1 /* 2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This copyrighted material is made available to anyone wishing to use, 6 * modify, copy, or redistribute it subject to the terms and conditions 7 * of the GNU General Public License version 2. 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/slab.h> 13 #include <linux/spinlock.h> 14 #include <linux/completion.h> 15 #include <linux/buffer_head.h> 16 #include <linux/fs.h> 17 #include <linux/gfs2_ondisk.h> 18 #include <linux/prefetch.h> 19 #include <linux/blkdev.h> 20 #include <linux/rbtree.h> 21 #include <linux/random.h> 22 23 #include "gfs2.h" 24 #include "incore.h" 25 #include "glock.h" 26 #include "glops.h" 27 #include "lops.h" 28 #include "meta_io.h" 29 #include "quota.h" 30 #include "rgrp.h" 31 #include "super.h" 32 #include "trans.h" 33 #include "util.h" 34 #include "log.h" 35 #include "inode.h" 36 #include "trace_gfs2.h" 37 38 #define BFITNOENT ((u32)~0) 39 #define NO_BLOCK ((u64)~0) 40 41 #if BITS_PER_LONG == 32 42 #define LBITMASK (0x55555555UL) 43 #define LBITSKIP55 (0x55555555UL) 44 #define LBITSKIP00 (0x00000000UL) 45 #else 46 #define LBITMASK (0x5555555555555555UL) 47 #define LBITSKIP55 (0x5555555555555555UL) 48 #define LBITSKIP00 (0x0000000000000000UL) 49 #endif 50 51 /* 52 * These routines are used by the resource group routines (rgrp.c) 53 * to keep track of block allocation. Each block is represented by two 54 * bits. So, each byte represents GFS2_NBBY (i.e. 4) blocks. 55 * 56 * 0 = Free 57 * 1 = Used (not metadata) 58 * 2 = Unlinked (still in use) inode 59 * 3 = Used (metadata) 60 */ 61 62 struct gfs2_extent { 63 struct gfs2_rbm rbm; 64 u32 len; 65 }; 66 67 static const char valid_change[16] = { 68 /* current */ 69 /* n */ 0, 1, 1, 1, 70 /* e */ 1, 0, 0, 0, 71 /* w */ 0, 0, 0, 1, 72 1, 0, 0, 0 73 }; 74 75 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext, 76 const struct gfs2_inode *ip, bool nowrap, 77 const struct gfs2_alloc_parms *ap); 78 79 80 /** 81 * gfs2_setbit - Set a bit in the bitmaps 82 * @rbm: The position of the bit to set 83 * @do_clone: Also set the clone bitmap, if it exists 84 * @new_state: the new state of the block 85 * 86 */ 87 88 static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone, 89 unsigned char new_state) 90 { 91 unsigned char *byte1, *byte2, *end, cur_state; 92 struct gfs2_bitmap *bi = rbm_bi(rbm); 93 unsigned int buflen = bi->bi_len; 94 const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE; 95 96 byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY); 97 end = bi->bi_bh->b_data + bi->bi_offset + buflen; 98 99 BUG_ON(byte1 >= end); 100 101 cur_state = (*byte1 >> bit) & GFS2_BIT_MASK; 102 103 if (unlikely(!valid_change[new_state * 4 + cur_state])) { 104 pr_warn("buf_blk = 0x%x old_state=%d, new_state=%d\n", 105 rbm->offset, cur_state, new_state); 106 pr_warn("rgrp=0x%llx bi_start=0x%x\n", 107 (unsigned long long)rbm->rgd->rd_addr, bi->bi_start); 108 pr_warn("bi_offset=0x%x bi_len=0x%x\n", 109 bi->bi_offset, bi->bi_len); 110 dump_stack(); 111 gfs2_consist_rgrpd(rbm->rgd); 112 return; 113 } 114 *byte1 ^= (cur_state ^ new_state) << bit; 115 116 if (do_clone && bi->bi_clone) { 117 byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY); 118 cur_state = (*byte2 >> bit) & GFS2_BIT_MASK; 119 *byte2 ^= (cur_state ^ new_state) << bit; 120 } 121 } 122 123 /** 124 * gfs2_testbit - test a bit in the bitmaps 125 * @rbm: The bit to test 126 * 127 * Returns: The two bit block state of the requested bit 128 */ 129 130 static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm) 131 { 132 struct gfs2_bitmap *bi = rbm_bi(rbm); 133 const u8 *buffer = bi->bi_bh->b_data + bi->bi_offset; 134 const u8 *byte; 135 unsigned int bit; 136 137 byte = buffer + (rbm->offset / GFS2_NBBY); 138 bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE; 139 140 return (*byte >> bit) & GFS2_BIT_MASK; 141 } 142 143 /** 144 * gfs2_bit_search 145 * @ptr: Pointer to bitmap data 146 * @mask: Mask to use (normally 0x55555.... but adjusted for search start) 147 * @state: The state we are searching for 148 * 149 * We xor the bitmap data with a patter which is the bitwise opposite 150 * of what we are looking for, this gives rise to a pattern of ones 151 * wherever there is a match. Since we have two bits per entry, we 152 * take this pattern, shift it down by one place and then and it with 153 * the original. All the even bit positions (0,2,4, etc) then represent 154 * successful matches, so we mask with 0x55555..... to remove the unwanted 155 * odd bit positions. 156 * 157 * This allows searching of a whole u64 at once (32 blocks) with a 158 * single test (on 64 bit arches). 159 */ 160 161 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state) 162 { 163 u64 tmp; 164 static const u64 search[] = { 165 [0] = 0xffffffffffffffffULL, 166 [1] = 0xaaaaaaaaaaaaaaaaULL, 167 [2] = 0x5555555555555555ULL, 168 [3] = 0x0000000000000000ULL, 169 }; 170 tmp = le64_to_cpu(*ptr) ^ search[state]; 171 tmp &= (tmp >> 1); 172 tmp &= mask; 173 return tmp; 174 } 175 176 /** 177 * rs_cmp - multi-block reservation range compare 178 * @blk: absolute file system block number of the new reservation 179 * @len: number of blocks in the new reservation 180 * @rs: existing reservation to compare against 181 * 182 * returns: 1 if the block range is beyond the reach of the reservation 183 * -1 if the block range is before the start of the reservation 184 * 0 if the block range overlaps with the reservation 185 */ 186 static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs) 187 { 188 u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm); 189 190 if (blk >= startblk + rs->rs_free) 191 return 1; 192 if (blk + len - 1 < startblk) 193 return -1; 194 return 0; 195 } 196 197 /** 198 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing 199 * a block in a given allocation state. 200 * @buf: the buffer that holds the bitmaps 201 * @len: the length (in bytes) of the buffer 202 * @goal: start search at this block's bit-pair (within @buffer) 203 * @state: GFS2_BLKST_XXX the state of the block we're looking for. 204 * 205 * Scope of @goal and returned block number is only within this bitmap buffer, 206 * not entire rgrp or filesystem. @buffer will be offset from the actual 207 * beginning of a bitmap block buffer, skipping any header structures, but 208 * headers are always a multiple of 64 bits long so that the buffer is 209 * always aligned to a 64 bit boundary. 210 * 211 * The size of the buffer is in bytes, but is it assumed that it is 212 * always ok to read a complete multiple of 64 bits at the end 213 * of the block in case the end is no aligned to a natural boundary. 214 * 215 * Return: the block number (bitmap buffer scope) that was found 216 */ 217 218 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len, 219 u32 goal, u8 state) 220 { 221 u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1); 222 const __le64 *ptr = ((__le64 *)buf) + (goal >> 5); 223 const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64))); 224 u64 tmp; 225 u64 mask = 0x5555555555555555ULL; 226 u32 bit; 227 228 /* Mask off bits we don't care about at the start of the search */ 229 mask <<= spoint; 230 tmp = gfs2_bit_search(ptr, mask, state); 231 ptr++; 232 while(tmp == 0 && ptr < end) { 233 tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state); 234 ptr++; 235 } 236 /* Mask off any bits which are more than len bytes from the start */ 237 if (ptr == end && (len & (sizeof(u64) - 1))) 238 tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1)))); 239 /* Didn't find anything, so return */ 240 if (tmp == 0) 241 return BFITNOENT; 242 ptr--; 243 bit = __ffs64(tmp); 244 bit /= 2; /* two bits per entry in the bitmap */ 245 return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit; 246 } 247 248 /** 249 * gfs2_rbm_from_block - Set the rbm based upon rgd and block number 250 * @rbm: The rbm with rgd already set correctly 251 * @block: The block number (filesystem relative) 252 * 253 * This sets the bi and offset members of an rbm based on a 254 * resource group and a filesystem relative block number. The 255 * resource group must be set in the rbm on entry, the bi and 256 * offset members will be set by this function. 257 * 258 * Returns: 0 on success, or an error code 259 */ 260 261 static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block) 262 { 263 u64 rblock = block - rbm->rgd->rd_data0; 264 265 if (WARN_ON_ONCE(rblock > UINT_MAX)) 266 return -EINVAL; 267 if (block >= rbm->rgd->rd_data0 + rbm->rgd->rd_data) 268 return -E2BIG; 269 270 rbm->bii = 0; 271 rbm->offset = (u32)(rblock); 272 /* Check if the block is within the first block */ 273 if (rbm->offset < rbm_bi(rbm)->bi_blocks) 274 return 0; 275 276 /* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */ 277 rbm->offset += (sizeof(struct gfs2_rgrp) - 278 sizeof(struct gfs2_meta_header)) * GFS2_NBBY; 279 rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap; 280 rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap; 281 return 0; 282 } 283 284 /** 285 * gfs2_rbm_incr - increment an rbm structure 286 * @rbm: The rbm with rgd already set correctly 287 * 288 * This function takes an existing rbm structure and increments it to the next 289 * viable block offset. 290 * 291 * Returns: If incrementing the offset would cause the rbm to go past the 292 * end of the rgrp, true is returned, otherwise false. 293 * 294 */ 295 296 static bool gfs2_rbm_incr(struct gfs2_rbm *rbm) 297 { 298 if (rbm->offset + 1 < rbm_bi(rbm)->bi_blocks) { /* in the same bitmap */ 299 rbm->offset++; 300 return false; 301 } 302 if (rbm->bii == rbm->rgd->rd_length - 1) /* at the last bitmap */ 303 return true; 304 305 rbm->offset = 0; 306 rbm->bii++; 307 return false; 308 } 309 310 /** 311 * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned 312 * @rbm: Position to search (value/result) 313 * @n_unaligned: Number of unaligned blocks to check 314 * @len: Decremented for each block found (terminate on zero) 315 * 316 * Returns: true if a non-free block is encountered 317 */ 318 319 static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len) 320 { 321 u32 n; 322 u8 res; 323 324 for (n = 0; n < n_unaligned; n++) { 325 res = gfs2_testbit(rbm); 326 if (res != GFS2_BLKST_FREE) 327 return true; 328 (*len)--; 329 if (*len == 0) 330 return true; 331 if (gfs2_rbm_incr(rbm)) 332 return true; 333 } 334 335 return false; 336 } 337 338 /** 339 * gfs2_free_extlen - Return extent length of free blocks 340 * @rrbm: Starting position 341 * @len: Max length to check 342 * 343 * Starting at the block specified by the rbm, see how many free blocks 344 * there are, not reading more than len blocks ahead. This can be done 345 * using memchr_inv when the blocks are byte aligned, but has to be done 346 * on a block by block basis in case of unaligned blocks. Also this 347 * function can cope with bitmap boundaries (although it must stop on 348 * a resource group boundary) 349 * 350 * Returns: Number of free blocks in the extent 351 */ 352 353 static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len) 354 { 355 struct gfs2_rbm rbm = *rrbm; 356 u32 n_unaligned = rbm.offset & 3; 357 u32 size = len; 358 u32 bytes; 359 u32 chunk_size; 360 u8 *ptr, *start, *end; 361 u64 block; 362 struct gfs2_bitmap *bi; 363 364 if (n_unaligned && 365 gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len)) 366 goto out; 367 368 n_unaligned = len & 3; 369 /* Start is now byte aligned */ 370 while (len > 3) { 371 bi = rbm_bi(&rbm); 372 start = bi->bi_bh->b_data; 373 if (bi->bi_clone) 374 start = bi->bi_clone; 375 end = start + bi->bi_bh->b_size; 376 start += bi->bi_offset; 377 BUG_ON(rbm.offset & 3); 378 start += (rbm.offset / GFS2_NBBY); 379 bytes = min_t(u32, len / GFS2_NBBY, (end - start)); 380 ptr = memchr_inv(start, 0, bytes); 381 chunk_size = ((ptr == NULL) ? bytes : (ptr - start)); 382 chunk_size *= GFS2_NBBY; 383 BUG_ON(len < chunk_size); 384 len -= chunk_size; 385 block = gfs2_rbm_to_block(&rbm); 386 if (gfs2_rbm_from_block(&rbm, block + chunk_size)) { 387 n_unaligned = 0; 388 break; 389 } 390 if (ptr) { 391 n_unaligned = 3; 392 break; 393 } 394 n_unaligned = len & 3; 395 } 396 397 /* Deal with any bits left over at the end */ 398 if (n_unaligned) 399 gfs2_unaligned_extlen(&rbm, n_unaligned, &len); 400 out: 401 return size - len; 402 } 403 404 /** 405 * gfs2_bitcount - count the number of bits in a certain state 406 * @rgd: the resource group descriptor 407 * @buffer: the buffer that holds the bitmaps 408 * @buflen: the length (in bytes) of the buffer 409 * @state: the state of the block we're looking for 410 * 411 * Returns: The number of bits 412 */ 413 414 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer, 415 unsigned int buflen, u8 state) 416 { 417 const u8 *byte = buffer; 418 const u8 *end = buffer + buflen; 419 const u8 state1 = state << 2; 420 const u8 state2 = state << 4; 421 const u8 state3 = state << 6; 422 u32 count = 0; 423 424 for (; byte < end; byte++) { 425 if (((*byte) & 0x03) == state) 426 count++; 427 if (((*byte) & 0x0C) == state1) 428 count++; 429 if (((*byte) & 0x30) == state2) 430 count++; 431 if (((*byte) & 0xC0) == state3) 432 count++; 433 } 434 435 return count; 436 } 437 438 /** 439 * gfs2_rgrp_verify - Verify that a resource group is consistent 440 * @rgd: the rgrp 441 * 442 */ 443 444 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd) 445 { 446 struct gfs2_sbd *sdp = rgd->rd_sbd; 447 struct gfs2_bitmap *bi = NULL; 448 u32 length = rgd->rd_length; 449 u32 count[4], tmp; 450 int buf, x; 451 452 memset(count, 0, 4 * sizeof(u32)); 453 454 /* Count # blocks in each of 4 possible allocation states */ 455 for (buf = 0; buf < length; buf++) { 456 bi = rgd->rd_bits + buf; 457 for (x = 0; x < 4; x++) 458 count[x] += gfs2_bitcount(rgd, 459 bi->bi_bh->b_data + 460 bi->bi_offset, 461 bi->bi_len, x); 462 } 463 464 if (count[0] != rgd->rd_free) { 465 if (gfs2_consist_rgrpd(rgd)) 466 fs_err(sdp, "free data mismatch: %u != %u\n", 467 count[0], rgd->rd_free); 468 return; 469 } 470 471 tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes; 472 if (count[1] != tmp) { 473 if (gfs2_consist_rgrpd(rgd)) 474 fs_err(sdp, "used data mismatch: %u != %u\n", 475 count[1], tmp); 476 return; 477 } 478 479 if (count[2] + count[3] != rgd->rd_dinodes) { 480 if (gfs2_consist_rgrpd(rgd)) 481 fs_err(sdp, "used metadata mismatch: %u != %u\n", 482 count[2] + count[3], rgd->rd_dinodes); 483 return; 484 } 485 } 486 487 static inline int rgrp_contains_block(struct gfs2_rgrpd *rgd, u64 block) 488 { 489 u64 first = rgd->rd_data0; 490 u64 last = first + rgd->rd_data; 491 return first <= block && block < last; 492 } 493 494 /** 495 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number 496 * @sdp: The GFS2 superblock 497 * @blk: The data block number 498 * @exact: True if this needs to be an exact match 499 * 500 * Returns: The resource group, or NULL if not found 501 */ 502 503 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact) 504 { 505 struct rb_node *n, *next; 506 struct gfs2_rgrpd *cur; 507 508 spin_lock(&sdp->sd_rindex_spin); 509 n = sdp->sd_rindex_tree.rb_node; 510 while (n) { 511 cur = rb_entry(n, struct gfs2_rgrpd, rd_node); 512 next = NULL; 513 if (blk < cur->rd_addr) 514 next = n->rb_left; 515 else if (blk >= cur->rd_data0 + cur->rd_data) 516 next = n->rb_right; 517 if (next == NULL) { 518 spin_unlock(&sdp->sd_rindex_spin); 519 if (exact) { 520 if (blk < cur->rd_addr) 521 return NULL; 522 if (blk >= cur->rd_data0 + cur->rd_data) 523 return NULL; 524 } 525 return cur; 526 } 527 n = next; 528 } 529 spin_unlock(&sdp->sd_rindex_spin); 530 531 return NULL; 532 } 533 534 /** 535 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem 536 * @sdp: The GFS2 superblock 537 * 538 * Returns: The first rgrp in the filesystem 539 */ 540 541 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp) 542 { 543 const struct rb_node *n; 544 struct gfs2_rgrpd *rgd; 545 546 spin_lock(&sdp->sd_rindex_spin); 547 n = rb_first(&sdp->sd_rindex_tree); 548 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 549 spin_unlock(&sdp->sd_rindex_spin); 550 551 return rgd; 552 } 553 554 /** 555 * gfs2_rgrpd_get_next - get the next RG 556 * @rgd: the resource group descriptor 557 * 558 * Returns: The next rgrp 559 */ 560 561 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd) 562 { 563 struct gfs2_sbd *sdp = rgd->rd_sbd; 564 const struct rb_node *n; 565 566 spin_lock(&sdp->sd_rindex_spin); 567 n = rb_next(&rgd->rd_node); 568 if (n == NULL) 569 n = rb_first(&sdp->sd_rindex_tree); 570 571 if (unlikely(&rgd->rd_node == n)) { 572 spin_unlock(&sdp->sd_rindex_spin); 573 return NULL; 574 } 575 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 576 spin_unlock(&sdp->sd_rindex_spin); 577 return rgd; 578 } 579 580 void check_and_update_goal(struct gfs2_inode *ip) 581 { 582 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 583 if (!ip->i_goal || gfs2_blk2rgrpd(sdp, ip->i_goal, 1) == NULL) 584 ip->i_goal = ip->i_no_addr; 585 } 586 587 void gfs2_free_clones(struct gfs2_rgrpd *rgd) 588 { 589 int x; 590 591 for (x = 0; x < rgd->rd_length; x++) { 592 struct gfs2_bitmap *bi = rgd->rd_bits + x; 593 kfree(bi->bi_clone); 594 bi->bi_clone = NULL; 595 } 596 } 597 598 /** 599 * gfs2_rs_alloc - make sure we have a reservation assigned to the inode 600 * @ip: the inode for this reservation 601 */ 602 int gfs2_rs_alloc(struct gfs2_inode *ip) 603 { 604 int error = 0; 605 606 down_write(&ip->i_rw_mutex); 607 if (ip->i_res) 608 goto out; 609 610 ip->i_res = kmem_cache_zalloc(gfs2_rsrv_cachep, GFP_NOFS); 611 if (!ip->i_res) { 612 error = -ENOMEM; 613 goto out; 614 } 615 616 RB_CLEAR_NODE(&ip->i_res->rs_node); 617 out: 618 up_write(&ip->i_rw_mutex); 619 return error; 620 } 621 622 static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs) 623 { 624 gfs2_print_dbg(seq, " B: n:%llu s:%llu b:%u f:%u\n", 625 (unsigned long long)rs->rs_inum, 626 (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm), 627 rs->rs_rbm.offset, rs->rs_free); 628 } 629 630 /** 631 * __rs_deltree - remove a multi-block reservation from the rgd tree 632 * @rs: The reservation to remove 633 * 634 */ 635 static void __rs_deltree(struct gfs2_blkreserv *rs) 636 { 637 struct gfs2_rgrpd *rgd; 638 639 if (!gfs2_rs_active(rs)) 640 return; 641 642 rgd = rs->rs_rbm.rgd; 643 trace_gfs2_rs(rs, TRACE_RS_TREEDEL); 644 rb_erase(&rs->rs_node, &rgd->rd_rstree); 645 RB_CLEAR_NODE(&rs->rs_node); 646 647 if (rs->rs_free) { 648 struct gfs2_bitmap *bi = rbm_bi(&rs->rs_rbm); 649 650 /* return reserved blocks to the rgrp */ 651 BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free); 652 rs->rs_rbm.rgd->rd_reserved -= rs->rs_free; 653 /* The rgrp extent failure point is likely not to increase; 654 it will only do so if the freed blocks are somehow 655 contiguous with a span of free blocks that follows. Still, 656 it will force the number to be recalculated later. */ 657 rgd->rd_extfail_pt += rs->rs_free; 658 rs->rs_free = 0; 659 clear_bit(GBF_FULL, &bi->bi_flags); 660 } 661 } 662 663 /** 664 * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree 665 * @rs: The reservation to remove 666 * 667 */ 668 void gfs2_rs_deltree(struct gfs2_blkreserv *rs) 669 { 670 struct gfs2_rgrpd *rgd; 671 672 rgd = rs->rs_rbm.rgd; 673 if (rgd) { 674 spin_lock(&rgd->rd_rsspin); 675 __rs_deltree(rs); 676 spin_unlock(&rgd->rd_rsspin); 677 } 678 } 679 680 /** 681 * gfs2_rs_delete - delete a multi-block reservation 682 * @ip: The inode for this reservation 683 * @wcount: The inode's write count, or NULL 684 * 685 */ 686 void gfs2_rs_delete(struct gfs2_inode *ip, atomic_t *wcount) 687 { 688 down_write(&ip->i_rw_mutex); 689 if (ip->i_res && ((wcount == NULL) || (atomic_read(wcount) <= 1))) { 690 gfs2_rs_deltree(ip->i_res); 691 BUG_ON(ip->i_res->rs_free); 692 kmem_cache_free(gfs2_rsrv_cachep, ip->i_res); 693 ip->i_res = NULL; 694 } 695 up_write(&ip->i_rw_mutex); 696 } 697 698 /** 699 * return_all_reservations - return all reserved blocks back to the rgrp. 700 * @rgd: the rgrp that needs its space back 701 * 702 * We previously reserved a bunch of blocks for allocation. Now we need to 703 * give them back. This leave the reservation structures in tact, but removes 704 * all of their corresponding "no-fly zones". 705 */ 706 static void return_all_reservations(struct gfs2_rgrpd *rgd) 707 { 708 struct rb_node *n; 709 struct gfs2_blkreserv *rs; 710 711 spin_lock(&rgd->rd_rsspin); 712 while ((n = rb_first(&rgd->rd_rstree))) { 713 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 714 __rs_deltree(rs); 715 } 716 spin_unlock(&rgd->rd_rsspin); 717 } 718 719 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp) 720 { 721 struct rb_node *n; 722 struct gfs2_rgrpd *rgd; 723 struct gfs2_glock *gl; 724 725 while ((n = rb_first(&sdp->sd_rindex_tree))) { 726 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 727 gl = rgd->rd_gl; 728 729 rb_erase(n, &sdp->sd_rindex_tree); 730 731 if (gl) { 732 spin_lock(&gl->gl_spin); 733 gl->gl_object = NULL; 734 spin_unlock(&gl->gl_spin); 735 gfs2_glock_add_to_lru(gl); 736 gfs2_glock_put(gl); 737 } 738 739 gfs2_free_clones(rgd); 740 kfree(rgd->rd_bits); 741 return_all_reservations(rgd); 742 kmem_cache_free(gfs2_rgrpd_cachep, rgd); 743 } 744 } 745 746 static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd) 747 { 748 pr_info("ri_addr = %llu\n", (unsigned long long)rgd->rd_addr); 749 pr_info("ri_length = %u\n", rgd->rd_length); 750 pr_info("ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0); 751 pr_info("ri_data = %u\n", rgd->rd_data); 752 pr_info("ri_bitbytes = %u\n", rgd->rd_bitbytes); 753 } 754 755 /** 756 * gfs2_compute_bitstructs - Compute the bitmap sizes 757 * @rgd: The resource group descriptor 758 * 759 * Calculates bitmap descriptors, one for each block that contains bitmap data 760 * 761 * Returns: errno 762 */ 763 764 static int compute_bitstructs(struct gfs2_rgrpd *rgd) 765 { 766 struct gfs2_sbd *sdp = rgd->rd_sbd; 767 struct gfs2_bitmap *bi; 768 u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */ 769 u32 bytes_left, bytes; 770 int x; 771 772 if (!length) 773 return -EINVAL; 774 775 rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS); 776 if (!rgd->rd_bits) 777 return -ENOMEM; 778 779 bytes_left = rgd->rd_bitbytes; 780 781 for (x = 0; x < length; x++) { 782 bi = rgd->rd_bits + x; 783 784 bi->bi_flags = 0; 785 /* small rgrp; bitmap stored completely in header block */ 786 if (length == 1) { 787 bytes = bytes_left; 788 bi->bi_offset = sizeof(struct gfs2_rgrp); 789 bi->bi_start = 0; 790 bi->bi_len = bytes; 791 bi->bi_blocks = bytes * GFS2_NBBY; 792 /* header block */ 793 } else if (x == 0) { 794 bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp); 795 bi->bi_offset = sizeof(struct gfs2_rgrp); 796 bi->bi_start = 0; 797 bi->bi_len = bytes; 798 bi->bi_blocks = bytes * GFS2_NBBY; 799 /* last block */ 800 } else if (x + 1 == length) { 801 bytes = bytes_left; 802 bi->bi_offset = sizeof(struct gfs2_meta_header); 803 bi->bi_start = rgd->rd_bitbytes - bytes_left; 804 bi->bi_len = bytes; 805 bi->bi_blocks = bytes * GFS2_NBBY; 806 /* other blocks */ 807 } else { 808 bytes = sdp->sd_sb.sb_bsize - 809 sizeof(struct gfs2_meta_header); 810 bi->bi_offset = sizeof(struct gfs2_meta_header); 811 bi->bi_start = rgd->rd_bitbytes - bytes_left; 812 bi->bi_len = bytes; 813 bi->bi_blocks = bytes * GFS2_NBBY; 814 } 815 816 bytes_left -= bytes; 817 } 818 819 if (bytes_left) { 820 gfs2_consist_rgrpd(rgd); 821 return -EIO; 822 } 823 bi = rgd->rd_bits + (length - 1); 824 if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) { 825 if (gfs2_consist_rgrpd(rgd)) { 826 gfs2_rindex_print(rgd); 827 fs_err(sdp, "start=%u len=%u offset=%u\n", 828 bi->bi_start, bi->bi_len, bi->bi_offset); 829 } 830 return -EIO; 831 } 832 833 return 0; 834 } 835 836 /** 837 * gfs2_ri_total - Total up the file system space, according to the rindex. 838 * @sdp: the filesystem 839 * 840 */ 841 u64 gfs2_ri_total(struct gfs2_sbd *sdp) 842 { 843 u64 total_data = 0; 844 struct inode *inode = sdp->sd_rindex; 845 struct gfs2_inode *ip = GFS2_I(inode); 846 char buf[sizeof(struct gfs2_rindex)]; 847 int error, rgrps; 848 849 for (rgrps = 0;; rgrps++) { 850 loff_t pos = rgrps * sizeof(struct gfs2_rindex); 851 852 if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode)) 853 break; 854 error = gfs2_internal_read(ip, buf, &pos, 855 sizeof(struct gfs2_rindex)); 856 if (error != sizeof(struct gfs2_rindex)) 857 break; 858 total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data); 859 } 860 return total_data; 861 } 862 863 static int rgd_insert(struct gfs2_rgrpd *rgd) 864 { 865 struct gfs2_sbd *sdp = rgd->rd_sbd; 866 struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL; 867 868 /* Figure out where to put new node */ 869 while (*newn) { 870 struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd, 871 rd_node); 872 873 parent = *newn; 874 if (rgd->rd_addr < cur->rd_addr) 875 newn = &((*newn)->rb_left); 876 else if (rgd->rd_addr > cur->rd_addr) 877 newn = &((*newn)->rb_right); 878 else 879 return -EEXIST; 880 } 881 882 rb_link_node(&rgd->rd_node, parent, newn); 883 rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree); 884 sdp->sd_rgrps++; 885 return 0; 886 } 887 888 /** 889 * read_rindex_entry - Pull in a new resource index entry from the disk 890 * @ip: Pointer to the rindex inode 891 * 892 * Returns: 0 on success, > 0 on EOF, error code otherwise 893 */ 894 895 static int read_rindex_entry(struct gfs2_inode *ip) 896 { 897 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 898 const unsigned bsize = sdp->sd_sb.sb_bsize; 899 loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex); 900 struct gfs2_rindex buf; 901 int error; 902 struct gfs2_rgrpd *rgd; 903 904 if (pos >= i_size_read(&ip->i_inode)) 905 return 1; 906 907 error = gfs2_internal_read(ip, (char *)&buf, &pos, 908 sizeof(struct gfs2_rindex)); 909 910 if (error != sizeof(struct gfs2_rindex)) 911 return (error == 0) ? 1 : error; 912 913 rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS); 914 error = -ENOMEM; 915 if (!rgd) 916 return error; 917 918 rgd->rd_sbd = sdp; 919 rgd->rd_addr = be64_to_cpu(buf.ri_addr); 920 rgd->rd_length = be32_to_cpu(buf.ri_length); 921 rgd->rd_data0 = be64_to_cpu(buf.ri_data0); 922 rgd->rd_data = be32_to_cpu(buf.ri_data); 923 rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes); 924 spin_lock_init(&rgd->rd_rsspin); 925 926 error = compute_bitstructs(rgd); 927 if (error) 928 goto fail; 929 930 error = gfs2_glock_get(sdp, rgd->rd_addr, 931 &gfs2_rgrp_glops, CREATE, &rgd->rd_gl); 932 if (error) 933 goto fail; 934 935 rgd->rd_gl->gl_object = rgd; 936 rgd->rd_gl->gl_vm.start = rgd->rd_addr * bsize; 937 rgd->rd_gl->gl_vm.end = rgd->rd_gl->gl_vm.start + (rgd->rd_length * bsize) - 1; 938 rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr; 939 rgd->rd_flags &= ~(GFS2_RDF_UPTODATE | GFS2_RDF_PREFERRED); 940 if (rgd->rd_data > sdp->sd_max_rg_data) 941 sdp->sd_max_rg_data = rgd->rd_data; 942 spin_lock(&sdp->sd_rindex_spin); 943 error = rgd_insert(rgd); 944 spin_unlock(&sdp->sd_rindex_spin); 945 if (!error) 946 return 0; 947 948 error = 0; /* someone else read in the rgrp; free it and ignore it */ 949 gfs2_glock_put(rgd->rd_gl); 950 951 fail: 952 kfree(rgd->rd_bits); 953 kmem_cache_free(gfs2_rgrpd_cachep, rgd); 954 return error; 955 } 956 957 /** 958 * set_rgrp_preferences - Run all the rgrps, selecting some we prefer to use 959 * @sdp: the GFS2 superblock 960 * 961 * The purpose of this function is to select a subset of the resource groups 962 * and mark them as PREFERRED. We do it in such a way that each node prefers 963 * to use a unique set of rgrps to minimize glock contention. 964 */ 965 static void set_rgrp_preferences(struct gfs2_sbd *sdp) 966 { 967 struct gfs2_rgrpd *rgd, *first; 968 int i; 969 970 /* Skip an initial number of rgrps, based on this node's journal ID. 971 That should start each node out on its own set. */ 972 rgd = gfs2_rgrpd_get_first(sdp); 973 for (i = 0; i < sdp->sd_lockstruct.ls_jid; i++) 974 rgd = gfs2_rgrpd_get_next(rgd); 975 first = rgd; 976 977 do { 978 rgd->rd_flags |= GFS2_RDF_PREFERRED; 979 for (i = 0; i < sdp->sd_journals; i++) { 980 rgd = gfs2_rgrpd_get_next(rgd); 981 if (!rgd || rgd == first) 982 break; 983 } 984 } while (rgd && rgd != first); 985 } 986 987 /** 988 * gfs2_ri_update - Pull in a new resource index from the disk 989 * @ip: pointer to the rindex inode 990 * 991 * Returns: 0 on successful update, error code otherwise 992 */ 993 994 static int gfs2_ri_update(struct gfs2_inode *ip) 995 { 996 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 997 int error; 998 999 do { 1000 error = read_rindex_entry(ip); 1001 } while (error == 0); 1002 1003 if (error < 0) 1004 return error; 1005 1006 set_rgrp_preferences(sdp); 1007 1008 sdp->sd_rindex_uptodate = 1; 1009 return 0; 1010 } 1011 1012 /** 1013 * gfs2_rindex_update - Update the rindex if required 1014 * @sdp: The GFS2 superblock 1015 * 1016 * We grab a lock on the rindex inode to make sure that it doesn't 1017 * change whilst we are performing an operation. We keep this lock 1018 * for quite long periods of time compared to other locks. This 1019 * doesn't matter, since it is shared and it is very, very rarely 1020 * accessed in the exclusive mode (i.e. only when expanding the filesystem). 1021 * 1022 * This makes sure that we're using the latest copy of the resource index 1023 * special file, which might have been updated if someone expanded the 1024 * filesystem (via gfs2_grow utility), which adds new resource groups. 1025 * 1026 * Returns: 0 on succeess, error code otherwise 1027 */ 1028 1029 int gfs2_rindex_update(struct gfs2_sbd *sdp) 1030 { 1031 struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex); 1032 struct gfs2_glock *gl = ip->i_gl; 1033 struct gfs2_holder ri_gh; 1034 int error = 0; 1035 int unlock_required = 0; 1036 1037 /* Read new copy from disk if we don't have the latest */ 1038 if (!sdp->sd_rindex_uptodate) { 1039 if (!gfs2_glock_is_locked_by_me(gl)) { 1040 error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh); 1041 if (error) 1042 return error; 1043 unlock_required = 1; 1044 } 1045 if (!sdp->sd_rindex_uptodate) 1046 error = gfs2_ri_update(ip); 1047 if (unlock_required) 1048 gfs2_glock_dq_uninit(&ri_gh); 1049 } 1050 1051 return error; 1052 } 1053 1054 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf) 1055 { 1056 const struct gfs2_rgrp *str = buf; 1057 u32 rg_flags; 1058 1059 rg_flags = be32_to_cpu(str->rg_flags); 1060 rg_flags &= ~GFS2_RDF_MASK; 1061 rgd->rd_flags &= GFS2_RDF_MASK; 1062 rgd->rd_flags |= rg_flags; 1063 rgd->rd_free = be32_to_cpu(str->rg_free); 1064 rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes); 1065 rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration); 1066 } 1067 1068 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf) 1069 { 1070 struct gfs2_rgrp *str = buf; 1071 1072 str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK); 1073 str->rg_free = cpu_to_be32(rgd->rd_free); 1074 str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes); 1075 str->__pad = cpu_to_be32(0); 1076 str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration); 1077 memset(&str->rg_reserved, 0, sizeof(str->rg_reserved)); 1078 } 1079 1080 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd) 1081 { 1082 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl; 1083 struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data; 1084 1085 if (rgl->rl_flags != str->rg_flags || rgl->rl_free != str->rg_free || 1086 rgl->rl_dinodes != str->rg_dinodes || 1087 rgl->rl_igeneration != str->rg_igeneration) 1088 return 0; 1089 return 1; 1090 } 1091 1092 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf) 1093 { 1094 const struct gfs2_rgrp *str = buf; 1095 1096 rgl->rl_magic = cpu_to_be32(GFS2_MAGIC); 1097 rgl->rl_flags = str->rg_flags; 1098 rgl->rl_free = str->rg_free; 1099 rgl->rl_dinodes = str->rg_dinodes; 1100 rgl->rl_igeneration = str->rg_igeneration; 1101 rgl->__pad = 0UL; 1102 } 1103 1104 static void update_rgrp_lvb_unlinked(struct gfs2_rgrpd *rgd, u32 change) 1105 { 1106 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl; 1107 u32 unlinked = be32_to_cpu(rgl->rl_unlinked) + change; 1108 rgl->rl_unlinked = cpu_to_be32(unlinked); 1109 } 1110 1111 static u32 count_unlinked(struct gfs2_rgrpd *rgd) 1112 { 1113 struct gfs2_bitmap *bi; 1114 const u32 length = rgd->rd_length; 1115 const u8 *buffer = NULL; 1116 u32 i, goal, count = 0; 1117 1118 for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) { 1119 goal = 0; 1120 buffer = bi->bi_bh->b_data + bi->bi_offset; 1121 WARN_ON(!buffer_uptodate(bi->bi_bh)); 1122 while (goal < bi->bi_len * GFS2_NBBY) { 1123 goal = gfs2_bitfit(buffer, bi->bi_len, goal, 1124 GFS2_BLKST_UNLINKED); 1125 if (goal == BFITNOENT) 1126 break; 1127 count++; 1128 goal++; 1129 } 1130 } 1131 1132 return count; 1133 } 1134 1135 1136 /** 1137 * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps 1138 * @rgd: the struct gfs2_rgrpd describing the RG to read in 1139 * 1140 * Read in all of a Resource Group's header and bitmap blocks. 1141 * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps. 1142 * 1143 * Returns: errno 1144 */ 1145 1146 static int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd) 1147 { 1148 struct gfs2_sbd *sdp = rgd->rd_sbd; 1149 struct gfs2_glock *gl = rgd->rd_gl; 1150 unsigned int length = rgd->rd_length; 1151 struct gfs2_bitmap *bi; 1152 unsigned int x, y; 1153 int error; 1154 1155 if (rgd->rd_bits[0].bi_bh != NULL) 1156 return 0; 1157 1158 for (x = 0; x < length; x++) { 1159 bi = rgd->rd_bits + x; 1160 error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, &bi->bi_bh); 1161 if (error) 1162 goto fail; 1163 } 1164 1165 for (y = length; y--;) { 1166 bi = rgd->rd_bits + y; 1167 error = gfs2_meta_wait(sdp, bi->bi_bh); 1168 if (error) 1169 goto fail; 1170 if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB : 1171 GFS2_METATYPE_RG)) { 1172 error = -EIO; 1173 goto fail; 1174 } 1175 } 1176 1177 if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) { 1178 for (x = 0; x < length; x++) 1179 clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags); 1180 gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data); 1181 rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK); 1182 rgd->rd_free_clone = rgd->rd_free; 1183 /* max out the rgrp allocation failure point */ 1184 rgd->rd_extfail_pt = rgd->rd_free; 1185 } 1186 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) { 1187 rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd)); 1188 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, 1189 rgd->rd_bits[0].bi_bh->b_data); 1190 } 1191 else if (sdp->sd_args.ar_rgrplvb) { 1192 if (!gfs2_rgrp_lvb_valid(rgd)){ 1193 gfs2_consist_rgrpd(rgd); 1194 error = -EIO; 1195 goto fail; 1196 } 1197 if (rgd->rd_rgl->rl_unlinked == 0) 1198 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1199 } 1200 return 0; 1201 1202 fail: 1203 while (x--) { 1204 bi = rgd->rd_bits + x; 1205 brelse(bi->bi_bh); 1206 bi->bi_bh = NULL; 1207 gfs2_assert_warn(sdp, !bi->bi_clone); 1208 } 1209 1210 return error; 1211 } 1212 1213 static int update_rgrp_lvb(struct gfs2_rgrpd *rgd) 1214 { 1215 u32 rl_flags; 1216 1217 if (rgd->rd_flags & GFS2_RDF_UPTODATE) 1218 return 0; 1219 1220 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) 1221 return gfs2_rgrp_bh_get(rgd); 1222 1223 rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags); 1224 rl_flags &= ~GFS2_RDF_MASK; 1225 rgd->rd_flags &= GFS2_RDF_MASK; 1226 rgd->rd_flags |= (rl_flags | GFS2_RDF_UPTODATE | GFS2_RDF_CHECK); 1227 if (rgd->rd_rgl->rl_unlinked == 0) 1228 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1229 rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free); 1230 rgd->rd_free_clone = rgd->rd_free; 1231 rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes); 1232 rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration); 1233 return 0; 1234 } 1235 1236 int gfs2_rgrp_go_lock(struct gfs2_holder *gh) 1237 { 1238 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object; 1239 struct gfs2_sbd *sdp = rgd->rd_sbd; 1240 1241 if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb) 1242 return 0; 1243 return gfs2_rgrp_bh_get(rgd); 1244 } 1245 1246 /** 1247 * gfs2_rgrp_brelse - Release RG bitmaps read in with gfs2_rgrp_bh_get() 1248 * @rgd: The resource group 1249 * 1250 */ 1251 1252 void gfs2_rgrp_brelse(struct gfs2_rgrpd *rgd) 1253 { 1254 int x, length = rgd->rd_length; 1255 1256 for (x = 0; x < length; x++) { 1257 struct gfs2_bitmap *bi = rgd->rd_bits + x; 1258 if (bi->bi_bh) { 1259 brelse(bi->bi_bh); 1260 bi->bi_bh = NULL; 1261 } 1262 } 1263 1264 } 1265 1266 /** 1267 * gfs2_rgrp_go_unlock - Unlock a rgrp glock 1268 * @gh: The glock holder for the resource group 1269 * 1270 */ 1271 1272 void gfs2_rgrp_go_unlock(struct gfs2_holder *gh) 1273 { 1274 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object; 1275 int demote_requested = test_bit(GLF_DEMOTE, &gh->gh_gl->gl_flags) | 1276 test_bit(GLF_PENDING_DEMOTE, &gh->gh_gl->gl_flags); 1277 1278 if (rgd && demote_requested) 1279 gfs2_rgrp_brelse(rgd); 1280 } 1281 1282 int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset, 1283 struct buffer_head *bh, 1284 const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed) 1285 { 1286 struct super_block *sb = sdp->sd_vfs; 1287 u64 blk; 1288 sector_t start = 0; 1289 sector_t nr_blks = 0; 1290 int rv; 1291 unsigned int x; 1292 u32 trimmed = 0; 1293 u8 diff; 1294 1295 for (x = 0; x < bi->bi_len; x++) { 1296 const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data; 1297 clone += bi->bi_offset; 1298 clone += x; 1299 if (bh) { 1300 const u8 *orig = bh->b_data + bi->bi_offset + x; 1301 diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1)); 1302 } else { 1303 diff = ~(*clone | (*clone >> 1)); 1304 } 1305 diff &= 0x55; 1306 if (diff == 0) 1307 continue; 1308 blk = offset + ((bi->bi_start + x) * GFS2_NBBY); 1309 while(diff) { 1310 if (diff & 1) { 1311 if (nr_blks == 0) 1312 goto start_new_extent; 1313 if ((start + nr_blks) != blk) { 1314 if (nr_blks >= minlen) { 1315 rv = sb_issue_discard(sb, 1316 start, nr_blks, 1317 GFP_NOFS, 0); 1318 if (rv) 1319 goto fail; 1320 trimmed += nr_blks; 1321 } 1322 nr_blks = 0; 1323 start_new_extent: 1324 start = blk; 1325 } 1326 nr_blks++; 1327 } 1328 diff >>= 2; 1329 blk++; 1330 } 1331 } 1332 if (nr_blks >= minlen) { 1333 rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0); 1334 if (rv) 1335 goto fail; 1336 trimmed += nr_blks; 1337 } 1338 if (ptrimmed) 1339 *ptrimmed = trimmed; 1340 return 0; 1341 1342 fail: 1343 if (sdp->sd_args.ar_discard) 1344 fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv); 1345 sdp->sd_args.ar_discard = 0; 1346 return -EIO; 1347 } 1348 1349 /** 1350 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem 1351 * @filp: Any file on the filesystem 1352 * @argp: Pointer to the arguments (also used to pass result) 1353 * 1354 * Returns: 0 on success, otherwise error code 1355 */ 1356 1357 int gfs2_fitrim(struct file *filp, void __user *argp) 1358 { 1359 struct inode *inode = file_inode(filp); 1360 struct gfs2_sbd *sdp = GFS2_SB(inode); 1361 struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev); 1362 struct buffer_head *bh; 1363 struct gfs2_rgrpd *rgd; 1364 struct gfs2_rgrpd *rgd_end; 1365 struct gfs2_holder gh; 1366 struct fstrim_range r; 1367 int ret = 0; 1368 u64 amt; 1369 u64 trimmed = 0; 1370 u64 start, end, minlen; 1371 unsigned int x; 1372 unsigned bs_shift = sdp->sd_sb.sb_bsize_shift; 1373 1374 if (!capable(CAP_SYS_ADMIN)) 1375 return -EPERM; 1376 1377 if (!blk_queue_discard(q)) 1378 return -EOPNOTSUPP; 1379 1380 if (copy_from_user(&r, argp, sizeof(r))) 1381 return -EFAULT; 1382 1383 ret = gfs2_rindex_update(sdp); 1384 if (ret) 1385 return ret; 1386 1387 start = r.start >> bs_shift; 1388 end = start + (r.len >> bs_shift); 1389 minlen = max_t(u64, r.minlen, 1390 q->limits.discard_granularity) >> bs_shift; 1391 1392 if (end <= start || minlen > sdp->sd_max_rg_data) 1393 return -EINVAL; 1394 1395 rgd = gfs2_blk2rgrpd(sdp, start, 0); 1396 rgd_end = gfs2_blk2rgrpd(sdp, end, 0); 1397 1398 if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end)) 1399 && (start > rgd_end->rd_data0 + rgd_end->rd_data)) 1400 return -EINVAL; /* start is beyond the end of the fs */ 1401 1402 while (1) { 1403 1404 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh); 1405 if (ret) 1406 goto out; 1407 1408 if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) { 1409 /* Trim each bitmap in the rgrp */ 1410 for (x = 0; x < rgd->rd_length; x++) { 1411 struct gfs2_bitmap *bi = rgd->rd_bits + x; 1412 ret = gfs2_rgrp_send_discards(sdp, 1413 rgd->rd_data0, NULL, bi, minlen, 1414 &amt); 1415 if (ret) { 1416 gfs2_glock_dq_uninit(&gh); 1417 goto out; 1418 } 1419 trimmed += amt; 1420 } 1421 1422 /* Mark rgrp as having been trimmed */ 1423 ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0); 1424 if (ret == 0) { 1425 bh = rgd->rd_bits[0].bi_bh; 1426 rgd->rd_flags |= GFS2_RGF_TRIMMED; 1427 gfs2_trans_add_meta(rgd->rd_gl, bh); 1428 gfs2_rgrp_out(rgd, bh->b_data); 1429 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, bh->b_data); 1430 gfs2_trans_end(sdp); 1431 } 1432 } 1433 gfs2_glock_dq_uninit(&gh); 1434 1435 if (rgd == rgd_end) 1436 break; 1437 1438 rgd = gfs2_rgrpd_get_next(rgd); 1439 } 1440 1441 out: 1442 r.len = trimmed << bs_shift; 1443 if (copy_to_user(argp, &r, sizeof(r))) 1444 return -EFAULT; 1445 1446 return ret; 1447 } 1448 1449 /** 1450 * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree 1451 * @ip: the inode structure 1452 * 1453 */ 1454 static void rs_insert(struct gfs2_inode *ip) 1455 { 1456 struct rb_node **newn, *parent = NULL; 1457 int rc; 1458 struct gfs2_blkreserv *rs = ip->i_res; 1459 struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd; 1460 u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm); 1461 1462 BUG_ON(gfs2_rs_active(rs)); 1463 1464 spin_lock(&rgd->rd_rsspin); 1465 newn = &rgd->rd_rstree.rb_node; 1466 while (*newn) { 1467 struct gfs2_blkreserv *cur = 1468 rb_entry(*newn, struct gfs2_blkreserv, rs_node); 1469 1470 parent = *newn; 1471 rc = rs_cmp(fsblock, rs->rs_free, cur); 1472 if (rc > 0) 1473 newn = &((*newn)->rb_right); 1474 else if (rc < 0) 1475 newn = &((*newn)->rb_left); 1476 else { 1477 spin_unlock(&rgd->rd_rsspin); 1478 WARN_ON(1); 1479 return; 1480 } 1481 } 1482 1483 rb_link_node(&rs->rs_node, parent, newn); 1484 rb_insert_color(&rs->rs_node, &rgd->rd_rstree); 1485 1486 /* Do our rgrp accounting for the reservation */ 1487 rgd->rd_reserved += rs->rs_free; /* blocks reserved */ 1488 spin_unlock(&rgd->rd_rsspin); 1489 trace_gfs2_rs(rs, TRACE_RS_INSERT); 1490 } 1491 1492 /** 1493 * rg_mblk_search - find a group of multiple free blocks to form a reservation 1494 * @rgd: the resource group descriptor 1495 * @ip: pointer to the inode for which we're reserving blocks 1496 * @ap: the allocation parameters 1497 * 1498 */ 1499 1500 static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip, 1501 const struct gfs2_alloc_parms *ap) 1502 { 1503 struct gfs2_rbm rbm = { .rgd = rgd, }; 1504 u64 goal; 1505 struct gfs2_blkreserv *rs = ip->i_res; 1506 u32 extlen; 1507 u32 free_blocks = rgd->rd_free_clone - rgd->rd_reserved; 1508 int ret; 1509 struct inode *inode = &ip->i_inode; 1510 1511 if (S_ISDIR(inode->i_mode)) 1512 extlen = 1; 1513 else { 1514 extlen = max_t(u32, atomic_read(&rs->rs_sizehint), ap->target); 1515 extlen = clamp(extlen, RGRP_RSRV_MINBLKS, free_blocks); 1516 } 1517 if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen)) 1518 return; 1519 1520 /* Find bitmap block that contains bits for goal block */ 1521 if (rgrp_contains_block(rgd, ip->i_goal)) 1522 goal = ip->i_goal; 1523 else 1524 goal = rgd->rd_last_alloc + rgd->rd_data0; 1525 1526 if (WARN_ON(gfs2_rbm_from_block(&rbm, goal))) 1527 return; 1528 1529 ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, ip, true, ap); 1530 if (ret == 0) { 1531 rs->rs_rbm = rbm; 1532 rs->rs_free = extlen; 1533 rs->rs_inum = ip->i_no_addr; 1534 rs_insert(ip); 1535 } else { 1536 if (goal == rgd->rd_last_alloc + rgd->rd_data0) 1537 rgd->rd_last_alloc = 0; 1538 } 1539 } 1540 1541 /** 1542 * gfs2_next_unreserved_block - Return next block that is not reserved 1543 * @rgd: The resource group 1544 * @block: The starting block 1545 * @length: The required length 1546 * @ip: Ignore any reservations for this inode 1547 * 1548 * If the block does not appear in any reservation, then return the 1549 * block number unchanged. If it does appear in the reservation, then 1550 * keep looking through the tree of reservations in order to find the 1551 * first block number which is not reserved. 1552 */ 1553 1554 static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block, 1555 u32 length, 1556 const struct gfs2_inode *ip) 1557 { 1558 struct gfs2_blkreserv *rs; 1559 struct rb_node *n; 1560 int rc; 1561 1562 spin_lock(&rgd->rd_rsspin); 1563 n = rgd->rd_rstree.rb_node; 1564 while (n) { 1565 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 1566 rc = rs_cmp(block, length, rs); 1567 if (rc < 0) 1568 n = n->rb_left; 1569 else if (rc > 0) 1570 n = n->rb_right; 1571 else 1572 break; 1573 } 1574 1575 if (n) { 1576 while ((rs_cmp(block, length, rs) == 0) && (ip->i_res != rs)) { 1577 block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free; 1578 n = n->rb_right; 1579 if (n == NULL) 1580 break; 1581 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 1582 } 1583 } 1584 1585 spin_unlock(&rgd->rd_rsspin); 1586 return block; 1587 } 1588 1589 /** 1590 * gfs2_reservation_check_and_update - Check for reservations during block alloc 1591 * @rbm: The current position in the resource group 1592 * @ip: The inode for which we are searching for blocks 1593 * @minext: The minimum extent length 1594 * @maxext: A pointer to the maximum extent structure 1595 * 1596 * This checks the current position in the rgrp to see whether there is 1597 * a reservation covering this block. If not then this function is a 1598 * no-op. If there is, then the position is moved to the end of the 1599 * contiguous reservation(s) so that we are pointing at the first 1600 * non-reserved block. 1601 * 1602 * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error 1603 */ 1604 1605 static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm, 1606 const struct gfs2_inode *ip, 1607 u32 minext, 1608 struct gfs2_extent *maxext) 1609 { 1610 u64 block = gfs2_rbm_to_block(rbm); 1611 u32 extlen = 1; 1612 u64 nblock; 1613 int ret; 1614 1615 /* 1616 * If we have a minimum extent length, then skip over any extent 1617 * which is less than the min extent length in size. 1618 */ 1619 if (minext) { 1620 extlen = gfs2_free_extlen(rbm, minext); 1621 if (extlen <= maxext->len) 1622 goto fail; 1623 } 1624 1625 /* 1626 * Check the extent which has been found against the reservations 1627 * and skip if parts of it are already reserved 1628 */ 1629 nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip); 1630 if (nblock == block) { 1631 if (!minext || extlen >= minext) 1632 return 0; 1633 1634 if (extlen > maxext->len) { 1635 maxext->len = extlen; 1636 maxext->rbm = *rbm; 1637 } 1638 fail: 1639 nblock = block + extlen; 1640 } 1641 ret = gfs2_rbm_from_block(rbm, nblock); 1642 if (ret < 0) 1643 return ret; 1644 return 1; 1645 } 1646 1647 /** 1648 * gfs2_rbm_find - Look for blocks of a particular state 1649 * @rbm: Value/result starting position and final position 1650 * @state: The state which we want to find 1651 * @minext: Pointer to the requested extent length (NULL for a single block) 1652 * This is updated to be the actual reservation size. 1653 * @ip: If set, check for reservations 1654 * @nowrap: Stop looking at the end of the rgrp, rather than wrapping 1655 * around until we've reached the starting point. 1656 * @ap: the allocation parameters 1657 * 1658 * Side effects: 1659 * - If looking for free blocks, we set GBF_FULL on each bitmap which 1660 * has no free blocks in it. 1661 * - If looking for free blocks, we set rd_extfail_pt on each rgrp which 1662 * has come up short on a free block search. 1663 * 1664 * Returns: 0 on success, -ENOSPC if there is no block of the requested state 1665 */ 1666 1667 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext, 1668 const struct gfs2_inode *ip, bool nowrap, 1669 const struct gfs2_alloc_parms *ap) 1670 { 1671 struct buffer_head *bh; 1672 int initial_bii; 1673 u32 initial_offset; 1674 int first_bii = rbm->bii; 1675 u32 first_offset = rbm->offset; 1676 u32 offset; 1677 u8 *buffer; 1678 int n = 0; 1679 int iters = rbm->rgd->rd_length; 1680 int ret; 1681 struct gfs2_bitmap *bi; 1682 struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, }; 1683 1684 /* If we are not starting at the beginning of a bitmap, then we 1685 * need to add one to the bitmap count to ensure that we search 1686 * the starting bitmap twice. 1687 */ 1688 if (rbm->offset != 0) 1689 iters++; 1690 1691 while(1) { 1692 bi = rbm_bi(rbm); 1693 if (test_bit(GBF_FULL, &bi->bi_flags) && 1694 (state == GFS2_BLKST_FREE)) 1695 goto next_bitmap; 1696 1697 bh = bi->bi_bh; 1698 buffer = bh->b_data + bi->bi_offset; 1699 WARN_ON(!buffer_uptodate(bh)); 1700 if (state != GFS2_BLKST_UNLINKED && bi->bi_clone) 1701 buffer = bi->bi_clone + bi->bi_offset; 1702 initial_offset = rbm->offset; 1703 offset = gfs2_bitfit(buffer, bi->bi_len, rbm->offset, state); 1704 if (offset == BFITNOENT) 1705 goto bitmap_full; 1706 rbm->offset = offset; 1707 if (ip == NULL) 1708 return 0; 1709 1710 initial_bii = rbm->bii; 1711 ret = gfs2_reservation_check_and_update(rbm, ip, 1712 minext ? *minext : 0, 1713 &maxext); 1714 if (ret == 0) 1715 return 0; 1716 if (ret > 0) { 1717 n += (rbm->bii - initial_bii); 1718 goto next_iter; 1719 } 1720 if (ret == -E2BIG) { 1721 rbm->bii = 0; 1722 rbm->offset = 0; 1723 n += (rbm->bii - initial_bii); 1724 goto res_covered_end_of_rgrp; 1725 } 1726 return ret; 1727 1728 bitmap_full: /* Mark bitmap as full and fall through */ 1729 if ((state == GFS2_BLKST_FREE) && initial_offset == 0) 1730 set_bit(GBF_FULL, &bi->bi_flags); 1731 1732 next_bitmap: /* Find next bitmap in the rgrp */ 1733 rbm->offset = 0; 1734 rbm->bii++; 1735 if (rbm->bii == rbm->rgd->rd_length) 1736 rbm->bii = 0; 1737 res_covered_end_of_rgrp: 1738 if ((rbm->bii == 0) && nowrap) 1739 break; 1740 n++; 1741 next_iter: 1742 if (n >= iters) 1743 break; 1744 } 1745 1746 if (minext == NULL || state != GFS2_BLKST_FREE) 1747 return -ENOSPC; 1748 1749 /* If the extent was too small, and it's smaller than the smallest 1750 to have failed before, remember for future reference that it's 1751 useless to search this rgrp again for this amount or more. */ 1752 if ((first_offset == 0) && (first_bii == 0) && 1753 (*minext < rbm->rgd->rd_extfail_pt)) 1754 rbm->rgd->rd_extfail_pt = *minext; 1755 1756 /* If the maximum extent we found is big enough to fulfill the 1757 minimum requirements, use it anyway. */ 1758 if (maxext.len) { 1759 *rbm = maxext.rbm; 1760 *minext = maxext.len; 1761 return 0; 1762 } 1763 1764 return -ENOSPC; 1765 } 1766 1767 /** 1768 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes 1769 * @rgd: The rgrp 1770 * @last_unlinked: block address of the last dinode we unlinked 1771 * @skip: block address we should explicitly not unlink 1772 * 1773 * Returns: 0 if no error 1774 * The inode, if one has been found, in inode. 1775 */ 1776 1777 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip) 1778 { 1779 u64 block; 1780 struct gfs2_sbd *sdp = rgd->rd_sbd; 1781 struct gfs2_glock *gl; 1782 struct gfs2_inode *ip; 1783 int error; 1784 int found = 0; 1785 struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 }; 1786 1787 while (1) { 1788 down_write(&sdp->sd_log_flush_lock); 1789 error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL, 1790 true, NULL); 1791 up_write(&sdp->sd_log_flush_lock); 1792 if (error == -ENOSPC) 1793 break; 1794 if (WARN_ON_ONCE(error)) 1795 break; 1796 1797 block = gfs2_rbm_to_block(&rbm); 1798 if (gfs2_rbm_from_block(&rbm, block + 1)) 1799 break; 1800 if (*last_unlinked != NO_BLOCK && block <= *last_unlinked) 1801 continue; 1802 if (block == skip) 1803 continue; 1804 *last_unlinked = block; 1805 1806 error = gfs2_glock_get(sdp, block, &gfs2_inode_glops, CREATE, &gl); 1807 if (error) 1808 continue; 1809 1810 /* If the inode is already in cache, we can ignore it here 1811 * because the existing inode disposal code will deal with 1812 * it when all refs have gone away. Accessing gl_object like 1813 * this is not safe in general. Here it is ok because we do 1814 * not dereference the pointer, and we only need an approx 1815 * answer to whether it is NULL or not. 1816 */ 1817 ip = gl->gl_object; 1818 1819 if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0) 1820 gfs2_glock_put(gl); 1821 else 1822 found++; 1823 1824 /* Limit reclaim to sensible number of tasks */ 1825 if (found > NR_CPUS) 1826 return; 1827 } 1828 1829 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1830 return; 1831 } 1832 1833 /** 1834 * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested 1835 * @rgd: The rgrp in question 1836 * @loops: An indication of how picky we can be (0=very, 1=less so) 1837 * 1838 * This function uses the recently added glock statistics in order to 1839 * figure out whether a parciular resource group is suffering from 1840 * contention from multiple nodes. This is done purely on the basis 1841 * of timings, since this is the only data we have to work with and 1842 * our aim here is to reject a resource group which is highly contended 1843 * but (very important) not to do this too often in order to ensure that 1844 * we do not land up introducing fragmentation by changing resource 1845 * groups when not actually required. 1846 * 1847 * The calculation is fairly simple, we want to know whether the SRTTB 1848 * (i.e. smoothed round trip time for blocking operations) to acquire 1849 * the lock for this rgrp's glock is significantly greater than the 1850 * time taken for resource groups on average. We introduce a margin in 1851 * the form of the variable @var which is computed as the sum of the two 1852 * respective variences, and multiplied by a factor depending on @loops 1853 * and whether we have a lot of data to base the decision on. This is 1854 * then tested against the square difference of the means in order to 1855 * decide whether the result is statistically significant or not. 1856 * 1857 * Returns: A boolean verdict on the congestion status 1858 */ 1859 1860 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops) 1861 { 1862 const struct gfs2_glock *gl = rgd->rd_gl; 1863 const struct gfs2_sbd *sdp = gl->gl_sbd; 1864 struct gfs2_lkstats *st; 1865 s64 r_dcount, l_dcount; 1866 s64 l_srttb, a_srttb = 0; 1867 s64 srttb_diff; 1868 s64 sqr_diff; 1869 s64 var; 1870 int cpu, nonzero = 0; 1871 1872 preempt_disable(); 1873 for_each_present_cpu(cpu) { 1874 st = &per_cpu_ptr(sdp->sd_lkstats, cpu)->lkstats[LM_TYPE_RGRP]; 1875 if (st->stats[GFS2_LKS_SRTTB]) { 1876 a_srttb += st->stats[GFS2_LKS_SRTTB]; 1877 nonzero++; 1878 } 1879 } 1880 st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP]; 1881 if (nonzero) 1882 do_div(a_srttb, nonzero); 1883 r_dcount = st->stats[GFS2_LKS_DCOUNT]; 1884 var = st->stats[GFS2_LKS_SRTTVARB] + 1885 gl->gl_stats.stats[GFS2_LKS_SRTTVARB]; 1886 preempt_enable(); 1887 1888 l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB]; 1889 l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT]; 1890 1891 if ((l_dcount < 1) || (r_dcount < 1) || (a_srttb == 0)) 1892 return false; 1893 1894 srttb_diff = a_srttb - l_srttb; 1895 sqr_diff = srttb_diff * srttb_diff; 1896 1897 var *= 2; 1898 if (l_dcount < 8 || r_dcount < 8) 1899 var *= 2; 1900 if (loops == 1) 1901 var *= 2; 1902 1903 return ((srttb_diff < 0) && (sqr_diff > var)); 1904 } 1905 1906 /** 1907 * gfs2_rgrp_used_recently 1908 * @rs: The block reservation with the rgrp to test 1909 * @msecs: The time limit in milliseconds 1910 * 1911 * Returns: True if the rgrp glock has been used within the time limit 1912 */ 1913 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs, 1914 u64 msecs) 1915 { 1916 u64 tdiff; 1917 1918 tdiff = ktime_to_ns(ktime_sub(ktime_get_real(), 1919 rs->rs_rbm.rgd->rd_gl->gl_dstamp)); 1920 1921 return tdiff > (msecs * 1000 * 1000); 1922 } 1923 1924 static u32 gfs2_orlov_skip(const struct gfs2_inode *ip) 1925 { 1926 const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1927 u32 skip; 1928 1929 get_random_bytes(&skip, sizeof(skip)); 1930 return skip % sdp->sd_rgrps; 1931 } 1932 1933 static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin) 1934 { 1935 struct gfs2_rgrpd *rgd = *pos; 1936 struct gfs2_sbd *sdp = rgd->rd_sbd; 1937 1938 rgd = gfs2_rgrpd_get_next(rgd); 1939 if (rgd == NULL) 1940 rgd = gfs2_rgrpd_get_first(sdp); 1941 *pos = rgd; 1942 if (rgd != begin) /* If we didn't wrap */ 1943 return true; 1944 return false; 1945 } 1946 1947 /** 1948 * fast_to_acquire - determine if a resource group will be fast to acquire 1949 * 1950 * If this is one of our preferred rgrps, it should be quicker to acquire, 1951 * because we tried to set ourselves up as dlm lock master. 1952 */ 1953 static inline int fast_to_acquire(struct gfs2_rgrpd *rgd) 1954 { 1955 struct gfs2_glock *gl = rgd->rd_gl; 1956 1957 if (gl->gl_state != LM_ST_UNLOCKED && list_empty(&gl->gl_holders) && 1958 !test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags) && 1959 !test_bit(GLF_DEMOTE, &gl->gl_flags)) 1960 return 1; 1961 if (rgd->rd_flags & GFS2_RDF_PREFERRED) 1962 return 1; 1963 return 0; 1964 } 1965 1966 /** 1967 * gfs2_inplace_reserve - Reserve space in the filesystem 1968 * @ip: the inode to reserve space for 1969 * @ap: the allocation parameters 1970 * 1971 * We try our best to find an rgrp that has at least ap->target blocks 1972 * available. After a couple of passes (loops == 2), the prospects of finding 1973 * such an rgrp diminish. At this stage, we return the first rgrp that has 1974 * atleast ap->min_target blocks available. Either way, we set ap->allowed to 1975 * the number of blocks available in the chosen rgrp. 1976 * 1977 * Returns: 0 on success, 1978 * -ENOMEM if a suitable rgrp can't be found 1979 * errno otherwise 1980 */ 1981 1982 int gfs2_inplace_reserve(struct gfs2_inode *ip, struct gfs2_alloc_parms *ap) 1983 { 1984 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1985 struct gfs2_rgrpd *begin = NULL; 1986 struct gfs2_blkreserv *rs = ip->i_res; 1987 int error = 0, rg_locked, flags = 0; 1988 u64 last_unlinked = NO_BLOCK; 1989 int loops = 0; 1990 u32 skip = 0; 1991 1992 if (sdp->sd_args.ar_rgrplvb) 1993 flags |= GL_SKIP; 1994 if (gfs2_assert_warn(sdp, ap->target)) 1995 return -EINVAL; 1996 if (gfs2_rs_active(rs)) { 1997 begin = rs->rs_rbm.rgd; 1998 } else if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal)) { 1999 rs->rs_rbm.rgd = begin = ip->i_rgd; 2000 } else { 2001 check_and_update_goal(ip); 2002 rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1); 2003 } 2004 if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV)) 2005 skip = gfs2_orlov_skip(ip); 2006 if (rs->rs_rbm.rgd == NULL) 2007 return -EBADSLT; 2008 2009 while (loops < 3) { 2010 rg_locked = 1; 2011 2012 if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) { 2013 rg_locked = 0; 2014 if (skip && skip--) 2015 goto next_rgrp; 2016 if (!gfs2_rs_active(rs)) { 2017 if (loops == 0 && 2018 !fast_to_acquire(rs->rs_rbm.rgd)) 2019 goto next_rgrp; 2020 if ((loops < 2) && 2021 gfs2_rgrp_used_recently(rs, 1000) && 2022 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops)) 2023 goto next_rgrp; 2024 } 2025 error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl, 2026 LM_ST_EXCLUSIVE, flags, 2027 &rs->rs_rgd_gh); 2028 if (unlikely(error)) 2029 return error; 2030 if (!gfs2_rs_active(rs) && (loops < 2) && 2031 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops)) 2032 goto skip_rgrp; 2033 if (sdp->sd_args.ar_rgrplvb) { 2034 error = update_rgrp_lvb(rs->rs_rbm.rgd); 2035 if (unlikely(error)) { 2036 gfs2_glock_dq_uninit(&rs->rs_rgd_gh); 2037 return error; 2038 } 2039 } 2040 } 2041 2042 /* Skip unuseable resource groups */ 2043 if ((rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC | 2044 GFS2_RDF_ERROR)) || 2045 (loops == 0 && ap->target > rs->rs_rbm.rgd->rd_extfail_pt)) 2046 goto skip_rgrp; 2047 2048 if (sdp->sd_args.ar_rgrplvb) 2049 gfs2_rgrp_bh_get(rs->rs_rbm.rgd); 2050 2051 /* Get a reservation if we don't already have one */ 2052 if (!gfs2_rs_active(rs)) 2053 rg_mblk_search(rs->rs_rbm.rgd, ip, ap); 2054 2055 /* Skip rgrps when we can't get a reservation on first pass */ 2056 if (!gfs2_rs_active(rs) && (loops < 1)) 2057 goto check_rgrp; 2058 2059 /* If rgrp has enough free space, use it */ 2060 if (rs->rs_rbm.rgd->rd_free_clone >= ap->target || 2061 (loops == 2 && ap->min_target && 2062 rs->rs_rbm.rgd->rd_free_clone >= ap->min_target)) { 2063 ip->i_rgd = rs->rs_rbm.rgd; 2064 ap->allowed = ip->i_rgd->rd_free_clone; 2065 return 0; 2066 } 2067 check_rgrp: 2068 /* Check for unlinked inodes which can be reclaimed */ 2069 if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK) 2070 try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked, 2071 ip->i_no_addr); 2072 skip_rgrp: 2073 /* Drop reservation, if we couldn't use reserved rgrp */ 2074 if (gfs2_rs_active(rs)) 2075 gfs2_rs_deltree(rs); 2076 2077 /* Unlock rgrp if required */ 2078 if (!rg_locked) 2079 gfs2_glock_dq_uninit(&rs->rs_rgd_gh); 2080 next_rgrp: 2081 /* Find the next rgrp, and continue looking */ 2082 if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin)) 2083 continue; 2084 if (skip) 2085 continue; 2086 2087 /* If we've scanned all the rgrps, but found no free blocks 2088 * then this checks for some less likely conditions before 2089 * trying again. 2090 */ 2091 loops++; 2092 /* Check that fs hasn't grown if writing to rindex */ 2093 if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) { 2094 error = gfs2_ri_update(ip); 2095 if (error) 2096 return error; 2097 } 2098 /* Flushing the log may release space */ 2099 if (loops == 2) 2100 gfs2_log_flush(sdp, NULL, NORMAL_FLUSH); 2101 } 2102 2103 return -ENOSPC; 2104 } 2105 2106 /** 2107 * gfs2_inplace_release - release an inplace reservation 2108 * @ip: the inode the reservation was taken out on 2109 * 2110 * Release a reservation made by gfs2_inplace_reserve(). 2111 */ 2112 2113 void gfs2_inplace_release(struct gfs2_inode *ip) 2114 { 2115 struct gfs2_blkreserv *rs = ip->i_res; 2116 2117 if (rs->rs_rgd_gh.gh_gl) 2118 gfs2_glock_dq_uninit(&rs->rs_rgd_gh); 2119 } 2120 2121 /** 2122 * gfs2_get_block_type - Check a block in a RG is of given type 2123 * @rgd: the resource group holding the block 2124 * @block: the block number 2125 * 2126 * Returns: The block type (GFS2_BLKST_*) 2127 */ 2128 2129 static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block) 2130 { 2131 struct gfs2_rbm rbm = { .rgd = rgd, }; 2132 int ret; 2133 2134 ret = gfs2_rbm_from_block(&rbm, block); 2135 WARN_ON_ONCE(ret != 0); 2136 2137 return gfs2_testbit(&rbm); 2138 } 2139 2140 2141 /** 2142 * gfs2_alloc_extent - allocate an extent from a given bitmap 2143 * @rbm: the resource group information 2144 * @dinode: TRUE if the first block we allocate is for a dinode 2145 * @n: The extent length (value/result) 2146 * 2147 * Add the bitmap buffer to the transaction. 2148 * Set the found bits to @new_state to change block's allocation state. 2149 */ 2150 static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode, 2151 unsigned int *n) 2152 { 2153 struct gfs2_rbm pos = { .rgd = rbm->rgd, }; 2154 const unsigned int elen = *n; 2155 u64 block; 2156 int ret; 2157 2158 *n = 1; 2159 block = gfs2_rbm_to_block(rbm); 2160 gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh); 2161 gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED); 2162 block++; 2163 while (*n < elen) { 2164 ret = gfs2_rbm_from_block(&pos, block); 2165 if (ret || gfs2_testbit(&pos) != GFS2_BLKST_FREE) 2166 break; 2167 gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh); 2168 gfs2_setbit(&pos, true, GFS2_BLKST_USED); 2169 (*n)++; 2170 block++; 2171 } 2172 } 2173 2174 /** 2175 * rgblk_free - Change alloc state of given block(s) 2176 * @sdp: the filesystem 2177 * @bstart: the start of a run of blocks to free 2178 * @blen: the length of the block run (all must lie within ONE RG!) 2179 * @new_state: GFS2_BLKST_XXX the after-allocation block state 2180 * 2181 * Returns: Resource group containing the block(s) 2182 */ 2183 2184 static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart, 2185 u32 blen, unsigned char new_state) 2186 { 2187 struct gfs2_rbm rbm; 2188 struct gfs2_bitmap *bi, *bi_prev = NULL; 2189 2190 rbm.rgd = gfs2_blk2rgrpd(sdp, bstart, 1); 2191 if (!rbm.rgd) { 2192 if (gfs2_consist(sdp)) 2193 fs_err(sdp, "block = %llu\n", (unsigned long long)bstart); 2194 return NULL; 2195 } 2196 2197 gfs2_rbm_from_block(&rbm, bstart); 2198 while (blen--) { 2199 bi = rbm_bi(&rbm); 2200 if (bi != bi_prev) { 2201 if (!bi->bi_clone) { 2202 bi->bi_clone = kmalloc(bi->bi_bh->b_size, 2203 GFP_NOFS | __GFP_NOFAIL); 2204 memcpy(bi->bi_clone + bi->bi_offset, 2205 bi->bi_bh->b_data + bi->bi_offset, 2206 bi->bi_len); 2207 } 2208 gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh); 2209 bi_prev = bi; 2210 } 2211 gfs2_setbit(&rbm, false, new_state); 2212 gfs2_rbm_incr(&rbm); 2213 } 2214 2215 return rbm.rgd; 2216 } 2217 2218 /** 2219 * gfs2_rgrp_dump - print out an rgrp 2220 * @seq: The iterator 2221 * @gl: The glock in question 2222 * 2223 */ 2224 2225 void gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl) 2226 { 2227 struct gfs2_rgrpd *rgd = gl->gl_object; 2228 struct gfs2_blkreserv *trs; 2229 const struct rb_node *n; 2230 2231 if (rgd == NULL) 2232 return; 2233 gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u r:%u e:%u\n", 2234 (unsigned long long)rgd->rd_addr, rgd->rd_flags, 2235 rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes, 2236 rgd->rd_reserved, rgd->rd_extfail_pt); 2237 spin_lock(&rgd->rd_rsspin); 2238 for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) { 2239 trs = rb_entry(n, struct gfs2_blkreserv, rs_node); 2240 dump_rs(seq, trs); 2241 } 2242 spin_unlock(&rgd->rd_rsspin); 2243 } 2244 2245 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd) 2246 { 2247 struct gfs2_sbd *sdp = rgd->rd_sbd; 2248 fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n", 2249 (unsigned long long)rgd->rd_addr); 2250 fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n"); 2251 gfs2_rgrp_dump(NULL, rgd->rd_gl); 2252 rgd->rd_flags |= GFS2_RDF_ERROR; 2253 } 2254 2255 /** 2256 * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation 2257 * @ip: The inode we have just allocated blocks for 2258 * @rbm: The start of the allocated blocks 2259 * @len: The extent length 2260 * 2261 * Adjusts a reservation after an allocation has taken place. If the 2262 * reservation does not match the allocation, or if it is now empty 2263 * then it is removed. 2264 */ 2265 2266 static void gfs2_adjust_reservation(struct gfs2_inode *ip, 2267 const struct gfs2_rbm *rbm, unsigned len) 2268 { 2269 struct gfs2_blkreserv *rs = ip->i_res; 2270 struct gfs2_rgrpd *rgd = rbm->rgd; 2271 unsigned rlen; 2272 u64 block; 2273 int ret; 2274 2275 spin_lock(&rgd->rd_rsspin); 2276 if (gfs2_rs_active(rs)) { 2277 if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) { 2278 block = gfs2_rbm_to_block(rbm); 2279 ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len); 2280 rlen = min(rs->rs_free, len); 2281 rs->rs_free -= rlen; 2282 rgd->rd_reserved -= rlen; 2283 trace_gfs2_rs(rs, TRACE_RS_CLAIM); 2284 if (rs->rs_free && !ret) 2285 goto out; 2286 /* We used up our block reservation, so we should 2287 reserve more blocks next time. */ 2288 atomic_add(RGRP_RSRV_ADDBLKS, &rs->rs_sizehint); 2289 } 2290 __rs_deltree(rs); 2291 } 2292 out: 2293 spin_unlock(&rgd->rd_rsspin); 2294 } 2295 2296 /** 2297 * gfs2_set_alloc_start - Set starting point for block allocation 2298 * @rbm: The rbm which will be set to the required location 2299 * @ip: The gfs2 inode 2300 * @dinode: Flag to say if allocation includes a new inode 2301 * 2302 * This sets the starting point from the reservation if one is active 2303 * otherwise it falls back to guessing a start point based on the 2304 * inode's goal block or the last allocation point in the rgrp. 2305 */ 2306 2307 static void gfs2_set_alloc_start(struct gfs2_rbm *rbm, 2308 const struct gfs2_inode *ip, bool dinode) 2309 { 2310 u64 goal; 2311 2312 if (gfs2_rs_active(ip->i_res)) { 2313 *rbm = ip->i_res->rs_rbm; 2314 return; 2315 } 2316 2317 if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal)) 2318 goal = ip->i_goal; 2319 else 2320 goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0; 2321 2322 gfs2_rbm_from_block(rbm, goal); 2323 } 2324 2325 /** 2326 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode 2327 * @ip: the inode to allocate the block for 2328 * @bn: Used to return the starting block number 2329 * @nblocks: requested number of blocks/extent length (value/result) 2330 * @dinode: 1 if we're allocating a dinode block, else 0 2331 * @generation: the generation number of the inode 2332 * 2333 * Returns: 0 or error 2334 */ 2335 2336 int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks, 2337 bool dinode, u64 *generation) 2338 { 2339 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2340 struct buffer_head *dibh; 2341 struct gfs2_rbm rbm = { .rgd = ip->i_rgd, }; 2342 unsigned int ndata; 2343 u64 block; /* block, within the file system scope */ 2344 int error; 2345 2346 gfs2_set_alloc_start(&rbm, ip, dinode); 2347 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, ip, false, NULL); 2348 2349 if (error == -ENOSPC) { 2350 gfs2_set_alloc_start(&rbm, ip, dinode); 2351 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, NULL, false, 2352 NULL); 2353 } 2354 2355 /* Since all blocks are reserved in advance, this shouldn't happen */ 2356 if (error) { 2357 fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n", 2358 (unsigned long long)ip->i_no_addr, error, *nblocks, 2359 test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags), 2360 rbm.rgd->rd_extfail_pt); 2361 goto rgrp_error; 2362 } 2363 2364 gfs2_alloc_extent(&rbm, dinode, nblocks); 2365 block = gfs2_rbm_to_block(&rbm); 2366 rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0; 2367 if (gfs2_rs_active(ip->i_res)) 2368 gfs2_adjust_reservation(ip, &rbm, *nblocks); 2369 ndata = *nblocks; 2370 if (dinode) 2371 ndata--; 2372 2373 if (!dinode) { 2374 ip->i_goal = block + ndata - 1; 2375 error = gfs2_meta_inode_buffer(ip, &dibh); 2376 if (error == 0) { 2377 struct gfs2_dinode *di = 2378 (struct gfs2_dinode *)dibh->b_data; 2379 gfs2_trans_add_meta(ip->i_gl, dibh); 2380 di->di_goal_meta = di->di_goal_data = 2381 cpu_to_be64(ip->i_goal); 2382 brelse(dibh); 2383 } 2384 } 2385 if (rbm.rgd->rd_free < *nblocks) { 2386 pr_warn("nblocks=%u\n", *nblocks); 2387 goto rgrp_error; 2388 } 2389 2390 rbm.rgd->rd_free -= *nblocks; 2391 if (dinode) { 2392 rbm.rgd->rd_dinodes++; 2393 *generation = rbm.rgd->rd_igeneration++; 2394 if (*generation == 0) 2395 *generation = rbm.rgd->rd_igeneration++; 2396 } 2397 2398 gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh); 2399 gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data); 2400 gfs2_rgrp_ondisk2lvb(rbm.rgd->rd_rgl, rbm.rgd->rd_bits[0].bi_bh->b_data); 2401 2402 gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0); 2403 if (dinode) 2404 gfs2_trans_add_unrevoke(sdp, block, *nblocks); 2405 2406 gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid); 2407 2408 rbm.rgd->rd_free_clone -= *nblocks; 2409 trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks, 2410 dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED); 2411 *bn = block; 2412 return 0; 2413 2414 rgrp_error: 2415 gfs2_rgrp_error(rbm.rgd); 2416 return -EIO; 2417 } 2418 2419 /** 2420 * __gfs2_free_blocks - free a contiguous run of block(s) 2421 * @ip: the inode these blocks are being freed from 2422 * @bstart: first block of a run of contiguous blocks 2423 * @blen: the length of the block run 2424 * @meta: 1 if the blocks represent metadata 2425 * 2426 */ 2427 2428 void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta) 2429 { 2430 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2431 struct gfs2_rgrpd *rgd; 2432 2433 rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE); 2434 if (!rgd) 2435 return; 2436 trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE); 2437 rgd->rd_free += blen; 2438 rgd->rd_flags &= ~GFS2_RGF_TRIMMED; 2439 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2440 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2441 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data); 2442 2443 /* Directories keep their data in the metadata address space */ 2444 if (meta || ip->i_depth) 2445 gfs2_meta_wipe(ip, bstart, blen); 2446 } 2447 2448 /** 2449 * gfs2_free_meta - free a contiguous run of data block(s) 2450 * @ip: the inode these blocks are being freed from 2451 * @bstart: first block of a run of contiguous blocks 2452 * @blen: the length of the block run 2453 * 2454 */ 2455 2456 void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen) 2457 { 2458 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2459 2460 __gfs2_free_blocks(ip, bstart, blen, 1); 2461 gfs2_statfs_change(sdp, 0, +blen, 0); 2462 gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid); 2463 } 2464 2465 void gfs2_unlink_di(struct inode *inode) 2466 { 2467 struct gfs2_inode *ip = GFS2_I(inode); 2468 struct gfs2_sbd *sdp = GFS2_SB(inode); 2469 struct gfs2_rgrpd *rgd; 2470 u64 blkno = ip->i_no_addr; 2471 2472 rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED); 2473 if (!rgd) 2474 return; 2475 trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED); 2476 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2477 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2478 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data); 2479 update_rgrp_lvb_unlinked(rgd, 1); 2480 } 2481 2482 static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno) 2483 { 2484 struct gfs2_sbd *sdp = rgd->rd_sbd; 2485 struct gfs2_rgrpd *tmp_rgd; 2486 2487 tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE); 2488 if (!tmp_rgd) 2489 return; 2490 gfs2_assert_withdraw(sdp, rgd == tmp_rgd); 2491 2492 if (!rgd->rd_dinodes) 2493 gfs2_consist_rgrpd(rgd); 2494 rgd->rd_dinodes--; 2495 rgd->rd_free++; 2496 2497 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2498 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2499 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data); 2500 update_rgrp_lvb_unlinked(rgd, -1); 2501 2502 gfs2_statfs_change(sdp, 0, +1, -1); 2503 } 2504 2505 2506 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip) 2507 { 2508 gfs2_free_uninit_di(rgd, ip->i_no_addr); 2509 trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE); 2510 gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid); 2511 gfs2_meta_wipe(ip, ip->i_no_addr, 1); 2512 } 2513 2514 /** 2515 * gfs2_check_blk_type - Check the type of a block 2516 * @sdp: The superblock 2517 * @no_addr: The block number to check 2518 * @type: The block type we are looking for 2519 * 2520 * Returns: 0 if the block type matches the expected type 2521 * -ESTALE if it doesn't match 2522 * or -ve errno if something went wrong while checking 2523 */ 2524 2525 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type) 2526 { 2527 struct gfs2_rgrpd *rgd; 2528 struct gfs2_holder rgd_gh; 2529 int error = -EINVAL; 2530 2531 rgd = gfs2_blk2rgrpd(sdp, no_addr, 1); 2532 if (!rgd) 2533 goto fail; 2534 2535 error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh); 2536 if (error) 2537 goto fail; 2538 2539 if (gfs2_get_block_type(rgd, no_addr) != type) 2540 error = -ESTALE; 2541 2542 gfs2_glock_dq_uninit(&rgd_gh); 2543 fail: 2544 return error; 2545 } 2546 2547 /** 2548 * gfs2_rlist_add - add a RG to a list of RGs 2549 * @ip: the inode 2550 * @rlist: the list of resource groups 2551 * @block: the block 2552 * 2553 * Figure out what RG a block belongs to and add that RG to the list 2554 * 2555 * FIXME: Don't use NOFAIL 2556 * 2557 */ 2558 2559 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist, 2560 u64 block) 2561 { 2562 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2563 struct gfs2_rgrpd *rgd; 2564 struct gfs2_rgrpd **tmp; 2565 unsigned int new_space; 2566 unsigned int x; 2567 2568 if (gfs2_assert_warn(sdp, !rlist->rl_ghs)) 2569 return; 2570 2571 if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block)) 2572 rgd = ip->i_rgd; 2573 else 2574 rgd = gfs2_blk2rgrpd(sdp, block, 1); 2575 if (!rgd) { 2576 fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block); 2577 return; 2578 } 2579 ip->i_rgd = rgd; 2580 2581 for (x = 0; x < rlist->rl_rgrps; x++) 2582 if (rlist->rl_rgd[x] == rgd) 2583 return; 2584 2585 if (rlist->rl_rgrps == rlist->rl_space) { 2586 new_space = rlist->rl_space + 10; 2587 2588 tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *), 2589 GFP_NOFS | __GFP_NOFAIL); 2590 2591 if (rlist->rl_rgd) { 2592 memcpy(tmp, rlist->rl_rgd, 2593 rlist->rl_space * sizeof(struct gfs2_rgrpd *)); 2594 kfree(rlist->rl_rgd); 2595 } 2596 2597 rlist->rl_space = new_space; 2598 rlist->rl_rgd = tmp; 2599 } 2600 2601 rlist->rl_rgd[rlist->rl_rgrps++] = rgd; 2602 } 2603 2604 /** 2605 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate 2606 * and initialize an array of glock holders for them 2607 * @rlist: the list of resource groups 2608 * @state: the lock state to acquire the RG lock in 2609 * 2610 * FIXME: Don't use NOFAIL 2611 * 2612 */ 2613 2614 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state) 2615 { 2616 unsigned int x; 2617 2618 rlist->rl_ghs = kcalloc(rlist->rl_rgrps, sizeof(struct gfs2_holder), 2619 GFP_NOFS | __GFP_NOFAIL); 2620 for (x = 0; x < rlist->rl_rgrps; x++) 2621 gfs2_holder_init(rlist->rl_rgd[x]->rd_gl, 2622 state, 0, 2623 &rlist->rl_ghs[x]); 2624 } 2625 2626 /** 2627 * gfs2_rlist_free - free a resource group list 2628 * @rlist: the list of resource groups 2629 * 2630 */ 2631 2632 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist) 2633 { 2634 unsigned int x; 2635 2636 kfree(rlist->rl_rgd); 2637 2638 if (rlist->rl_ghs) { 2639 for (x = 0; x < rlist->rl_rgrps; x++) 2640 gfs2_holder_uninit(&rlist->rl_ghs[x]); 2641 kfree(rlist->rl_ghs); 2642 rlist->rl_ghs = NULL; 2643 } 2644 } 2645 2646