrpd *rgd; 364 365 spin_lock(&sdp->sd_rindex_spin); 366 n = rb_first(&sdp->sd_rindex_tree); 367 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 368 spin_unlock(&sdp->sd_rindex_spin); 369 370 return rgd; 371 } 372 373 /** 374 * gfs2_rgrpd_get_next - get the next RG 375 * @rgd: A RG 376 * 377 * Returns: The next rgrp 378 */ 379 380 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd) 381 { 382 struct gfs2_sbd *sdp = rgd->rd_sbd; 383 const struct rb_node *n; 384 385 spin_lock(&sdp->sd_rindex_spin); 386 n = rb_next(&rgd->rd_node); 387 if (n == NULL) 388 n = rb_first(&sdp->sd_rindex_tree); 389 390 if (unlikely(&rgd->rd_node == n)) { 391 spin_unlock(&sdp->sd_rindex_spin); 392 return NULL; 393 } 394 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 395 spin_unlock(&sdp->sd_rindex_spin); 396 return rgd; 397 } 398 399 void gfs2_free_clones(struct gfs2_rgrpd *rgd) 400 { 401 int x; 402 403 for (x = 0; x < rgd->rd_length; x++) { 404 struct gfs2_bitmap *bi = rgd->rd_bits + x; 405 kfree(bi->bi_clone); 406 bi->bi_clone = NULL; 407 } 408 } 409 410 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp) 411 { 412 struct rb_node *n; 413 struct gfs2_rgrpd *rgd; 414 struct gfs2_glock *gl; 415 416 while ((n = rb_first(&sdp->sd_rindex_tree))) { 417 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 418 gl = rgd->rd_gl; 419 420 rb_erase(n, &sdp->sd_rindex_tree); 421 422 if (gl) { 423 spin_lock(&gl->gl_spin); 424 gl->gl_object = NULL; 425 spin_unlock(&gl->gl_spin); 426 gfs2_glock_add_to_lru(gl); 427 gfs2_glock_put(gl); 428 } 429 430 gfs2_free_clones(rgd); 431 kfree(rgd->rd_bits); 432 kmem_cache_free(gfs2_rgrpd_cachep, rgd); 433 } 434 } 435 436 static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd) 437 { 438 printk(KERN_INFO " ri_addr = %llu\n", (unsigned long long)rgd->rd_addr); 439 printk(KERN_INFO " ri_length = %u\n", rgd->rd_length); 440 printk(KERN_INFO " ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0); 441 printk(KERN_INFO " ri_data = %u\n", rgd->rd_data); 442 printk(KERN_INFO " ri_bitbytes = %u\n", rgd->rd_bitbytes); 443 } 444 445 /** 446 * gfs2_compute_bitstructs - Compute the bitmap sizes 447 * @rgd: The resource group descriptor 448 * 449 * Calculates bitmap descriptors, one for each block that contains bitmap data 450 * 451 * Returns: errno 452 */ 453 454 static int compute_bitstructs(struct gfs2_rgrpd *rgd) 455 { 456 struct gfs2_sbd *sdp = rgd->rd_sbd; 457 struct gfs2_bitmap *bi; 458 u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */ 459 u32 bytes_left, bytes; 460 int x; 461 462 if (!length) 463 return -EINVAL; 464 465 rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS); 466 if (!rgd->rd_bits) 467 return -ENOMEM; 468 469 bytes_left = rgd->rd_bitbytes; 470 471 for (x = 0; x < length; x++) { 472 bi = rgd->rd_bits + x; 473 474 bi->bi_flags = 0; 475 /* small rgrp; bitmap stored completely in header block */ 476 if (length == 1) { 477 bytes = bytes_left; 478 bi->bi_offset = sizeof(struct gfs2_rgrp); 479 bi->bi_start = 0; 480 bi->bi_len = bytes; 481 /* header block */ 482 } else if (x == 0) { 483 bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp); 484 bi->bi_offset = sizeof(struct gfs2_rgrp); 485 bi->bi_start = 0; 486 bi->bi_len = bytes; 487 /* last block */ 488 } else if (x + 1 == length) { 489 bytes = bytes_left; 490 bi->bi_offset = sizeof(struct gfs2_meta_header); 491 bi->bi_start = rgd->rd_bitbytes - bytes_left; 492 bi->bi_len = bytes; 493 /* other blocks */ 494 } else { 495 bytes = sdp->sd_sb.sb_bsize - 496 sizeof(struct gfs2_meta_header); 497 bi->bi_offset = sizeof(struct gfs2_meta_header); 498 bi->bi_start = rgd->rd_bitbytes - bytes_left; 499 bi->bi_len = bytes; 500 } 501 502 bytes_left -= bytes; 503 } 504 505 if (bytes_left) { 506 gfs2_consist_rgrpd(rgd); 507 return -EIO; 508 } 509 bi = rgd->rd_bits + (length - 1); 510 if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) { 511 if (gfs2_consist_rgrpd(rgd)) { 512 gfs2_rindex_print(rgd); 513 fs_err(sdp, "start=%u len=%u offset=%u\n", 514 bi->bi_start, bi->bi_len, bi->bi_offset); 515 } 516 return -EIO; 517 } 518 519 return 0; 520 } 521 522 /** 523 * gfs2_ri_total - Total up the file system space, according to the rindex. 524 * 525 */ 526 u64 gfs2_ri_total(struct gfs2_sbd *sdp) 527 { 528 u64 total_data = 0; 529 struct inode *inode = sdp->sd_rindex; 530 struct gfs2_inode *ip = GFS2_I(inode); 531 char buf[sizeof(struct gfs2_rindex)]; 532 struct file_ra_state ra_state; 533 int error, rgrps; 534 535 mutex_lock(&sdp->sd_rindex_mutex); 536 file_ra_state_init(&ra_state, inode->i_mapping); 537 for (rgrps = 0;; rgrps++) { 538 loff_t pos = rgrps * sizeof(struct gfs2_rindex); 539 540 if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode)) 541 break; 542 error = gfs2_internal_read(ip, &ra_state, buf, &pos, 543 sizeof(struct gfs2_rindex)); 544 if (error != sizeof(struct gfs2_rindex)) 545 break; 546 total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data); 547 } 548 mutex_unlock(&sdp->sd_rindex_mutex); 549 return total_data; 550 } 551 552 static void rgd_insert(struct gfs2_rgrpd *rgd) 553 { 554 struct gfs2_sbd *sdp = rgd->rd_sbd; 555 struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL; 556 557 /* Figure out where to put new node */ 558 while (*newn) { 559 struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd, 560 rd_node); 561 562 parent = *newn; 563 if (rgd->rd_addr < cur->rd_addr) 564 newn = &((*newn)->rb_left); 565 else if (rgd->rd_addr > cur->rd_addr) 566 newn = &((*newn)->rb_right); 567 else 568 return; 569 } 570 571 rb_link_node(&rgd->rd_node, parent, newn); 572 rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree); 573 } 574 575 /** 576 * read_rindex_entry - Pull in a new resource index entry from the disk 577 * @gl: The glock covering the rindex inode 578 * 579 * Returns: 0 on success, > 0 on EOF, error code otherwise 580 */ 581 582 static int read_rindex_entry(struct gfs2_inode *ip, 583 struct file_ra_state *ra_state) 584 { 585 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 586 loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex); 587 struct gfs2_rindex buf; 588 int error; 589 struct gfs2_rgrpd *rgd; 590 591 if (pos >= i_size_read(&ip->i_inode)) 592 return 1; 593 594 error = gfs2_internal_read(ip, ra_state, (char *)&buf, &pos, 595 sizeof(struct gfs2_rindex)); 596 597 if (error != sizeof(struct gfs2_rindex)) 598 return (error == 0) ? 1 : error; 599 600 rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS); 601 error = -ENOMEM; 602 if (!rgd) 603 return error; 604 605 rgd->rd_sbd = sdp; 606 rgd->rd_addr = be64_to_cpu(buf.ri_addr); 607 rgd->rd_length = be32_to_cpu(buf.ri_length); 608 rgd->rd_data0 = be64_to_cpu(buf.ri_data0); 609 rgd->rd_data = be32_to_cpu(buf.ri_data); 610 rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes); 611 612 error = compute_bitstructs(rgd); 613 if (error) 614 goto fail; 615 616 error = gfs2_glock_get(sdp, rgd->rd_addr, 617 &gfs2_rgrp_glops, CREATE, &rgd->rd_gl); 618 if (error) 619 goto fail; 620 621 rgd->rd_gl->gl_object = rgd; 622 rgd->rd_flags &= ~GFS2_RDF_UPTODATE; 623 if (rgd->rd_data > sdp->sd_max_rg_data) 624 sdp->sd_max_rg_data = rgd->rd_data; 625 spin_lock(&sdp->sd_rindex_spin); 626 rgd_insert(rgd); 627 sdp->sd_rgrps++; 628 spin_unlock(&sdp->sd_rindex_spin); 629 return error; 630 631 fail: 632 kfree(rgd->rd_bits); 633 kmem_cache_free(gfs2_rgrpd_cachep, rgd); 634 return error; 635 } 636 637 /** 638 * gfs2_ri_update - Pull in a new resource index from the disk 639 * @ip: pointer to the rindex inode 640 * 641 * Returns: 0 on successful update, error code otherwise 642 */ 643 644 static int gfs2_ri_update(struct gfs2_inode *ip) 645 { 646 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 647 struct inode *inode = &ip->i_inode; 648 struct file_ra_state ra_state; 649 int error; 650 651 file_ra_state_init(&ra_state, inode->i_mapping); 652 do { 653 error = read_rindex_entry(ip, &ra_state); 654 } while (error == 0); 655 656 if (error < 0) 657 return error; 658 659 sdp->sd_rindex_uptodate = 1; 660 return 0; 661 } 662 663 /** 664 * gfs2_rindex_update - Update the rindex if required 665 * @sdp: The GFS2 superblock 666 * 667 * We grab a lock on the rindex inode to make sure that it doesn't 668 * change whilst we are performing an operation. We keep this lock 669 * for quite long periods of time compared to other locks. This 670 * doesn't matter, since it is shared and it is very, very rarely 671 * accessed in the exclusive mode (i.e. only when expanding the filesystem). 672 * 673 * This makes sure that we're using the latest copy of the resource index 674 * special file, which might have been updated if someone expanded the 675 * filesystem (via gfs2_grow utility), which adds new resource groups. 676 * 677 * Returns: 0 on succeess, error code otherwise 678 */ 679 680 int gfs2_rindex_update(struct gfs2_sbd *sdp) 681 { 682 struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex); 683 struct gfs2_glock *gl = ip->i_gl; 684 struct gfs2_holder ri_gh; 685 int error = 0; 686 687 /* Read new copy from disk if we don't have the latest */ 688 if (!sdp->sd_rindex_uptodate) { 689 mutex_lock(&sdp->sd_rindex_mutex); 690 error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh); 691 if (error) 692 return error; 693 if (!sdp->sd_rindex_uptodate) 694 error = gfs2_ri_update(ip); 695 gfs2_glock_dq_uninit(&ri_gh); 696 mutex_unlock(&sdp->sd_rindex_mutex); 697 } 698 699 700 return error; 701 } 702 703 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf) 704 { 705 const struct gfs2_rgrp *str = buf; 706 u32 rg_flags; 707 708 rg_flags = be32_to_cpu(str->rg_flags); 709 rg_flags &= ~GFS2_RDF_MASK; 710 rgd->rd_flags &= GFS2_RDF_MASK; 711 rgd->rd_flags |= rg_flags; 712 rgd->rd_free = be32_to_cpu(str->rg_free); 713 rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes); 714 rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration); 715 } 716 717 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf) 718 { 719 struct gfs2_rgrp *str = buf; 720 721 str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK); 722 str->rg_free = cpu_to_be32(rgd->rd_free); 723 str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes); 724 str->__pad = cpu_to_be32(0); 725 str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration); 726 memset(&str->rg_reserved, 0, sizeof(str->rg_reserved)); 727 } 728 729 /** 730 * gfs2_rgrp_go_lock - Read in a RG's header and bitmaps 731 * @rgd: the struct gfs2_rgrpd describing the RG to read in 732 * 733 * Read in all of a Resource Group's header and bitmap blocks. 734 * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps. 735 * 736 * Returns: errno 737 */ 738 739 int gfs2_rgrp_go_lock(struct gfs2_holder *gh) 740 { 741 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object; 742 struct gfs2_sbd *sdp = rgd->rd_sbd; 743 struct gfs2_glock *gl = rgd->rd_gl; 744 unsigned int length = rgd->rd_length; 745 struct gfs2_bitmap *bi; 746 unsigned int x, y; 747 int error; 748 749 for (x = 0; x < length; x++) { 750 bi = rgd->rd_bits + x; 751 error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, &bi->bi_bh); 752 if (error) 753 goto fail; 754 } 755 756 for (y = length; y--;) { 757 bi = rgd->rd_bits + y; 758 error = gfs2_meta_wait(sdp, bi->bi_bh); 759 if (error) 760 goto fail; 761 if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB : 762 GFS2_METATYPE_RG)) { 763 error = -EIO; 764 goto fail; 765 } 766 } 767 768 if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) { 769 for (x = 0; x < length; x++) 770 clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags); 771 gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data); 772 rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK); 773 rgd->rd_free_clone = rgd->rd_free; 774 } 775 776 return 0; 777 778 fail: 779 while (x--) { 780 bi = rgd->rd_bits + x; 781 brelse(bi->bi_bh); 782 bi->bi_bh = NULL; 783 gfs2_assert_warn(sdp, !bi->bi_clone); 784 } 785 786 return error; 787 } 788 789 /** 790 * gfs2_rgrp_go_unlock - Release RG bitmaps read in with gfs2_rgrp_bh_get() 791 * @rgd: the struct gfs2_rgrpd describing the RG to read in 792 * 793 */ 794 795 void gfs2_rgrp_go_unlock(struct gfs2_holder *gh) 796 { 797 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object; 798 int x, length = rgd->rd_length; 799 800 for (x = 0; x < length; x++) { 801 struct gfs2_bitmap *bi = rgd->rd_bits + x; 802 brelse(bi->bi_bh); 803 bi->bi_bh = NULL; 804 } 805 806 } 807 808 void gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset, 809 struct buffer_head *bh, 810 const struct gfs2_bitmap *bi) 811 { 812 struct super_block *sb = sdp->sd_vfs; 813 struct block_device *bdev = sb->s_bdev; 814 const unsigned int sects_per_blk = sdp->sd_sb.sb_bsize / 815 bdev_logical_block_size(sb->s_bdev); 816 u64 blk; 817 sector_t start = 0; 818 sector_t nr_sects = 0; 819 int rv; 820 unsigned int x; 821 822 for (x = 0; x < bi->bi_len; x++) { 823 const u8 *orig = bh->b_data + bi->bi_offset + x; 824 const u8 *clone = bi->bi_clone + bi->bi_offset + x; 825 u8 diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1)); 826 diff &= 0x55; 827 if (diff == 0) 828 continue; 829 blk = offset + ((bi->bi_start + x) * GFS2_NBBY); 830 blk *= sects_per_blk; /* convert to sectors */ 831 while(diff) { 832 if (diff & 1) { 833 if (nr_sects == 0) 834 goto start_new_extent; 835 if ((start + nr_sects) != blk) { 836 rv = blkdev_issue_discard(bdev, start, 837 nr_sects, GFP_NOFS, 838 0); 839 if (rv) 840 goto fail; 841 nr_sects = 0; 842 start_new_extent: 843 start = blk; 844 } 845 nr_sects += sects_per_blk; 846 } 847 diff >>= 2; 848 blk += sects_per_blk; 849 } 850 } 851 if (nr_sects) { 852 rv = blkdev_issue_discard(bdev, start, nr_sects, GFP_NOFS, 0); 853 if (rv) 854 goto fail; 855 } 856 return; 857 fail: 858 fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv); 859 sdp->sd_args.ar_discard = 0; 860 } 861 862 /** 863 * gfs2_alloc_get - get the struct gfs2_alloc structure for an inode 864 * @ip: the incore GFS2 inode structure 865 * 866 * Returns: the struct gfs2_alloc 867 */ 868 869 struct gfs2_alloc *gfs2_alloc_get(struct gfs2_inode *ip) 870 { 871 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 872 int error; 873 BUG_ON(ip->i_alloc != NULL); 874 ip->i_alloc = kzalloc(sizeof(struct gfs2_alloc), GFP_NOFS); 875 error = gfs2_rindex_update(sdp); 876 if (error) 877 fs_warn(sdp, "rindex update returns %d\n", error); 878 return ip->i_alloc; 879 } 880 881 /** 882 * try_rgrp_fit - See if a given reservation will fit in a given RG 883 * @rgd: the RG data 884 * @ip: the inode 885 * 886 * If there's room for the requested blocks to be allocated from the RG: 887 * 888 * Returns: 1 on success (it fits), 0 on failure (it doesn't fit) 889 */ 890 891 static int try_rgrp_fit(const struct gfs2_rgrpd *rgd, const struct gfs2_inode *ip) 892 { 893 const struct gfs2_alloc *al = ip->i_alloc; 894 895 if (rgd->rd_flags & (GFS2_RGF_NOALLOC | GFS2_RDF_ERROR)) 896 return 0; 897 if (rgd->rd_free_clone >= al->al_requested) 898 return 1; 899 return 0; 900 } 901 902 /** 903 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes 904 * @rgd: The rgrp 905 * 906 * Returns: 0 if no error 907 * The inode, if one has been found, in inode. 908 */ 909 910 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip) 911 { 912 u32 goal = 0, block; 913 u64 no_addr; 914 struct gfs2_sbd *sdp = rgd->rd_sbd; 915 unsigned int n; 916 struct gfs2_glock *gl; 917 struct gfs2_inode *ip; 918 int error; 919 int found = 0; 920 921 while (goal < rgd->rd_data) { 922 down_write(&sdp->sd_log_flush_lock); 923 n = 1; 924 block = rgblk_search(rgd, goal, GFS2_BLKST_UNLINKED, 925 GFS2_BLKST_UNLINKED, &n); 926 up_write(&sdp->sd_log_flush_lock); 927 if (block == BFITNOENT) 928 break; 929 /* rgblk_search can return a block < goal, so we need to 930 keep it marching forward. */ 931 no_addr = block + rgd->rd_data0; 932 goal = max(block + 1, goal + 1); 933 if (*last_unlinked != NO_BLOCK && no_addr <= *last_unlinked) 934 continue; 935 if (no_addr == skip) 936 continue; 937 *last_unlinked = no_addr; 938 939 error = gfs2_glock_get(sdp, no_addr, &gfs2_inode_glops, CREATE, &gl); 940 if (error) 941 continue; 942 943 /* If the inode is already in cache, we can ignore it here 944 * because the existing inode disposal code will deal with 945 * it when all refs have gone away. Accessing gl_object like 946 * this is not safe in general. Here it is ok because we do 947 * not dereference the pointer, and we only need an approx 948 * answer to whether it is NULL or not. 949 */ 950 ip = gl->gl_object; 951 952 if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0) 953 gfs2_glock_put(gl); 954 else 955 found++; 956 957 /* Limit reclaim to sensible number of tasks */ 958 if (found > NR_CPUS) 959 return; 960 } 961 962 rgd->rd_flags &= ~GFS2_RDF_CHECK; 963 return; 964 } 965 966 /** 967 * get_local_rgrp - Choose and lock a rgrp for allocation 968 * @ip: the inode to reserve space for 969 * @rgp: the chosen and locked rgrp 970 * 971 * Try to acquire rgrp in way which avoids contending with others. 972 * 973 * Returns: errno 974 */ 975 976 static int get_local_rgrp(struct gfs2_inode *ip, u64 *last_unlinked) 977 { 978 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 979 struct gfs2_rgrpd *rgd, *begin = NULL; 980 struct gfs2_alloc *al = ip->i_alloc; 981 int error, rg_locked; 982 int loops = 0; 983 984 if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal)) 985 rgd = begin = ip->i_rgd; 986 else 987 rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal); 988 989 if (rgd == NULL) 990 return -EBADSLT; 991 992 while (loops < 3) { 993 rg_locked = 0; 994 995 if (gfs2_glock_is_locked_by_me(rgd->rd_gl)) { 996 rg_locked = 1; 997 error = 0; 998 } else { 999 error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 1000 LM_FLAG_TRY, &al->al_rgd_gh); 1001 } 1002 switch (error) { 1003 case 0: 1004 if (try_rgrp_fit(rgd, ip)) { 1005 ip->i_rgd = rgd; 1006 return 0; 1007 } 1008 if (rgd->rd_flags & GFS2_RDF_CHECK) 1009 try_rgrp_unlink(rgd, last_unlinked, ip->i_no_addr); 1010 if (!rg_locked) 1011 gfs2_glock_dq_uninit(&al->al_rgd_gh); 1012 /* fall through */ 1013 case GLR_TRYFAILED: 1014 rgd = gfs2_rgrpd_get_next(rgd); 1015 if (rgd == begin) 1016 loops++; 1017 break; 1018 default: 1019 return error; 1020 } 1021 } 1022 1023 return -ENOSPC; 1024 } 1025 1026 /** 1027 * gfs2_inplace_reserve - Reserve space in the filesystem 1028 * @ip: the inode to reserve space for 1029 * 1030 * Returns: errno 1031 */ 1032 1033 int gfs2_inplace_reserve(struct gfs2_inode *ip) 1034 { 1035 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1036 struct gfs2_alloc *al = ip->i_alloc; 1037 int error = 0; 1038 u64 last_unlinked = NO_BLOCK; 1039 int tries = 0; 1040 1041 if (gfs2_assert_warn(sdp, al->al_requested)) 1042 return -EINVAL; 1043 1044 do { 1045 error = get_local_rgrp(ip, &last_unlinked); 1046 if (error != -ENOSPC) 1047 break; 1048 /* Check that fs hasn't grown if writing to rindex */ 1049 if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) { 1050 error = gfs2_ri_update(ip); 1051 if (error) 1052 break; 1053 continue; 1054 } 1055 /* Flushing the log may release space */ 1056 gfs2_log_flush(sdp, NULL); 1057 } while (tries++ < 3); 1058 1059 return error; 1060 } 1061 1062 /** 1063 * gfs2_inplace_release - release an inplace reservation 1064 * @ip: the inode the reservation was taken out on 1065 * 1066 * Release a reservation made by gfs2_inplace_reserve(). 1067 */ 1068 1069 void gfs2_inplace_release(struct gfs2_inode *ip) 1070 { 1071 struct gfs2_alloc *al = ip->i_alloc; 1072 1073 if (al->al_rgd_gh.gh_gl) 1074 gfs2_glock_dq_uninit(&al->al_rgd_gh); 1075 } 1076 1077 /** 1078 * gfs2_get_block_type - Check a block in a RG is of given type 1079 * @rgd: the resource group holding the block 1080 * @block: the block number 1081 * 1082 * Returns: The block type (GFS2_BLKST_*) 1083 */ 1084 1085 static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block) 1086 { 1087 struct gfs2_bitmap *bi = NULL; 1088 u32 length, rgrp_block, buf_block; 1089 unsigned int buf; 1090 unsigned char type; 1091 1092 length = rgd->rd_length; 1093 rgrp_block = block - rgd->rd_data0; 1094 1095 for (buf = 0; buf < length; buf++) { 1096 bi = rgd->rd_bits + buf; 1097 if (rgrp_block < (bi->bi_start + bi->bi_len) * GFS2_NBBY) 1098 break; 1099 } 1100 1101 gfs2_assert(rgd->rd_sbd, buf < length); 1102 buf_block = rgrp_block - bi->bi_start * GFS2_NBBY; 1103 1104 type = gfs2_testbit(rgd, bi->bi_bh->b_data + bi->bi_offset, 1105 bi->bi_len, buf_block); 1106 1107 return type; 1108 } 1109 1110 /** 1111 * rgblk_search - find a block in @old_state, change allocation 1112 * state to @new_state 1113 * @rgd: the resource group descriptor 1114 * @goal: the goal block within the RG (start here to search for avail block) 1115 * @old_state: GFS2_BLKST_XXX the before-allocation state to find 1116 * @new_state: GFS2_BLKST_XXX the after-allocation block state 1117 * @n: The extent length 1118 * 1119 * Walk rgrp's bitmap to find bits that represent a block in @old_state. 1120 * Add the found bitmap buffer to the transaction. 1121 * Set the found bits to @new_state to change block's allocation state. 1122 * 1123 * This function never fails, because we wouldn't call it unless we 1124 * know (from reservation results, etc.) that a block is available. 1125 * 1126 * Scope of @goal and returned block is just within rgrp, not the whole 1127 * filesystem. 1128 * 1129 * Returns: the block number allocated 1130 */ 1131 1132 static u32 rgblk_search(struct gfs2_rgrpd *rgd, u32 goal, 1133 unsigned char old_state, unsigned char new_state, 1134 unsigned int *n) 1135 { 1136 struct gfs2_bitmap *bi = NULL; 1137 const u32 length = rgd->rd_length; 1138 u32 blk = BFITNOENT; 1139 unsigned int buf, x; 1140 const unsigned int elen = *n; 1141 const u8 *buffer = NULL; 1142 1143 *n = 0; 1144 /* Find bitmap block that contains bits for goal block */ 1145 for (buf = 0; buf < length; buf++) { 1146 bi = rgd->rd_bits + buf; 1147 /* Convert scope of "goal" from rgrp-wide to within found bit block */ 1148 if (goal < (bi->bi_start + bi->bi_len) * GFS2_NBBY) { 1149 goal -= bi->bi_start * GFS2_NBBY; 1150 goto do_search; 1151 } 1152 } 1153 buf = 0; 1154 goal = 0; 1155 1156 do_search: 1157 /* Search (up to entire) bitmap in this rgrp for allocatable block. 1158 "x <= length", instead of "x < length", because we typically start 1159 the search in the middle of a bit block, but if we can't find an 1160 allocatable block anywhere else, we want to be able wrap around and 1161 search in the first part of our first-searched bit block. */ 1162 for (x = 0; x <= length; x++) { 1163 bi = rgd->rd_bits + buf; 1164 1165 if (test_bit(GBF_FULL, &bi->bi_flags) && 1166 (old_state == GFS2_BLKST_FREE)) 1167 goto skip; 1168 1169 /* The GFS2_BLKST_UNLINKED state doesn't apply to the clone 1170 bitmaps, so we must search the originals for that. */ 1171 buffer = bi->bi_bh->b_data + bi->bi_offset; 1172 WARN_ON(!buffer_uptodate(bi->bi_bh)); 1173 if (old_state != GFS2_BLKST_UNLINKED && bi->bi_clone) 1174 buffer = bi->bi_clone + bi->bi_offset; 1175 1176 blk = gfs2_bitfit(buffer, bi->bi_len, goal, old_state); 1177 if (blk != BFITNOENT) 1178 break; 1179 1180 if ((goal == 0) && (old_state == GFS2_BLKST_FREE)) 1181 set_bit(GBF_FULL, &bi->bi_flags); 1182 1183 /* Try next bitmap block (wrap back to rgrp header if at end) */ 1184 skip: 1185 buf++; 1186 buf %= length; 1187 goal = 0; 1188 } 1189 1190 if (blk == BFITNOENT) 1191 return blk; 1192 1193 *n = 1; 1194 if (old_state == new_state) 1195 goto out; 1196 1197 gfs2_trans_add_bh(rgd->rd_gl, bi->bi_bh, 1); 1198 gfs2_setbit(rgd, bi->bi_bh->b_data, bi->bi_clone, bi->bi_offset, 1199 bi, blk, new_state); 1200 goal = blk; 1201 while (*n < elen) { 1202 goal++; 1203 if (goal >= (bi->bi_len * GFS2_NBBY)) 1204 break; 1205 if (gfs2_testbit(rgd, buffer, bi->bi_len, goal) != 1206 GFS2_BLKST_FREE) 1207 break; 1208 gfs2_setbit(rgd, bi->bi_bh->b_data, bi->bi_clone, bi->bi_offset, 1209 bi, goal, new_state); 1210 (*n)++; 1211 } 1212 out: 1213 return (bi->bi_start * GFS2_NBBY) + blk; 1214 } 1215 1216 /** 1217 * rgblk_free - Change alloc state of given block(s) 1218 * @sdp: the filesystem 1219 * @bstart: the start of a run of blocks to free 1220 * @blen: the length of the block run (all must lie within ONE RG!) 1221 * @new_state: GFS2_BLKST_XXX the after-allocation block state 1222 * 1223 * Returns: Resource group containing the block(s) 1224 */ 1225 1226 static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart, 1227 u32 blen, unsigned char new_state) 1228 { 1229 struct gfs2_rgrpd *rgd; 1230 struct gfs2_bitmap *bi = NULL; 1231 u32 length, rgrp_blk, buf_blk; 1232 unsigned int buf; 1233 1234 rgd = gfs2_blk2rgrpd(sdp, bstart); 1235 if (!rgd) { 1236 if (gfs2_consist(sdp)) 1237 fs_err(sdp, "block = %llu\n", (unsigned long long)bstart); 1238 return NULL; 1239 } 1240 1241 length = rgd->rd_length; 1242 1243 rgrp_blk = bstart - rgd->rd_data0; 1244 1245 while (blen--) { 1246 for (buf = 0; buf < length; buf++) { 1247 bi = rgd->rd_bits + buf; 1248 if (rgrp_blk < (bi->bi_start + bi->bi_len) * GFS2_NBBY) 1249 break; 1250 } 1251 1252 gfs2_assert(rgd->rd_sbd, buf < length); 1253 1254 buf_blk = rgrp_blk - bi->bi_start * GFS2_NBBY; 1255 rgrp_blk++; 1256 1257 if (!bi->bi_clone) { 1258 bi->bi_clone = kmalloc(bi->bi_bh->b_size, 1259 GFP_NOFS | __GFP_NOFAIL); 1260 memcpy(bi->bi_clone + bi->bi_offset, 1261 bi->bi_bh->b_data + bi->bi_offset, 1262 bi->bi_len); 1263 } 1264 gfs2_trans_add_bh(rgd->rd_gl, bi->bi_bh, 1); 1265 gfs2_setbit(rgd, bi->bi_bh->b_data, NULL, bi->bi_offset, 1266 bi, buf_blk, new_state); 1267 } 1268 1269 return rgd; 1270 } 1271 1272 /** 1273 * gfs2_rgrp_dump - print out an rgrp 1274 * @seq: The iterator 1275 * @gl: The glock in question 1276 * 1277 */ 1278 1279 int gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl) 1280 { 1281 const struct gfs2_rgrpd *rgd = gl->gl_object; 1282 if (rgd == NULL) 1283 return 0; 1284 gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u\n", 1285 (unsigned long long)rgd->rd_addr, rgd->rd_flags, 1286 rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes); 1287 return 0; 1288 } 1289 1290 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd) 1291 { 1292 struct gfs2_sbd *sdp = rgd->rd_sbd; 1293 fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n", 1294 (unsigned long long)rgd->rd_addr); 1295 fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n"); 1296 gfs2_rgrp_dump(NULL, rgd->rd_gl); 1297 rgd->rd_flags |= GFS2_RDF_ERROR; 1298 } 1299 1300 /** 1301 * gfs2_alloc_block - Allocate one or more blocks 1302 * @ip: the inode to allocate the block for 1303 * @bn: Used to return the starting block number 1304 * @n: requested number of blocks/extent length (value/result) 1305 * 1306 * Returns: 0 or error 1307 */ 1308 1309 int gfs2_alloc_block(struct gfs2_inode *ip, u64 *bn, unsigned int *n) 1310 { 1311 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1312 struct buffer_head *dibh; 1313 struct gfs2_alloc *al = ip->i_alloc; 1314 struct gfs2_rgrpd *rgd; 1315 u32 goal, blk; 1316 u64 block; 1317 int error; 1318 1319 /* Only happens if there is a bug in gfs2, return something distinctive 1320 * to ensure that it is noticed. 1321 */ 1322 if (al == NULL) 1323 return -ECANCELED; 1324 1325 rgd = ip->i_rgd; 1326 1327 if (rgrp_contains_block(rgd, ip->i_goal)) 1328 goal = ip->i_goal - rgd->rd_data0; 1329 else 1330 goal = rgd->rd_last_alloc; 1331 1332 blk = rgblk_search(rgd, goal, GFS2_BLKST_FREE, GFS2_BLKST_USED, n); 1333 1334 /* Since all blocks are reserved in advance, this shouldn't happen */ 1335 if (blk == BFITNOENT) 1336 goto rgrp_error; 1337 1338 rgd->rd_last_alloc = blk; 1339 block = rgd->rd_data0 + blk; 1340 ip->i_goal = block + *n - 1; 1341 error = gfs2_meta_inode_buffer(ip, &dibh); 1342 if (error == 0) { 1343 struct gfs2_dinode *di = (struct gfs2_dinode *)dibh->b_data; 1344 gfs2_trans_add_bh(ip->i_gl, dibh, 1); 1345 di->di_goal_meta = di->di_goal_data = cpu_to_be64(ip->i_goal); 1346 brelse(dibh); 1347 } 1348 if (rgd->rd_free < *n) 1349 goto rgrp_error; 1350 1351 rgd->rd_free -= *n; 1352 1353 gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1); 1354 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 1355 1356 al->al_alloced += *n; 1357 1358 gfs2_statfs_change(sdp, 0, -(s64)*n, 0); 1359 gfs2_quota_change(ip, *n, ip->i_inode.i_uid, ip->i_inode.i_gid); 1360 1361 rgd->rd_free_clone -= *n; 1362 trace_gfs2_block_alloc(ip, block, *n, GFS2_BLKST_USED); 1363 *bn = block; 1364 return 0; 1365 1366 rgrp_error: 1367 gfs2_rgrp_error(rgd); 1368 return -EIO; 1369 } 1370 1371 /** 1372 * gfs2_alloc_di - Allocate a dinode 1373 * @dip: the directory that the inode is going in 1374 * @bn: the block number which is allocated 1375 * @generation: the generation number of the inode 1376 * 1377 * Returns: 0 on success or error 1378 */ 1379 1380 int gfs2_alloc_di(struct gfs2_inode *dip, u64 *bn, u64 *generation) 1381 { 1382 struct gfs2_sbd *sdp = GFS2_SB(&dip->i_inode); 1383 struct gfs2_alloc *al = dip->i_alloc; 1384 struct gfs2_rgrpd *rgd = dip->i_rgd; 1385 u32 blk; 1386 u64 block; 1387 unsigned int n = 1; 1388 1389 blk = rgblk_search(rgd, rgd->rd_last_alloc, 1390 GFS2_BLKST_FREE, GFS2_BLKST_DINODE, &n); 1391 1392 /* Since all blocks are reserved in advance, this shouldn't happen */ 1393 if (blk == BFITNOENT) 1394 goto rgrp_error; 1395 1396 rgd->rd_last_alloc = blk; 1397 block = rgd->rd_data0 + blk; 1398 if (rgd->rd_free == 0) 1399 goto rgrp_error; 1400 1401 rgd->rd_free--; 1402 rgd->rd_dinodes++; 1403 *generation = rgd->rd_igeneration++; 1404 if (*generation == 0) 1405 *generation = rgd->rd_igeneration++; 1406 gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1); 1407 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 1408 1409 al->al_alloced++; 1410 1411 gfs2_statfs_change(sdp, 0, -1, +1); 1412 gfs2_trans_add_unrevoke(sdp, block, 1); 1413 1414 rgd->rd_free_clone--; 1415 trace_gfs2_block_alloc(dip, block, 1, GFS2_BLKST_DINODE); 1416 *bn = block; 1417 return 0; 1418 1419 rgrp_error: 1420 gfs2_rgrp_error(rgd); 1421 return -EIO; 1422 } 1423 1424 /** 1425 * __gfs2_free_blocks - free a contiguous run of block(s) 1426 * @ip: the inode these blocks are being freed from 1427 * @bstart: first block of a run of contiguous blocks 1428 * @blen: the length of the block run 1429 * @meta: 1 if the blocks represent metadata 1430 * 1431 */ 1432 1433 void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta) 1434 { 1435 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1436 struct gfs2_rgrpd *rgd; 1437 1438 rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE); 1439 if (!rgd) 1440 return; 1441 trace_gfs2_block_alloc(ip, bstart, blen, GFS2_BLKST_FREE); 1442 rgd->rd_free += blen; 1443 1444 gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1); 1445 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 1446 1447 /* Directories keep their data in the metadata address space */ 1448 if (meta || ip->i_depth) 1449 gfs2_meta_wipe(ip, bstart, blen); 1450 } 1451 1452 /** 1453 * gfs2_free_meta - free a contiguous run of data block(s) 1454 * @ip: the inode these blocks are being freed from 1455 * @bstart: first block of a run of contiguous blocks 1456 * @blen: the length of the block run 1457 * 1458 */ 1459 1460 void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen) 1461 { 1462 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1463 1464 __gfs2_free_blocks(ip, bstart, blen, 1); 1465 gfs2_statfs_change(sdp, 0, +blen, 0); 1466 gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid); 1467 } 1468 1469 void gfs2_unlink_di(struct inode *inode) 1470 { 1471 struct gfs2_inode *ip = GFS2_I(inode); 1472 struct gfs2_sbd *sdp = GFS2_SB(inode); 1473 struct gfs2_rgrpd *rgd; 1474 u64 blkno = ip->i_no_addr; 1475 1476 rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED); 1477 if (!rgd) 1478 return; 1479 trace_gfs2_block_alloc(ip, blkno, 1, GFS2_BLKST_UNLINKED); 1480 gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1); 1481 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 1482 } 1483 1484 static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno) 1485 { 1486 struct gfs2_sbd *sdp = rgd->rd_sbd; 1487 struct gfs2_rgrpd *tmp_rgd; 1488 1489 tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE); 1490 if (!tmp_rgd) 1491 return; 1492 gfs2_assert_withdraw(sdp, rgd == tmp_rgd); 1493 1494 if (!rgd->rd_dinodes) 1495 gfs2_consist_rgrpd(rgd); 1496 rgd->rd_dinodes--; 1497 rgd->rd_free++; 1498 1499 gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1); 1500 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 1501 1502 gfs2_statfs_change(sdp, 0, +1, -1); 1503 } 1504 1505 1506 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip) 1507 { 1508 gfs2_free_uninit_di(rgd, ip->i_no_addr); 1509 trace_gfs2_block_alloc(ip, ip->i_no_addr, 1, GFS2_BLKST_FREE); 1510 gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid); 1511 gfs2_meta_wipe(ip, ip->i_no_addr, 1); 1512 } 1513 1514 /** 1515 * gfs2_check_blk_type - Check the type of a block 1516 * @sdp: The superblock 1517 * @no_addr: The block number to check 1518 * @type: The block type we are looking for 1519 * 1520 * Returns: 0 if the block type matches the expected type 1521 * -ESTALE if it doesn't match 1522 * or -ve errno if something went wrong while checking 1523 */ 1524 1525 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type) 1526 { 1527 struct gfs2_rgrpd *rgd; 1528 struct gfs2_holder rgd_gh; 1529 int error; 1530 1531 error = gfs2_rindex_update(sdp); 1532 if (error) 1533 return error; 1534 1535 error = -EINVAL; 1536 rgd = gfs2_blk2rgrpd(sdp, no_addr); 1537 if (!rgd) 1538 goto fail; 1539 1540 error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh); 1541 if (error) 1542 goto fail; 1543 1544 if (gfs2_get_block_type(rgd, no_addr) != type) 1545 error = -ESTALE; 1546 1547 gfs2_glock_dq_uninit(&rgd_gh); 1548 fail: 1549 return error; 1550 } 1551 1552 /** 1553 * gfs2_rlist_add - add a RG to a list of RGs 1554 * @ip: the inode 1555 * @rlist: the list of resource groups 1556 * @block: the block 1557 * 1558 * Figure out what RG a block belongs to and add that RG to the list 1559 * 1560 * FIXME: Don't use NOFAIL 1561 * 1562 */ 1563 1564 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist, 1565 u64 block) 1566 { 1567 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1568 struct gfs2_rgrpd *rgd; 1569 struct gfs2_rgrpd **tmp; 1570 unsigned int new_space; 1571 unsigned int x; 1572 1573 if (gfs2_assert_warn(sdp, !rlist->rl_ghs)) 1574 return; 1575 1576 if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block)) 1577 rgd = ip->i_rgd; 1578 else 1579 rgd = gfs2_blk2rgrpd(sdp, block); 1580 if (!rgd) { 1581 fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block); 1582 return; 1583 } 1584 ip->i_rgd = rgd; 1585 1586 for (x = 0; x < rlist->rl_rgrps; x++) 1587 if (rlist->rl_rgd[x] == rgd) 1588 return; 1589 1590 if (rlist->rl_rgrps == rlist->rl_space) { 1591 new_space = rlist->rl_space + 10; 1592 1593 tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *), 1594 GFP_NOFS | __GFP_NOFAIL); 1595 1596 if (rlist->rl_rgd) { 1597 memcpy(tmp, rlist->rl_rgd, 1598 rlist->rl_space * sizeof(struct gfs2_rgrpd *)); 1599 kfree(rlist->rl_rgd); 1600 } 1601 1602 rlist->rl_space = new_space; 1603 rlist->rl_rgd = tmp; 1604 } 1605 1606 rlist->rl_rgd[rlist->rl_rgrps++] = rgd; 1607 } 1608 1609 /** 1610 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate 1611 * and initialize an array of glock holders for them 1612 * @rlist: the list of resource groups 1613 * @state: the lock state to acquire the RG lock in 1614 * @flags: the modifier flags for the holder structures 1615 * 1616 * FIXME: Don't use NOFAIL 1617 * 1618 */ 1619 1620 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state) 1621 { 1622 unsigned int x; 1623 1624 rlist->rl_ghs = kcalloc(rlist->rl_rgrps, sizeof(struct gfs2_holder), 1625 GFP_NOFS | __GFP_NOFAIL); 1626 for (x = 0; x < rlist->rl_rgrps; x++) 1627 gfs2_holder_init(rlist->rl_rgd[x]->rd_gl, 1628 state, 0, 1629 &rlist->rl_ghs[x]); 1630 } 1631 1632 /** 1633 * gfs2_rlist_free - free a resource group list 1634 * @list: the list of resource groups 1635 * 1636 */ 1637 1638 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist) 1639 { 1640 unsigned int x; 1641 1642 kfree(rlist->rl_rgd); 1643 1644 if (rlist->rl_ghs) { 1645 for (x = 0; x < rlist->rl_rgrps; x++) 1646 gfs2_holder_uninit(&rlist->rl_ghs[x]); 1647 kfree(rlist->rl_ghs); 1648 } 1649 } 1650 1651