xref: /linux/fs/gfs2/rgrp.c (revision c4ee0af3fa0dc65f690fc908f02b8355f9576ea0)
1 /*
2  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
3  * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
4  *
5  * This copyrighted material is made available to anyone wishing to use,
6  * modify, copy, or redistribute it subject to the terms and conditions
7  * of the GNU General Public License version 2.
8  */
9 
10 #include <linux/slab.h>
11 #include <linux/spinlock.h>
12 #include <linux/completion.h>
13 #include <linux/buffer_head.h>
14 #include <linux/fs.h>
15 #include <linux/gfs2_ondisk.h>
16 #include <linux/prefetch.h>
17 #include <linux/blkdev.h>
18 #include <linux/rbtree.h>
19 #include <linux/random.h>
20 
21 #include "gfs2.h"
22 #include "incore.h"
23 #include "glock.h"
24 #include "glops.h"
25 #include "lops.h"
26 #include "meta_io.h"
27 #include "quota.h"
28 #include "rgrp.h"
29 #include "super.h"
30 #include "trans.h"
31 #include "util.h"
32 #include "log.h"
33 #include "inode.h"
34 #include "trace_gfs2.h"
35 
36 #define BFITNOENT ((u32)~0)
37 #define NO_BLOCK ((u64)~0)
38 
39 #if BITS_PER_LONG == 32
40 #define LBITMASK   (0x55555555UL)
41 #define LBITSKIP55 (0x55555555UL)
42 #define LBITSKIP00 (0x00000000UL)
43 #else
44 #define LBITMASK   (0x5555555555555555UL)
45 #define LBITSKIP55 (0x5555555555555555UL)
46 #define LBITSKIP00 (0x0000000000000000UL)
47 #endif
48 
49 /*
50  * These routines are used by the resource group routines (rgrp.c)
51  * to keep track of block allocation.  Each block is represented by two
52  * bits.  So, each byte represents GFS2_NBBY (i.e. 4) blocks.
53  *
54  * 0 = Free
55  * 1 = Used (not metadata)
56  * 2 = Unlinked (still in use) inode
57  * 3 = Used (metadata)
58  */
59 
60 static const char valid_change[16] = {
61 	        /* current */
62 	/* n */ 0, 1, 1, 1,
63 	/* e */ 1, 0, 0, 0,
64 	/* w */ 0, 0, 0, 1,
65 	        1, 0, 0, 0
66 };
67 
68 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 minext,
69                          const struct gfs2_inode *ip, bool nowrap);
70 
71 
72 /**
73  * gfs2_setbit - Set a bit in the bitmaps
74  * @rbm: The position of the bit to set
75  * @do_clone: Also set the clone bitmap, if it exists
76  * @new_state: the new state of the block
77  *
78  */
79 
80 static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone,
81 			       unsigned char new_state)
82 {
83 	unsigned char *byte1, *byte2, *end, cur_state;
84 	struct gfs2_bitmap *bi = rbm_bi(rbm);
85 	unsigned int buflen = bi->bi_len;
86 	const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
87 
88 	byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY);
89 	end = bi->bi_bh->b_data + bi->bi_offset + buflen;
90 
91 	BUG_ON(byte1 >= end);
92 
93 	cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
94 
95 	if (unlikely(!valid_change[new_state * 4 + cur_state])) {
96 		printk(KERN_WARNING "GFS2: buf_blk = 0x%x old_state=%d, "
97 		       "new_state=%d\n", rbm->offset, cur_state, new_state);
98 		printk(KERN_WARNING "GFS2: rgrp=0x%llx bi_start=0x%x\n",
99 		       (unsigned long long)rbm->rgd->rd_addr, bi->bi_start);
100 		printk(KERN_WARNING "GFS2: bi_offset=0x%x bi_len=0x%x\n",
101 		       bi->bi_offset, bi->bi_len);
102 		dump_stack();
103 		gfs2_consist_rgrpd(rbm->rgd);
104 		return;
105 	}
106 	*byte1 ^= (cur_state ^ new_state) << bit;
107 
108 	if (do_clone && bi->bi_clone) {
109 		byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY);
110 		cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
111 		*byte2 ^= (cur_state ^ new_state) << bit;
112 	}
113 }
114 
115 /**
116  * gfs2_testbit - test a bit in the bitmaps
117  * @rbm: The bit to test
118  *
119  * Returns: The two bit block state of the requested bit
120  */
121 
122 static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm)
123 {
124 	struct gfs2_bitmap *bi = rbm_bi(rbm);
125 	const u8 *buffer = bi->bi_bh->b_data + bi->bi_offset;
126 	const u8 *byte;
127 	unsigned int bit;
128 
129 	byte = buffer + (rbm->offset / GFS2_NBBY);
130 	bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
131 
132 	return (*byte >> bit) & GFS2_BIT_MASK;
133 }
134 
135 /**
136  * gfs2_bit_search
137  * @ptr: Pointer to bitmap data
138  * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
139  * @state: The state we are searching for
140  *
141  * We xor the bitmap data with a patter which is the bitwise opposite
142  * of what we are looking for, this gives rise to a pattern of ones
143  * wherever there is a match. Since we have two bits per entry, we
144  * take this pattern, shift it down by one place and then and it with
145  * the original. All the even bit positions (0,2,4, etc) then represent
146  * successful matches, so we mask with 0x55555..... to remove the unwanted
147  * odd bit positions.
148  *
149  * This allows searching of a whole u64 at once (32 blocks) with a
150  * single test (on 64 bit arches).
151  */
152 
153 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
154 {
155 	u64 tmp;
156 	static const u64 search[] = {
157 		[0] = 0xffffffffffffffffULL,
158 		[1] = 0xaaaaaaaaaaaaaaaaULL,
159 		[2] = 0x5555555555555555ULL,
160 		[3] = 0x0000000000000000ULL,
161 	};
162 	tmp = le64_to_cpu(*ptr) ^ search[state];
163 	tmp &= (tmp >> 1);
164 	tmp &= mask;
165 	return tmp;
166 }
167 
168 /**
169  * rs_cmp - multi-block reservation range compare
170  * @blk: absolute file system block number of the new reservation
171  * @len: number of blocks in the new reservation
172  * @rs: existing reservation to compare against
173  *
174  * returns: 1 if the block range is beyond the reach of the reservation
175  *         -1 if the block range is before the start of the reservation
176  *          0 if the block range overlaps with the reservation
177  */
178 static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs)
179 {
180 	u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm);
181 
182 	if (blk >= startblk + rs->rs_free)
183 		return 1;
184 	if (blk + len - 1 < startblk)
185 		return -1;
186 	return 0;
187 }
188 
189 /**
190  * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
191  *       a block in a given allocation state.
192  * @buf: the buffer that holds the bitmaps
193  * @len: the length (in bytes) of the buffer
194  * @goal: start search at this block's bit-pair (within @buffer)
195  * @state: GFS2_BLKST_XXX the state of the block we're looking for.
196  *
197  * Scope of @goal and returned block number is only within this bitmap buffer,
198  * not entire rgrp or filesystem.  @buffer will be offset from the actual
199  * beginning of a bitmap block buffer, skipping any header structures, but
200  * headers are always a multiple of 64 bits long so that the buffer is
201  * always aligned to a 64 bit boundary.
202  *
203  * The size of the buffer is in bytes, but is it assumed that it is
204  * always ok to read a complete multiple of 64 bits at the end
205  * of the block in case the end is no aligned to a natural boundary.
206  *
207  * Return: the block number (bitmap buffer scope) that was found
208  */
209 
210 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
211 		       u32 goal, u8 state)
212 {
213 	u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
214 	const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
215 	const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
216 	u64 tmp;
217 	u64 mask = 0x5555555555555555ULL;
218 	u32 bit;
219 
220 	/* Mask off bits we don't care about at the start of the search */
221 	mask <<= spoint;
222 	tmp = gfs2_bit_search(ptr, mask, state);
223 	ptr++;
224 	while(tmp == 0 && ptr < end) {
225 		tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
226 		ptr++;
227 	}
228 	/* Mask off any bits which are more than len bytes from the start */
229 	if (ptr == end && (len & (sizeof(u64) - 1)))
230 		tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
231 	/* Didn't find anything, so return */
232 	if (tmp == 0)
233 		return BFITNOENT;
234 	ptr--;
235 	bit = __ffs64(tmp);
236 	bit /= 2;	/* two bits per entry in the bitmap */
237 	return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
238 }
239 
240 /**
241  * gfs2_rbm_from_block - Set the rbm based upon rgd and block number
242  * @rbm: The rbm with rgd already set correctly
243  * @block: The block number (filesystem relative)
244  *
245  * This sets the bi and offset members of an rbm based on a
246  * resource group and a filesystem relative block number. The
247  * resource group must be set in the rbm on entry, the bi and
248  * offset members will be set by this function.
249  *
250  * Returns: 0 on success, or an error code
251  */
252 
253 static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block)
254 {
255 	u64 rblock = block - rbm->rgd->rd_data0;
256 
257 	if (WARN_ON_ONCE(rblock > UINT_MAX))
258 		return -EINVAL;
259 	if (block >= rbm->rgd->rd_data0 + rbm->rgd->rd_data)
260 		return -E2BIG;
261 
262 	rbm->bii = 0;
263 	rbm->offset = (u32)(rblock);
264 	/* Check if the block is within the first block */
265 	if (rbm->offset < rbm_bi(rbm)->bi_blocks)
266 		return 0;
267 
268 	/* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */
269 	rbm->offset += (sizeof(struct gfs2_rgrp) -
270 			sizeof(struct gfs2_meta_header)) * GFS2_NBBY;
271 	rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
272 	rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
273 	return 0;
274 }
275 
276 /**
277  * gfs2_rbm_incr - increment an rbm structure
278  * @rbm: The rbm with rgd already set correctly
279  *
280  * This function takes an existing rbm structure and increments it to the next
281  * viable block offset.
282  *
283  * Returns: If incrementing the offset would cause the rbm to go past the
284  *          end of the rgrp, true is returned, otherwise false.
285  *
286  */
287 
288 static bool gfs2_rbm_incr(struct gfs2_rbm *rbm)
289 {
290 	if (rbm->offset + 1 < rbm_bi(rbm)->bi_blocks) { /* in the same bitmap */
291 		rbm->offset++;
292 		return false;
293 	}
294 	if (rbm->bii == rbm->rgd->rd_length - 1) /* at the last bitmap */
295 		return true;
296 
297 	rbm->offset = 0;
298 	rbm->bii++;
299 	return false;
300 }
301 
302 /**
303  * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned
304  * @rbm: Position to search (value/result)
305  * @n_unaligned: Number of unaligned blocks to check
306  * @len: Decremented for each block found (terminate on zero)
307  *
308  * Returns: true if a non-free block is encountered
309  */
310 
311 static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len)
312 {
313 	u32 n;
314 	u8 res;
315 
316 	for (n = 0; n < n_unaligned; n++) {
317 		res = gfs2_testbit(rbm);
318 		if (res != GFS2_BLKST_FREE)
319 			return true;
320 		(*len)--;
321 		if (*len == 0)
322 			return true;
323 		if (gfs2_rbm_incr(rbm))
324 			return true;
325 	}
326 
327 	return false;
328 }
329 
330 /**
331  * gfs2_free_extlen - Return extent length of free blocks
332  * @rbm: Starting position
333  * @len: Max length to check
334  *
335  * Starting at the block specified by the rbm, see how many free blocks
336  * there are, not reading more than len blocks ahead. This can be done
337  * using memchr_inv when the blocks are byte aligned, but has to be done
338  * on a block by block basis in case of unaligned blocks. Also this
339  * function can cope with bitmap boundaries (although it must stop on
340  * a resource group boundary)
341  *
342  * Returns: Number of free blocks in the extent
343  */
344 
345 static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len)
346 {
347 	struct gfs2_rbm rbm = *rrbm;
348 	u32 n_unaligned = rbm.offset & 3;
349 	u32 size = len;
350 	u32 bytes;
351 	u32 chunk_size;
352 	u8 *ptr, *start, *end;
353 	u64 block;
354 	struct gfs2_bitmap *bi;
355 
356 	if (n_unaligned &&
357 	    gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len))
358 		goto out;
359 
360 	n_unaligned = len & 3;
361 	/* Start is now byte aligned */
362 	while (len > 3) {
363 		bi = rbm_bi(&rbm);
364 		start = bi->bi_bh->b_data;
365 		if (bi->bi_clone)
366 			start = bi->bi_clone;
367 		end = start + bi->bi_bh->b_size;
368 		start += bi->bi_offset;
369 		BUG_ON(rbm.offset & 3);
370 		start += (rbm.offset / GFS2_NBBY);
371 		bytes = min_t(u32, len / GFS2_NBBY, (end - start));
372 		ptr = memchr_inv(start, 0, bytes);
373 		chunk_size = ((ptr == NULL) ? bytes : (ptr - start));
374 		chunk_size *= GFS2_NBBY;
375 		BUG_ON(len < chunk_size);
376 		len -= chunk_size;
377 		block = gfs2_rbm_to_block(&rbm);
378 		if (gfs2_rbm_from_block(&rbm, block + chunk_size)) {
379 			n_unaligned = 0;
380 			break;
381 		}
382 		if (ptr) {
383 			n_unaligned = 3;
384 			break;
385 		}
386 		n_unaligned = len & 3;
387 	}
388 
389 	/* Deal with any bits left over at the end */
390 	if (n_unaligned)
391 		gfs2_unaligned_extlen(&rbm, n_unaligned, &len);
392 out:
393 	return size - len;
394 }
395 
396 /**
397  * gfs2_bitcount - count the number of bits in a certain state
398  * @rgd: the resource group descriptor
399  * @buffer: the buffer that holds the bitmaps
400  * @buflen: the length (in bytes) of the buffer
401  * @state: the state of the block we're looking for
402  *
403  * Returns: The number of bits
404  */
405 
406 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
407 			 unsigned int buflen, u8 state)
408 {
409 	const u8 *byte = buffer;
410 	const u8 *end = buffer + buflen;
411 	const u8 state1 = state << 2;
412 	const u8 state2 = state << 4;
413 	const u8 state3 = state << 6;
414 	u32 count = 0;
415 
416 	for (; byte < end; byte++) {
417 		if (((*byte) & 0x03) == state)
418 			count++;
419 		if (((*byte) & 0x0C) == state1)
420 			count++;
421 		if (((*byte) & 0x30) == state2)
422 			count++;
423 		if (((*byte) & 0xC0) == state3)
424 			count++;
425 	}
426 
427 	return count;
428 }
429 
430 /**
431  * gfs2_rgrp_verify - Verify that a resource group is consistent
432  * @rgd: the rgrp
433  *
434  */
435 
436 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
437 {
438 	struct gfs2_sbd *sdp = rgd->rd_sbd;
439 	struct gfs2_bitmap *bi = NULL;
440 	u32 length = rgd->rd_length;
441 	u32 count[4], tmp;
442 	int buf, x;
443 
444 	memset(count, 0, 4 * sizeof(u32));
445 
446 	/* Count # blocks in each of 4 possible allocation states */
447 	for (buf = 0; buf < length; buf++) {
448 		bi = rgd->rd_bits + buf;
449 		for (x = 0; x < 4; x++)
450 			count[x] += gfs2_bitcount(rgd,
451 						  bi->bi_bh->b_data +
452 						  bi->bi_offset,
453 						  bi->bi_len, x);
454 	}
455 
456 	if (count[0] != rgd->rd_free) {
457 		if (gfs2_consist_rgrpd(rgd))
458 			fs_err(sdp, "free data mismatch:  %u != %u\n",
459 			       count[0], rgd->rd_free);
460 		return;
461 	}
462 
463 	tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
464 	if (count[1] != tmp) {
465 		if (gfs2_consist_rgrpd(rgd))
466 			fs_err(sdp, "used data mismatch:  %u != %u\n",
467 			       count[1], tmp);
468 		return;
469 	}
470 
471 	if (count[2] + count[3] != rgd->rd_dinodes) {
472 		if (gfs2_consist_rgrpd(rgd))
473 			fs_err(sdp, "used metadata mismatch:  %u != %u\n",
474 			       count[2] + count[3], rgd->rd_dinodes);
475 		return;
476 	}
477 }
478 
479 static inline int rgrp_contains_block(struct gfs2_rgrpd *rgd, u64 block)
480 {
481 	u64 first = rgd->rd_data0;
482 	u64 last = first + rgd->rd_data;
483 	return first <= block && block < last;
484 }
485 
486 /**
487  * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
488  * @sdp: The GFS2 superblock
489  * @blk: The data block number
490  * @exact: True if this needs to be an exact match
491  *
492  * Returns: The resource group, or NULL if not found
493  */
494 
495 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
496 {
497 	struct rb_node *n, *next;
498 	struct gfs2_rgrpd *cur;
499 
500 	spin_lock(&sdp->sd_rindex_spin);
501 	n = sdp->sd_rindex_tree.rb_node;
502 	while (n) {
503 		cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
504 		next = NULL;
505 		if (blk < cur->rd_addr)
506 			next = n->rb_left;
507 		else if (blk >= cur->rd_data0 + cur->rd_data)
508 			next = n->rb_right;
509 		if (next == NULL) {
510 			spin_unlock(&sdp->sd_rindex_spin);
511 			if (exact) {
512 				if (blk < cur->rd_addr)
513 					return NULL;
514 				if (blk >= cur->rd_data0 + cur->rd_data)
515 					return NULL;
516 			}
517 			return cur;
518 		}
519 		n = next;
520 	}
521 	spin_unlock(&sdp->sd_rindex_spin);
522 
523 	return NULL;
524 }
525 
526 /**
527  * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
528  * @sdp: The GFS2 superblock
529  *
530  * Returns: The first rgrp in the filesystem
531  */
532 
533 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
534 {
535 	const struct rb_node *n;
536 	struct gfs2_rgrpd *rgd;
537 
538 	spin_lock(&sdp->sd_rindex_spin);
539 	n = rb_first(&sdp->sd_rindex_tree);
540 	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
541 	spin_unlock(&sdp->sd_rindex_spin);
542 
543 	return rgd;
544 }
545 
546 /**
547  * gfs2_rgrpd_get_next - get the next RG
548  * @rgd: the resource group descriptor
549  *
550  * Returns: The next rgrp
551  */
552 
553 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
554 {
555 	struct gfs2_sbd *sdp = rgd->rd_sbd;
556 	const struct rb_node *n;
557 
558 	spin_lock(&sdp->sd_rindex_spin);
559 	n = rb_next(&rgd->rd_node);
560 	if (n == NULL)
561 		n = rb_first(&sdp->sd_rindex_tree);
562 
563 	if (unlikely(&rgd->rd_node == n)) {
564 		spin_unlock(&sdp->sd_rindex_spin);
565 		return NULL;
566 	}
567 	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
568 	spin_unlock(&sdp->sd_rindex_spin);
569 	return rgd;
570 }
571 
572 void gfs2_free_clones(struct gfs2_rgrpd *rgd)
573 {
574 	int x;
575 
576 	for (x = 0; x < rgd->rd_length; x++) {
577 		struct gfs2_bitmap *bi = rgd->rd_bits + x;
578 		kfree(bi->bi_clone);
579 		bi->bi_clone = NULL;
580 	}
581 }
582 
583 /**
584  * gfs2_rs_alloc - make sure we have a reservation assigned to the inode
585  * @ip: the inode for this reservation
586  */
587 int gfs2_rs_alloc(struct gfs2_inode *ip)
588 {
589 	int error = 0;
590 
591 	down_write(&ip->i_rw_mutex);
592 	if (ip->i_res)
593 		goto out;
594 
595 	ip->i_res = kmem_cache_zalloc(gfs2_rsrv_cachep, GFP_NOFS);
596 	if (!ip->i_res) {
597 		error = -ENOMEM;
598 		goto out;
599 	}
600 
601 	RB_CLEAR_NODE(&ip->i_res->rs_node);
602 out:
603 	up_write(&ip->i_rw_mutex);
604 	return error;
605 }
606 
607 static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs)
608 {
609 	gfs2_print_dbg(seq, "  B: n:%llu s:%llu b:%u f:%u\n",
610 		       (unsigned long long)rs->rs_inum,
611 		       (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm),
612 		       rs->rs_rbm.offset, rs->rs_free);
613 }
614 
615 /**
616  * __rs_deltree - remove a multi-block reservation from the rgd tree
617  * @rs: The reservation to remove
618  *
619  */
620 static void __rs_deltree(struct gfs2_blkreserv *rs)
621 {
622 	struct gfs2_rgrpd *rgd;
623 
624 	if (!gfs2_rs_active(rs))
625 		return;
626 
627 	rgd = rs->rs_rbm.rgd;
628 	trace_gfs2_rs(rs, TRACE_RS_TREEDEL);
629 	rb_erase(&rs->rs_node, &rgd->rd_rstree);
630 	RB_CLEAR_NODE(&rs->rs_node);
631 
632 	if (rs->rs_free) {
633 		struct gfs2_bitmap *bi = rbm_bi(&rs->rs_rbm);
634 
635 		/* return reserved blocks to the rgrp */
636 		BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free);
637 		rs->rs_rbm.rgd->rd_reserved -= rs->rs_free;
638 		rs->rs_free = 0;
639 		clear_bit(GBF_FULL, &bi->bi_flags);
640 		smp_mb__after_clear_bit();
641 	}
642 }
643 
644 /**
645  * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
646  * @rs: The reservation to remove
647  *
648  */
649 void gfs2_rs_deltree(struct gfs2_blkreserv *rs)
650 {
651 	struct gfs2_rgrpd *rgd;
652 
653 	rgd = rs->rs_rbm.rgd;
654 	if (rgd) {
655 		spin_lock(&rgd->rd_rsspin);
656 		__rs_deltree(rs);
657 		spin_unlock(&rgd->rd_rsspin);
658 	}
659 }
660 
661 /**
662  * gfs2_rs_delete - delete a multi-block reservation
663  * @ip: The inode for this reservation
664  * @wcount: The inode's write count, or NULL
665  *
666  */
667 void gfs2_rs_delete(struct gfs2_inode *ip, atomic_t *wcount)
668 {
669 	down_write(&ip->i_rw_mutex);
670 	if (ip->i_res && ((wcount == NULL) || (atomic_read(wcount) <= 1))) {
671 		gfs2_rs_deltree(ip->i_res);
672 		BUG_ON(ip->i_res->rs_free);
673 		kmem_cache_free(gfs2_rsrv_cachep, ip->i_res);
674 		ip->i_res = NULL;
675 	}
676 	up_write(&ip->i_rw_mutex);
677 }
678 
679 /**
680  * return_all_reservations - return all reserved blocks back to the rgrp.
681  * @rgd: the rgrp that needs its space back
682  *
683  * We previously reserved a bunch of blocks for allocation. Now we need to
684  * give them back. This leave the reservation structures in tact, but removes
685  * all of their corresponding "no-fly zones".
686  */
687 static void return_all_reservations(struct gfs2_rgrpd *rgd)
688 {
689 	struct rb_node *n;
690 	struct gfs2_blkreserv *rs;
691 
692 	spin_lock(&rgd->rd_rsspin);
693 	while ((n = rb_first(&rgd->rd_rstree))) {
694 		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
695 		__rs_deltree(rs);
696 	}
697 	spin_unlock(&rgd->rd_rsspin);
698 }
699 
700 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
701 {
702 	struct rb_node *n;
703 	struct gfs2_rgrpd *rgd;
704 	struct gfs2_glock *gl;
705 
706 	while ((n = rb_first(&sdp->sd_rindex_tree))) {
707 		rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
708 		gl = rgd->rd_gl;
709 
710 		rb_erase(n, &sdp->sd_rindex_tree);
711 
712 		if (gl) {
713 			spin_lock(&gl->gl_spin);
714 			gl->gl_object = NULL;
715 			spin_unlock(&gl->gl_spin);
716 			gfs2_glock_add_to_lru(gl);
717 			gfs2_glock_put(gl);
718 		}
719 
720 		gfs2_free_clones(rgd);
721 		kfree(rgd->rd_bits);
722 		return_all_reservations(rgd);
723 		kmem_cache_free(gfs2_rgrpd_cachep, rgd);
724 	}
725 }
726 
727 static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd)
728 {
729 	printk(KERN_INFO "  ri_addr = %llu\n", (unsigned long long)rgd->rd_addr);
730 	printk(KERN_INFO "  ri_length = %u\n", rgd->rd_length);
731 	printk(KERN_INFO "  ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0);
732 	printk(KERN_INFO "  ri_data = %u\n", rgd->rd_data);
733 	printk(KERN_INFO "  ri_bitbytes = %u\n", rgd->rd_bitbytes);
734 }
735 
736 /**
737  * gfs2_compute_bitstructs - Compute the bitmap sizes
738  * @rgd: The resource group descriptor
739  *
740  * Calculates bitmap descriptors, one for each block that contains bitmap data
741  *
742  * Returns: errno
743  */
744 
745 static int compute_bitstructs(struct gfs2_rgrpd *rgd)
746 {
747 	struct gfs2_sbd *sdp = rgd->rd_sbd;
748 	struct gfs2_bitmap *bi;
749 	u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
750 	u32 bytes_left, bytes;
751 	int x;
752 
753 	if (!length)
754 		return -EINVAL;
755 
756 	rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
757 	if (!rgd->rd_bits)
758 		return -ENOMEM;
759 
760 	bytes_left = rgd->rd_bitbytes;
761 
762 	for (x = 0; x < length; x++) {
763 		bi = rgd->rd_bits + x;
764 
765 		bi->bi_flags = 0;
766 		/* small rgrp; bitmap stored completely in header block */
767 		if (length == 1) {
768 			bytes = bytes_left;
769 			bi->bi_offset = sizeof(struct gfs2_rgrp);
770 			bi->bi_start = 0;
771 			bi->bi_len = bytes;
772 			bi->bi_blocks = bytes * GFS2_NBBY;
773 		/* header block */
774 		} else if (x == 0) {
775 			bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
776 			bi->bi_offset = sizeof(struct gfs2_rgrp);
777 			bi->bi_start = 0;
778 			bi->bi_len = bytes;
779 			bi->bi_blocks = bytes * GFS2_NBBY;
780 		/* last block */
781 		} else if (x + 1 == length) {
782 			bytes = bytes_left;
783 			bi->bi_offset = sizeof(struct gfs2_meta_header);
784 			bi->bi_start = rgd->rd_bitbytes - bytes_left;
785 			bi->bi_len = bytes;
786 			bi->bi_blocks = bytes * GFS2_NBBY;
787 		/* other blocks */
788 		} else {
789 			bytes = sdp->sd_sb.sb_bsize -
790 				sizeof(struct gfs2_meta_header);
791 			bi->bi_offset = sizeof(struct gfs2_meta_header);
792 			bi->bi_start = rgd->rd_bitbytes - bytes_left;
793 			bi->bi_len = bytes;
794 			bi->bi_blocks = bytes * GFS2_NBBY;
795 		}
796 
797 		bytes_left -= bytes;
798 	}
799 
800 	if (bytes_left) {
801 		gfs2_consist_rgrpd(rgd);
802 		return -EIO;
803 	}
804 	bi = rgd->rd_bits + (length - 1);
805 	if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) {
806 		if (gfs2_consist_rgrpd(rgd)) {
807 			gfs2_rindex_print(rgd);
808 			fs_err(sdp, "start=%u len=%u offset=%u\n",
809 			       bi->bi_start, bi->bi_len, bi->bi_offset);
810 		}
811 		return -EIO;
812 	}
813 
814 	return 0;
815 }
816 
817 /**
818  * gfs2_ri_total - Total up the file system space, according to the rindex.
819  * @sdp: the filesystem
820  *
821  */
822 u64 gfs2_ri_total(struct gfs2_sbd *sdp)
823 {
824 	u64 total_data = 0;
825 	struct inode *inode = sdp->sd_rindex;
826 	struct gfs2_inode *ip = GFS2_I(inode);
827 	char buf[sizeof(struct gfs2_rindex)];
828 	int error, rgrps;
829 
830 	for (rgrps = 0;; rgrps++) {
831 		loff_t pos = rgrps * sizeof(struct gfs2_rindex);
832 
833 		if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
834 			break;
835 		error = gfs2_internal_read(ip, buf, &pos,
836 					   sizeof(struct gfs2_rindex));
837 		if (error != sizeof(struct gfs2_rindex))
838 			break;
839 		total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
840 	}
841 	return total_data;
842 }
843 
844 static int rgd_insert(struct gfs2_rgrpd *rgd)
845 {
846 	struct gfs2_sbd *sdp = rgd->rd_sbd;
847 	struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
848 
849 	/* Figure out where to put new node */
850 	while (*newn) {
851 		struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
852 						  rd_node);
853 
854 		parent = *newn;
855 		if (rgd->rd_addr < cur->rd_addr)
856 			newn = &((*newn)->rb_left);
857 		else if (rgd->rd_addr > cur->rd_addr)
858 			newn = &((*newn)->rb_right);
859 		else
860 			return -EEXIST;
861 	}
862 
863 	rb_link_node(&rgd->rd_node, parent, newn);
864 	rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
865 	sdp->sd_rgrps++;
866 	return 0;
867 }
868 
869 /**
870  * read_rindex_entry - Pull in a new resource index entry from the disk
871  * @ip: Pointer to the rindex inode
872  *
873  * Returns: 0 on success, > 0 on EOF, error code otherwise
874  */
875 
876 static int read_rindex_entry(struct gfs2_inode *ip)
877 {
878 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
879 	loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
880 	struct gfs2_rindex buf;
881 	int error;
882 	struct gfs2_rgrpd *rgd;
883 
884 	if (pos >= i_size_read(&ip->i_inode))
885 		return 1;
886 
887 	error = gfs2_internal_read(ip, (char *)&buf, &pos,
888 				   sizeof(struct gfs2_rindex));
889 
890 	if (error != sizeof(struct gfs2_rindex))
891 		return (error == 0) ? 1 : error;
892 
893 	rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
894 	error = -ENOMEM;
895 	if (!rgd)
896 		return error;
897 
898 	rgd->rd_sbd = sdp;
899 	rgd->rd_addr = be64_to_cpu(buf.ri_addr);
900 	rgd->rd_length = be32_to_cpu(buf.ri_length);
901 	rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
902 	rgd->rd_data = be32_to_cpu(buf.ri_data);
903 	rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
904 	spin_lock_init(&rgd->rd_rsspin);
905 
906 	error = compute_bitstructs(rgd);
907 	if (error)
908 		goto fail;
909 
910 	error = gfs2_glock_get(sdp, rgd->rd_addr,
911 			       &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
912 	if (error)
913 		goto fail;
914 
915 	rgd->rd_gl->gl_object = rgd;
916 	rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr;
917 	rgd->rd_flags &= ~GFS2_RDF_UPTODATE;
918 	if (rgd->rd_data > sdp->sd_max_rg_data)
919 		sdp->sd_max_rg_data = rgd->rd_data;
920 	spin_lock(&sdp->sd_rindex_spin);
921 	error = rgd_insert(rgd);
922 	spin_unlock(&sdp->sd_rindex_spin);
923 	if (!error)
924 		return 0;
925 
926 	error = 0; /* someone else read in the rgrp; free it and ignore it */
927 	gfs2_glock_put(rgd->rd_gl);
928 
929 fail:
930 	kfree(rgd->rd_bits);
931 	kmem_cache_free(gfs2_rgrpd_cachep, rgd);
932 	return error;
933 }
934 
935 /**
936  * gfs2_ri_update - Pull in a new resource index from the disk
937  * @ip: pointer to the rindex inode
938  *
939  * Returns: 0 on successful update, error code otherwise
940  */
941 
942 static int gfs2_ri_update(struct gfs2_inode *ip)
943 {
944 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
945 	int error;
946 
947 	do {
948 		error = read_rindex_entry(ip);
949 	} while (error == 0);
950 
951 	if (error < 0)
952 		return error;
953 
954 	sdp->sd_rindex_uptodate = 1;
955 	return 0;
956 }
957 
958 /**
959  * gfs2_rindex_update - Update the rindex if required
960  * @sdp: The GFS2 superblock
961  *
962  * We grab a lock on the rindex inode to make sure that it doesn't
963  * change whilst we are performing an operation. We keep this lock
964  * for quite long periods of time compared to other locks. This
965  * doesn't matter, since it is shared and it is very, very rarely
966  * accessed in the exclusive mode (i.e. only when expanding the filesystem).
967  *
968  * This makes sure that we're using the latest copy of the resource index
969  * special file, which might have been updated if someone expanded the
970  * filesystem (via gfs2_grow utility), which adds new resource groups.
971  *
972  * Returns: 0 on succeess, error code otherwise
973  */
974 
975 int gfs2_rindex_update(struct gfs2_sbd *sdp)
976 {
977 	struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
978 	struct gfs2_glock *gl = ip->i_gl;
979 	struct gfs2_holder ri_gh;
980 	int error = 0;
981 	int unlock_required = 0;
982 
983 	/* Read new copy from disk if we don't have the latest */
984 	if (!sdp->sd_rindex_uptodate) {
985 		if (!gfs2_glock_is_locked_by_me(gl)) {
986 			error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
987 			if (error)
988 				return error;
989 			unlock_required = 1;
990 		}
991 		if (!sdp->sd_rindex_uptodate)
992 			error = gfs2_ri_update(ip);
993 		if (unlock_required)
994 			gfs2_glock_dq_uninit(&ri_gh);
995 	}
996 
997 	return error;
998 }
999 
1000 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
1001 {
1002 	const struct gfs2_rgrp *str = buf;
1003 	u32 rg_flags;
1004 
1005 	rg_flags = be32_to_cpu(str->rg_flags);
1006 	rg_flags &= ~GFS2_RDF_MASK;
1007 	rgd->rd_flags &= GFS2_RDF_MASK;
1008 	rgd->rd_flags |= rg_flags;
1009 	rgd->rd_free = be32_to_cpu(str->rg_free);
1010 	rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
1011 	rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
1012 }
1013 
1014 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
1015 {
1016 	struct gfs2_rgrp *str = buf;
1017 
1018 	str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
1019 	str->rg_free = cpu_to_be32(rgd->rd_free);
1020 	str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
1021 	str->__pad = cpu_to_be32(0);
1022 	str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
1023 	memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
1024 }
1025 
1026 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd)
1027 {
1028 	struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1029 	struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data;
1030 
1031 	if (rgl->rl_flags != str->rg_flags || rgl->rl_free != str->rg_free ||
1032 	    rgl->rl_dinodes != str->rg_dinodes ||
1033 	    rgl->rl_igeneration != str->rg_igeneration)
1034 		return 0;
1035 	return 1;
1036 }
1037 
1038 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf)
1039 {
1040 	const struct gfs2_rgrp *str = buf;
1041 
1042 	rgl->rl_magic = cpu_to_be32(GFS2_MAGIC);
1043 	rgl->rl_flags = str->rg_flags;
1044 	rgl->rl_free = str->rg_free;
1045 	rgl->rl_dinodes = str->rg_dinodes;
1046 	rgl->rl_igeneration = str->rg_igeneration;
1047 	rgl->__pad = 0UL;
1048 }
1049 
1050 static void update_rgrp_lvb_unlinked(struct gfs2_rgrpd *rgd, u32 change)
1051 {
1052 	struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1053 	u32 unlinked = be32_to_cpu(rgl->rl_unlinked) + change;
1054 	rgl->rl_unlinked = cpu_to_be32(unlinked);
1055 }
1056 
1057 static u32 count_unlinked(struct gfs2_rgrpd *rgd)
1058 {
1059 	struct gfs2_bitmap *bi;
1060 	const u32 length = rgd->rd_length;
1061 	const u8 *buffer = NULL;
1062 	u32 i, goal, count = 0;
1063 
1064 	for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) {
1065 		goal = 0;
1066 		buffer = bi->bi_bh->b_data + bi->bi_offset;
1067 		WARN_ON(!buffer_uptodate(bi->bi_bh));
1068 		while (goal < bi->bi_len * GFS2_NBBY) {
1069 			goal = gfs2_bitfit(buffer, bi->bi_len, goal,
1070 					   GFS2_BLKST_UNLINKED);
1071 			if (goal == BFITNOENT)
1072 				break;
1073 			count++;
1074 			goal++;
1075 		}
1076 	}
1077 
1078 	return count;
1079 }
1080 
1081 
1082 /**
1083  * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps
1084  * @rgd: the struct gfs2_rgrpd describing the RG to read in
1085  *
1086  * Read in all of a Resource Group's header and bitmap blocks.
1087  * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps.
1088  *
1089  * Returns: errno
1090  */
1091 
1092 int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd)
1093 {
1094 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1095 	struct gfs2_glock *gl = rgd->rd_gl;
1096 	unsigned int length = rgd->rd_length;
1097 	struct gfs2_bitmap *bi;
1098 	unsigned int x, y;
1099 	int error;
1100 
1101 	if (rgd->rd_bits[0].bi_bh != NULL)
1102 		return 0;
1103 
1104 	for (x = 0; x < length; x++) {
1105 		bi = rgd->rd_bits + x;
1106 		error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, &bi->bi_bh);
1107 		if (error)
1108 			goto fail;
1109 	}
1110 
1111 	for (y = length; y--;) {
1112 		bi = rgd->rd_bits + y;
1113 		error = gfs2_meta_wait(sdp, bi->bi_bh);
1114 		if (error)
1115 			goto fail;
1116 		if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
1117 					      GFS2_METATYPE_RG)) {
1118 			error = -EIO;
1119 			goto fail;
1120 		}
1121 	}
1122 
1123 	if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
1124 		for (x = 0; x < length; x++)
1125 			clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags);
1126 		gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
1127 		rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1128 		rgd->rd_free_clone = rgd->rd_free;
1129 	}
1130 	if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) {
1131 		rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd));
1132 		gfs2_rgrp_ondisk2lvb(rgd->rd_rgl,
1133 				     rgd->rd_bits[0].bi_bh->b_data);
1134 	}
1135 	else if (sdp->sd_args.ar_rgrplvb) {
1136 		if (!gfs2_rgrp_lvb_valid(rgd)){
1137 			gfs2_consist_rgrpd(rgd);
1138 			error = -EIO;
1139 			goto fail;
1140 		}
1141 		if (rgd->rd_rgl->rl_unlinked == 0)
1142 			rgd->rd_flags &= ~GFS2_RDF_CHECK;
1143 	}
1144 	return 0;
1145 
1146 fail:
1147 	while (x--) {
1148 		bi = rgd->rd_bits + x;
1149 		brelse(bi->bi_bh);
1150 		bi->bi_bh = NULL;
1151 		gfs2_assert_warn(sdp, !bi->bi_clone);
1152 	}
1153 
1154 	return error;
1155 }
1156 
1157 int update_rgrp_lvb(struct gfs2_rgrpd *rgd)
1158 {
1159 	u32 rl_flags;
1160 
1161 	if (rgd->rd_flags & GFS2_RDF_UPTODATE)
1162 		return 0;
1163 
1164 	if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic)
1165 		return gfs2_rgrp_bh_get(rgd);
1166 
1167 	rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags);
1168 	rl_flags &= ~GFS2_RDF_MASK;
1169 	rgd->rd_flags &= GFS2_RDF_MASK;
1170 	rgd->rd_flags |= (rl_flags | GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1171 	if (rgd->rd_rgl->rl_unlinked == 0)
1172 		rgd->rd_flags &= ~GFS2_RDF_CHECK;
1173 	rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free);
1174 	rgd->rd_free_clone = rgd->rd_free;
1175 	rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes);
1176 	rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration);
1177 	return 0;
1178 }
1179 
1180 int gfs2_rgrp_go_lock(struct gfs2_holder *gh)
1181 {
1182 	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1183 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1184 
1185 	if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb)
1186 		return 0;
1187 	return gfs2_rgrp_bh_get((struct gfs2_rgrpd *)gh->gh_gl->gl_object);
1188 }
1189 
1190 /**
1191  * gfs2_rgrp_go_unlock - Release RG bitmaps read in with gfs2_rgrp_bh_get()
1192  * @gh: The glock holder for the resource group
1193  *
1194  */
1195 
1196 void gfs2_rgrp_go_unlock(struct gfs2_holder *gh)
1197 {
1198 	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1199 	int x, length = rgd->rd_length;
1200 
1201 	for (x = 0; x < length; x++) {
1202 		struct gfs2_bitmap *bi = rgd->rd_bits + x;
1203 		if (bi->bi_bh) {
1204 			brelse(bi->bi_bh);
1205 			bi->bi_bh = NULL;
1206 		}
1207 	}
1208 
1209 }
1210 
1211 int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
1212 			     struct buffer_head *bh,
1213 			     const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
1214 {
1215 	struct super_block *sb = sdp->sd_vfs;
1216 	u64 blk;
1217 	sector_t start = 0;
1218 	sector_t nr_blks = 0;
1219 	int rv;
1220 	unsigned int x;
1221 	u32 trimmed = 0;
1222 	u8 diff;
1223 
1224 	for (x = 0; x < bi->bi_len; x++) {
1225 		const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
1226 		clone += bi->bi_offset;
1227 		clone += x;
1228 		if (bh) {
1229 			const u8 *orig = bh->b_data + bi->bi_offset + x;
1230 			diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
1231 		} else {
1232 			diff = ~(*clone | (*clone >> 1));
1233 		}
1234 		diff &= 0x55;
1235 		if (diff == 0)
1236 			continue;
1237 		blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
1238 		while(diff) {
1239 			if (diff & 1) {
1240 				if (nr_blks == 0)
1241 					goto start_new_extent;
1242 				if ((start + nr_blks) != blk) {
1243 					if (nr_blks >= minlen) {
1244 						rv = sb_issue_discard(sb,
1245 							start, nr_blks,
1246 							GFP_NOFS, 0);
1247 						if (rv)
1248 							goto fail;
1249 						trimmed += nr_blks;
1250 					}
1251 					nr_blks = 0;
1252 start_new_extent:
1253 					start = blk;
1254 				}
1255 				nr_blks++;
1256 			}
1257 			diff >>= 2;
1258 			blk++;
1259 		}
1260 	}
1261 	if (nr_blks >= minlen) {
1262 		rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0);
1263 		if (rv)
1264 			goto fail;
1265 		trimmed += nr_blks;
1266 	}
1267 	if (ptrimmed)
1268 		*ptrimmed = trimmed;
1269 	return 0;
1270 
1271 fail:
1272 	if (sdp->sd_args.ar_discard)
1273 		fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv);
1274 	sdp->sd_args.ar_discard = 0;
1275 	return -EIO;
1276 }
1277 
1278 /**
1279  * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
1280  * @filp: Any file on the filesystem
1281  * @argp: Pointer to the arguments (also used to pass result)
1282  *
1283  * Returns: 0 on success, otherwise error code
1284  */
1285 
1286 int gfs2_fitrim(struct file *filp, void __user *argp)
1287 {
1288 	struct inode *inode = file_inode(filp);
1289 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1290 	struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev);
1291 	struct buffer_head *bh;
1292 	struct gfs2_rgrpd *rgd;
1293 	struct gfs2_rgrpd *rgd_end;
1294 	struct gfs2_holder gh;
1295 	struct fstrim_range r;
1296 	int ret = 0;
1297 	u64 amt;
1298 	u64 trimmed = 0;
1299 	u64 start, end, minlen;
1300 	unsigned int x;
1301 	unsigned bs_shift = sdp->sd_sb.sb_bsize_shift;
1302 
1303 	if (!capable(CAP_SYS_ADMIN))
1304 		return -EPERM;
1305 
1306 	if (!blk_queue_discard(q))
1307 		return -EOPNOTSUPP;
1308 
1309 	if (copy_from_user(&r, argp, sizeof(r)))
1310 		return -EFAULT;
1311 
1312 	ret = gfs2_rindex_update(sdp);
1313 	if (ret)
1314 		return ret;
1315 
1316 	start = r.start >> bs_shift;
1317 	end = start + (r.len >> bs_shift);
1318 	minlen = max_t(u64, r.minlen,
1319 		       q->limits.discard_granularity) >> bs_shift;
1320 
1321 	if (end <= start || minlen > sdp->sd_max_rg_data)
1322 		return -EINVAL;
1323 
1324 	rgd = gfs2_blk2rgrpd(sdp, start, 0);
1325 	rgd_end = gfs2_blk2rgrpd(sdp, end, 0);
1326 
1327 	if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end))
1328 	    && (start > rgd_end->rd_data0 + rgd_end->rd_data))
1329 		return -EINVAL; /* start is beyond the end of the fs */
1330 
1331 	while (1) {
1332 
1333 		ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh);
1334 		if (ret)
1335 			goto out;
1336 
1337 		if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
1338 			/* Trim each bitmap in the rgrp */
1339 			for (x = 0; x < rgd->rd_length; x++) {
1340 				struct gfs2_bitmap *bi = rgd->rd_bits + x;
1341 				ret = gfs2_rgrp_send_discards(sdp,
1342 						rgd->rd_data0, NULL, bi, minlen,
1343 						&amt);
1344 				if (ret) {
1345 					gfs2_glock_dq_uninit(&gh);
1346 					goto out;
1347 				}
1348 				trimmed += amt;
1349 			}
1350 
1351 			/* Mark rgrp as having been trimmed */
1352 			ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
1353 			if (ret == 0) {
1354 				bh = rgd->rd_bits[0].bi_bh;
1355 				rgd->rd_flags |= GFS2_RGF_TRIMMED;
1356 				gfs2_trans_add_meta(rgd->rd_gl, bh);
1357 				gfs2_rgrp_out(rgd, bh->b_data);
1358 				gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, bh->b_data);
1359 				gfs2_trans_end(sdp);
1360 			}
1361 		}
1362 		gfs2_glock_dq_uninit(&gh);
1363 
1364 		if (rgd == rgd_end)
1365 			break;
1366 
1367 		rgd = gfs2_rgrpd_get_next(rgd);
1368 	}
1369 
1370 out:
1371 	r.len = trimmed << bs_shift;
1372 	if (copy_to_user(argp, &r, sizeof(r)))
1373 		return -EFAULT;
1374 
1375 	return ret;
1376 }
1377 
1378 /**
1379  * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
1380  * @ip: the inode structure
1381  *
1382  */
1383 static void rs_insert(struct gfs2_inode *ip)
1384 {
1385 	struct rb_node **newn, *parent = NULL;
1386 	int rc;
1387 	struct gfs2_blkreserv *rs = ip->i_res;
1388 	struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd;
1389 	u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm);
1390 
1391 	BUG_ON(gfs2_rs_active(rs));
1392 
1393 	spin_lock(&rgd->rd_rsspin);
1394 	newn = &rgd->rd_rstree.rb_node;
1395 	while (*newn) {
1396 		struct gfs2_blkreserv *cur =
1397 			rb_entry(*newn, struct gfs2_blkreserv, rs_node);
1398 
1399 		parent = *newn;
1400 		rc = rs_cmp(fsblock, rs->rs_free, cur);
1401 		if (rc > 0)
1402 			newn = &((*newn)->rb_right);
1403 		else if (rc < 0)
1404 			newn = &((*newn)->rb_left);
1405 		else {
1406 			spin_unlock(&rgd->rd_rsspin);
1407 			WARN_ON(1);
1408 			return;
1409 		}
1410 	}
1411 
1412 	rb_link_node(&rs->rs_node, parent, newn);
1413 	rb_insert_color(&rs->rs_node, &rgd->rd_rstree);
1414 
1415 	/* Do our rgrp accounting for the reservation */
1416 	rgd->rd_reserved += rs->rs_free; /* blocks reserved */
1417 	spin_unlock(&rgd->rd_rsspin);
1418 	trace_gfs2_rs(rs, TRACE_RS_INSERT);
1419 }
1420 
1421 /**
1422  * rg_mblk_search - find a group of multiple free blocks to form a reservation
1423  * @rgd: the resource group descriptor
1424  * @ip: pointer to the inode for which we're reserving blocks
1425  * @ap: the allocation parameters
1426  *
1427  */
1428 
1429 static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip,
1430 			   const struct gfs2_alloc_parms *ap)
1431 {
1432 	struct gfs2_rbm rbm = { .rgd = rgd, };
1433 	u64 goal;
1434 	struct gfs2_blkreserv *rs = ip->i_res;
1435 	u32 extlen;
1436 	u32 free_blocks = rgd->rd_free_clone - rgd->rd_reserved;
1437 	int ret;
1438 	struct inode *inode = &ip->i_inode;
1439 
1440 	if (S_ISDIR(inode->i_mode))
1441 		extlen = 1;
1442 	else {
1443 		extlen = max_t(u32, atomic_read(&rs->rs_sizehint), ap->target);
1444 		extlen = clamp(extlen, RGRP_RSRV_MINBLKS, free_blocks);
1445 	}
1446 	if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen))
1447 		return;
1448 
1449 	/* Find bitmap block that contains bits for goal block */
1450 	if (rgrp_contains_block(rgd, ip->i_goal))
1451 		goal = ip->i_goal;
1452 	else
1453 		goal = rgd->rd_last_alloc + rgd->rd_data0;
1454 
1455 	if (WARN_ON(gfs2_rbm_from_block(&rbm, goal)))
1456 		return;
1457 
1458 	ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, extlen, ip, true);
1459 	if (ret == 0) {
1460 		rs->rs_rbm = rbm;
1461 		rs->rs_free = extlen;
1462 		rs->rs_inum = ip->i_no_addr;
1463 		rs_insert(ip);
1464 	} else {
1465 		if (goal == rgd->rd_last_alloc + rgd->rd_data0)
1466 			rgd->rd_last_alloc = 0;
1467 	}
1468 }
1469 
1470 /**
1471  * gfs2_next_unreserved_block - Return next block that is not reserved
1472  * @rgd: The resource group
1473  * @block: The starting block
1474  * @length: The required length
1475  * @ip: Ignore any reservations for this inode
1476  *
1477  * If the block does not appear in any reservation, then return the
1478  * block number unchanged. If it does appear in the reservation, then
1479  * keep looking through the tree of reservations in order to find the
1480  * first block number which is not reserved.
1481  */
1482 
1483 static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block,
1484 				      u32 length,
1485 				      const struct gfs2_inode *ip)
1486 {
1487 	struct gfs2_blkreserv *rs;
1488 	struct rb_node *n;
1489 	int rc;
1490 
1491 	spin_lock(&rgd->rd_rsspin);
1492 	n = rgd->rd_rstree.rb_node;
1493 	while (n) {
1494 		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1495 		rc = rs_cmp(block, length, rs);
1496 		if (rc < 0)
1497 			n = n->rb_left;
1498 		else if (rc > 0)
1499 			n = n->rb_right;
1500 		else
1501 			break;
1502 	}
1503 
1504 	if (n) {
1505 		while ((rs_cmp(block, length, rs) == 0) && (ip->i_res != rs)) {
1506 			block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free;
1507 			n = n->rb_right;
1508 			if (n == NULL)
1509 				break;
1510 			rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1511 		}
1512 	}
1513 
1514 	spin_unlock(&rgd->rd_rsspin);
1515 	return block;
1516 }
1517 
1518 /**
1519  * gfs2_reservation_check_and_update - Check for reservations during block alloc
1520  * @rbm: The current position in the resource group
1521  * @ip: The inode for which we are searching for blocks
1522  * @minext: The minimum extent length
1523  *
1524  * This checks the current position in the rgrp to see whether there is
1525  * a reservation covering this block. If not then this function is a
1526  * no-op. If there is, then the position is moved to the end of the
1527  * contiguous reservation(s) so that we are pointing at the first
1528  * non-reserved block.
1529  *
1530  * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error
1531  */
1532 
1533 static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm,
1534 					     const struct gfs2_inode *ip,
1535 					     u32 minext)
1536 {
1537 	u64 block = gfs2_rbm_to_block(rbm);
1538 	u32 extlen = 1;
1539 	u64 nblock;
1540 	int ret;
1541 
1542 	/*
1543 	 * If we have a minimum extent length, then skip over any extent
1544 	 * which is less than the min extent length in size.
1545 	 */
1546 	if (minext) {
1547 		extlen = gfs2_free_extlen(rbm, minext);
1548 		nblock = block + extlen;
1549 		if (extlen < minext)
1550 			goto fail;
1551 	}
1552 
1553 	/*
1554 	 * Check the extent which has been found against the reservations
1555 	 * and skip if parts of it are already reserved
1556 	 */
1557 	nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip);
1558 	if (nblock == block)
1559 		return 0;
1560 fail:
1561 	ret = gfs2_rbm_from_block(rbm, nblock);
1562 	if (ret < 0)
1563 		return ret;
1564 	return 1;
1565 }
1566 
1567 /**
1568  * gfs2_rbm_find - Look for blocks of a particular state
1569  * @rbm: Value/result starting position and final position
1570  * @state: The state which we want to find
1571  * @minext: The requested extent length (0 for a single block)
1572  * @ip: If set, check for reservations
1573  * @nowrap: Stop looking at the end of the rgrp, rather than wrapping
1574  *          around until we've reached the starting point.
1575  *
1576  * Side effects:
1577  * - If looking for free blocks, we set GBF_FULL on each bitmap which
1578  *   has no free blocks in it.
1579  *
1580  * Returns: 0 on success, -ENOSPC if there is no block of the requested state
1581  */
1582 
1583 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 minext,
1584 			 const struct gfs2_inode *ip, bool nowrap)
1585 {
1586 	struct buffer_head *bh;
1587 	int initial_bii;
1588 	u32 initial_offset;
1589 	u32 offset;
1590 	u8 *buffer;
1591 	int n = 0;
1592 	int iters = rbm->rgd->rd_length;
1593 	int ret;
1594 	struct gfs2_bitmap *bi;
1595 
1596 	/* If we are not starting at the beginning of a bitmap, then we
1597 	 * need to add one to the bitmap count to ensure that we search
1598 	 * the starting bitmap twice.
1599 	 */
1600 	if (rbm->offset != 0)
1601 		iters++;
1602 
1603 	while(1) {
1604 		bi = rbm_bi(rbm);
1605 		if (test_bit(GBF_FULL, &bi->bi_flags) &&
1606 		    (state == GFS2_BLKST_FREE))
1607 			goto next_bitmap;
1608 
1609 		bh = bi->bi_bh;
1610 		buffer = bh->b_data + bi->bi_offset;
1611 		WARN_ON(!buffer_uptodate(bh));
1612 		if (state != GFS2_BLKST_UNLINKED && bi->bi_clone)
1613 			buffer = bi->bi_clone + bi->bi_offset;
1614 		initial_offset = rbm->offset;
1615 		offset = gfs2_bitfit(buffer, bi->bi_len, rbm->offset, state);
1616 		if (offset == BFITNOENT)
1617 			goto bitmap_full;
1618 		rbm->offset = offset;
1619 		if (ip == NULL)
1620 			return 0;
1621 
1622 		initial_bii = rbm->bii;
1623 		ret = gfs2_reservation_check_and_update(rbm, ip, minext);
1624 		if (ret == 0)
1625 			return 0;
1626 		if (ret > 0) {
1627 			n += (rbm->bii - initial_bii);
1628 			goto next_iter;
1629 		}
1630 		if (ret == -E2BIG) {
1631 			rbm->bii = 0;
1632 			rbm->offset = 0;
1633 			n += (rbm->bii - initial_bii);
1634 			goto res_covered_end_of_rgrp;
1635 		}
1636 		return ret;
1637 
1638 bitmap_full:	/* Mark bitmap as full and fall through */
1639 		if ((state == GFS2_BLKST_FREE) && initial_offset == 0) {
1640 			struct gfs2_bitmap *bi = rbm_bi(rbm);
1641 			set_bit(GBF_FULL, &bi->bi_flags);
1642 		}
1643 
1644 next_bitmap:	/* Find next bitmap in the rgrp */
1645 		rbm->offset = 0;
1646 		rbm->bii++;
1647 		if (rbm->bii == rbm->rgd->rd_length)
1648 			rbm->bii = 0;
1649 res_covered_end_of_rgrp:
1650 		if ((rbm->bii == 0) && nowrap)
1651 			break;
1652 		n++;
1653 next_iter:
1654 		if (n >= iters)
1655 			break;
1656 	}
1657 
1658 	return -ENOSPC;
1659 }
1660 
1661 /**
1662  * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1663  * @rgd: The rgrp
1664  * @last_unlinked: block address of the last dinode we unlinked
1665  * @skip: block address we should explicitly not unlink
1666  *
1667  * Returns: 0 if no error
1668  *          The inode, if one has been found, in inode.
1669  */
1670 
1671 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
1672 {
1673 	u64 block;
1674 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1675 	struct gfs2_glock *gl;
1676 	struct gfs2_inode *ip;
1677 	int error;
1678 	int found = 0;
1679 	struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 };
1680 
1681 	while (1) {
1682 		down_write(&sdp->sd_log_flush_lock);
1683 		error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, 0, NULL, true);
1684 		up_write(&sdp->sd_log_flush_lock);
1685 		if (error == -ENOSPC)
1686 			break;
1687 		if (WARN_ON_ONCE(error))
1688 			break;
1689 
1690 		block = gfs2_rbm_to_block(&rbm);
1691 		if (gfs2_rbm_from_block(&rbm, block + 1))
1692 			break;
1693 		if (*last_unlinked != NO_BLOCK && block <= *last_unlinked)
1694 			continue;
1695 		if (block == skip)
1696 			continue;
1697 		*last_unlinked = block;
1698 
1699 		error = gfs2_glock_get(sdp, block, &gfs2_inode_glops, CREATE, &gl);
1700 		if (error)
1701 			continue;
1702 
1703 		/* If the inode is already in cache, we can ignore it here
1704 		 * because the existing inode disposal code will deal with
1705 		 * it when all refs have gone away. Accessing gl_object like
1706 		 * this is not safe in general. Here it is ok because we do
1707 		 * not dereference the pointer, and we only need an approx
1708 		 * answer to whether it is NULL or not.
1709 		 */
1710 		ip = gl->gl_object;
1711 
1712 		if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0)
1713 			gfs2_glock_put(gl);
1714 		else
1715 			found++;
1716 
1717 		/* Limit reclaim to sensible number of tasks */
1718 		if (found > NR_CPUS)
1719 			return;
1720 	}
1721 
1722 	rgd->rd_flags &= ~GFS2_RDF_CHECK;
1723 	return;
1724 }
1725 
1726 /**
1727  * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested
1728  * @rgd: The rgrp in question
1729  * @loops: An indication of how picky we can be (0=very, 1=less so)
1730  *
1731  * This function uses the recently added glock statistics in order to
1732  * figure out whether a parciular resource group is suffering from
1733  * contention from multiple nodes. This is done purely on the basis
1734  * of timings, since this is the only data we have to work with and
1735  * our aim here is to reject a resource group which is highly contended
1736  * but (very important) not to do this too often in order to ensure that
1737  * we do not land up introducing fragmentation by changing resource
1738  * groups when not actually required.
1739  *
1740  * The calculation is fairly simple, we want to know whether the SRTTB
1741  * (i.e. smoothed round trip time for blocking operations) to acquire
1742  * the lock for this rgrp's glock is significantly greater than the
1743  * time taken for resource groups on average. We introduce a margin in
1744  * the form of the variable @var which is computed as the sum of the two
1745  * respective variences, and multiplied by a factor depending on @loops
1746  * and whether we have a lot of data to base the decision on. This is
1747  * then tested against the square difference of the means in order to
1748  * decide whether the result is statistically significant or not.
1749  *
1750  * Returns: A boolean verdict on the congestion status
1751  */
1752 
1753 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops)
1754 {
1755 	const struct gfs2_glock *gl = rgd->rd_gl;
1756 	const struct gfs2_sbd *sdp = gl->gl_sbd;
1757 	struct gfs2_lkstats *st;
1758 	s64 r_dcount, l_dcount;
1759 	s64 r_srttb, l_srttb;
1760 	s64 srttb_diff;
1761 	s64 sqr_diff;
1762 	s64 var;
1763 
1764 	preempt_disable();
1765 	st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP];
1766 	r_srttb = st->stats[GFS2_LKS_SRTTB];
1767 	r_dcount = st->stats[GFS2_LKS_DCOUNT];
1768 	var = st->stats[GFS2_LKS_SRTTVARB] +
1769 	      gl->gl_stats.stats[GFS2_LKS_SRTTVARB];
1770 	preempt_enable();
1771 
1772 	l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB];
1773 	l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT];
1774 
1775 	if ((l_dcount < 1) || (r_dcount < 1) || (r_srttb == 0))
1776 		return false;
1777 
1778 	srttb_diff = r_srttb - l_srttb;
1779 	sqr_diff = srttb_diff * srttb_diff;
1780 
1781 	var *= 2;
1782 	if (l_dcount < 8 || r_dcount < 8)
1783 		var *= 2;
1784 	if (loops == 1)
1785 		var *= 2;
1786 
1787 	return ((srttb_diff < 0) && (sqr_diff > var));
1788 }
1789 
1790 /**
1791  * gfs2_rgrp_used_recently
1792  * @rs: The block reservation with the rgrp to test
1793  * @msecs: The time limit in milliseconds
1794  *
1795  * Returns: True if the rgrp glock has been used within the time limit
1796  */
1797 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs,
1798 				    u64 msecs)
1799 {
1800 	u64 tdiff;
1801 
1802 	tdiff = ktime_to_ns(ktime_sub(ktime_get_real(),
1803                             rs->rs_rbm.rgd->rd_gl->gl_dstamp));
1804 
1805 	return tdiff > (msecs * 1000 * 1000);
1806 }
1807 
1808 static u32 gfs2_orlov_skip(const struct gfs2_inode *ip)
1809 {
1810 	const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1811 	u32 skip;
1812 
1813 	get_random_bytes(&skip, sizeof(skip));
1814 	return skip % sdp->sd_rgrps;
1815 }
1816 
1817 static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin)
1818 {
1819 	struct gfs2_rgrpd *rgd = *pos;
1820 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1821 
1822 	rgd = gfs2_rgrpd_get_next(rgd);
1823 	if (rgd == NULL)
1824 		rgd = gfs2_rgrpd_get_first(sdp);
1825 	*pos = rgd;
1826 	if (rgd != begin) /* If we didn't wrap */
1827 		return true;
1828 	return false;
1829 }
1830 
1831 /**
1832  * gfs2_inplace_reserve - Reserve space in the filesystem
1833  * @ip: the inode to reserve space for
1834  * @ap: the allocation parameters
1835  *
1836  * Returns: errno
1837  */
1838 
1839 int gfs2_inplace_reserve(struct gfs2_inode *ip, const struct gfs2_alloc_parms *ap)
1840 {
1841 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1842 	struct gfs2_rgrpd *begin = NULL;
1843 	struct gfs2_blkreserv *rs = ip->i_res;
1844 	int error = 0, rg_locked, flags = 0;
1845 	u64 last_unlinked = NO_BLOCK;
1846 	int loops = 0;
1847 	u32 skip = 0;
1848 
1849 	if (sdp->sd_args.ar_rgrplvb)
1850 		flags |= GL_SKIP;
1851 	if (gfs2_assert_warn(sdp, ap->target))
1852 		return -EINVAL;
1853 	if (gfs2_rs_active(rs)) {
1854 		begin = rs->rs_rbm.rgd;
1855 	} else if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal)) {
1856 		rs->rs_rbm.rgd = begin = ip->i_rgd;
1857 	} else {
1858 		rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
1859 	}
1860 	if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV))
1861 		skip = gfs2_orlov_skip(ip);
1862 	if (rs->rs_rbm.rgd == NULL)
1863 		return -EBADSLT;
1864 
1865 	while (loops < 3) {
1866 		rg_locked = 1;
1867 
1868 		if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) {
1869 			rg_locked = 0;
1870 			if (skip && skip--)
1871 				goto next_rgrp;
1872 			if (!gfs2_rs_active(rs) && (loops < 2) &&
1873 			     gfs2_rgrp_used_recently(rs, 1000) &&
1874 			     gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
1875 				goto next_rgrp;
1876 			error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl,
1877 						   LM_ST_EXCLUSIVE, flags,
1878 						   &rs->rs_rgd_gh);
1879 			if (unlikely(error))
1880 				return error;
1881 			if (!gfs2_rs_active(rs) && (loops < 2) &&
1882 			    gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
1883 				goto skip_rgrp;
1884 			if (sdp->sd_args.ar_rgrplvb) {
1885 				error = update_rgrp_lvb(rs->rs_rbm.rgd);
1886 				if (unlikely(error)) {
1887 					gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1888 					return error;
1889 				}
1890 			}
1891 		}
1892 
1893 		/* Skip unuseable resource groups */
1894 		if (rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC | GFS2_RDF_ERROR))
1895 			goto skip_rgrp;
1896 
1897 		if (sdp->sd_args.ar_rgrplvb)
1898 			gfs2_rgrp_bh_get(rs->rs_rbm.rgd);
1899 
1900 		/* Get a reservation if we don't already have one */
1901 		if (!gfs2_rs_active(rs))
1902 			rg_mblk_search(rs->rs_rbm.rgd, ip, ap);
1903 
1904 		/* Skip rgrps when we can't get a reservation on first pass */
1905 		if (!gfs2_rs_active(rs) && (loops < 1))
1906 			goto check_rgrp;
1907 
1908 		/* If rgrp has enough free space, use it */
1909 		if (rs->rs_rbm.rgd->rd_free_clone >= ap->target) {
1910 			ip->i_rgd = rs->rs_rbm.rgd;
1911 			return 0;
1912 		}
1913 
1914 		/* Drop reservation, if we couldn't use reserved rgrp */
1915 		if (gfs2_rs_active(rs))
1916 			gfs2_rs_deltree(rs);
1917 check_rgrp:
1918 		/* Check for unlinked inodes which can be reclaimed */
1919 		if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK)
1920 			try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked,
1921 					ip->i_no_addr);
1922 skip_rgrp:
1923 		/* Unlock rgrp if required */
1924 		if (!rg_locked)
1925 			gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1926 next_rgrp:
1927 		/* Find the next rgrp, and continue looking */
1928 		if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin))
1929 			continue;
1930 		if (skip)
1931 			continue;
1932 
1933 		/* If we've scanned all the rgrps, but found no free blocks
1934 		 * then this checks for some less likely conditions before
1935 		 * trying again.
1936 		 */
1937 		loops++;
1938 		/* Check that fs hasn't grown if writing to rindex */
1939 		if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
1940 			error = gfs2_ri_update(ip);
1941 			if (error)
1942 				return error;
1943 		}
1944 		/* Flushing the log may release space */
1945 		if (loops == 2)
1946 			gfs2_log_flush(sdp, NULL);
1947 	}
1948 
1949 	return -ENOSPC;
1950 }
1951 
1952 /**
1953  * gfs2_inplace_release - release an inplace reservation
1954  * @ip: the inode the reservation was taken out on
1955  *
1956  * Release a reservation made by gfs2_inplace_reserve().
1957  */
1958 
1959 void gfs2_inplace_release(struct gfs2_inode *ip)
1960 {
1961 	struct gfs2_blkreserv *rs = ip->i_res;
1962 
1963 	if (rs->rs_rgd_gh.gh_gl)
1964 		gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1965 }
1966 
1967 /**
1968  * gfs2_get_block_type - Check a block in a RG is of given type
1969  * @rgd: the resource group holding the block
1970  * @block: the block number
1971  *
1972  * Returns: The block type (GFS2_BLKST_*)
1973  */
1974 
1975 static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block)
1976 {
1977 	struct gfs2_rbm rbm = { .rgd = rgd, };
1978 	int ret;
1979 
1980 	ret = gfs2_rbm_from_block(&rbm, block);
1981 	WARN_ON_ONCE(ret != 0);
1982 
1983 	return gfs2_testbit(&rbm);
1984 }
1985 
1986 
1987 /**
1988  * gfs2_alloc_extent - allocate an extent from a given bitmap
1989  * @rbm: the resource group information
1990  * @dinode: TRUE if the first block we allocate is for a dinode
1991  * @n: The extent length (value/result)
1992  *
1993  * Add the bitmap buffer to the transaction.
1994  * Set the found bits to @new_state to change block's allocation state.
1995  */
1996 static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode,
1997 			     unsigned int *n)
1998 {
1999 	struct gfs2_rbm pos = { .rgd = rbm->rgd, };
2000 	const unsigned int elen = *n;
2001 	u64 block;
2002 	int ret;
2003 
2004 	*n = 1;
2005 	block = gfs2_rbm_to_block(rbm);
2006 	gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh);
2007 	gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2008 	block++;
2009 	while (*n < elen) {
2010 		ret = gfs2_rbm_from_block(&pos, block);
2011 		if (ret || gfs2_testbit(&pos) != GFS2_BLKST_FREE)
2012 			break;
2013 		gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh);
2014 		gfs2_setbit(&pos, true, GFS2_BLKST_USED);
2015 		(*n)++;
2016 		block++;
2017 	}
2018 }
2019 
2020 /**
2021  * rgblk_free - Change alloc state of given block(s)
2022  * @sdp: the filesystem
2023  * @bstart: the start of a run of blocks to free
2024  * @blen: the length of the block run (all must lie within ONE RG!)
2025  * @new_state: GFS2_BLKST_XXX the after-allocation block state
2026  *
2027  * Returns:  Resource group containing the block(s)
2028  */
2029 
2030 static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart,
2031 				     u32 blen, unsigned char new_state)
2032 {
2033 	struct gfs2_rbm rbm;
2034 	struct gfs2_bitmap *bi;
2035 
2036 	rbm.rgd = gfs2_blk2rgrpd(sdp, bstart, 1);
2037 	if (!rbm.rgd) {
2038 		if (gfs2_consist(sdp))
2039 			fs_err(sdp, "block = %llu\n", (unsigned long long)bstart);
2040 		return NULL;
2041 	}
2042 
2043 	while (blen--) {
2044 		gfs2_rbm_from_block(&rbm, bstart);
2045 		bi = rbm_bi(&rbm);
2046 		bstart++;
2047 		if (!bi->bi_clone) {
2048 			bi->bi_clone = kmalloc(bi->bi_bh->b_size,
2049 					       GFP_NOFS | __GFP_NOFAIL);
2050 			memcpy(bi->bi_clone + bi->bi_offset,
2051 			       bi->bi_bh->b_data + bi->bi_offset, bi->bi_len);
2052 		}
2053 		gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh);
2054 		gfs2_setbit(&rbm, false, new_state);
2055 	}
2056 
2057 	return rbm.rgd;
2058 }
2059 
2060 /**
2061  * gfs2_rgrp_dump - print out an rgrp
2062  * @seq: The iterator
2063  * @gl: The glock in question
2064  *
2065  */
2066 
2067 int gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl)
2068 {
2069 	struct gfs2_rgrpd *rgd = gl->gl_object;
2070 	struct gfs2_blkreserv *trs;
2071 	const struct rb_node *n;
2072 
2073 	if (rgd == NULL)
2074 		return 0;
2075 	gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u r:%u\n",
2076 		       (unsigned long long)rgd->rd_addr, rgd->rd_flags,
2077 		       rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes,
2078 		       rgd->rd_reserved);
2079 	spin_lock(&rgd->rd_rsspin);
2080 	for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) {
2081 		trs = rb_entry(n, struct gfs2_blkreserv, rs_node);
2082 		dump_rs(seq, trs);
2083 	}
2084 	spin_unlock(&rgd->rd_rsspin);
2085 	return 0;
2086 }
2087 
2088 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
2089 {
2090 	struct gfs2_sbd *sdp = rgd->rd_sbd;
2091 	fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
2092 		(unsigned long long)rgd->rd_addr);
2093 	fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
2094 	gfs2_rgrp_dump(NULL, rgd->rd_gl);
2095 	rgd->rd_flags |= GFS2_RDF_ERROR;
2096 }
2097 
2098 /**
2099  * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation
2100  * @ip: The inode we have just allocated blocks for
2101  * @rbm: The start of the allocated blocks
2102  * @len: The extent length
2103  *
2104  * Adjusts a reservation after an allocation has taken place. If the
2105  * reservation does not match the allocation, or if it is now empty
2106  * then it is removed.
2107  */
2108 
2109 static void gfs2_adjust_reservation(struct gfs2_inode *ip,
2110 				    const struct gfs2_rbm *rbm, unsigned len)
2111 {
2112 	struct gfs2_blkreserv *rs = ip->i_res;
2113 	struct gfs2_rgrpd *rgd = rbm->rgd;
2114 	unsigned rlen;
2115 	u64 block;
2116 	int ret;
2117 
2118 	spin_lock(&rgd->rd_rsspin);
2119 	if (gfs2_rs_active(rs)) {
2120 		if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) {
2121 			block = gfs2_rbm_to_block(rbm);
2122 			ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len);
2123 			rlen = min(rs->rs_free, len);
2124 			rs->rs_free -= rlen;
2125 			rgd->rd_reserved -= rlen;
2126 			trace_gfs2_rs(rs, TRACE_RS_CLAIM);
2127 			if (rs->rs_free && !ret)
2128 				goto out;
2129 		}
2130 		__rs_deltree(rs);
2131 	}
2132 out:
2133 	spin_unlock(&rgd->rd_rsspin);
2134 }
2135 
2136 /**
2137  * gfs2_set_alloc_start - Set starting point for block allocation
2138  * @rbm: The rbm which will be set to the required location
2139  * @ip: The gfs2 inode
2140  * @dinode: Flag to say if allocation includes a new inode
2141  *
2142  * This sets the starting point from the reservation if one is active
2143  * otherwise it falls back to guessing a start point based on the
2144  * inode's goal block or the last allocation point in the rgrp.
2145  */
2146 
2147 static void gfs2_set_alloc_start(struct gfs2_rbm *rbm,
2148 				 const struct gfs2_inode *ip, bool dinode)
2149 {
2150 	u64 goal;
2151 
2152 	if (gfs2_rs_active(ip->i_res)) {
2153 		*rbm = ip->i_res->rs_rbm;
2154 		return;
2155 	}
2156 
2157 	if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal))
2158 		goal = ip->i_goal;
2159 	else
2160 		goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0;
2161 
2162 	gfs2_rbm_from_block(rbm, goal);
2163 }
2164 
2165 /**
2166  * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
2167  * @ip: the inode to allocate the block for
2168  * @bn: Used to return the starting block number
2169  * @nblocks: requested number of blocks/extent length (value/result)
2170  * @dinode: 1 if we're allocating a dinode block, else 0
2171  * @generation: the generation number of the inode
2172  *
2173  * Returns: 0 or error
2174  */
2175 
2176 int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
2177 		      bool dinode, u64 *generation)
2178 {
2179 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2180 	struct buffer_head *dibh;
2181 	struct gfs2_rbm rbm = { .rgd = ip->i_rgd, };
2182 	unsigned int ndata;
2183 	u64 block; /* block, within the file system scope */
2184 	int error;
2185 
2186 	gfs2_set_alloc_start(&rbm, ip, dinode);
2187 	error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, 0, ip, false);
2188 
2189 	if (error == -ENOSPC) {
2190 		gfs2_set_alloc_start(&rbm, ip, dinode);
2191 		error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, 0, NULL, false);
2192 	}
2193 
2194 	/* Since all blocks are reserved in advance, this shouldn't happen */
2195 	if (error) {
2196 		fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d\n",
2197 			(unsigned long long)ip->i_no_addr, error, *nblocks,
2198 			test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags));
2199 		goto rgrp_error;
2200 	}
2201 
2202 	gfs2_alloc_extent(&rbm, dinode, nblocks);
2203 	block = gfs2_rbm_to_block(&rbm);
2204 	rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0;
2205 	if (gfs2_rs_active(ip->i_res))
2206 		gfs2_adjust_reservation(ip, &rbm, *nblocks);
2207 	ndata = *nblocks;
2208 	if (dinode)
2209 		ndata--;
2210 
2211 	if (!dinode) {
2212 		ip->i_goal = block + ndata - 1;
2213 		error = gfs2_meta_inode_buffer(ip, &dibh);
2214 		if (error == 0) {
2215 			struct gfs2_dinode *di =
2216 				(struct gfs2_dinode *)dibh->b_data;
2217 			gfs2_trans_add_meta(ip->i_gl, dibh);
2218 			di->di_goal_meta = di->di_goal_data =
2219 				cpu_to_be64(ip->i_goal);
2220 			brelse(dibh);
2221 		}
2222 	}
2223 	if (rbm.rgd->rd_free < *nblocks) {
2224 		printk(KERN_WARNING "nblocks=%u\n", *nblocks);
2225 		goto rgrp_error;
2226 	}
2227 
2228 	rbm.rgd->rd_free -= *nblocks;
2229 	if (dinode) {
2230 		rbm.rgd->rd_dinodes++;
2231 		*generation = rbm.rgd->rd_igeneration++;
2232 		if (*generation == 0)
2233 			*generation = rbm.rgd->rd_igeneration++;
2234 	}
2235 
2236 	gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh);
2237 	gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data);
2238 	gfs2_rgrp_ondisk2lvb(rbm.rgd->rd_rgl, rbm.rgd->rd_bits[0].bi_bh->b_data);
2239 
2240 	gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
2241 	if (dinode)
2242 		gfs2_trans_add_unrevoke(sdp, block, 1);
2243 
2244 	gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid);
2245 
2246 	rbm.rgd->rd_free_clone -= *nblocks;
2247 	trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks,
2248 			       dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2249 	*bn = block;
2250 	return 0;
2251 
2252 rgrp_error:
2253 	gfs2_rgrp_error(rbm.rgd);
2254 	return -EIO;
2255 }
2256 
2257 /**
2258  * __gfs2_free_blocks - free a contiguous run of block(s)
2259  * @ip: the inode these blocks are being freed from
2260  * @bstart: first block of a run of contiguous blocks
2261  * @blen: the length of the block run
2262  * @meta: 1 if the blocks represent metadata
2263  *
2264  */
2265 
2266 void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta)
2267 {
2268 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2269 	struct gfs2_rgrpd *rgd;
2270 
2271 	rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE);
2272 	if (!rgd)
2273 		return;
2274 	trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
2275 	rgd->rd_free += blen;
2276 	rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
2277 	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2278 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2279 	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2280 
2281 	/* Directories keep their data in the metadata address space */
2282 	if (meta || ip->i_depth)
2283 		gfs2_meta_wipe(ip, bstart, blen);
2284 }
2285 
2286 /**
2287  * gfs2_free_meta - free a contiguous run of data block(s)
2288  * @ip: the inode these blocks are being freed from
2289  * @bstart: first block of a run of contiguous blocks
2290  * @blen: the length of the block run
2291  *
2292  */
2293 
2294 void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen)
2295 {
2296 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2297 
2298 	__gfs2_free_blocks(ip, bstart, blen, 1);
2299 	gfs2_statfs_change(sdp, 0, +blen, 0);
2300 	gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
2301 }
2302 
2303 void gfs2_unlink_di(struct inode *inode)
2304 {
2305 	struct gfs2_inode *ip = GFS2_I(inode);
2306 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2307 	struct gfs2_rgrpd *rgd;
2308 	u64 blkno = ip->i_no_addr;
2309 
2310 	rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED);
2311 	if (!rgd)
2312 		return;
2313 	trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2314 	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2315 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2316 	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2317 	update_rgrp_lvb_unlinked(rgd, 1);
2318 }
2319 
2320 static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno)
2321 {
2322 	struct gfs2_sbd *sdp = rgd->rd_sbd;
2323 	struct gfs2_rgrpd *tmp_rgd;
2324 
2325 	tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE);
2326 	if (!tmp_rgd)
2327 		return;
2328 	gfs2_assert_withdraw(sdp, rgd == tmp_rgd);
2329 
2330 	if (!rgd->rd_dinodes)
2331 		gfs2_consist_rgrpd(rgd);
2332 	rgd->rd_dinodes--;
2333 	rgd->rd_free++;
2334 
2335 	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2336 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2337 	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2338 	update_rgrp_lvb_unlinked(rgd, -1);
2339 
2340 	gfs2_statfs_change(sdp, 0, +1, -1);
2341 }
2342 
2343 
2344 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
2345 {
2346 	gfs2_free_uninit_di(rgd, ip->i_no_addr);
2347 	trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2348 	gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
2349 	gfs2_meta_wipe(ip, ip->i_no_addr, 1);
2350 }
2351 
2352 /**
2353  * gfs2_check_blk_type - Check the type of a block
2354  * @sdp: The superblock
2355  * @no_addr: The block number to check
2356  * @type: The block type we are looking for
2357  *
2358  * Returns: 0 if the block type matches the expected type
2359  *          -ESTALE if it doesn't match
2360  *          or -ve errno if something went wrong while checking
2361  */
2362 
2363 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
2364 {
2365 	struct gfs2_rgrpd *rgd;
2366 	struct gfs2_holder rgd_gh;
2367 	int error = -EINVAL;
2368 
2369 	rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
2370 	if (!rgd)
2371 		goto fail;
2372 
2373 	error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
2374 	if (error)
2375 		goto fail;
2376 
2377 	if (gfs2_get_block_type(rgd, no_addr) != type)
2378 		error = -ESTALE;
2379 
2380 	gfs2_glock_dq_uninit(&rgd_gh);
2381 fail:
2382 	return error;
2383 }
2384 
2385 /**
2386  * gfs2_rlist_add - add a RG to a list of RGs
2387  * @ip: the inode
2388  * @rlist: the list of resource groups
2389  * @block: the block
2390  *
2391  * Figure out what RG a block belongs to and add that RG to the list
2392  *
2393  * FIXME: Don't use NOFAIL
2394  *
2395  */
2396 
2397 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
2398 		    u64 block)
2399 {
2400 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2401 	struct gfs2_rgrpd *rgd;
2402 	struct gfs2_rgrpd **tmp;
2403 	unsigned int new_space;
2404 	unsigned int x;
2405 
2406 	if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
2407 		return;
2408 
2409 	if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block))
2410 		rgd = ip->i_rgd;
2411 	else
2412 		rgd = gfs2_blk2rgrpd(sdp, block, 1);
2413 	if (!rgd) {
2414 		fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block);
2415 		return;
2416 	}
2417 	ip->i_rgd = rgd;
2418 
2419 	for (x = 0; x < rlist->rl_rgrps; x++)
2420 		if (rlist->rl_rgd[x] == rgd)
2421 			return;
2422 
2423 	if (rlist->rl_rgrps == rlist->rl_space) {
2424 		new_space = rlist->rl_space + 10;
2425 
2426 		tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
2427 			      GFP_NOFS | __GFP_NOFAIL);
2428 
2429 		if (rlist->rl_rgd) {
2430 			memcpy(tmp, rlist->rl_rgd,
2431 			       rlist->rl_space * sizeof(struct gfs2_rgrpd *));
2432 			kfree(rlist->rl_rgd);
2433 		}
2434 
2435 		rlist->rl_space = new_space;
2436 		rlist->rl_rgd = tmp;
2437 	}
2438 
2439 	rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
2440 }
2441 
2442 /**
2443  * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
2444  *      and initialize an array of glock holders for them
2445  * @rlist: the list of resource groups
2446  * @state: the lock state to acquire the RG lock in
2447  *
2448  * FIXME: Don't use NOFAIL
2449  *
2450  */
2451 
2452 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state)
2453 {
2454 	unsigned int x;
2455 
2456 	rlist->rl_ghs = kcalloc(rlist->rl_rgrps, sizeof(struct gfs2_holder),
2457 				GFP_NOFS | __GFP_NOFAIL);
2458 	for (x = 0; x < rlist->rl_rgrps; x++)
2459 		gfs2_holder_init(rlist->rl_rgd[x]->rd_gl,
2460 				state, 0,
2461 				&rlist->rl_ghs[x]);
2462 }
2463 
2464 /**
2465  * gfs2_rlist_free - free a resource group list
2466  * @list: the list of resource groups
2467  *
2468  */
2469 
2470 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
2471 {
2472 	unsigned int x;
2473 
2474 	kfree(rlist->rl_rgd);
2475 
2476 	if (rlist->rl_ghs) {
2477 		for (x = 0; x < rlist->rl_rgrps; x++)
2478 			gfs2_holder_uninit(&rlist->rl_ghs[x]);
2479 		kfree(rlist->rl_ghs);
2480 		rlist->rl_ghs = NULL;
2481 	}
2482 }
2483 
2484