1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 5 */ 6 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 9 #include <linux/slab.h> 10 #include <linux/spinlock.h> 11 #include <linux/completion.h> 12 #include <linux/buffer_head.h> 13 #include <linux/fs.h> 14 #include <linux/gfs2_ondisk.h> 15 #include <linux/prefetch.h> 16 #include <linux/blkdev.h> 17 #include <linux/rbtree.h> 18 #include <linux/random.h> 19 20 #include "gfs2.h" 21 #include "incore.h" 22 #include "glock.h" 23 #include "glops.h" 24 #include "lops.h" 25 #include "meta_io.h" 26 #include "quota.h" 27 #include "rgrp.h" 28 #include "super.h" 29 #include "trans.h" 30 #include "util.h" 31 #include "log.h" 32 #include "inode.h" 33 #include "trace_gfs2.h" 34 #include "dir.h" 35 36 #define BFITNOENT ((u32)~0) 37 #define NO_BLOCK ((u64)~0) 38 39 struct gfs2_rbm { 40 struct gfs2_rgrpd *rgd; 41 u32 offset; /* The offset is bitmap relative */ 42 int bii; /* Bitmap index */ 43 }; 44 45 static inline struct gfs2_bitmap *rbm_bi(const struct gfs2_rbm *rbm) 46 { 47 return rbm->rgd->rd_bits + rbm->bii; 48 } 49 50 static inline u64 gfs2_rbm_to_block(const struct gfs2_rbm *rbm) 51 { 52 BUG_ON(rbm->offset >= rbm->rgd->rd_data); 53 return rbm->rgd->rd_data0 + (rbm_bi(rbm)->bi_start * GFS2_NBBY) + 54 rbm->offset; 55 } 56 57 /* 58 * These routines are used by the resource group routines (rgrp.c) 59 * to keep track of block allocation. Each block is represented by two 60 * bits. So, each byte represents GFS2_NBBY (i.e. 4) blocks. 61 * 62 * 0 = Free 63 * 1 = Used (not metadata) 64 * 2 = Unlinked (still in use) inode 65 * 3 = Used (metadata) 66 */ 67 68 struct gfs2_extent { 69 struct gfs2_rbm rbm; 70 u32 len; 71 }; 72 73 static const char valid_change[16] = { 74 /* current */ 75 /* n */ 0, 1, 1, 1, 76 /* e */ 1, 0, 0, 0, 77 /* w */ 0, 0, 0, 1, 78 1, 0, 0, 0 79 }; 80 81 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext, 82 struct gfs2_blkreserv *rs, bool nowrap); 83 84 85 /** 86 * gfs2_setbit - Set a bit in the bitmaps 87 * @rbm: The position of the bit to set 88 * @do_clone: Also set the clone bitmap, if it exists 89 * @new_state: the new state of the block 90 * 91 */ 92 93 static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone, 94 unsigned char new_state) 95 { 96 unsigned char *byte1, *byte2, *end, cur_state; 97 struct gfs2_bitmap *bi = rbm_bi(rbm); 98 unsigned int buflen = bi->bi_bytes; 99 const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE; 100 101 byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY); 102 end = bi->bi_bh->b_data + bi->bi_offset + buflen; 103 104 BUG_ON(byte1 >= end); 105 106 cur_state = (*byte1 >> bit) & GFS2_BIT_MASK; 107 108 if (unlikely(!valid_change[new_state * 4 + cur_state])) { 109 struct gfs2_sbd *sdp = rbm->rgd->rd_sbd; 110 111 fs_warn(sdp, "buf_blk = 0x%x old_state=%d, new_state=%d\n", 112 rbm->offset, cur_state, new_state); 113 fs_warn(sdp, "rgrp=0x%llx bi_start=0x%x biblk: 0x%llx\n", 114 (unsigned long long)rbm->rgd->rd_addr, bi->bi_start, 115 (unsigned long long)bi->bi_bh->b_blocknr); 116 fs_warn(sdp, "bi_offset=0x%x bi_bytes=0x%x block=0x%llx\n", 117 bi->bi_offset, bi->bi_bytes, 118 (unsigned long long)gfs2_rbm_to_block(rbm)); 119 dump_stack(); 120 gfs2_consist_rgrpd(rbm->rgd); 121 return; 122 } 123 *byte1 ^= (cur_state ^ new_state) << bit; 124 125 if (do_clone && bi->bi_clone) { 126 byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY); 127 cur_state = (*byte2 >> bit) & GFS2_BIT_MASK; 128 *byte2 ^= (cur_state ^ new_state) << bit; 129 } 130 } 131 132 /** 133 * gfs2_testbit - test a bit in the bitmaps 134 * @rbm: The bit to test 135 * @use_clone: If true, test the clone bitmap, not the official bitmap. 136 * 137 * Some callers like gfs2_unaligned_extlen need to test the clone bitmaps, 138 * not the "real" bitmaps, to avoid allocating recently freed blocks. 139 * 140 * Returns: The two bit block state of the requested bit 141 */ 142 143 static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm, bool use_clone) 144 { 145 struct gfs2_bitmap *bi = rbm_bi(rbm); 146 const u8 *buffer; 147 const u8 *byte; 148 unsigned int bit; 149 150 if (use_clone && bi->bi_clone) 151 buffer = bi->bi_clone; 152 else 153 buffer = bi->bi_bh->b_data; 154 buffer += bi->bi_offset; 155 byte = buffer + (rbm->offset / GFS2_NBBY); 156 bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE; 157 158 return (*byte >> bit) & GFS2_BIT_MASK; 159 } 160 161 /** 162 * gfs2_bit_search 163 * @ptr: Pointer to bitmap data 164 * @mask: Mask to use (normally 0x55555.... but adjusted for search start) 165 * @state: The state we are searching for 166 * 167 * We xor the bitmap data with a patter which is the bitwise opposite 168 * of what we are looking for, this gives rise to a pattern of ones 169 * wherever there is a match. Since we have two bits per entry, we 170 * take this pattern, shift it down by one place and then and it with 171 * the original. All the even bit positions (0,2,4, etc) then represent 172 * successful matches, so we mask with 0x55555..... to remove the unwanted 173 * odd bit positions. 174 * 175 * This allows searching of a whole u64 at once (32 blocks) with a 176 * single test (on 64 bit arches). 177 */ 178 179 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state) 180 { 181 u64 tmp; 182 static const u64 search[] = { 183 [0] = 0xffffffffffffffffULL, 184 [1] = 0xaaaaaaaaaaaaaaaaULL, 185 [2] = 0x5555555555555555ULL, 186 [3] = 0x0000000000000000ULL, 187 }; 188 tmp = le64_to_cpu(*ptr) ^ search[state]; 189 tmp &= (tmp >> 1); 190 tmp &= mask; 191 return tmp; 192 } 193 194 /** 195 * rs_cmp - multi-block reservation range compare 196 * @start: start of the new reservation 197 * @len: number of blocks in the new reservation 198 * @rs: existing reservation to compare against 199 * 200 * returns: 1 if the block range is beyond the reach of the reservation 201 * -1 if the block range is before the start of the reservation 202 * 0 if the block range overlaps with the reservation 203 */ 204 static inline int rs_cmp(u64 start, u32 len, struct gfs2_blkreserv *rs) 205 { 206 if (start >= rs->rs_start + rs->rs_requested) 207 return 1; 208 if (rs->rs_start >= start + len) 209 return -1; 210 return 0; 211 } 212 213 /** 214 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing 215 * a block in a given allocation state. 216 * @buf: the buffer that holds the bitmaps 217 * @len: the length (in bytes) of the buffer 218 * @goal: start search at this block's bit-pair (within @buffer) 219 * @state: GFS2_BLKST_XXX the state of the block we're looking for. 220 * 221 * Scope of @goal and returned block number is only within this bitmap buffer, 222 * not entire rgrp or filesystem. @buffer will be offset from the actual 223 * beginning of a bitmap block buffer, skipping any header structures, but 224 * headers are always a multiple of 64 bits long so that the buffer is 225 * always aligned to a 64 bit boundary. 226 * 227 * The size of the buffer is in bytes, but is it assumed that it is 228 * always ok to read a complete multiple of 64 bits at the end 229 * of the block in case the end is no aligned to a natural boundary. 230 * 231 * Return: the block number (bitmap buffer scope) that was found 232 */ 233 234 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len, 235 u32 goal, u8 state) 236 { 237 u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1); 238 const __le64 *ptr = ((__le64 *)buf) + (goal >> 5); 239 const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64))); 240 u64 tmp; 241 u64 mask = 0x5555555555555555ULL; 242 u32 bit; 243 244 /* Mask off bits we don't care about at the start of the search */ 245 mask <<= spoint; 246 tmp = gfs2_bit_search(ptr, mask, state); 247 ptr++; 248 while(tmp == 0 && ptr < end) { 249 tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state); 250 ptr++; 251 } 252 /* Mask off any bits which are more than len bytes from the start */ 253 if (ptr == end && (len & (sizeof(u64) - 1))) 254 tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1)))); 255 /* Didn't find anything, so return */ 256 if (tmp == 0) 257 return BFITNOENT; 258 ptr--; 259 bit = __ffs64(tmp); 260 bit /= 2; /* two bits per entry in the bitmap */ 261 return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit; 262 } 263 264 /** 265 * gfs2_rbm_from_block - Set the rbm based upon rgd and block number 266 * @rbm: The rbm with rgd already set correctly 267 * @block: The block number (filesystem relative) 268 * 269 * This sets the bi and offset members of an rbm based on a 270 * resource group and a filesystem relative block number. The 271 * resource group must be set in the rbm on entry, the bi and 272 * offset members will be set by this function. 273 * 274 * Returns: 0 on success, or an error code 275 */ 276 277 static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block) 278 { 279 if (!rgrp_contains_block(rbm->rgd, block)) 280 return -E2BIG; 281 rbm->bii = 0; 282 rbm->offset = block - rbm->rgd->rd_data0; 283 /* Check if the block is within the first block */ 284 if (rbm->offset < rbm_bi(rbm)->bi_blocks) 285 return 0; 286 287 /* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */ 288 rbm->offset += (sizeof(struct gfs2_rgrp) - 289 sizeof(struct gfs2_meta_header)) * GFS2_NBBY; 290 rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap; 291 rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap; 292 return 0; 293 } 294 295 /** 296 * gfs2_rbm_add - add a number of blocks to an rbm 297 * @rbm: The rbm with rgd already set correctly 298 * @blocks: The number of blocks to add to rpm 299 * 300 * This function takes an existing rbm structure and adds a number of blocks to 301 * it. 302 * 303 * Returns: True if the new rbm would point past the end of the rgrp. 304 */ 305 306 static bool gfs2_rbm_add(struct gfs2_rbm *rbm, u32 blocks) 307 { 308 struct gfs2_rgrpd *rgd = rbm->rgd; 309 struct gfs2_bitmap *bi = rgd->rd_bits + rbm->bii; 310 311 if (rbm->offset + blocks < bi->bi_blocks) { 312 rbm->offset += blocks; 313 return false; 314 } 315 blocks -= bi->bi_blocks - rbm->offset; 316 317 for(;;) { 318 bi++; 319 if (bi == rgd->rd_bits + rgd->rd_length) 320 return true; 321 if (blocks < bi->bi_blocks) { 322 rbm->offset = blocks; 323 rbm->bii = bi - rgd->rd_bits; 324 return false; 325 } 326 blocks -= bi->bi_blocks; 327 } 328 } 329 330 /** 331 * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned 332 * @rbm: Position to search (value/result) 333 * @n_unaligned: Number of unaligned blocks to check 334 * @len: Decremented for each block found (terminate on zero) 335 * 336 * Returns: true if a non-free block is encountered or the end of the resource 337 * group is reached. 338 */ 339 340 static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len) 341 { 342 u32 n; 343 u8 res; 344 345 for (n = 0; n < n_unaligned; n++) { 346 res = gfs2_testbit(rbm, true); 347 if (res != GFS2_BLKST_FREE) 348 return true; 349 (*len)--; 350 if (*len == 0) 351 return true; 352 if (gfs2_rbm_add(rbm, 1)) 353 return true; 354 } 355 356 return false; 357 } 358 359 /** 360 * gfs2_free_extlen - Return extent length of free blocks 361 * @rrbm: Starting position 362 * @len: Max length to check 363 * 364 * Starting at the block specified by the rbm, see how many free blocks 365 * there are, not reading more than len blocks ahead. This can be done 366 * using memchr_inv when the blocks are byte aligned, but has to be done 367 * on a block by block basis in case of unaligned blocks. Also this 368 * function can cope with bitmap boundaries (although it must stop on 369 * a resource group boundary) 370 * 371 * Returns: Number of free blocks in the extent 372 */ 373 374 static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len) 375 { 376 struct gfs2_rbm rbm = *rrbm; 377 u32 n_unaligned = rbm.offset & 3; 378 u32 size = len; 379 u32 bytes; 380 u32 chunk_size; 381 u8 *ptr, *start, *end; 382 u64 block; 383 struct gfs2_bitmap *bi; 384 385 if (n_unaligned && 386 gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len)) 387 goto out; 388 389 n_unaligned = len & 3; 390 /* Start is now byte aligned */ 391 while (len > 3) { 392 bi = rbm_bi(&rbm); 393 start = bi->bi_bh->b_data; 394 if (bi->bi_clone) 395 start = bi->bi_clone; 396 start += bi->bi_offset; 397 end = start + bi->bi_bytes; 398 BUG_ON(rbm.offset & 3); 399 start += (rbm.offset / GFS2_NBBY); 400 bytes = min_t(u32, len / GFS2_NBBY, (end - start)); 401 ptr = memchr_inv(start, 0, bytes); 402 chunk_size = ((ptr == NULL) ? bytes : (ptr - start)); 403 chunk_size *= GFS2_NBBY; 404 BUG_ON(len < chunk_size); 405 len -= chunk_size; 406 block = gfs2_rbm_to_block(&rbm); 407 if (gfs2_rbm_from_block(&rbm, block + chunk_size)) { 408 n_unaligned = 0; 409 break; 410 } 411 if (ptr) { 412 n_unaligned = 3; 413 break; 414 } 415 n_unaligned = len & 3; 416 } 417 418 /* Deal with any bits left over at the end */ 419 if (n_unaligned) 420 gfs2_unaligned_extlen(&rbm, n_unaligned, &len); 421 out: 422 return size - len; 423 } 424 425 /** 426 * gfs2_bitcount - count the number of bits in a certain state 427 * @rgd: the resource group descriptor 428 * @buffer: the buffer that holds the bitmaps 429 * @buflen: the length (in bytes) of the buffer 430 * @state: the state of the block we're looking for 431 * 432 * Returns: The number of bits 433 */ 434 435 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer, 436 unsigned int buflen, u8 state) 437 { 438 const u8 *byte = buffer; 439 const u8 *end = buffer + buflen; 440 const u8 state1 = state << 2; 441 const u8 state2 = state << 4; 442 const u8 state3 = state << 6; 443 u32 count = 0; 444 445 for (; byte < end; byte++) { 446 if (((*byte) & 0x03) == state) 447 count++; 448 if (((*byte) & 0x0C) == state1) 449 count++; 450 if (((*byte) & 0x30) == state2) 451 count++; 452 if (((*byte) & 0xC0) == state3) 453 count++; 454 } 455 456 return count; 457 } 458 459 /** 460 * gfs2_rgrp_verify - Verify that a resource group is consistent 461 * @rgd: the rgrp 462 * 463 */ 464 465 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd) 466 { 467 struct gfs2_sbd *sdp = rgd->rd_sbd; 468 struct gfs2_bitmap *bi = NULL; 469 u32 length = rgd->rd_length; 470 u32 count[4], tmp; 471 int buf, x; 472 473 memset(count, 0, 4 * sizeof(u32)); 474 475 /* Count # blocks in each of 4 possible allocation states */ 476 for (buf = 0; buf < length; buf++) { 477 bi = rgd->rd_bits + buf; 478 for (x = 0; x < 4; x++) 479 count[x] += gfs2_bitcount(rgd, 480 bi->bi_bh->b_data + 481 bi->bi_offset, 482 bi->bi_bytes, x); 483 } 484 485 if (count[0] != rgd->rd_free) { 486 gfs2_lm(sdp, "free data mismatch: %u != %u\n", 487 count[0], rgd->rd_free); 488 gfs2_consist_rgrpd(rgd); 489 return; 490 } 491 492 tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes; 493 if (count[1] != tmp) { 494 gfs2_lm(sdp, "used data mismatch: %u != %u\n", 495 count[1], tmp); 496 gfs2_consist_rgrpd(rgd); 497 return; 498 } 499 500 if (count[2] + count[3] != rgd->rd_dinodes) { 501 gfs2_lm(sdp, "used metadata mismatch: %u != %u\n", 502 count[2] + count[3], rgd->rd_dinodes); 503 gfs2_consist_rgrpd(rgd); 504 return; 505 } 506 } 507 508 /** 509 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number 510 * @sdp: The GFS2 superblock 511 * @blk: The data block number 512 * @exact: True if this needs to be an exact match 513 * 514 * The @exact argument should be set to true by most callers. The exception 515 * is when we need to match blocks which are not represented by the rgrp 516 * bitmap, but which are part of the rgrp (i.e. padding blocks) which are 517 * there for alignment purposes. Another way of looking at it is that @exact 518 * matches only valid data/metadata blocks, but with @exact false, it will 519 * match any block within the extent of the rgrp. 520 * 521 * Returns: The resource group, or NULL if not found 522 */ 523 524 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact) 525 { 526 struct rb_node *n, *next; 527 struct gfs2_rgrpd *cur; 528 529 spin_lock(&sdp->sd_rindex_spin); 530 n = sdp->sd_rindex_tree.rb_node; 531 while (n) { 532 cur = rb_entry(n, struct gfs2_rgrpd, rd_node); 533 next = NULL; 534 if (blk < cur->rd_addr) 535 next = n->rb_left; 536 else if (blk >= cur->rd_data0 + cur->rd_data) 537 next = n->rb_right; 538 if (next == NULL) { 539 spin_unlock(&sdp->sd_rindex_spin); 540 if (exact) { 541 if (blk < cur->rd_addr) 542 return NULL; 543 if (blk >= cur->rd_data0 + cur->rd_data) 544 return NULL; 545 } 546 return cur; 547 } 548 n = next; 549 } 550 spin_unlock(&sdp->sd_rindex_spin); 551 552 return NULL; 553 } 554 555 /** 556 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem 557 * @sdp: The GFS2 superblock 558 * 559 * Returns: The first rgrp in the filesystem 560 */ 561 562 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp) 563 { 564 const struct rb_node *n; 565 struct gfs2_rgrpd *rgd; 566 567 spin_lock(&sdp->sd_rindex_spin); 568 n = rb_first(&sdp->sd_rindex_tree); 569 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 570 spin_unlock(&sdp->sd_rindex_spin); 571 572 return rgd; 573 } 574 575 /** 576 * gfs2_rgrpd_get_next - get the next RG 577 * @rgd: the resource group descriptor 578 * 579 * Returns: The next rgrp 580 */ 581 582 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd) 583 { 584 struct gfs2_sbd *sdp = rgd->rd_sbd; 585 const struct rb_node *n; 586 587 spin_lock(&sdp->sd_rindex_spin); 588 n = rb_next(&rgd->rd_node); 589 if (n == NULL) 590 n = rb_first(&sdp->sd_rindex_tree); 591 592 if (unlikely(&rgd->rd_node == n)) { 593 spin_unlock(&sdp->sd_rindex_spin); 594 return NULL; 595 } 596 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 597 spin_unlock(&sdp->sd_rindex_spin); 598 return rgd; 599 } 600 601 void check_and_update_goal(struct gfs2_inode *ip) 602 { 603 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 604 if (!ip->i_goal || gfs2_blk2rgrpd(sdp, ip->i_goal, 1) == NULL) 605 ip->i_goal = ip->i_no_addr; 606 } 607 608 void gfs2_free_clones(struct gfs2_rgrpd *rgd) 609 { 610 int x; 611 612 for (x = 0; x < rgd->rd_length; x++) { 613 struct gfs2_bitmap *bi = rgd->rd_bits + x; 614 kfree(bi->bi_clone); 615 bi->bi_clone = NULL; 616 } 617 } 618 619 static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs, 620 const char *fs_id_buf) 621 { 622 struct gfs2_inode *ip = container_of(rs, struct gfs2_inode, i_res); 623 624 gfs2_print_dbg(seq, "%s B: n:%llu s:%llu f:%u\n", 625 fs_id_buf, 626 (unsigned long long)ip->i_no_addr, 627 (unsigned long long)rs->rs_start, 628 rs->rs_requested); 629 } 630 631 /** 632 * __rs_deltree - remove a multi-block reservation from the rgd tree 633 * @rs: The reservation to remove 634 * 635 */ 636 static void __rs_deltree(struct gfs2_blkreserv *rs) 637 { 638 struct gfs2_rgrpd *rgd; 639 640 if (!gfs2_rs_active(rs)) 641 return; 642 643 rgd = rs->rs_rgd; 644 trace_gfs2_rs(rs, TRACE_RS_TREEDEL); 645 rb_erase(&rs->rs_node, &rgd->rd_rstree); 646 RB_CLEAR_NODE(&rs->rs_node); 647 648 if (rs->rs_requested) { 649 /* return requested blocks to the rgrp */ 650 BUG_ON(rs->rs_rgd->rd_requested < rs->rs_requested); 651 rs->rs_rgd->rd_requested -= rs->rs_requested; 652 653 /* The rgrp extent failure point is likely not to increase; 654 it will only do so if the freed blocks are somehow 655 contiguous with a span of free blocks that follows. Still, 656 it will force the number to be recalculated later. */ 657 rgd->rd_extfail_pt += rs->rs_requested; 658 rs->rs_requested = 0; 659 } 660 } 661 662 /** 663 * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree 664 * @rs: The reservation to remove 665 * 666 */ 667 void gfs2_rs_deltree(struct gfs2_blkreserv *rs) 668 { 669 struct gfs2_rgrpd *rgd; 670 671 rgd = rs->rs_rgd; 672 if (rgd) { 673 spin_lock(&rgd->rd_rsspin); 674 __rs_deltree(rs); 675 BUG_ON(rs->rs_requested); 676 spin_unlock(&rgd->rd_rsspin); 677 } 678 } 679 680 /** 681 * gfs2_rs_delete - delete a multi-block reservation 682 * @ip: The inode for this reservation 683 * @wcount: The inode's write count, or NULL 684 * 685 */ 686 void gfs2_rs_delete(struct gfs2_inode *ip, atomic_t *wcount) 687 { 688 down_write(&ip->i_rw_mutex); 689 if ((wcount == NULL) || (atomic_read(wcount) <= 1)) 690 gfs2_rs_deltree(&ip->i_res); 691 up_write(&ip->i_rw_mutex); 692 } 693 694 /** 695 * return_all_reservations - return all reserved blocks back to the rgrp. 696 * @rgd: the rgrp that needs its space back 697 * 698 * We previously reserved a bunch of blocks for allocation. Now we need to 699 * give them back. This leave the reservation structures in tact, but removes 700 * all of their corresponding "no-fly zones". 701 */ 702 static void return_all_reservations(struct gfs2_rgrpd *rgd) 703 { 704 struct rb_node *n; 705 struct gfs2_blkreserv *rs; 706 707 spin_lock(&rgd->rd_rsspin); 708 while ((n = rb_first(&rgd->rd_rstree))) { 709 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 710 __rs_deltree(rs); 711 } 712 spin_unlock(&rgd->rd_rsspin); 713 } 714 715 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp) 716 { 717 struct rb_node *n; 718 struct gfs2_rgrpd *rgd; 719 struct gfs2_glock *gl; 720 721 while ((n = rb_first(&sdp->sd_rindex_tree))) { 722 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 723 gl = rgd->rd_gl; 724 725 rb_erase(n, &sdp->sd_rindex_tree); 726 727 if (gl) { 728 if (gl->gl_state != LM_ST_UNLOCKED) { 729 gfs2_glock_cb(gl, LM_ST_UNLOCKED); 730 flush_delayed_work(&gl->gl_work); 731 } 732 gfs2_rgrp_brelse(rgd); 733 glock_clear_object(gl, rgd); 734 gfs2_glock_put(gl); 735 } 736 737 gfs2_free_clones(rgd); 738 return_all_reservations(rgd); 739 kfree(rgd->rd_bits); 740 rgd->rd_bits = NULL; 741 kmem_cache_free(gfs2_rgrpd_cachep, rgd); 742 } 743 } 744 745 /** 746 * compute_bitstructs - Compute the bitmap sizes 747 * @rgd: The resource group descriptor 748 * 749 * Calculates bitmap descriptors, one for each block that contains bitmap data 750 * 751 * Returns: errno 752 */ 753 754 static int compute_bitstructs(struct gfs2_rgrpd *rgd) 755 { 756 struct gfs2_sbd *sdp = rgd->rd_sbd; 757 struct gfs2_bitmap *bi; 758 u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */ 759 u32 bytes_left, bytes; 760 int x; 761 762 if (!length) 763 return -EINVAL; 764 765 rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS); 766 if (!rgd->rd_bits) 767 return -ENOMEM; 768 769 bytes_left = rgd->rd_bitbytes; 770 771 for (x = 0; x < length; x++) { 772 bi = rgd->rd_bits + x; 773 774 bi->bi_flags = 0; 775 /* small rgrp; bitmap stored completely in header block */ 776 if (length == 1) { 777 bytes = bytes_left; 778 bi->bi_offset = sizeof(struct gfs2_rgrp); 779 bi->bi_start = 0; 780 bi->bi_bytes = bytes; 781 bi->bi_blocks = bytes * GFS2_NBBY; 782 /* header block */ 783 } else if (x == 0) { 784 bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp); 785 bi->bi_offset = sizeof(struct gfs2_rgrp); 786 bi->bi_start = 0; 787 bi->bi_bytes = bytes; 788 bi->bi_blocks = bytes * GFS2_NBBY; 789 /* last block */ 790 } else if (x + 1 == length) { 791 bytes = bytes_left; 792 bi->bi_offset = sizeof(struct gfs2_meta_header); 793 bi->bi_start = rgd->rd_bitbytes - bytes_left; 794 bi->bi_bytes = bytes; 795 bi->bi_blocks = bytes * GFS2_NBBY; 796 /* other blocks */ 797 } else { 798 bytes = sdp->sd_sb.sb_bsize - 799 sizeof(struct gfs2_meta_header); 800 bi->bi_offset = sizeof(struct gfs2_meta_header); 801 bi->bi_start = rgd->rd_bitbytes - bytes_left; 802 bi->bi_bytes = bytes; 803 bi->bi_blocks = bytes * GFS2_NBBY; 804 } 805 806 bytes_left -= bytes; 807 } 808 809 if (bytes_left) { 810 gfs2_consist_rgrpd(rgd); 811 return -EIO; 812 } 813 bi = rgd->rd_bits + (length - 1); 814 if ((bi->bi_start + bi->bi_bytes) * GFS2_NBBY != rgd->rd_data) { 815 gfs2_lm(sdp, 816 "ri_addr = %llu\n" 817 "ri_length = %u\n" 818 "ri_data0 = %llu\n" 819 "ri_data = %u\n" 820 "ri_bitbytes = %u\n" 821 "start=%u len=%u offset=%u\n", 822 (unsigned long long)rgd->rd_addr, 823 rgd->rd_length, 824 (unsigned long long)rgd->rd_data0, 825 rgd->rd_data, 826 rgd->rd_bitbytes, 827 bi->bi_start, bi->bi_bytes, bi->bi_offset); 828 gfs2_consist_rgrpd(rgd); 829 return -EIO; 830 } 831 832 return 0; 833 } 834 835 /** 836 * gfs2_ri_total - Total up the file system space, according to the rindex. 837 * @sdp: the filesystem 838 * 839 */ 840 u64 gfs2_ri_total(struct gfs2_sbd *sdp) 841 { 842 u64 total_data = 0; 843 struct inode *inode = sdp->sd_rindex; 844 struct gfs2_inode *ip = GFS2_I(inode); 845 char buf[sizeof(struct gfs2_rindex)]; 846 int error, rgrps; 847 848 for (rgrps = 0;; rgrps++) { 849 loff_t pos = rgrps * sizeof(struct gfs2_rindex); 850 851 if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode)) 852 break; 853 error = gfs2_internal_read(ip, buf, &pos, 854 sizeof(struct gfs2_rindex)); 855 if (error != sizeof(struct gfs2_rindex)) 856 break; 857 total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data); 858 } 859 return total_data; 860 } 861 862 static int rgd_insert(struct gfs2_rgrpd *rgd) 863 { 864 struct gfs2_sbd *sdp = rgd->rd_sbd; 865 struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL; 866 867 /* Figure out where to put new node */ 868 while (*newn) { 869 struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd, 870 rd_node); 871 872 parent = *newn; 873 if (rgd->rd_addr < cur->rd_addr) 874 newn = &((*newn)->rb_left); 875 else if (rgd->rd_addr > cur->rd_addr) 876 newn = &((*newn)->rb_right); 877 else 878 return -EEXIST; 879 } 880 881 rb_link_node(&rgd->rd_node, parent, newn); 882 rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree); 883 sdp->sd_rgrps++; 884 return 0; 885 } 886 887 /** 888 * read_rindex_entry - Pull in a new resource index entry from the disk 889 * @ip: Pointer to the rindex inode 890 * 891 * Returns: 0 on success, > 0 on EOF, error code otherwise 892 */ 893 894 static int read_rindex_entry(struct gfs2_inode *ip) 895 { 896 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 897 loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex); 898 struct gfs2_rindex buf; 899 int error; 900 struct gfs2_rgrpd *rgd; 901 902 if (pos >= i_size_read(&ip->i_inode)) 903 return 1; 904 905 error = gfs2_internal_read(ip, (char *)&buf, &pos, 906 sizeof(struct gfs2_rindex)); 907 908 if (error != sizeof(struct gfs2_rindex)) 909 return (error == 0) ? 1 : error; 910 911 rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS); 912 error = -ENOMEM; 913 if (!rgd) 914 return error; 915 916 rgd->rd_sbd = sdp; 917 rgd->rd_addr = be64_to_cpu(buf.ri_addr); 918 rgd->rd_length = be32_to_cpu(buf.ri_length); 919 rgd->rd_data0 = be64_to_cpu(buf.ri_data0); 920 rgd->rd_data = be32_to_cpu(buf.ri_data); 921 rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes); 922 spin_lock_init(&rgd->rd_rsspin); 923 mutex_init(&rgd->rd_mutex); 924 925 error = compute_bitstructs(rgd); 926 if (error) 927 goto fail; 928 929 error = gfs2_glock_get(sdp, rgd->rd_addr, 930 &gfs2_rgrp_glops, CREATE, &rgd->rd_gl); 931 if (error) 932 goto fail; 933 934 rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr; 935 rgd->rd_flags &= ~(GFS2_RDF_UPTODATE | GFS2_RDF_PREFERRED); 936 if (rgd->rd_data > sdp->sd_max_rg_data) 937 sdp->sd_max_rg_data = rgd->rd_data; 938 spin_lock(&sdp->sd_rindex_spin); 939 error = rgd_insert(rgd); 940 spin_unlock(&sdp->sd_rindex_spin); 941 if (!error) { 942 glock_set_object(rgd->rd_gl, rgd); 943 return 0; 944 } 945 946 error = 0; /* someone else read in the rgrp; free it and ignore it */ 947 gfs2_glock_put(rgd->rd_gl); 948 949 fail: 950 kfree(rgd->rd_bits); 951 rgd->rd_bits = NULL; 952 kmem_cache_free(gfs2_rgrpd_cachep, rgd); 953 return error; 954 } 955 956 /** 957 * set_rgrp_preferences - Run all the rgrps, selecting some we prefer to use 958 * @sdp: the GFS2 superblock 959 * 960 * The purpose of this function is to select a subset of the resource groups 961 * and mark them as PREFERRED. We do it in such a way that each node prefers 962 * to use a unique set of rgrps to minimize glock contention. 963 */ 964 static void set_rgrp_preferences(struct gfs2_sbd *sdp) 965 { 966 struct gfs2_rgrpd *rgd, *first; 967 int i; 968 969 /* Skip an initial number of rgrps, based on this node's journal ID. 970 That should start each node out on its own set. */ 971 rgd = gfs2_rgrpd_get_first(sdp); 972 for (i = 0; i < sdp->sd_lockstruct.ls_jid; i++) 973 rgd = gfs2_rgrpd_get_next(rgd); 974 first = rgd; 975 976 do { 977 rgd->rd_flags |= GFS2_RDF_PREFERRED; 978 for (i = 0; i < sdp->sd_journals; i++) { 979 rgd = gfs2_rgrpd_get_next(rgd); 980 if (!rgd || rgd == first) 981 break; 982 } 983 } while (rgd && rgd != first); 984 } 985 986 /** 987 * gfs2_ri_update - Pull in a new resource index from the disk 988 * @ip: pointer to the rindex inode 989 * 990 * Returns: 0 on successful update, error code otherwise 991 */ 992 993 static int gfs2_ri_update(struct gfs2_inode *ip) 994 { 995 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 996 int error; 997 998 do { 999 error = read_rindex_entry(ip); 1000 } while (error == 0); 1001 1002 if (error < 0) 1003 return error; 1004 1005 if (RB_EMPTY_ROOT(&sdp->sd_rindex_tree)) { 1006 fs_err(sdp, "no resource groups found in the file system.\n"); 1007 return -ENOENT; 1008 } 1009 set_rgrp_preferences(sdp); 1010 1011 sdp->sd_rindex_uptodate = 1; 1012 return 0; 1013 } 1014 1015 /** 1016 * gfs2_rindex_update - Update the rindex if required 1017 * @sdp: The GFS2 superblock 1018 * 1019 * We grab a lock on the rindex inode to make sure that it doesn't 1020 * change whilst we are performing an operation. We keep this lock 1021 * for quite long periods of time compared to other locks. This 1022 * doesn't matter, since it is shared and it is very, very rarely 1023 * accessed in the exclusive mode (i.e. only when expanding the filesystem). 1024 * 1025 * This makes sure that we're using the latest copy of the resource index 1026 * special file, which might have been updated if someone expanded the 1027 * filesystem (via gfs2_grow utility), which adds new resource groups. 1028 * 1029 * Returns: 0 on succeess, error code otherwise 1030 */ 1031 1032 int gfs2_rindex_update(struct gfs2_sbd *sdp) 1033 { 1034 struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex); 1035 struct gfs2_glock *gl = ip->i_gl; 1036 struct gfs2_holder ri_gh; 1037 int error = 0; 1038 int unlock_required = 0; 1039 1040 /* Read new copy from disk if we don't have the latest */ 1041 if (!sdp->sd_rindex_uptodate) { 1042 if (!gfs2_glock_is_locked_by_me(gl)) { 1043 error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh); 1044 if (error) 1045 return error; 1046 unlock_required = 1; 1047 } 1048 if (!sdp->sd_rindex_uptodate) 1049 error = gfs2_ri_update(ip); 1050 if (unlock_required) 1051 gfs2_glock_dq_uninit(&ri_gh); 1052 } 1053 1054 return error; 1055 } 1056 1057 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf) 1058 { 1059 const struct gfs2_rgrp *str = buf; 1060 u32 rg_flags; 1061 1062 rg_flags = be32_to_cpu(str->rg_flags); 1063 rg_flags &= ~GFS2_RDF_MASK; 1064 rgd->rd_flags &= GFS2_RDF_MASK; 1065 rgd->rd_flags |= rg_flags; 1066 rgd->rd_free = be32_to_cpu(str->rg_free); 1067 rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes); 1068 rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration); 1069 /* rd_data0, rd_data and rd_bitbytes already set from rindex */ 1070 } 1071 1072 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf) 1073 { 1074 const struct gfs2_rgrp *str = buf; 1075 1076 rgl->rl_magic = cpu_to_be32(GFS2_MAGIC); 1077 rgl->rl_flags = str->rg_flags; 1078 rgl->rl_free = str->rg_free; 1079 rgl->rl_dinodes = str->rg_dinodes; 1080 rgl->rl_igeneration = str->rg_igeneration; 1081 rgl->__pad = 0UL; 1082 } 1083 1084 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf) 1085 { 1086 struct gfs2_rgrpd *next = gfs2_rgrpd_get_next(rgd); 1087 struct gfs2_rgrp *str = buf; 1088 u32 crc; 1089 1090 str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK); 1091 str->rg_free = cpu_to_be32(rgd->rd_free); 1092 str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes); 1093 if (next == NULL) 1094 str->rg_skip = 0; 1095 else if (next->rd_addr > rgd->rd_addr) 1096 str->rg_skip = cpu_to_be32(next->rd_addr - rgd->rd_addr); 1097 str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration); 1098 str->rg_data0 = cpu_to_be64(rgd->rd_data0); 1099 str->rg_data = cpu_to_be32(rgd->rd_data); 1100 str->rg_bitbytes = cpu_to_be32(rgd->rd_bitbytes); 1101 str->rg_crc = 0; 1102 crc = gfs2_disk_hash(buf, sizeof(struct gfs2_rgrp)); 1103 str->rg_crc = cpu_to_be32(crc); 1104 1105 memset(&str->rg_reserved, 0, sizeof(str->rg_reserved)); 1106 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, buf); 1107 } 1108 1109 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd) 1110 { 1111 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl; 1112 struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data; 1113 struct gfs2_sbd *sdp = rgd->rd_sbd; 1114 int valid = 1; 1115 1116 if (rgl->rl_flags != str->rg_flags) { 1117 fs_warn(sdp, "GFS2: rgd: %llu lvb flag mismatch %u/%u", 1118 (unsigned long long)rgd->rd_addr, 1119 be32_to_cpu(rgl->rl_flags), be32_to_cpu(str->rg_flags)); 1120 valid = 0; 1121 } 1122 if (rgl->rl_free != str->rg_free) { 1123 fs_warn(sdp, "GFS2: rgd: %llu lvb free mismatch %u/%u", 1124 (unsigned long long)rgd->rd_addr, 1125 be32_to_cpu(rgl->rl_free), be32_to_cpu(str->rg_free)); 1126 valid = 0; 1127 } 1128 if (rgl->rl_dinodes != str->rg_dinodes) { 1129 fs_warn(sdp, "GFS2: rgd: %llu lvb dinode mismatch %u/%u", 1130 (unsigned long long)rgd->rd_addr, 1131 be32_to_cpu(rgl->rl_dinodes), 1132 be32_to_cpu(str->rg_dinodes)); 1133 valid = 0; 1134 } 1135 if (rgl->rl_igeneration != str->rg_igeneration) { 1136 fs_warn(sdp, "GFS2: rgd: %llu lvb igen mismatch %llu/%llu", 1137 (unsigned long long)rgd->rd_addr, 1138 (unsigned long long)be64_to_cpu(rgl->rl_igeneration), 1139 (unsigned long long)be64_to_cpu(str->rg_igeneration)); 1140 valid = 0; 1141 } 1142 return valid; 1143 } 1144 1145 static u32 count_unlinked(struct gfs2_rgrpd *rgd) 1146 { 1147 struct gfs2_bitmap *bi; 1148 const u32 length = rgd->rd_length; 1149 const u8 *buffer = NULL; 1150 u32 i, goal, count = 0; 1151 1152 for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) { 1153 goal = 0; 1154 buffer = bi->bi_bh->b_data + bi->bi_offset; 1155 WARN_ON(!buffer_uptodate(bi->bi_bh)); 1156 while (goal < bi->bi_blocks) { 1157 goal = gfs2_bitfit(buffer, bi->bi_bytes, goal, 1158 GFS2_BLKST_UNLINKED); 1159 if (goal == BFITNOENT) 1160 break; 1161 count++; 1162 goal++; 1163 } 1164 } 1165 1166 return count; 1167 } 1168 1169 static void rgrp_set_bitmap_flags(struct gfs2_rgrpd *rgd) 1170 { 1171 struct gfs2_bitmap *bi; 1172 int x; 1173 1174 if (rgd->rd_free) { 1175 for (x = 0; x < rgd->rd_length; x++) { 1176 bi = rgd->rd_bits + x; 1177 clear_bit(GBF_FULL, &bi->bi_flags); 1178 } 1179 } else { 1180 for (x = 0; x < rgd->rd_length; x++) { 1181 bi = rgd->rd_bits + x; 1182 set_bit(GBF_FULL, &bi->bi_flags); 1183 } 1184 } 1185 } 1186 1187 /** 1188 * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps 1189 * @rgd: the struct gfs2_rgrpd describing the RG to read in 1190 * 1191 * Read in all of a Resource Group's header and bitmap blocks. 1192 * Caller must eventually call gfs2_rgrp_brelse() to free the bitmaps. 1193 * 1194 * Returns: errno 1195 */ 1196 1197 static int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd) 1198 { 1199 struct gfs2_sbd *sdp = rgd->rd_sbd; 1200 struct gfs2_glock *gl = rgd->rd_gl; 1201 unsigned int length = rgd->rd_length; 1202 struct gfs2_bitmap *bi; 1203 unsigned int x, y; 1204 int error; 1205 1206 if (rgd->rd_bits[0].bi_bh != NULL) 1207 return 0; 1208 1209 for (x = 0; x < length; x++) { 1210 bi = rgd->rd_bits + x; 1211 error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, 0, &bi->bi_bh); 1212 if (error) 1213 goto fail; 1214 } 1215 1216 for (y = length; y--;) { 1217 bi = rgd->rd_bits + y; 1218 error = gfs2_meta_wait(sdp, bi->bi_bh); 1219 if (error) 1220 goto fail; 1221 if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB : 1222 GFS2_METATYPE_RG)) { 1223 error = -EIO; 1224 goto fail; 1225 } 1226 } 1227 1228 if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) { 1229 gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data); 1230 rgrp_set_bitmap_flags(rgd); 1231 rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK); 1232 rgd->rd_free_clone = rgd->rd_free; 1233 BUG_ON(rgd->rd_reserved); 1234 /* max out the rgrp allocation failure point */ 1235 rgd->rd_extfail_pt = rgd->rd_free; 1236 } 1237 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) { 1238 rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd)); 1239 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, 1240 rgd->rd_bits[0].bi_bh->b_data); 1241 } 1242 else if (sdp->sd_args.ar_rgrplvb) { 1243 if (!gfs2_rgrp_lvb_valid(rgd)){ 1244 gfs2_consist_rgrpd(rgd); 1245 error = -EIO; 1246 goto fail; 1247 } 1248 if (rgd->rd_rgl->rl_unlinked == 0) 1249 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1250 } 1251 return 0; 1252 1253 fail: 1254 while (x--) { 1255 bi = rgd->rd_bits + x; 1256 brelse(bi->bi_bh); 1257 bi->bi_bh = NULL; 1258 gfs2_assert_warn(sdp, !bi->bi_clone); 1259 } 1260 1261 return error; 1262 } 1263 1264 static int update_rgrp_lvb(struct gfs2_rgrpd *rgd) 1265 { 1266 u32 rl_flags; 1267 1268 if (rgd->rd_flags & GFS2_RDF_UPTODATE) 1269 return 0; 1270 1271 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) 1272 return gfs2_rgrp_bh_get(rgd); 1273 1274 rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags); 1275 rl_flags &= ~GFS2_RDF_MASK; 1276 rgd->rd_flags &= GFS2_RDF_MASK; 1277 rgd->rd_flags |= (rl_flags | GFS2_RDF_CHECK); 1278 if (rgd->rd_rgl->rl_unlinked == 0) 1279 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1280 rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free); 1281 rgrp_set_bitmap_flags(rgd); 1282 rgd->rd_free_clone = rgd->rd_free; 1283 BUG_ON(rgd->rd_reserved); 1284 /* max out the rgrp allocation failure point */ 1285 rgd->rd_extfail_pt = rgd->rd_free; 1286 rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes); 1287 rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration); 1288 return 0; 1289 } 1290 1291 int gfs2_rgrp_go_lock(struct gfs2_holder *gh) 1292 { 1293 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object; 1294 struct gfs2_sbd *sdp = rgd->rd_sbd; 1295 1296 if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb) 1297 return 0; 1298 return gfs2_rgrp_bh_get(rgd); 1299 } 1300 1301 /** 1302 * gfs2_rgrp_brelse - Release RG bitmaps read in with gfs2_rgrp_bh_get() 1303 * @rgd: The resource group 1304 * 1305 */ 1306 1307 void gfs2_rgrp_brelse(struct gfs2_rgrpd *rgd) 1308 { 1309 int x, length = rgd->rd_length; 1310 1311 for (x = 0; x < length; x++) { 1312 struct gfs2_bitmap *bi = rgd->rd_bits + x; 1313 if (bi->bi_bh) { 1314 brelse(bi->bi_bh); 1315 bi->bi_bh = NULL; 1316 } 1317 } 1318 } 1319 1320 int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset, 1321 struct buffer_head *bh, 1322 const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed) 1323 { 1324 struct super_block *sb = sdp->sd_vfs; 1325 u64 blk; 1326 sector_t start = 0; 1327 sector_t nr_blks = 0; 1328 int rv; 1329 unsigned int x; 1330 u32 trimmed = 0; 1331 u8 diff; 1332 1333 for (x = 0; x < bi->bi_bytes; x++) { 1334 const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data; 1335 clone += bi->bi_offset; 1336 clone += x; 1337 if (bh) { 1338 const u8 *orig = bh->b_data + bi->bi_offset + x; 1339 diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1)); 1340 } else { 1341 diff = ~(*clone | (*clone >> 1)); 1342 } 1343 diff &= 0x55; 1344 if (diff == 0) 1345 continue; 1346 blk = offset + ((bi->bi_start + x) * GFS2_NBBY); 1347 while(diff) { 1348 if (diff & 1) { 1349 if (nr_blks == 0) 1350 goto start_new_extent; 1351 if ((start + nr_blks) != blk) { 1352 if (nr_blks >= minlen) { 1353 rv = sb_issue_discard(sb, 1354 start, nr_blks, 1355 GFP_NOFS, 0); 1356 if (rv) 1357 goto fail; 1358 trimmed += nr_blks; 1359 } 1360 nr_blks = 0; 1361 start_new_extent: 1362 start = blk; 1363 } 1364 nr_blks++; 1365 } 1366 diff >>= 2; 1367 blk++; 1368 } 1369 } 1370 if (nr_blks >= minlen) { 1371 rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0); 1372 if (rv) 1373 goto fail; 1374 trimmed += nr_blks; 1375 } 1376 if (ptrimmed) 1377 *ptrimmed = trimmed; 1378 return 0; 1379 1380 fail: 1381 if (sdp->sd_args.ar_discard) 1382 fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem\n", rv); 1383 sdp->sd_args.ar_discard = 0; 1384 return -EIO; 1385 } 1386 1387 /** 1388 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem 1389 * @filp: Any file on the filesystem 1390 * @argp: Pointer to the arguments (also used to pass result) 1391 * 1392 * Returns: 0 on success, otherwise error code 1393 */ 1394 1395 int gfs2_fitrim(struct file *filp, void __user *argp) 1396 { 1397 struct inode *inode = file_inode(filp); 1398 struct gfs2_sbd *sdp = GFS2_SB(inode); 1399 struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev); 1400 struct buffer_head *bh; 1401 struct gfs2_rgrpd *rgd; 1402 struct gfs2_rgrpd *rgd_end; 1403 struct gfs2_holder gh; 1404 struct fstrim_range r; 1405 int ret = 0; 1406 u64 amt; 1407 u64 trimmed = 0; 1408 u64 start, end, minlen; 1409 unsigned int x; 1410 unsigned bs_shift = sdp->sd_sb.sb_bsize_shift; 1411 1412 if (!capable(CAP_SYS_ADMIN)) 1413 return -EPERM; 1414 1415 if (!test_bit(SDF_JOURNAL_LIVE, &sdp->sd_flags)) 1416 return -EROFS; 1417 1418 if (!blk_queue_discard(q)) 1419 return -EOPNOTSUPP; 1420 1421 if (copy_from_user(&r, argp, sizeof(r))) 1422 return -EFAULT; 1423 1424 ret = gfs2_rindex_update(sdp); 1425 if (ret) 1426 return ret; 1427 1428 start = r.start >> bs_shift; 1429 end = start + (r.len >> bs_shift); 1430 minlen = max_t(u64, r.minlen, 1431 q->limits.discard_granularity) >> bs_shift; 1432 1433 if (end <= start || minlen > sdp->sd_max_rg_data) 1434 return -EINVAL; 1435 1436 rgd = gfs2_blk2rgrpd(sdp, start, 0); 1437 rgd_end = gfs2_blk2rgrpd(sdp, end, 0); 1438 1439 if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end)) 1440 && (start > rgd_end->rd_data0 + rgd_end->rd_data)) 1441 return -EINVAL; /* start is beyond the end of the fs */ 1442 1443 while (1) { 1444 1445 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 1446 LM_FLAG_NODE_SCOPE, &gh); 1447 if (ret) 1448 goto out; 1449 1450 if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) { 1451 /* Trim each bitmap in the rgrp */ 1452 for (x = 0; x < rgd->rd_length; x++) { 1453 struct gfs2_bitmap *bi = rgd->rd_bits + x; 1454 rgrp_lock_local(rgd); 1455 ret = gfs2_rgrp_send_discards(sdp, 1456 rgd->rd_data0, NULL, bi, minlen, 1457 &amt); 1458 rgrp_unlock_local(rgd); 1459 if (ret) { 1460 gfs2_glock_dq_uninit(&gh); 1461 goto out; 1462 } 1463 trimmed += amt; 1464 } 1465 1466 /* Mark rgrp as having been trimmed */ 1467 ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0); 1468 if (ret == 0) { 1469 bh = rgd->rd_bits[0].bi_bh; 1470 rgrp_lock_local(rgd); 1471 rgd->rd_flags |= GFS2_RGF_TRIMMED; 1472 gfs2_trans_add_meta(rgd->rd_gl, bh); 1473 gfs2_rgrp_out(rgd, bh->b_data); 1474 rgrp_unlock_local(rgd); 1475 gfs2_trans_end(sdp); 1476 } 1477 } 1478 gfs2_glock_dq_uninit(&gh); 1479 1480 if (rgd == rgd_end) 1481 break; 1482 1483 rgd = gfs2_rgrpd_get_next(rgd); 1484 } 1485 1486 out: 1487 r.len = trimmed << bs_shift; 1488 if (copy_to_user(argp, &r, sizeof(r))) 1489 return -EFAULT; 1490 1491 return ret; 1492 } 1493 1494 /** 1495 * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree 1496 * @ip: the inode structure 1497 * 1498 */ 1499 static void rs_insert(struct gfs2_inode *ip) 1500 { 1501 struct rb_node **newn, *parent = NULL; 1502 int rc; 1503 struct gfs2_blkreserv *rs = &ip->i_res; 1504 struct gfs2_rgrpd *rgd = rs->rs_rgd; 1505 1506 BUG_ON(gfs2_rs_active(rs)); 1507 1508 spin_lock(&rgd->rd_rsspin); 1509 newn = &rgd->rd_rstree.rb_node; 1510 while (*newn) { 1511 struct gfs2_blkreserv *cur = 1512 rb_entry(*newn, struct gfs2_blkreserv, rs_node); 1513 1514 parent = *newn; 1515 rc = rs_cmp(rs->rs_start, rs->rs_requested, cur); 1516 if (rc > 0) 1517 newn = &((*newn)->rb_right); 1518 else if (rc < 0) 1519 newn = &((*newn)->rb_left); 1520 else { 1521 spin_unlock(&rgd->rd_rsspin); 1522 WARN_ON(1); 1523 return; 1524 } 1525 } 1526 1527 rb_link_node(&rs->rs_node, parent, newn); 1528 rb_insert_color(&rs->rs_node, &rgd->rd_rstree); 1529 1530 /* Do our rgrp accounting for the reservation */ 1531 rgd->rd_requested += rs->rs_requested; /* blocks requested */ 1532 spin_unlock(&rgd->rd_rsspin); 1533 trace_gfs2_rs(rs, TRACE_RS_INSERT); 1534 } 1535 1536 /** 1537 * rgd_free - return the number of free blocks we can allocate 1538 * @rgd: the resource group 1539 * @rs: The reservation to free 1540 * 1541 * This function returns the number of free blocks for an rgrp. 1542 * That's the clone-free blocks (blocks that are free, not including those 1543 * still being used for unlinked files that haven't been deleted.) 1544 * 1545 * It also subtracts any blocks reserved by someone else, but does not 1546 * include free blocks that are still part of our current reservation, 1547 * because obviously we can (and will) allocate them. 1548 */ 1549 static inline u32 rgd_free(struct gfs2_rgrpd *rgd, struct gfs2_blkreserv *rs) 1550 { 1551 u32 tot_reserved, tot_free; 1552 1553 if (WARN_ON_ONCE(rgd->rd_requested < rs->rs_requested)) 1554 return 0; 1555 tot_reserved = rgd->rd_requested - rs->rs_requested; 1556 1557 if (rgd->rd_free_clone < tot_reserved) 1558 tot_reserved = 0; 1559 1560 tot_free = rgd->rd_free_clone - tot_reserved; 1561 1562 return tot_free; 1563 } 1564 1565 /** 1566 * rg_mblk_search - find a group of multiple free blocks to form a reservation 1567 * @rgd: the resource group descriptor 1568 * @ip: pointer to the inode for which we're reserving blocks 1569 * @ap: the allocation parameters 1570 * 1571 */ 1572 1573 static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip, 1574 const struct gfs2_alloc_parms *ap) 1575 { 1576 struct gfs2_rbm rbm = { .rgd = rgd, }; 1577 u64 goal; 1578 struct gfs2_blkreserv *rs = &ip->i_res; 1579 u32 extlen; 1580 u32 free_blocks, blocks_available; 1581 int ret; 1582 struct inode *inode = &ip->i_inode; 1583 1584 spin_lock(&rgd->rd_rsspin); 1585 free_blocks = rgd_free(rgd, rs); 1586 if (rgd->rd_free_clone < rgd->rd_requested) 1587 free_blocks = 0; 1588 blocks_available = rgd->rd_free_clone - rgd->rd_reserved; 1589 if (rgd == rs->rs_rgd) 1590 blocks_available += rs->rs_reserved; 1591 spin_unlock(&rgd->rd_rsspin); 1592 1593 if (S_ISDIR(inode->i_mode)) 1594 extlen = 1; 1595 else { 1596 extlen = max_t(u32, atomic_read(&ip->i_sizehint), ap->target); 1597 extlen = clamp(extlen, (u32)RGRP_RSRV_MINBLKS, free_blocks); 1598 } 1599 if (free_blocks < extlen || blocks_available < extlen) 1600 return; 1601 1602 /* Find bitmap block that contains bits for goal block */ 1603 if (rgrp_contains_block(rgd, ip->i_goal)) 1604 goal = ip->i_goal; 1605 else 1606 goal = rgd->rd_last_alloc + rgd->rd_data0; 1607 1608 if (WARN_ON(gfs2_rbm_from_block(&rbm, goal))) 1609 return; 1610 1611 ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, &ip->i_res, true); 1612 if (ret == 0) { 1613 rs->rs_start = gfs2_rbm_to_block(&rbm); 1614 rs->rs_requested = extlen; 1615 rs_insert(ip); 1616 } else { 1617 if (goal == rgd->rd_last_alloc + rgd->rd_data0) 1618 rgd->rd_last_alloc = 0; 1619 } 1620 } 1621 1622 /** 1623 * gfs2_next_unreserved_block - Return next block that is not reserved 1624 * @rgd: The resource group 1625 * @block: The starting block 1626 * @length: The required length 1627 * @ignore_rs: Reservation to ignore 1628 * 1629 * If the block does not appear in any reservation, then return the 1630 * block number unchanged. If it does appear in the reservation, then 1631 * keep looking through the tree of reservations in order to find the 1632 * first block number which is not reserved. 1633 */ 1634 1635 static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block, 1636 u32 length, 1637 struct gfs2_blkreserv *ignore_rs) 1638 { 1639 struct gfs2_blkreserv *rs; 1640 struct rb_node *n; 1641 int rc; 1642 1643 spin_lock(&rgd->rd_rsspin); 1644 n = rgd->rd_rstree.rb_node; 1645 while (n) { 1646 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 1647 rc = rs_cmp(block, length, rs); 1648 if (rc < 0) 1649 n = n->rb_left; 1650 else if (rc > 0) 1651 n = n->rb_right; 1652 else 1653 break; 1654 } 1655 1656 if (n) { 1657 while (rs_cmp(block, length, rs) == 0 && rs != ignore_rs) { 1658 block = rs->rs_start + rs->rs_requested; 1659 n = n->rb_right; 1660 if (n == NULL) 1661 break; 1662 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 1663 } 1664 } 1665 1666 spin_unlock(&rgd->rd_rsspin); 1667 return block; 1668 } 1669 1670 /** 1671 * gfs2_reservation_check_and_update - Check for reservations during block alloc 1672 * @rbm: The current position in the resource group 1673 * @rs: Our own reservation 1674 * @minext: The minimum extent length 1675 * @maxext: A pointer to the maximum extent structure 1676 * 1677 * This checks the current position in the rgrp to see whether there is 1678 * a reservation covering this block. If not then this function is a 1679 * no-op. If there is, then the position is moved to the end of the 1680 * contiguous reservation(s) so that we are pointing at the first 1681 * non-reserved block. 1682 * 1683 * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error 1684 */ 1685 1686 static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm, 1687 struct gfs2_blkreserv *rs, 1688 u32 minext, 1689 struct gfs2_extent *maxext) 1690 { 1691 u64 block = gfs2_rbm_to_block(rbm); 1692 u32 extlen = 1; 1693 u64 nblock; 1694 1695 /* 1696 * If we have a minimum extent length, then skip over any extent 1697 * which is less than the min extent length in size. 1698 */ 1699 if (minext > 1) { 1700 extlen = gfs2_free_extlen(rbm, minext); 1701 if (extlen <= maxext->len) 1702 goto fail; 1703 } 1704 1705 /* 1706 * Check the extent which has been found against the reservations 1707 * and skip if parts of it are already reserved 1708 */ 1709 nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, rs); 1710 if (nblock == block) { 1711 if (!minext || extlen >= minext) 1712 return 0; 1713 1714 if (extlen > maxext->len) { 1715 maxext->len = extlen; 1716 maxext->rbm = *rbm; 1717 } 1718 } else { 1719 u64 len = nblock - block; 1720 if (len >= (u64)1 << 32) 1721 return -E2BIG; 1722 extlen = len; 1723 } 1724 fail: 1725 if (gfs2_rbm_add(rbm, extlen)) 1726 return -E2BIG; 1727 return 1; 1728 } 1729 1730 /** 1731 * gfs2_rbm_find - Look for blocks of a particular state 1732 * @rbm: Value/result starting position and final position 1733 * @state: The state which we want to find 1734 * @minext: Pointer to the requested extent length 1735 * This is updated to be the actual reservation size. 1736 * @rs: Our own reservation (NULL to skip checking for reservations) 1737 * @nowrap: Stop looking at the end of the rgrp, rather than wrapping 1738 * around until we've reached the starting point. 1739 * 1740 * Side effects: 1741 * - If looking for free blocks, we set GBF_FULL on each bitmap which 1742 * has no free blocks in it. 1743 * - If looking for free blocks, we set rd_extfail_pt on each rgrp which 1744 * has come up short on a free block search. 1745 * 1746 * Returns: 0 on success, -ENOSPC if there is no block of the requested state 1747 */ 1748 1749 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext, 1750 struct gfs2_blkreserv *rs, bool nowrap) 1751 { 1752 bool scan_from_start = rbm->bii == 0 && rbm->offset == 0; 1753 struct buffer_head *bh; 1754 int last_bii; 1755 u32 offset; 1756 u8 *buffer; 1757 bool wrapped = false; 1758 int ret; 1759 struct gfs2_bitmap *bi; 1760 struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, }; 1761 1762 /* 1763 * Determine the last bitmap to search. If we're not starting at the 1764 * beginning of a bitmap, we need to search that bitmap twice to scan 1765 * the entire resource group. 1766 */ 1767 last_bii = rbm->bii - (rbm->offset == 0); 1768 1769 while(1) { 1770 bi = rbm_bi(rbm); 1771 if (test_bit(GBF_FULL, &bi->bi_flags) && 1772 (state == GFS2_BLKST_FREE)) 1773 goto next_bitmap; 1774 1775 bh = bi->bi_bh; 1776 buffer = bh->b_data + bi->bi_offset; 1777 WARN_ON(!buffer_uptodate(bh)); 1778 if (state != GFS2_BLKST_UNLINKED && bi->bi_clone) 1779 buffer = bi->bi_clone + bi->bi_offset; 1780 offset = gfs2_bitfit(buffer, bi->bi_bytes, rbm->offset, state); 1781 if (offset == BFITNOENT) { 1782 if (state == GFS2_BLKST_FREE && rbm->offset == 0) 1783 set_bit(GBF_FULL, &bi->bi_flags); 1784 goto next_bitmap; 1785 } 1786 rbm->offset = offset; 1787 if (!rs || !minext) 1788 return 0; 1789 1790 ret = gfs2_reservation_check_and_update(rbm, rs, *minext, 1791 &maxext); 1792 if (ret == 0) 1793 return 0; 1794 if (ret > 0) 1795 goto next_iter; 1796 if (ret == -E2BIG) { 1797 rbm->bii = 0; 1798 rbm->offset = 0; 1799 goto res_covered_end_of_rgrp; 1800 } 1801 return ret; 1802 1803 next_bitmap: /* Find next bitmap in the rgrp */ 1804 rbm->offset = 0; 1805 rbm->bii++; 1806 if (rbm->bii == rbm->rgd->rd_length) 1807 rbm->bii = 0; 1808 res_covered_end_of_rgrp: 1809 if (rbm->bii == 0) { 1810 if (wrapped) 1811 break; 1812 wrapped = true; 1813 if (nowrap) 1814 break; 1815 } 1816 next_iter: 1817 /* Have we scanned the entire resource group? */ 1818 if (wrapped && rbm->bii > last_bii) 1819 break; 1820 } 1821 1822 if (state != GFS2_BLKST_FREE) 1823 return -ENOSPC; 1824 1825 /* If the extent was too small, and it's smaller than the smallest 1826 to have failed before, remember for future reference that it's 1827 useless to search this rgrp again for this amount or more. */ 1828 if (wrapped && (scan_from_start || rbm->bii > last_bii) && 1829 *minext < rbm->rgd->rd_extfail_pt) 1830 rbm->rgd->rd_extfail_pt = *minext - 1; 1831 1832 /* If the maximum extent we found is big enough to fulfill the 1833 minimum requirements, use it anyway. */ 1834 if (maxext.len) { 1835 *rbm = maxext.rbm; 1836 *minext = maxext.len; 1837 return 0; 1838 } 1839 1840 return -ENOSPC; 1841 } 1842 1843 /** 1844 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes 1845 * @rgd: The rgrp 1846 * @last_unlinked: block address of the last dinode we unlinked 1847 * @skip: block address we should explicitly not unlink 1848 * 1849 * Returns: 0 if no error 1850 * The inode, if one has been found, in inode. 1851 */ 1852 1853 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip) 1854 { 1855 u64 block; 1856 struct gfs2_sbd *sdp = rgd->rd_sbd; 1857 struct gfs2_glock *gl; 1858 struct gfs2_inode *ip; 1859 int error; 1860 int found = 0; 1861 struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 }; 1862 1863 while (1) { 1864 error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL, 1865 true); 1866 if (error == -ENOSPC) 1867 break; 1868 if (WARN_ON_ONCE(error)) 1869 break; 1870 1871 block = gfs2_rbm_to_block(&rbm); 1872 if (gfs2_rbm_from_block(&rbm, block + 1)) 1873 break; 1874 if (*last_unlinked != NO_BLOCK && block <= *last_unlinked) 1875 continue; 1876 if (block == skip) 1877 continue; 1878 *last_unlinked = block; 1879 1880 error = gfs2_glock_get(sdp, block, &gfs2_iopen_glops, CREATE, &gl); 1881 if (error) 1882 continue; 1883 1884 /* If the inode is already in cache, we can ignore it here 1885 * because the existing inode disposal code will deal with 1886 * it when all refs have gone away. Accessing gl_object like 1887 * this is not safe in general. Here it is ok because we do 1888 * not dereference the pointer, and we only need an approx 1889 * answer to whether it is NULL or not. 1890 */ 1891 ip = gl->gl_object; 1892 1893 if (ip || !gfs2_queue_delete_work(gl, 0)) 1894 gfs2_glock_put(gl); 1895 else 1896 found++; 1897 1898 /* Limit reclaim to sensible number of tasks */ 1899 if (found > NR_CPUS) 1900 return; 1901 } 1902 1903 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1904 return; 1905 } 1906 1907 /** 1908 * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested 1909 * @rgd: The rgrp in question 1910 * @loops: An indication of how picky we can be (0=very, 1=less so) 1911 * 1912 * This function uses the recently added glock statistics in order to 1913 * figure out whether a parciular resource group is suffering from 1914 * contention from multiple nodes. This is done purely on the basis 1915 * of timings, since this is the only data we have to work with and 1916 * our aim here is to reject a resource group which is highly contended 1917 * but (very important) not to do this too often in order to ensure that 1918 * we do not land up introducing fragmentation by changing resource 1919 * groups when not actually required. 1920 * 1921 * The calculation is fairly simple, we want to know whether the SRTTB 1922 * (i.e. smoothed round trip time for blocking operations) to acquire 1923 * the lock for this rgrp's glock is significantly greater than the 1924 * time taken for resource groups on average. We introduce a margin in 1925 * the form of the variable @var which is computed as the sum of the two 1926 * respective variences, and multiplied by a factor depending on @loops 1927 * and whether we have a lot of data to base the decision on. This is 1928 * then tested against the square difference of the means in order to 1929 * decide whether the result is statistically significant or not. 1930 * 1931 * Returns: A boolean verdict on the congestion status 1932 */ 1933 1934 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops) 1935 { 1936 const struct gfs2_glock *gl = rgd->rd_gl; 1937 const struct gfs2_sbd *sdp = gl->gl_name.ln_sbd; 1938 struct gfs2_lkstats *st; 1939 u64 r_dcount, l_dcount; 1940 u64 l_srttb, a_srttb = 0; 1941 s64 srttb_diff; 1942 u64 sqr_diff; 1943 u64 var; 1944 int cpu, nonzero = 0; 1945 1946 preempt_disable(); 1947 for_each_present_cpu(cpu) { 1948 st = &per_cpu_ptr(sdp->sd_lkstats, cpu)->lkstats[LM_TYPE_RGRP]; 1949 if (st->stats[GFS2_LKS_SRTTB]) { 1950 a_srttb += st->stats[GFS2_LKS_SRTTB]; 1951 nonzero++; 1952 } 1953 } 1954 st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP]; 1955 if (nonzero) 1956 do_div(a_srttb, nonzero); 1957 r_dcount = st->stats[GFS2_LKS_DCOUNT]; 1958 var = st->stats[GFS2_LKS_SRTTVARB] + 1959 gl->gl_stats.stats[GFS2_LKS_SRTTVARB]; 1960 preempt_enable(); 1961 1962 l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB]; 1963 l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT]; 1964 1965 if ((l_dcount < 1) || (r_dcount < 1) || (a_srttb == 0)) 1966 return false; 1967 1968 srttb_diff = a_srttb - l_srttb; 1969 sqr_diff = srttb_diff * srttb_diff; 1970 1971 var *= 2; 1972 if (l_dcount < 8 || r_dcount < 8) 1973 var *= 2; 1974 if (loops == 1) 1975 var *= 2; 1976 1977 return ((srttb_diff < 0) && (sqr_diff > var)); 1978 } 1979 1980 /** 1981 * gfs2_rgrp_used_recently 1982 * @rs: The block reservation with the rgrp to test 1983 * @msecs: The time limit in milliseconds 1984 * 1985 * Returns: True if the rgrp glock has been used within the time limit 1986 */ 1987 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs, 1988 u64 msecs) 1989 { 1990 u64 tdiff; 1991 1992 tdiff = ktime_to_ns(ktime_sub(ktime_get_real(), 1993 rs->rs_rgd->rd_gl->gl_dstamp)); 1994 1995 return tdiff > (msecs * 1000 * 1000); 1996 } 1997 1998 static u32 gfs2_orlov_skip(const struct gfs2_inode *ip) 1999 { 2000 const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2001 u32 skip; 2002 2003 get_random_bytes(&skip, sizeof(skip)); 2004 return skip % sdp->sd_rgrps; 2005 } 2006 2007 static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin) 2008 { 2009 struct gfs2_rgrpd *rgd = *pos; 2010 struct gfs2_sbd *sdp = rgd->rd_sbd; 2011 2012 rgd = gfs2_rgrpd_get_next(rgd); 2013 if (rgd == NULL) 2014 rgd = gfs2_rgrpd_get_first(sdp); 2015 *pos = rgd; 2016 if (rgd != begin) /* If we didn't wrap */ 2017 return true; 2018 return false; 2019 } 2020 2021 /** 2022 * fast_to_acquire - determine if a resource group will be fast to acquire 2023 * @rgd: The rgrp 2024 * 2025 * If this is one of our preferred rgrps, it should be quicker to acquire, 2026 * because we tried to set ourselves up as dlm lock master. 2027 */ 2028 static inline int fast_to_acquire(struct gfs2_rgrpd *rgd) 2029 { 2030 struct gfs2_glock *gl = rgd->rd_gl; 2031 2032 if (gl->gl_state != LM_ST_UNLOCKED && list_empty(&gl->gl_holders) && 2033 !test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags) && 2034 !test_bit(GLF_DEMOTE, &gl->gl_flags)) 2035 return 1; 2036 if (rgd->rd_flags & GFS2_RDF_PREFERRED) 2037 return 1; 2038 return 0; 2039 } 2040 2041 /** 2042 * gfs2_inplace_reserve - Reserve space in the filesystem 2043 * @ip: the inode to reserve space for 2044 * @ap: the allocation parameters 2045 * 2046 * We try our best to find an rgrp that has at least ap->target blocks 2047 * available. After a couple of passes (loops == 2), the prospects of finding 2048 * such an rgrp diminish. At this stage, we return the first rgrp that has 2049 * at least ap->min_target blocks available. 2050 * 2051 * Returns: 0 on success, 2052 * -ENOMEM if a suitable rgrp can't be found 2053 * errno otherwise 2054 */ 2055 2056 int gfs2_inplace_reserve(struct gfs2_inode *ip, struct gfs2_alloc_parms *ap) 2057 { 2058 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2059 struct gfs2_rgrpd *begin = NULL; 2060 struct gfs2_blkreserv *rs = &ip->i_res; 2061 int error = 0, flags = LM_FLAG_NODE_SCOPE; 2062 bool rg_locked; 2063 u64 last_unlinked = NO_BLOCK; 2064 u32 target = ap->target; 2065 int loops = 0; 2066 u32 free_blocks, blocks_available, skip = 0; 2067 2068 BUG_ON(rs->rs_reserved); 2069 2070 if (sdp->sd_args.ar_rgrplvb) 2071 flags |= GL_SKIP; 2072 if (gfs2_assert_warn(sdp, target)) 2073 return -EINVAL; 2074 if (gfs2_rs_active(rs)) { 2075 begin = rs->rs_rgd; 2076 } else if (rs->rs_rgd && 2077 rgrp_contains_block(rs->rs_rgd, ip->i_goal)) { 2078 begin = rs->rs_rgd; 2079 } else { 2080 check_and_update_goal(ip); 2081 rs->rs_rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1); 2082 } 2083 if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV)) 2084 skip = gfs2_orlov_skip(ip); 2085 if (rs->rs_rgd == NULL) 2086 return -EBADSLT; 2087 2088 while (loops < 3) { 2089 struct gfs2_rgrpd *rgd; 2090 2091 rg_locked = gfs2_glock_is_locked_by_me(rs->rs_rgd->rd_gl); 2092 if (rg_locked) { 2093 rgrp_lock_local(rs->rs_rgd); 2094 } else { 2095 if (skip && skip--) 2096 goto next_rgrp; 2097 if (!gfs2_rs_active(rs)) { 2098 if (loops == 0 && 2099 !fast_to_acquire(rs->rs_rgd)) 2100 goto next_rgrp; 2101 if ((loops < 2) && 2102 gfs2_rgrp_used_recently(rs, 1000) && 2103 gfs2_rgrp_congested(rs->rs_rgd, loops)) 2104 goto next_rgrp; 2105 } 2106 error = gfs2_glock_nq_init(rs->rs_rgd->rd_gl, 2107 LM_ST_EXCLUSIVE, flags, 2108 &ip->i_rgd_gh); 2109 if (unlikely(error)) 2110 return error; 2111 rgrp_lock_local(rs->rs_rgd); 2112 if (!gfs2_rs_active(rs) && (loops < 2) && 2113 gfs2_rgrp_congested(rs->rs_rgd, loops)) 2114 goto skip_rgrp; 2115 if (sdp->sd_args.ar_rgrplvb) { 2116 error = update_rgrp_lvb(rs->rs_rgd); 2117 if (unlikely(error)) { 2118 rgrp_unlock_local(rs->rs_rgd); 2119 gfs2_glock_dq_uninit(&ip->i_rgd_gh); 2120 return error; 2121 } 2122 } 2123 } 2124 2125 /* Skip unusable resource groups */ 2126 if ((rs->rs_rgd->rd_flags & (GFS2_RGF_NOALLOC | 2127 GFS2_RDF_ERROR)) || 2128 (loops == 0 && target > rs->rs_rgd->rd_extfail_pt)) 2129 goto skip_rgrp; 2130 2131 if (sdp->sd_args.ar_rgrplvb) 2132 gfs2_rgrp_bh_get(rs->rs_rgd); 2133 2134 /* Get a reservation if we don't already have one */ 2135 if (!gfs2_rs_active(rs)) 2136 rg_mblk_search(rs->rs_rgd, ip, ap); 2137 2138 /* Skip rgrps when we can't get a reservation on first pass */ 2139 if (!gfs2_rs_active(rs) && (loops < 1)) 2140 goto check_rgrp; 2141 2142 /* If rgrp has enough free space, use it */ 2143 rgd = rs->rs_rgd; 2144 spin_lock(&rgd->rd_rsspin); 2145 free_blocks = rgd_free(rgd, rs); 2146 blocks_available = rgd->rd_free_clone - rgd->rd_reserved; 2147 if (free_blocks < target || blocks_available < target) { 2148 spin_unlock(&rgd->rd_rsspin); 2149 goto check_rgrp; 2150 } 2151 rs->rs_reserved = ap->target; 2152 if (rs->rs_reserved > blocks_available) 2153 rs->rs_reserved = blocks_available; 2154 rgd->rd_reserved += rs->rs_reserved; 2155 spin_unlock(&rgd->rd_rsspin); 2156 rgrp_unlock_local(rs->rs_rgd); 2157 return 0; 2158 check_rgrp: 2159 /* Check for unlinked inodes which can be reclaimed */ 2160 if (rs->rs_rgd->rd_flags & GFS2_RDF_CHECK) 2161 try_rgrp_unlink(rs->rs_rgd, &last_unlinked, 2162 ip->i_no_addr); 2163 skip_rgrp: 2164 rgrp_unlock_local(rs->rs_rgd); 2165 2166 /* Drop reservation, if we couldn't use reserved rgrp */ 2167 if (gfs2_rs_active(rs)) 2168 gfs2_rs_deltree(rs); 2169 2170 /* Unlock rgrp if required */ 2171 if (!rg_locked) 2172 gfs2_glock_dq_uninit(&ip->i_rgd_gh); 2173 next_rgrp: 2174 /* Find the next rgrp, and continue looking */ 2175 if (gfs2_select_rgrp(&rs->rs_rgd, begin)) 2176 continue; 2177 if (skip) 2178 continue; 2179 2180 /* If we've scanned all the rgrps, but found no free blocks 2181 * then this checks for some less likely conditions before 2182 * trying again. 2183 */ 2184 loops++; 2185 /* Check that fs hasn't grown if writing to rindex */ 2186 if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) { 2187 error = gfs2_ri_update(ip); 2188 if (error) 2189 return error; 2190 } 2191 /* Flushing the log may release space */ 2192 if (loops == 2) { 2193 if (ap->min_target) 2194 target = ap->min_target; 2195 gfs2_log_flush(sdp, NULL, GFS2_LOG_HEAD_FLUSH_NORMAL | 2196 GFS2_LFC_INPLACE_RESERVE); 2197 } 2198 } 2199 2200 return -ENOSPC; 2201 } 2202 2203 /** 2204 * gfs2_inplace_release - release an inplace reservation 2205 * @ip: the inode the reservation was taken out on 2206 * 2207 * Release a reservation made by gfs2_inplace_reserve(). 2208 */ 2209 2210 void gfs2_inplace_release(struct gfs2_inode *ip) 2211 { 2212 struct gfs2_blkreserv *rs = &ip->i_res; 2213 2214 if (rs->rs_reserved) { 2215 struct gfs2_rgrpd *rgd = rs->rs_rgd; 2216 2217 spin_lock(&rgd->rd_rsspin); 2218 BUG_ON(rgd->rd_reserved < rs->rs_reserved); 2219 rgd->rd_reserved -= rs->rs_reserved; 2220 spin_unlock(&rgd->rd_rsspin); 2221 rs->rs_reserved = 0; 2222 } 2223 if (gfs2_holder_initialized(&ip->i_rgd_gh)) 2224 gfs2_glock_dq_uninit(&ip->i_rgd_gh); 2225 } 2226 2227 /** 2228 * gfs2_alloc_extent - allocate an extent from a given bitmap 2229 * @rbm: the resource group information 2230 * @dinode: TRUE if the first block we allocate is for a dinode 2231 * @n: The extent length (value/result) 2232 * 2233 * Add the bitmap buffer to the transaction. 2234 * Set the found bits to @new_state to change block's allocation state. 2235 */ 2236 static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode, 2237 unsigned int *n) 2238 { 2239 struct gfs2_rbm pos = { .rgd = rbm->rgd, }; 2240 const unsigned int elen = *n; 2241 u64 block; 2242 int ret; 2243 2244 *n = 1; 2245 block = gfs2_rbm_to_block(rbm); 2246 gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh); 2247 gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED); 2248 block++; 2249 while (*n < elen) { 2250 ret = gfs2_rbm_from_block(&pos, block); 2251 if (ret || gfs2_testbit(&pos, true) != GFS2_BLKST_FREE) 2252 break; 2253 gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh); 2254 gfs2_setbit(&pos, true, GFS2_BLKST_USED); 2255 (*n)++; 2256 block++; 2257 } 2258 } 2259 2260 /** 2261 * rgblk_free - Change alloc state of given block(s) 2262 * @sdp: the filesystem 2263 * @rgd: the resource group the blocks are in 2264 * @bstart: the start of a run of blocks to free 2265 * @blen: the length of the block run (all must lie within ONE RG!) 2266 * @new_state: GFS2_BLKST_XXX the after-allocation block state 2267 */ 2268 2269 static void rgblk_free(struct gfs2_sbd *sdp, struct gfs2_rgrpd *rgd, 2270 u64 bstart, u32 blen, unsigned char new_state) 2271 { 2272 struct gfs2_rbm rbm; 2273 struct gfs2_bitmap *bi, *bi_prev = NULL; 2274 2275 rbm.rgd = rgd; 2276 if (WARN_ON_ONCE(gfs2_rbm_from_block(&rbm, bstart))) 2277 return; 2278 while (blen--) { 2279 bi = rbm_bi(&rbm); 2280 if (bi != bi_prev) { 2281 if (!bi->bi_clone) { 2282 bi->bi_clone = kmalloc(bi->bi_bh->b_size, 2283 GFP_NOFS | __GFP_NOFAIL); 2284 memcpy(bi->bi_clone + bi->bi_offset, 2285 bi->bi_bh->b_data + bi->bi_offset, 2286 bi->bi_bytes); 2287 } 2288 gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh); 2289 bi_prev = bi; 2290 } 2291 gfs2_setbit(&rbm, false, new_state); 2292 gfs2_rbm_add(&rbm, 1); 2293 } 2294 } 2295 2296 /** 2297 * gfs2_rgrp_dump - print out an rgrp 2298 * @seq: The iterator 2299 * @rgd: The rgrp in question 2300 * @fs_id_buf: pointer to file system id (if requested) 2301 * 2302 */ 2303 2304 void gfs2_rgrp_dump(struct seq_file *seq, struct gfs2_rgrpd *rgd, 2305 const char *fs_id_buf) 2306 { 2307 struct gfs2_blkreserv *trs; 2308 const struct rb_node *n; 2309 2310 spin_lock(&rgd->rd_rsspin); 2311 gfs2_print_dbg(seq, "%s R: n:%llu f:%02x b:%u/%u i:%u q:%u r:%u e:%u\n", 2312 fs_id_buf, 2313 (unsigned long long)rgd->rd_addr, rgd->rd_flags, 2314 rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes, 2315 rgd->rd_requested, rgd->rd_reserved, rgd->rd_extfail_pt); 2316 if (rgd->rd_sbd->sd_args.ar_rgrplvb) { 2317 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl; 2318 2319 gfs2_print_dbg(seq, "%s L: f:%02x b:%u i:%u\n", fs_id_buf, 2320 be32_to_cpu(rgl->rl_flags), 2321 be32_to_cpu(rgl->rl_free), 2322 be32_to_cpu(rgl->rl_dinodes)); 2323 } 2324 for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) { 2325 trs = rb_entry(n, struct gfs2_blkreserv, rs_node); 2326 dump_rs(seq, trs, fs_id_buf); 2327 } 2328 spin_unlock(&rgd->rd_rsspin); 2329 } 2330 2331 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd) 2332 { 2333 struct gfs2_sbd *sdp = rgd->rd_sbd; 2334 char fs_id_buf[sizeof(sdp->sd_fsname) + 7]; 2335 2336 fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n", 2337 (unsigned long long)rgd->rd_addr); 2338 fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n"); 2339 sprintf(fs_id_buf, "fsid=%s: ", sdp->sd_fsname); 2340 gfs2_rgrp_dump(NULL, rgd, fs_id_buf); 2341 rgd->rd_flags |= GFS2_RDF_ERROR; 2342 } 2343 2344 /** 2345 * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation 2346 * @ip: The inode we have just allocated blocks for 2347 * @rbm: The start of the allocated blocks 2348 * @len: The extent length 2349 * 2350 * Adjusts a reservation after an allocation has taken place. If the 2351 * reservation does not match the allocation, or if it is now empty 2352 * then it is removed. 2353 */ 2354 2355 static void gfs2_adjust_reservation(struct gfs2_inode *ip, 2356 const struct gfs2_rbm *rbm, unsigned len) 2357 { 2358 struct gfs2_blkreserv *rs = &ip->i_res; 2359 struct gfs2_rgrpd *rgd = rbm->rgd; 2360 2361 BUG_ON(rs->rs_reserved < len); 2362 rs->rs_reserved -= len; 2363 if (gfs2_rs_active(rs)) { 2364 u64 start = gfs2_rbm_to_block(rbm); 2365 2366 if (rs->rs_start == start) { 2367 unsigned int rlen; 2368 2369 rs->rs_start += len; 2370 rlen = min(rs->rs_requested, len); 2371 rs->rs_requested -= rlen; 2372 rgd->rd_requested -= rlen; 2373 trace_gfs2_rs(rs, TRACE_RS_CLAIM); 2374 if (rs->rs_start < rgd->rd_data0 + rgd->rd_data && 2375 rs->rs_requested) 2376 return; 2377 /* We used up our block reservation, so we should 2378 reserve more blocks next time. */ 2379 atomic_add(RGRP_RSRV_ADDBLKS, &ip->i_sizehint); 2380 } 2381 __rs_deltree(rs); 2382 } 2383 } 2384 2385 /** 2386 * gfs2_set_alloc_start - Set starting point for block allocation 2387 * @rbm: The rbm which will be set to the required location 2388 * @ip: The gfs2 inode 2389 * @dinode: Flag to say if allocation includes a new inode 2390 * 2391 * This sets the starting point from the reservation if one is active 2392 * otherwise it falls back to guessing a start point based on the 2393 * inode's goal block or the last allocation point in the rgrp. 2394 */ 2395 2396 static void gfs2_set_alloc_start(struct gfs2_rbm *rbm, 2397 const struct gfs2_inode *ip, bool dinode) 2398 { 2399 u64 goal; 2400 2401 if (gfs2_rs_active(&ip->i_res)) { 2402 goal = ip->i_res.rs_start; 2403 } else { 2404 if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal)) 2405 goal = ip->i_goal; 2406 else 2407 goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0; 2408 } 2409 if (WARN_ON_ONCE(gfs2_rbm_from_block(rbm, goal))) { 2410 rbm->bii = 0; 2411 rbm->offset = 0; 2412 } 2413 } 2414 2415 /** 2416 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode 2417 * @ip: the inode to allocate the block for 2418 * @bn: Used to return the starting block number 2419 * @nblocks: requested number of blocks/extent length (value/result) 2420 * @dinode: 1 if we're allocating a dinode block, else 0 2421 * @generation: the generation number of the inode 2422 * 2423 * Returns: 0 or error 2424 */ 2425 2426 int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks, 2427 bool dinode, u64 *generation) 2428 { 2429 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2430 struct buffer_head *dibh; 2431 struct gfs2_rbm rbm = { .rgd = ip->i_res.rs_rgd, }; 2432 u64 block; /* block, within the file system scope */ 2433 u32 minext = 1; 2434 int error = -ENOSPC; 2435 2436 BUG_ON(ip->i_res.rs_reserved < *nblocks); 2437 2438 rgrp_lock_local(rbm.rgd); 2439 if (gfs2_rs_active(&ip->i_res)) { 2440 gfs2_set_alloc_start(&rbm, ip, dinode); 2441 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &minext, &ip->i_res, false); 2442 } 2443 if (error == -ENOSPC) { 2444 gfs2_set_alloc_start(&rbm, ip, dinode); 2445 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &minext, NULL, false); 2446 } 2447 2448 /* Since all blocks are reserved in advance, this shouldn't happen */ 2449 if (error) { 2450 fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n", 2451 (unsigned long long)ip->i_no_addr, error, *nblocks, 2452 test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags), 2453 rbm.rgd->rd_extfail_pt); 2454 goto rgrp_error; 2455 } 2456 2457 gfs2_alloc_extent(&rbm, dinode, nblocks); 2458 block = gfs2_rbm_to_block(&rbm); 2459 rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0; 2460 if (!dinode) { 2461 ip->i_goal = block + *nblocks - 1; 2462 error = gfs2_meta_inode_buffer(ip, &dibh); 2463 if (error == 0) { 2464 struct gfs2_dinode *di = 2465 (struct gfs2_dinode *)dibh->b_data; 2466 gfs2_trans_add_meta(ip->i_gl, dibh); 2467 di->di_goal_meta = di->di_goal_data = 2468 cpu_to_be64(ip->i_goal); 2469 brelse(dibh); 2470 } 2471 } 2472 spin_lock(&rbm.rgd->rd_rsspin); 2473 gfs2_adjust_reservation(ip, &rbm, *nblocks); 2474 if (rbm.rgd->rd_free < *nblocks || rbm.rgd->rd_reserved < *nblocks) { 2475 fs_warn(sdp, "nblocks=%u\n", *nblocks); 2476 spin_unlock(&rbm.rgd->rd_rsspin); 2477 goto rgrp_error; 2478 } 2479 BUG_ON(rbm.rgd->rd_reserved < *nblocks); 2480 BUG_ON(rbm.rgd->rd_free_clone < *nblocks); 2481 BUG_ON(rbm.rgd->rd_free < *nblocks); 2482 rbm.rgd->rd_reserved -= *nblocks; 2483 rbm.rgd->rd_free_clone -= *nblocks; 2484 rbm.rgd->rd_free -= *nblocks; 2485 spin_unlock(&rbm.rgd->rd_rsspin); 2486 if (dinode) { 2487 rbm.rgd->rd_dinodes++; 2488 *generation = rbm.rgd->rd_igeneration++; 2489 if (*generation == 0) 2490 *generation = rbm.rgd->rd_igeneration++; 2491 } 2492 2493 gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh); 2494 gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data); 2495 rgrp_unlock_local(rbm.rgd); 2496 2497 gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0); 2498 if (dinode) 2499 gfs2_trans_remove_revoke(sdp, block, *nblocks); 2500 2501 gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid); 2502 2503 trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks, 2504 dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED); 2505 *bn = block; 2506 return 0; 2507 2508 rgrp_error: 2509 rgrp_unlock_local(rbm.rgd); 2510 gfs2_rgrp_error(rbm.rgd); 2511 return -EIO; 2512 } 2513 2514 /** 2515 * __gfs2_free_blocks - free a contiguous run of block(s) 2516 * @ip: the inode these blocks are being freed from 2517 * @rgd: the resource group the blocks are in 2518 * @bstart: first block of a run of contiguous blocks 2519 * @blen: the length of the block run 2520 * @meta: 1 if the blocks represent metadata 2521 * 2522 */ 2523 2524 void __gfs2_free_blocks(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd, 2525 u64 bstart, u32 blen, int meta) 2526 { 2527 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2528 2529 rgrp_lock_local(rgd); 2530 rgblk_free(sdp, rgd, bstart, blen, GFS2_BLKST_FREE); 2531 trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE); 2532 rgd->rd_free += blen; 2533 rgd->rd_flags &= ~GFS2_RGF_TRIMMED; 2534 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2535 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2536 rgrp_unlock_local(rgd); 2537 2538 /* Directories keep their data in the metadata address space */ 2539 if (meta || ip->i_depth || gfs2_is_jdata(ip)) 2540 gfs2_journal_wipe(ip, bstart, blen); 2541 } 2542 2543 /** 2544 * gfs2_free_meta - free a contiguous run of data block(s) 2545 * @ip: the inode these blocks are being freed from 2546 * @rgd: the resource group the blocks are in 2547 * @bstart: first block of a run of contiguous blocks 2548 * @blen: the length of the block run 2549 * 2550 */ 2551 2552 void gfs2_free_meta(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd, 2553 u64 bstart, u32 blen) 2554 { 2555 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2556 2557 __gfs2_free_blocks(ip, rgd, bstart, blen, 1); 2558 gfs2_statfs_change(sdp, 0, +blen, 0); 2559 gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid); 2560 } 2561 2562 void gfs2_unlink_di(struct inode *inode) 2563 { 2564 struct gfs2_inode *ip = GFS2_I(inode); 2565 struct gfs2_sbd *sdp = GFS2_SB(inode); 2566 struct gfs2_rgrpd *rgd; 2567 u64 blkno = ip->i_no_addr; 2568 2569 rgd = gfs2_blk2rgrpd(sdp, blkno, true); 2570 if (!rgd) 2571 return; 2572 rgrp_lock_local(rgd); 2573 rgblk_free(sdp, rgd, blkno, 1, GFS2_BLKST_UNLINKED); 2574 trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED); 2575 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2576 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2577 be32_add_cpu(&rgd->rd_rgl->rl_unlinked, 1); 2578 rgrp_unlock_local(rgd); 2579 } 2580 2581 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip) 2582 { 2583 struct gfs2_sbd *sdp = rgd->rd_sbd; 2584 2585 rgrp_lock_local(rgd); 2586 rgblk_free(sdp, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE); 2587 if (!rgd->rd_dinodes) 2588 gfs2_consist_rgrpd(rgd); 2589 rgd->rd_dinodes--; 2590 rgd->rd_free++; 2591 2592 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2593 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2594 rgrp_unlock_local(rgd); 2595 be32_add_cpu(&rgd->rd_rgl->rl_unlinked, -1); 2596 2597 gfs2_statfs_change(sdp, 0, +1, -1); 2598 trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE); 2599 gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid); 2600 gfs2_journal_wipe(ip, ip->i_no_addr, 1); 2601 } 2602 2603 /** 2604 * gfs2_check_blk_type - Check the type of a block 2605 * @sdp: The superblock 2606 * @no_addr: The block number to check 2607 * @type: The block type we are looking for 2608 * 2609 * The inode glock of @no_addr must be held. The @type to check for is either 2610 * GFS2_BLKST_DINODE or GFS2_BLKST_UNLINKED; checking for type GFS2_BLKST_FREE 2611 * or GFS2_BLKST_USED would make no sense. 2612 * 2613 * Returns: 0 if the block type matches the expected type 2614 * -ESTALE if it doesn't match 2615 * or -ve errno if something went wrong while checking 2616 */ 2617 2618 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type) 2619 { 2620 struct gfs2_rgrpd *rgd; 2621 struct gfs2_holder rgd_gh; 2622 struct gfs2_rbm rbm; 2623 int error = -EINVAL; 2624 2625 rgd = gfs2_blk2rgrpd(sdp, no_addr, 1); 2626 if (!rgd) 2627 goto fail; 2628 2629 error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh); 2630 if (error) 2631 goto fail; 2632 2633 rbm.rgd = rgd; 2634 error = gfs2_rbm_from_block(&rbm, no_addr); 2635 if (!WARN_ON_ONCE(error)) { 2636 /* 2637 * No need to take the local resource group lock here; the 2638 * inode glock of @no_addr provides the necessary 2639 * synchronization in case the block is an inode. (In case 2640 * the block is not an inode, the block type will not match 2641 * the @type we are looking for.) 2642 */ 2643 if (gfs2_testbit(&rbm, false) != type) 2644 error = -ESTALE; 2645 } 2646 2647 gfs2_glock_dq_uninit(&rgd_gh); 2648 2649 fail: 2650 return error; 2651 } 2652 2653 /** 2654 * gfs2_rlist_add - add a RG to a list of RGs 2655 * @ip: the inode 2656 * @rlist: the list of resource groups 2657 * @block: the block 2658 * 2659 * Figure out what RG a block belongs to and add that RG to the list 2660 * 2661 * FIXME: Don't use NOFAIL 2662 * 2663 */ 2664 2665 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist, 2666 u64 block) 2667 { 2668 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2669 struct gfs2_rgrpd *rgd; 2670 struct gfs2_rgrpd **tmp; 2671 unsigned int new_space; 2672 unsigned int x; 2673 2674 if (gfs2_assert_warn(sdp, !rlist->rl_ghs)) 2675 return; 2676 2677 /* 2678 * The resource group last accessed is kept in the last position. 2679 */ 2680 2681 if (rlist->rl_rgrps) { 2682 rgd = rlist->rl_rgd[rlist->rl_rgrps - 1]; 2683 if (rgrp_contains_block(rgd, block)) 2684 return; 2685 rgd = gfs2_blk2rgrpd(sdp, block, 1); 2686 } else { 2687 rgd = ip->i_res.rs_rgd; 2688 if (!rgd || !rgrp_contains_block(rgd, block)) 2689 rgd = gfs2_blk2rgrpd(sdp, block, 1); 2690 } 2691 2692 if (!rgd) { 2693 fs_err(sdp, "rlist_add: no rgrp for block %llu\n", 2694 (unsigned long long)block); 2695 return; 2696 } 2697 2698 for (x = 0; x < rlist->rl_rgrps; x++) { 2699 if (rlist->rl_rgd[x] == rgd) { 2700 swap(rlist->rl_rgd[x], 2701 rlist->rl_rgd[rlist->rl_rgrps - 1]); 2702 return; 2703 } 2704 } 2705 2706 if (rlist->rl_rgrps == rlist->rl_space) { 2707 new_space = rlist->rl_space + 10; 2708 2709 tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *), 2710 GFP_NOFS | __GFP_NOFAIL); 2711 2712 if (rlist->rl_rgd) { 2713 memcpy(tmp, rlist->rl_rgd, 2714 rlist->rl_space * sizeof(struct gfs2_rgrpd *)); 2715 kfree(rlist->rl_rgd); 2716 } 2717 2718 rlist->rl_space = new_space; 2719 rlist->rl_rgd = tmp; 2720 } 2721 2722 rlist->rl_rgd[rlist->rl_rgrps++] = rgd; 2723 } 2724 2725 /** 2726 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate 2727 * and initialize an array of glock holders for them 2728 * @rlist: the list of resource groups 2729 * 2730 * FIXME: Don't use NOFAIL 2731 * 2732 */ 2733 2734 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist) 2735 { 2736 unsigned int x; 2737 2738 rlist->rl_ghs = kmalloc_array(rlist->rl_rgrps, 2739 sizeof(struct gfs2_holder), 2740 GFP_NOFS | __GFP_NOFAIL); 2741 for (x = 0; x < rlist->rl_rgrps; x++) 2742 gfs2_holder_init(rlist->rl_rgd[x]->rd_gl, LM_ST_EXCLUSIVE, 2743 LM_FLAG_NODE_SCOPE, &rlist->rl_ghs[x]); 2744 } 2745 2746 /** 2747 * gfs2_rlist_free - free a resource group list 2748 * @rlist: the list of resource groups 2749 * 2750 */ 2751 2752 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist) 2753 { 2754 unsigned int x; 2755 2756 kfree(rlist->rl_rgd); 2757 2758 if (rlist->rl_ghs) { 2759 for (x = 0; x < rlist->rl_rgrps; x++) 2760 gfs2_holder_uninit(&rlist->rl_ghs[x]); 2761 kfree(rlist->rl_ghs); 2762 rlist->rl_ghs = NULL; 2763 } 2764 } 2765 2766 void rgrp_lock_local(struct gfs2_rgrpd *rgd) 2767 { 2768 BUG_ON(!gfs2_glock_is_held_excl(rgd->rd_gl) && 2769 !test_bit(SDF_NORECOVERY, &rgd->rd_sbd->sd_flags)); 2770 mutex_lock(&rgd->rd_mutex); 2771 } 2772 2773 void rgrp_unlock_local(struct gfs2_rgrpd *rgd) 2774 { 2775 mutex_unlock(&rgd->rd_mutex); 2776 } 2777