xref: /linux/fs/gfs2/rgrp.c (revision b43ab901d671e3e3cad425ea5e9a3c74e266dcdd)
1 /*
2  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
3  * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
4  *
5  * This copyrighted material is made available to anyone wishing to use,
6  * modify, copy, or redistribute it subject to the terms and conditions
7  * of the GNU General Public License version 2.
8  */
9 
10 #include <linux/slab.h>
11 #include <linux/spinlock.h>
12 #include <linux/completion.h>
13 #include <linux/buffer_head.h>
14 #include <linux/fs.h>
15 #include <linux/gfs2_ondisk.h>
16 #include <linux/prefetch.h>
17 #include <linux/blkdev.h>
18 #include <linux/rbtree.h>
19 
20 #include "gfs2.h"
21 #include "incore.h"
22 #include "glock.h"
23 #include "glops.h"
24 #include "lops.h"
25 #include "meta_io.h"
26 #include "quota.h"
27 #include "rgrp.h"
28 #include "super.h"
29 #include "trans.h"
30 #include "util.h"
31 #include "log.h"
32 #include "inode.h"
33 #include "trace_gfs2.h"
34 
35 #define BFITNOENT ((u32)~0)
36 #define NO_BLOCK ((u64)~0)
37 
38 #if BITS_PER_LONG == 32
39 #define LBITMASK   (0x55555555UL)
40 #define LBITSKIP55 (0x55555555UL)
41 #define LBITSKIP00 (0x00000000UL)
42 #else
43 #define LBITMASK   (0x5555555555555555UL)
44 #define LBITSKIP55 (0x5555555555555555UL)
45 #define LBITSKIP00 (0x0000000000000000UL)
46 #endif
47 
48 /*
49  * These routines are used by the resource group routines (rgrp.c)
50  * to keep track of block allocation.  Each block is represented by two
51  * bits.  So, each byte represents GFS2_NBBY (i.e. 4) blocks.
52  *
53  * 0 = Free
54  * 1 = Used (not metadata)
55  * 2 = Unlinked (still in use) inode
56  * 3 = Used (metadata)
57  */
58 
59 static const char valid_change[16] = {
60 	        /* current */
61 	/* n */ 0, 1, 1, 1,
62 	/* e */ 1, 0, 0, 0,
63 	/* w */ 0, 0, 0, 1,
64 	        1, 0, 0, 0
65 };
66 
67 static u32 rgblk_search(struct gfs2_rgrpd *rgd, u32 goal,
68 			unsigned char old_state,
69 			struct gfs2_bitmap **rbi);
70 
71 /**
72  * gfs2_setbit - Set a bit in the bitmaps
73  * @buffer: the buffer that holds the bitmaps
74  * @buflen: the length (in bytes) of the buffer
75  * @block: the block to set
76  * @new_state: the new state of the block
77  *
78  */
79 
80 static inline void gfs2_setbit(struct gfs2_rgrpd *rgd, unsigned char *buf1,
81 			       unsigned char *buf2, unsigned int offset,
82 			       struct gfs2_bitmap *bi, u32 block,
83 			       unsigned char new_state)
84 {
85 	unsigned char *byte1, *byte2, *end, cur_state;
86 	unsigned int buflen = bi->bi_len;
87 	const unsigned int bit = (block % GFS2_NBBY) * GFS2_BIT_SIZE;
88 
89 	byte1 = buf1 + offset + (block / GFS2_NBBY);
90 	end = buf1 + offset + buflen;
91 
92 	BUG_ON(byte1 >= end);
93 
94 	cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
95 
96 	if (unlikely(!valid_change[new_state * 4 + cur_state])) {
97 		printk(KERN_WARNING "GFS2: buf_blk = 0x%llx old_state=%d, "
98 		       "new_state=%d\n",
99 		       (unsigned long long)block, cur_state, new_state);
100 		printk(KERN_WARNING "GFS2: rgrp=0x%llx bi_start=0x%lx\n",
101 		       (unsigned long long)rgd->rd_addr,
102 		       (unsigned long)bi->bi_start);
103 		printk(KERN_WARNING "GFS2: bi_offset=0x%lx bi_len=0x%lx\n",
104 		       (unsigned long)bi->bi_offset,
105 		       (unsigned long)bi->bi_len);
106 		dump_stack();
107 		gfs2_consist_rgrpd(rgd);
108 		return;
109 	}
110 	*byte1 ^= (cur_state ^ new_state) << bit;
111 
112 	if (buf2) {
113 		byte2 = buf2 + offset + (block / GFS2_NBBY);
114 		cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
115 		*byte2 ^= (cur_state ^ new_state) << bit;
116 	}
117 }
118 
119 /**
120  * gfs2_testbit - test a bit in the bitmaps
121  * @buffer: the buffer that holds the bitmaps
122  * @buflen: the length (in bytes) of the buffer
123  * @block: the block to read
124  *
125  */
126 
127 static inline unsigned char gfs2_testbit(struct gfs2_rgrpd *rgd,
128 					 const unsigned char *buffer,
129 					 unsigned int buflen, u32 block)
130 {
131 	const unsigned char *byte, *end;
132 	unsigned char cur_state;
133 	unsigned int bit;
134 
135 	byte = buffer + (block / GFS2_NBBY);
136 	bit = (block % GFS2_NBBY) * GFS2_BIT_SIZE;
137 	end = buffer + buflen;
138 
139 	gfs2_assert(rgd->rd_sbd, byte < end);
140 
141 	cur_state = (*byte >> bit) & GFS2_BIT_MASK;
142 
143 	return cur_state;
144 }
145 
146 /**
147  * gfs2_bit_search
148  * @ptr: Pointer to bitmap data
149  * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
150  * @state: The state we are searching for
151  *
152  * We xor the bitmap data with a patter which is the bitwise opposite
153  * of what we are looking for, this gives rise to a pattern of ones
154  * wherever there is a match. Since we have two bits per entry, we
155  * take this pattern, shift it down by one place and then and it with
156  * the original. All the even bit positions (0,2,4, etc) then represent
157  * successful matches, so we mask with 0x55555..... to remove the unwanted
158  * odd bit positions.
159  *
160  * This allows searching of a whole u64 at once (32 blocks) with a
161  * single test (on 64 bit arches).
162  */
163 
164 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
165 {
166 	u64 tmp;
167 	static const u64 search[] = {
168 		[0] = 0xffffffffffffffffULL,
169 		[1] = 0xaaaaaaaaaaaaaaaaULL,
170 		[2] = 0x5555555555555555ULL,
171 		[3] = 0x0000000000000000ULL,
172 	};
173 	tmp = le64_to_cpu(*ptr) ^ search[state];
174 	tmp &= (tmp >> 1);
175 	tmp &= mask;
176 	return tmp;
177 }
178 
179 /**
180  * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
181  *       a block in a given allocation state.
182  * @buffer: the buffer that holds the bitmaps
183  * @len: the length (in bytes) of the buffer
184  * @goal: start search at this block's bit-pair (within @buffer)
185  * @state: GFS2_BLKST_XXX the state of the block we're looking for.
186  *
187  * Scope of @goal and returned block number is only within this bitmap buffer,
188  * not entire rgrp or filesystem.  @buffer will be offset from the actual
189  * beginning of a bitmap block buffer, skipping any header structures, but
190  * headers are always a multiple of 64 bits long so that the buffer is
191  * always aligned to a 64 bit boundary.
192  *
193  * The size of the buffer is in bytes, but is it assumed that it is
194  * always ok to read a complete multiple of 64 bits at the end
195  * of the block in case the end is no aligned to a natural boundary.
196  *
197  * Return: the block number (bitmap buffer scope) that was found
198  */
199 
200 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
201 		       u32 goal, u8 state)
202 {
203 	u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
204 	const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
205 	const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
206 	u64 tmp;
207 	u64 mask = 0x5555555555555555ULL;
208 	u32 bit;
209 
210 	BUG_ON(state > 3);
211 
212 	/* Mask off bits we don't care about at the start of the search */
213 	mask <<= spoint;
214 	tmp = gfs2_bit_search(ptr, mask, state);
215 	ptr++;
216 	while(tmp == 0 && ptr < end) {
217 		tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
218 		ptr++;
219 	}
220 	/* Mask off any bits which are more than len bytes from the start */
221 	if (ptr == end && (len & (sizeof(u64) - 1)))
222 		tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
223 	/* Didn't find anything, so return */
224 	if (tmp == 0)
225 		return BFITNOENT;
226 	ptr--;
227 	bit = __ffs64(tmp);
228 	bit /= 2;	/* two bits per entry in the bitmap */
229 	return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
230 }
231 
232 /**
233  * gfs2_bitcount - count the number of bits in a certain state
234  * @buffer: the buffer that holds the bitmaps
235  * @buflen: the length (in bytes) of the buffer
236  * @state: the state of the block we're looking for
237  *
238  * Returns: The number of bits
239  */
240 
241 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
242 			 unsigned int buflen, u8 state)
243 {
244 	const u8 *byte = buffer;
245 	const u8 *end = buffer + buflen;
246 	const u8 state1 = state << 2;
247 	const u8 state2 = state << 4;
248 	const u8 state3 = state << 6;
249 	u32 count = 0;
250 
251 	for (; byte < end; byte++) {
252 		if (((*byte) & 0x03) == state)
253 			count++;
254 		if (((*byte) & 0x0C) == state1)
255 			count++;
256 		if (((*byte) & 0x30) == state2)
257 			count++;
258 		if (((*byte) & 0xC0) == state3)
259 			count++;
260 	}
261 
262 	return count;
263 }
264 
265 /**
266  * gfs2_rgrp_verify - Verify that a resource group is consistent
267  * @sdp: the filesystem
268  * @rgd: the rgrp
269  *
270  */
271 
272 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
273 {
274 	struct gfs2_sbd *sdp = rgd->rd_sbd;
275 	struct gfs2_bitmap *bi = NULL;
276 	u32 length = rgd->rd_length;
277 	u32 count[4], tmp;
278 	int buf, x;
279 
280 	memset(count, 0, 4 * sizeof(u32));
281 
282 	/* Count # blocks in each of 4 possible allocation states */
283 	for (buf = 0; buf < length; buf++) {
284 		bi = rgd->rd_bits + buf;
285 		for (x = 0; x < 4; x++)
286 			count[x] += gfs2_bitcount(rgd,
287 						  bi->bi_bh->b_data +
288 						  bi->bi_offset,
289 						  bi->bi_len, x);
290 	}
291 
292 	if (count[0] != rgd->rd_free) {
293 		if (gfs2_consist_rgrpd(rgd))
294 			fs_err(sdp, "free data mismatch:  %u != %u\n",
295 			       count[0], rgd->rd_free);
296 		return;
297 	}
298 
299 	tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
300 	if (count[1] != tmp) {
301 		if (gfs2_consist_rgrpd(rgd))
302 			fs_err(sdp, "used data mismatch:  %u != %u\n",
303 			       count[1], tmp);
304 		return;
305 	}
306 
307 	if (count[2] + count[3] != rgd->rd_dinodes) {
308 		if (gfs2_consist_rgrpd(rgd))
309 			fs_err(sdp, "used metadata mismatch:  %u != %u\n",
310 			       count[2] + count[3], rgd->rd_dinodes);
311 		return;
312 	}
313 }
314 
315 static inline int rgrp_contains_block(struct gfs2_rgrpd *rgd, u64 block)
316 {
317 	u64 first = rgd->rd_data0;
318 	u64 last = first + rgd->rd_data;
319 	return first <= block && block < last;
320 }
321 
322 /**
323  * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
324  * @sdp: The GFS2 superblock
325  * @n: The data block number
326  *
327  * Returns: The resource group, or NULL if not found
328  */
329 
330 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk)
331 {
332 	struct rb_node **newn;
333 	struct gfs2_rgrpd *cur;
334 
335 	spin_lock(&sdp->sd_rindex_spin);
336 	newn = &sdp->sd_rindex_tree.rb_node;
337 	while (*newn) {
338 		cur = rb_entry(*newn, struct gfs2_rgrpd, rd_node);
339 		if (blk < cur->rd_addr)
340 			newn = &((*newn)->rb_left);
341 		else if (blk >= cur->rd_data0 + cur->rd_data)
342 			newn = &((*newn)->rb_right);
343 		else {
344 			spin_unlock(&sdp->sd_rindex_spin);
345 			return cur;
346 		}
347 	}
348 	spin_unlock(&sdp->sd_rindex_spin);
349 
350 	return NULL;
351 }
352 
353 /**
354  * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
355  * @sdp: The GFS2 superblock
356  *
357  * Returns: The first rgrp in the filesystem
358  */
359 
360 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
361 {
362 	const struct rb_node *n;
363 	struct gfs2_rgrpd *rgd;
364 
365 	spin_lock(&sdp->sd_rindex_spin);
366 	n = rb_first(&sdp->sd_rindex_tree);
367 	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
368 	spin_unlock(&sdp->sd_rindex_spin);
369 
370 	return rgd;
371 }
372 
373 /**
374  * gfs2_rgrpd_get_next - get the next RG
375  * @rgd: A RG
376  *
377  * Returns: The next rgrp
378  */
379 
380 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
381 {
382 	struct gfs2_sbd *sdp = rgd->rd_sbd;
383 	const struct rb_node *n;
384 
385 	spin_lock(&sdp->sd_rindex_spin);
386 	n = rb_next(&rgd->rd_node);
387 	if (n == NULL)
388 		n = rb_first(&sdp->sd_rindex_tree);
389 
390 	if (unlikely(&rgd->rd_node == n)) {
391 		spin_unlock(&sdp->sd_rindex_spin);
392 		return NULL;
393 	}
394 	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
395 	spin_unlock(&sdp->sd_rindex_spin);
396 	return rgd;
397 }
398 
399 void gfs2_free_clones(struct gfs2_rgrpd *rgd)
400 {
401 	int x;
402 
403 	for (x = 0; x < rgd->rd_length; x++) {
404 		struct gfs2_bitmap *bi = rgd->rd_bits + x;
405 		kfree(bi->bi_clone);
406 		bi->bi_clone = NULL;
407 	}
408 }
409 
410 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
411 {
412 	struct rb_node *n;
413 	struct gfs2_rgrpd *rgd;
414 	struct gfs2_glock *gl;
415 
416 	while ((n = rb_first(&sdp->sd_rindex_tree))) {
417 		rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
418 		gl = rgd->rd_gl;
419 
420 		rb_erase(n, &sdp->sd_rindex_tree);
421 
422 		if (gl) {
423 			spin_lock(&gl->gl_spin);
424 			gl->gl_object = NULL;
425 			spin_unlock(&gl->gl_spin);
426 			gfs2_glock_add_to_lru(gl);
427 			gfs2_glock_put(gl);
428 		}
429 
430 		gfs2_free_clones(rgd);
431 		kfree(rgd->rd_bits);
432 		kmem_cache_free(gfs2_rgrpd_cachep, rgd);
433 	}
434 }
435 
436 static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd)
437 {
438 	printk(KERN_INFO "  ri_addr = %llu\n", (unsigned long long)rgd->rd_addr);
439 	printk(KERN_INFO "  ri_length = %u\n", rgd->rd_length);
440 	printk(KERN_INFO "  ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0);
441 	printk(KERN_INFO "  ri_data = %u\n", rgd->rd_data);
442 	printk(KERN_INFO "  ri_bitbytes = %u\n", rgd->rd_bitbytes);
443 }
444 
445 /**
446  * gfs2_compute_bitstructs - Compute the bitmap sizes
447  * @rgd: The resource group descriptor
448  *
449  * Calculates bitmap descriptors, one for each block that contains bitmap data
450  *
451  * Returns: errno
452  */
453 
454 static int compute_bitstructs(struct gfs2_rgrpd *rgd)
455 {
456 	struct gfs2_sbd *sdp = rgd->rd_sbd;
457 	struct gfs2_bitmap *bi;
458 	u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
459 	u32 bytes_left, bytes;
460 	int x;
461 
462 	if (!length)
463 		return -EINVAL;
464 
465 	rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
466 	if (!rgd->rd_bits)
467 		return -ENOMEM;
468 
469 	bytes_left = rgd->rd_bitbytes;
470 
471 	for (x = 0; x < length; x++) {
472 		bi = rgd->rd_bits + x;
473 
474 		bi->bi_flags = 0;
475 		/* small rgrp; bitmap stored completely in header block */
476 		if (length == 1) {
477 			bytes = bytes_left;
478 			bi->bi_offset = sizeof(struct gfs2_rgrp);
479 			bi->bi_start = 0;
480 			bi->bi_len = bytes;
481 		/* header block */
482 		} else if (x == 0) {
483 			bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
484 			bi->bi_offset = sizeof(struct gfs2_rgrp);
485 			bi->bi_start = 0;
486 			bi->bi_len = bytes;
487 		/* last block */
488 		} else if (x + 1 == length) {
489 			bytes = bytes_left;
490 			bi->bi_offset = sizeof(struct gfs2_meta_header);
491 			bi->bi_start = rgd->rd_bitbytes - bytes_left;
492 			bi->bi_len = bytes;
493 		/* other blocks */
494 		} else {
495 			bytes = sdp->sd_sb.sb_bsize -
496 				sizeof(struct gfs2_meta_header);
497 			bi->bi_offset = sizeof(struct gfs2_meta_header);
498 			bi->bi_start = rgd->rd_bitbytes - bytes_left;
499 			bi->bi_len = bytes;
500 		}
501 
502 		bytes_left -= bytes;
503 	}
504 
505 	if (bytes_left) {
506 		gfs2_consist_rgrpd(rgd);
507 		return -EIO;
508 	}
509 	bi = rgd->rd_bits + (length - 1);
510 	if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) {
511 		if (gfs2_consist_rgrpd(rgd)) {
512 			gfs2_rindex_print(rgd);
513 			fs_err(sdp, "start=%u len=%u offset=%u\n",
514 			       bi->bi_start, bi->bi_len, bi->bi_offset);
515 		}
516 		return -EIO;
517 	}
518 
519 	return 0;
520 }
521 
522 /**
523  * gfs2_ri_total - Total up the file system space, according to the rindex.
524  *
525  */
526 u64 gfs2_ri_total(struct gfs2_sbd *sdp)
527 {
528 	u64 total_data = 0;
529 	struct inode *inode = sdp->sd_rindex;
530 	struct gfs2_inode *ip = GFS2_I(inode);
531 	char buf[sizeof(struct gfs2_rindex)];
532 	struct file_ra_state ra_state;
533 	int error, rgrps;
534 
535 	mutex_lock(&sdp->sd_rindex_mutex);
536 	file_ra_state_init(&ra_state, inode->i_mapping);
537 	for (rgrps = 0;; rgrps++) {
538 		loff_t pos = rgrps * sizeof(struct gfs2_rindex);
539 
540 		if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
541 			break;
542 		error = gfs2_internal_read(ip, &ra_state, buf, &pos,
543 					   sizeof(struct gfs2_rindex));
544 		if (error != sizeof(struct gfs2_rindex))
545 			break;
546 		total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
547 	}
548 	mutex_unlock(&sdp->sd_rindex_mutex);
549 	return total_data;
550 }
551 
552 static void rgd_insert(struct gfs2_rgrpd *rgd)
553 {
554 	struct gfs2_sbd *sdp = rgd->rd_sbd;
555 	struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
556 
557 	/* Figure out where to put new node */
558 	while (*newn) {
559 		struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
560 						  rd_node);
561 
562 		parent = *newn;
563 		if (rgd->rd_addr < cur->rd_addr)
564 			newn = &((*newn)->rb_left);
565 		else if (rgd->rd_addr > cur->rd_addr)
566 			newn = &((*newn)->rb_right);
567 		else
568 			return;
569 	}
570 
571 	rb_link_node(&rgd->rd_node, parent, newn);
572 	rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
573 }
574 
575 /**
576  * read_rindex_entry - Pull in a new resource index entry from the disk
577  * @gl: The glock covering the rindex inode
578  *
579  * Returns: 0 on success, > 0 on EOF, error code otherwise
580  */
581 
582 static int read_rindex_entry(struct gfs2_inode *ip,
583 			     struct file_ra_state *ra_state)
584 {
585 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
586 	loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
587 	struct gfs2_rindex buf;
588 	int error;
589 	struct gfs2_rgrpd *rgd;
590 
591 	if (pos >= i_size_read(&ip->i_inode))
592 		return 1;
593 
594 	error = gfs2_internal_read(ip, ra_state, (char *)&buf, &pos,
595 				   sizeof(struct gfs2_rindex));
596 
597 	if (error != sizeof(struct gfs2_rindex))
598 		return (error == 0) ? 1 : error;
599 
600 	rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
601 	error = -ENOMEM;
602 	if (!rgd)
603 		return error;
604 
605 	rgd->rd_sbd = sdp;
606 	rgd->rd_addr = be64_to_cpu(buf.ri_addr);
607 	rgd->rd_length = be32_to_cpu(buf.ri_length);
608 	rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
609 	rgd->rd_data = be32_to_cpu(buf.ri_data);
610 	rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
611 
612 	error = compute_bitstructs(rgd);
613 	if (error)
614 		goto fail;
615 
616 	error = gfs2_glock_get(sdp, rgd->rd_addr,
617 			       &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
618 	if (error)
619 		goto fail;
620 
621 	rgd->rd_gl->gl_object = rgd;
622 	rgd->rd_flags &= ~GFS2_RDF_UPTODATE;
623 	if (rgd->rd_data > sdp->sd_max_rg_data)
624 		sdp->sd_max_rg_data = rgd->rd_data;
625 	spin_lock(&sdp->sd_rindex_spin);
626 	rgd_insert(rgd);
627 	sdp->sd_rgrps++;
628 	spin_unlock(&sdp->sd_rindex_spin);
629 	return error;
630 
631 fail:
632 	kfree(rgd->rd_bits);
633 	kmem_cache_free(gfs2_rgrpd_cachep, rgd);
634 	return error;
635 }
636 
637 /**
638  * gfs2_ri_update - Pull in a new resource index from the disk
639  * @ip: pointer to the rindex inode
640  *
641  * Returns: 0 on successful update, error code otherwise
642  */
643 
644 static int gfs2_ri_update(struct gfs2_inode *ip)
645 {
646 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
647 	struct inode *inode = &ip->i_inode;
648 	struct file_ra_state ra_state;
649 	int error;
650 
651 	file_ra_state_init(&ra_state, inode->i_mapping);
652 	do {
653 		error = read_rindex_entry(ip, &ra_state);
654 	} while (error == 0);
655 
656 	if (error < 0)
657 		return error;
658 
659 	sdp->sd_rindex_uptodate = 1;
660 	return 0;
661 }
662 
663 /**
664  * gfs2_rindex_update - Update the rindex if required
665  * @sdp: The GFS2 superblock
666  *
667  * We grab a lock on the rindex inode to make sure that it doesn't
668  * change whilst we are performing an operation. We keep this lock
669  * for quite long periods of time compared to other locks. This
670  * doesn't matter, since it is shared and it is very, very rarely
671  * accessed in the exclusive mode (i.e. only when expanding the filesystem).
672  *
673  * This makes sure that we're using the latest copy of the resource index
674  * special file, which might have been updated if someone expanded the
675  * filesystem (via gfs2_grow utility), which adds new resource groups.
676  *
677  * Returns: 0 on succeess, error code otherwise
678  */
679 
680 int gfs2_rindex_update(struct gfs2_sbd *sdp)
681 {
682 	struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
683 	struct gfs2_glock *gl = ip->i_gl;
684 	struct gfs2_holder ri_gh;
685 	int error = 0;
686 
687 	/* Read new copy from disk if we don't have the latest */
688 	if (!sdp->sd_rindex_uptodate) {
689 		mutex_lock(&sdp->sd_rindex_mutex);
690 		error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
691 		if (error)
692 			return error;
693 		if (!sdp->sd_rindex_uptodate)
694 			error = gfs2_ri_update(ip);
695 		gfs2_glock_dq_uninit(&ri_gh);
696 		mutex_unlock(&sdp->sd_rindex_mutex);
697 	}
698 
699 
700 	return error;
701 }
702 
703 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
704 {
705 	const struct gfs2_rgrp *str = buf;
706 	u32 rg_flags;
707 
708 	rg_flags = be32_to_cpu(str->rg_flags);
709 	rg_flags &= ~GFS2_RDF_MASK;
710 	rgd->rd_flags &= GFS2_RDF_MASK;
711 	rgd->rd_flags |= rg_flags;
712 	rgd->rd_free = be32_to_cpu(str->rg_free);
713 	rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
714 	rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
715 }
716 
717 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
718 {
719 	struct gfs2_rgrp *str = buf;
720 
721 	str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
722 	str->rg_free = cpu_to_be32(rgd->rd_free);
723 	str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
724 	str->__pad = cpu_to_be32(0);
725 	str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
726 	memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
727 }
728 
729 /**
730  * gfs2_rgrp_go_lock - Read in a RG's header and bitmaps
731  * @rgd: the struct gfs2_rgrpd describing the RG to read in
732  *
733  * Read in all of a Resource Group's header and bitmap blocks.
734  * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps.
735  *
736  * Returns: errno
737  */
738 
739 int gfs2_rgrp_go_lock(struct gfs2_holder *gh)
740 {
741 	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
742 	struct gfs2_sbd *sdp = rgd->rd_sbd;
743 	struct gfs2_glock *gl = rgd->rd_gl;
744 	unsigned int length = rgd->rd_length;
745 	struct gfs2_bitmap *bi;
746 	unsigned int x, y;
747 	int error;
748 
749 	for (x = 0; x < length; x++) {
750 		bi = rgd->rd_bits + x;
751 		error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, &bi->bi_bh);
752 		if (error)
753 			goto fail;
754 	}
755 
756 	for (y = length; y--;) {
757 		bi = rgd->rd_bits + y;
758 		error = gfs2_meta_wait(sdp, bi->bi_bh);
759 		if (error)
760 			goto fail;
761 		if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
762 					      GFS2_METATYPE_RG)) {
763 			error = -EIO;
764 			goto fail;
765 		}
766 	}
767 
768 	if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
769 		for (x = 0; x < length; x++)
770 			clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags);
771 		gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
772 		rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
773 		rgd->rd_free_clone = rgd->rd_free;
774 	}
775 
776 	return 0;
777 
778 fail:
779 	while (x--) {
780 		bi = rgd->rd_bits + x;
781 		brelse(bi->bi_bh);
782 		bi->bi_bh = NULL;
783 		gfs2_assert_warn(sdp, !bi->bi_clone);
784 	}
785 
786 	return error;
787 }
788 
789 /**
790  * gfs2_rgrp_go_unlock - Release RG bitmaps read in with gfs2_rgrp_bh_get()
791  * @rgd: the struct gfs2_rgrpd describing the RG to read in
792  *
793  */
794 
795 void gfs2_rgrp_go_unlock(struct gfs2_holder *gh)
796 {
797 	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
798 	int x, length = rgd->rd_length;
799 
800 	for (x = 0; x < length; x++) {
801 		struct gfs2_bitmap *bi = rgd->rd_bits + x;
802 		brelse(bi->bi_bh);
803 		bi->bi_bh = NULL;
804 	}
805 
806 }
807 
808 void gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
809 			     struct buffer_head *bh,
810 			     const struct gfs2_bitmap *bi)
811 {
812 	struct super_block *sb = sdp->sd_vfs;
813 	struct block_device *bdev = sb->s_bdev;
814 	const unsigned int sects_per_blk = sdp->sd_sb.sb_bsize /
815 					   bdev_logical_block_size(sb->s_bdev);
816 	u64 blk;
817 	sector_t start = 0;
818 	sector_t nr_sects = 0;
819 	int rv;
820 	unsigned int x;
821 
822 	for (x = 0; x < bi->bi_len; x++) {
823 		const u8 *orig = bh->b_data + bi->bi_offset + x;
824 		const u8 *clone = bi->bi_clone + bi->bi_offset + x;
825 		u8 diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
826 		diff &= 0x55;
827 		if (diff == 0)
828 			continue;
829 		blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
830 		blk *= sects_per_blk; /* convert to sectors */
831 		while(diff) {
832 			if (diff & 1) {
833 				if (nr_sects == 0)
834 					goto start_new_extent;
835 				if ((start + nr_sects) != blk) {
836 					rv = blkdev_issue_discard(bdev, start,
837 							    nr_sects, GFP_NOFS,
838 							    0);
839 					if (rv)
840 						goto fail;
841 					nr_sects = 0;
842 start_new_extent:
843 					start = blk;
844 				}
845 				nr_sects += sects_per_blk;
846 			}
847 			diff >>= 2;
848 			blk += sects_per_blk;
849 		}
850 	}
851 	if (nr_sects) {
852 		rv = blkdev_issue_discard(bdev, start, nr_sects, GFP_NOFS, 0);
853 		if (rv)
854 			goto fail;
855 	}
856 	return;
857 fail:
858 	fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv);
859 	sdp->sd_args.ar_discard = 0;
860 }
861 
862 /**
863  * gfs2_qadata_get - get the struct gfs2_qadata structure for an inode
864  * @ip: the incore GFS2 inode structure
865  *
866  * Returns: the struct gfs2_qadata
867  */
868 
869 struct gfs2_qadata *gfs2_qadata_get(struct gfs2_inode *ip)
870 {
871 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
872 	int error;
873 	BUG_ON(ip->i_qadata != NULL);
874 	ip->i_qadata = kzalloc(sizeof(struct gfs2_qadata), GFP_NOFS);
875 	error = gfs2_rindex_update(sdp);
876 	if (error)
877 		fs_warn(sdp, "rindex update returns %d\n", error);
878 	return ip->i_qadata;
879 }
880 
881 /**
882  * gfs2_blkrsv_get - get the struct gfs2_blkreserv structure for an inode
883  * @ip: the incore GFS2 inode structure
884  *
885  * Returns: the struct gfs2_qadata
886  */
887 
888 static struct gfs2_blkreserv *gfs2_blkrsv_get(struct gfs2_inode *ip)
889 {
890 	BUG_ON(ip->i_res != NULL);
891 	ip->i_res = kzalloc(sizeof(struct gfs2_blkreserv), GFP_NOFS);
892 	return ip->i_res;
893 }
894 
895 /**
896  * try_rgrp_fit - See if a given reservation will fit in a given RG
897  * @rgd: the RG data
898  * @ip: the inode
899  *
900  * If there's room for the requested blocks to be allocated from the RG:
901  *
902  * Returns: 1 on success (it fits), 0 on failure (it doesn't fit)
903  */
904 
905 static int try_rgrp_fit(const struct gfs2_rgrpd *rgd, const struct gfs2_inode *ip)
906 {
907 	const struct gfs2_blkreserv *rs = ip->i_res;
908 
909 	if (rgd->rd_flags & (GFS2_RGF_NOALLOC | GFS2_RDF_ERROR))
910 		return 0;
911 	if (rgd->rd_free_clone >= rs->rs_requested)
912 		return 1;
913 	return 0;
914 }
915 
916 static inline u32 gfs2_bi2rgd_blk(struct gfs2_bitmap *bi, u32 blk)
917 {
918 	return (bi->bi_start * GFS2_NBBY) + blk;
919 }
920 
921 /**
922  * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
923  * @rgd: The rgrp
924  *
925  * Returns: 0 if no error
926  *          The inode, if one has been found, in inode.
927  */
928 
929 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
930 {
931 	u32 goal = 0, block;
932 	u64 no_addr;
933 	struct gfs2_sbd *sdp = rgd->rd_sbd;
934 	struct gfs2_glock *gl;
935 	struct gfs2_inode *ip;
936 	int error;
937 	int found = 0;
938 	struct gfs2_bitmap *bi;
939 
940 	while (goal < rgd->rd_data) {
941 		down_write(&sdp->sd_log_flush_lock);
942 		block = rgblk_search(rgd, goal, GFS2_BLKST_UNLINKED, &bi);
943 		up_write(&sdp->sd_log_flush_lock);
944 		if (block == BFITNOENT)
945 			break;
946 
947 		block = gfs2_bi2rgd_blk(bi, block);
948 		/* rgblk_search can return a block < goal, so we need to
949 		   keep it marching forward. */
950 		no_addr = block + rgd->rd_data0;
951 		goal = max(block + 1, goal + 1);
952 		if (*last_unlinked != NO_BLOCK && no_addr <= *last_unlinked)
953 			continue;
954 		if (no_addr == skip)
955 			continue;
956 		*last_unlinked = no_addr;
957 
958 		error = gfs2_glock_get(sdp, no_addr, &gfs2_inode_glops, CREATE, &gl);
959 		if (error)
960 			continue;
961 
962 		/* If the inode is already in cache, we can ignore it here
963 		 * because the existing inode disposal code will deal with
964 		 * it when all refs have gone away. Accessing gl_object like
965 		 * this is not safe in general. Here it is ok because we do
966 		 * not dereference the pointer, and we only need an approx
967 		 * answer to whether it is NULL or not.
968 		 */
969 		ip = gl->gl_object;
970 
971 		if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0)
972 			gfs2_glock_put(gl);
973 		else
974 			found++;
975 
976 		/* Limit reclaim to sensible number of tasks */
977 		if (found > NR_CPUS)
978 			return;
979 	}
980 
981 	rgd->rd_flags &= ~GFS2_RDF_CHECK;
982 	return;
983 }
984 
985 /**
986  * get_local_rgrp - Choose and lock a rgrp for allocation
987  * @ip: the inode to reserve space for
988  * @rgp: the chosen and locked rgrp
989  *
990  * Try to acquire rgrp in way which avoids contending with others.
991  *
992  * Returns: errno
993  */
994 
995 static int get_local_rgrp(struct gfs2_inode *ip, u64 *last_unlinked)
996 {
997 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
998 	struct gfs2_rgrpd *rgd, *begin = NULL;
999 	struct gfs2_blkreserv *rs = ip->i_res;
1000 	int error, rg_locked, flags = LM_FLAG_TRY;
1001 	int loops = 0;
1002 
1003 	if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal))
1004 		rgd = begin = ip->i_rgd;
1005 	else
1006 		rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal);
1007 
1008 	if (rgd == NULL)
1009 		return -EBADSLT;
1010 
1011 	while (loops < 3) {
1012 		rg_locked = 0;
1013 
1014 		if (gfs2_glock_is_locked_by_me(rgd->rd_gl)) {
1015 			rg_locked = 1;
1016 			error = 0;
1017 		} else {
1018 			error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE,
1019 						   flags, &rs->rs_rgd_gh);
1020 		}
1021 		switch (error) {
1022 		case 0:
1023 			if (try_rgrp_fit(rgd, ip)) {
1024 				ip->i_rgd = rgd;
1025 				return 0;
1026 			}
1027 			if (rgd->rd_flags & GFS2_RDF_CHECK)
1028 				try_rgrp_unlink(rgd, last_unlinked, ip->i_no_addr);
1029 			if (!rg_locked)
1030 				gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1031 			/* fall through */
1032 		case GLR_TRYFAILED:
1033 			rgd = gfs2_rgrpd_get_next(rgd);
1034 			if (rgd == begin) {
1035 				flags = 0;
1036 				loops++;
1037 			}
1038 			break;
1039 		default:
1040 			return error;
1041 		}
1042 	}
1043 
1044 	return -ENOSPC;
1045 }
1046 
1047 static void gfs2_blkrsv_put(struct gfs2_inode *ip)
1048 {
1049 	BUG_ON(ip->i_res == NULL);
1050 	kfree(ip->i_res);
1051 	ip->i_res = NULL;
1052 }
1053 
1054 /**
1055  * gfs2_inplace_reserve - Reserve space in the filesystem
1056  * @ip: the inode to reserve space for
1057  *
1058  * Returns: errno
1059  */
1060 
1061 int gfs2_inplace_reserve(struct gfs2_inode *ip, u32 requested)
1062 {
1063 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1064 	struct gfs2_blkreserv *rs;
1065 	int error = 0;
1066 	u64 last_unlinked = NO_BLOCK;
1067 	int tries = 0;
1068 
1069 	rs = gfs2_blkrsv_get(ip);
1070 	if (!rs)
1071 		return -ENOMEM;
1072 
1073 	rs->rs_requested = requested;
1074 	if (gfs2_assert_warn(sdp, requested)) {
1075 		error = -EINVAL;
1076 		goto out;
1077 	}
1078 
1079 	do {
1080 		error = get_local_rgrp(ip, &last_unlinked);
1081 		if (error != -ENOSPC)
1082 			break;
1083 		/* Check that fs hasn't grown if writing to rindex */
1084 		if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
1085 			error = gfs2_ri_update(ip);
1086 			if (error)
1087 				break;
1088 			continue;
1089 		}
1090 		/* Flushing the log may release space */
1091 		gfs2_log_flush(sdp, NULL);
1092 	} while (tries++ < 3);
1093 
1094 out:
1095 	if (error)
1096 		gfs2_blkrsv_put(ip);
1097 	return error;
1098 }
1099 
1100 /**
1101  * gfs2_inplace_release - release an inplace reservation
1102  * @ip: the inode the reservation was taken out on
1103  *
1104  * Release a reservation made by gfs2_inplace_reserve().
1105  */
1106 
1107 void gfs2_inplace_release(struct gfs2_inode *ip)
1108 {
1109 	struct gfs2_blkreserv *rs = ip->i_res;
1110 
1111 	if (rs->rs_rgd_gh.gh_gl)
1112 		gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1113 	gfs2_blkrsv_put(ip);
1114 }
1115 
1116 /**
1117  * gfs2_get_block_type - Check a block in a RG is of given type
1118  * @rgd: the resource group holding the block
1119  * @block: the block number
1120  *
1121  * Returns: The block type (GFS2_BLKST_*)
1122  */
1123 
1124 static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block)
1125 {
1126 	struct gfs2_bitmap *bi = NULL;
1127 	u32 length, rgrp_block, buf_block;
1128 	unsigned int buf;
1129 	unsigned char type;
1130 
1131 	length = rgd->rd_length;
1132 	rgrp_block = block - rgd->rd_data0;
1133 
1134 	for (buf = 0; buf < length; buf++) {
1135 		bi = rgd->rd_bits + buf;
1136 		if (rgrp_block < (bi->bi_start + bi->bi_len) * GFS2_NBBY)
1137 			break;
1138 	}
1139 
1140 	gfs2_assert(rgd->rd_sbd, buf < length);
1141 	buf_block = rgrp_block - bi->bi_start * GFS2_NBBY;
1142 
1143 	type = gfs2_testbit(rgd, bi->bi_bh->b_data + bi->bi_offset,
1144 			   bi->bi_len, buf_block);
1145 
1146 	return type;
1147 }
1148 
1149 /**
1150  * rgblk_search - find a block in @state
1151  * @rgd: the resource group descriptor
1152  * @goal: the goal block within the RG (start here to search for avail block)
1153  * @state: GFS2_BLKST_XXX the before-allocation state to find
1154  * @dinode: TRUE if the first block we allocate is for a dinode
1155  * @rbi: address of the pointer to the bitmap containing the block found
1156  *
1157  * Walk rgrp's bitmap to find bits that represent a block in @state.
1158  *
1159  * This function never fails, because we wouldn't call it unless we
1160  * know (from reservation results, etc.) that a block is available.
1161  *
1162  * Scope of @goal is just within rgrp, not the whole filesystem.
1163  * Scope of @returned block is just within bitmap, not the whole filesystem.
1164  *
1165  * Returns: the block number found relative to the bitmap rbi
1166  */
1167 
1168 static u32 rgblk_search(struct gfs2_rgrpd *rgd, u32 goal,
1169 			unsigned char state,
1170 			struct gfs2_bitmap **rbi)
1171 {
1172 	struct gfs2_bitmap *bi = NULL;
1173 	const u32 length = rgd->rd_length;
1174 	u32 blk = BFITNOENT;
1175 	unsigned int buf, x;
1176 	const u8 *buffer = NULL;
1177 
1178 	*rbi = NULL;
1179 	/* Find bitmap block that contains bits for goal block */
1180 	for (buf = 0; buf < length; buf++) {
1181 		bi = rgd->rd_bits + buf;
1182 		/* Convert scope of "goal" from rgrp-wide to within found bit block */
1183 		if (goal < (bi->bi_start + bi->bi_len) * GFS2_NBBY) {
1184 			goal -= bi->bi_start * GFS2_NBBY;
1185 			goto do_search;
1186 		}
1187 	}
1188 	buf = 0;
1189 	goal = 0;
1190 
1191 do_search:
1192 	/* Search (up to entire) bitmap in this rgrp for allocatable block.
1193 	   "x <= length", instead of "x < length", because we typically start
1194 	   the search in the middle of a bit block, but if we can't find an
1195 	   allocatable block anywhere else, we want to be able wrap around and
1196 	   search in the first part of our first-searched bit block.  */
1197 	for (x = 0; x <= length; x++) {
1198 		bi = rgd->rd_bits + buf;
1199 
1200 		if (test_bit(GBF_FULL, &bi->bi_flags) &&
1201 		    (state == GFS2_BLKST_FREE))
1202 			goto skip;
1203 
1204 		/* The GFS2_BLKST_UNLINKED state doesn't apply to the clone
1205 		   bitmaps, so we must search the originals for that. */
1206 		buffer = bi->bi_bh->b_data + bi->bi_offset;
1207 		WARN_ON(!buffer_uptodate(bi->bi_bh));
1208 		if (state != GFS2_BLKST_UNLINKED && bi->bi_clone)
1209 			buffer = bi->bi_clone + bi->bi_offset;
1210 
1211 		blk = gfs2_bitfit(buffer, bi->bi_len, goal, state);
1212 		if (blk != BFITNOENT)
1213 			break;
1214 
1215 		if ((goal == 0) && (state == GFS2_BLKST_FREE))
1216 			set_bit(GBF_FULL, &bi->bi_flags);
1217 
1218 		/* Try next bitmap block (wrap back to rgrp header if at end) */
1219 skip:
1220 		buf++;
1221 		buf %= length;
1222 		goal = 0;
1223 	}
1224 
1225 	if (blk != BFITNOENT)
1226 		*rbi = bi;
1227 
1228 	return blk;
1229 }
1230 
1231 /**
1232  * gfs2_alloc_extent - allocate an extent from a given bitmap
1233  * @rgd: the resource group descriptor
1234  * @bi: the bitmap within the rgrp
1235  * @blk: the block within the bitmap
1236  * @dinode: TRUE if the first block we allocate is for a dinode
1237  * @n: The extent length
1238  *
1239  * Add the found bitmap buffer to the transaction.
1240  * Set the found bits to @new_state to change block's allocation state.
1241  * Returns: starting block number of the extent (fs scope)
1242  */
1243 static u64 gfs2_alloc_extent(struct gfs2_rgrpd *rgd, struct gfs2_bitmap *bi,
1244 			     u32 blk, bool dinode, unsigned int *n)
1245 {
1246 	const unsigned int elen = *n;
1247 	u32 goal;
1248 	const u8 *buffer = NULL;
1249 
1250 	*n = 0;
1251 	buffer = bi->bi_bh->b_data + bi->bi_offset;
1252 	gfs2_trans_add_bh(rgd->rd_gl, bi->bi_bh, 1);
1253 	gfs2_setbit(rgd, bi->bi_bh->b_data, bi->bi_clone, bi->bi_offset,
1254 		    bi, blk, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
1255 	(*n)++;
1256 	goal = blk;
1257 	while (*n < elen) {
1258 		goal++;
1259 		if (goal >= (bi->bi_len * GFS2_NBBY))
1260 			break;
1261 		if (gfs2_testbit(rgd, buffer, bi->bi_len, goal) !=
1262 		    GFS2_BLKST_FREE)
1263 			break;
1264 		gfs2_setbit(rgd, bi->bi_bh->b_data, bi->bi_clone, bi->bi_offset,
1265 			    bi, goal, GFS2_BLKST_USED);
1266 		(*n)++;
1267 	}
1268 	blk = gfs2_bi2rgd_blk(bi, blk);
1269 	rgd->rd_last_alloc = blk + *n - 1;
1270 	return rgd->rd_data0 + blk;
1271 }
1272 
1273 /**
1274  * rgblk_free - Change alloc state of given block(s)
1275  * @sdp: the filesystem
1276  * @bstart: the start of a run of blocks to free
1277  * @blen: the length of the block run (all must lie within ONE RG!)
1278  * @new_state: GFS2_BLKST_XXX the after-allocation block state
1279  *
1280  * Returns:  Resource group containing the block(s)
1281  */
1282 
1283 static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart,
1284 				     u32 blen, unsigned char new_state)
1285 {
1286 	struct gfs2_rgrpd *rgd;
1287 	struct gfs2_bitmap *bi = NULL;
1288 	u32 length, rgrp_blk, buf_blk;
1289 	unsigned int buf;
1290 
1291 	rgd = gfs2_blk2rgrpd(sdp, bstart);
1292 	if (!rgd) {
1293 		if (gfs2_consist(sdp))
1294 			fs_err(sdp, "block = %llu\n", (unsigned long long)bstart);
1295 		return NULL;
1296 	}
1297 
1298 	length = rgd->rd_length;
1299 
1300 	rgrp_blk = bstart - rgd->rd_data0;
1301 
1302 	while (blen--) {
1303 		for (buf = 0; buf < length; buf++) {
1304 			bi = rgd->rd_bits + buf;
1305 			if (rgrp_blk < (bi->bi_start + bi->bi_len) * GFS2_NBBY)
1306 				break;
1307 		}
1308 
1309 		gfs2_assert(rgd->rd_sbd, buf < length);
1310 
1311 		buf_blk = rgrp_blk - bi->bi_start * GFS2_NBBY;
1312 		rgrp_blk++;
1313 
1314 		if (!bi->bi_clone) {
1315 			bi->bi_clone = kmalloc(bi->bi_bh->b_size,
1316 					       GFP_NOFS | __GFP_NOFAIL);
1317 			memcpy(bi->bi_clone + bi->bi_offset,
1318 			       bi->bi_bh->b_data + bi->bi_offset,
1319 			       bi->bi_len);
1320 		}
1321 		gfs2_trans_add_bh(rgd->rd_gl, bi->bi_bh, 1);
1322 		gfs2_setbit(rgd, bi->bi_bh->b_data, NULL, bi->bi_offset,
1323 			    bi, buf_blk, new_state);
1324 	}
1325 
1326 	return rgd;
1327 }
1328 
1329 /**
1330  * gfs2_rgrp_dump - print out an rgrp
1331  * @seq: The iterator
1332  * @gl: The glock in question
1333  *
1334  */
1335 
1336 int gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl)
1337 {
1338 	const struct gfs2_rgrpd *rgd = gl->gl_object;
1339 	if (rgd == NULL)
1340 		return 0;
1341 	gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u\n",
1342 		       (unsigned long long)rgd->rd_addr, rgd->rd_flags,
1343 		       rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes);
1344 	return 0;
1345 }
1346 
1347 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
1348 {
1349 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1350 	fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
1351 		(unsigned long long)rgd->rd_addr);
1352 	fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
1353 	gfs2_rgrp_dump(NULL, rgd->rd_gl);
1354 	rgd->rd_flags |= GFS2_RDF_ERROR;
1355 }
1356 
1357 /**
1358  * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
1359  * @ip: the inode to allocate the block for
1360  * @bn: Used to return the starting block number
1361  * @ndata: requested number of blocks/extent length (value/result)
1362  * @dinode: 1 if we're allocating a dinode block, else 0
1363  * @generation: the generation number of the inode
1364  *
1365  * Returns: 0 or error
1366  */
1367 
1368 int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
1369 		      bool dinode, u64 *generation)
1370 {
1371 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1372 	struct buffer_head *dibh;
1373 	struct gfs2_rgrpd *rgd;
1374 	unsigned int ndata;
1375 	u32 goal, blk; /* block, within the rgrp scope */
1376 	u64 block; /* block, within the file system scope */
1377 	int error;
1378 	struct gfs2_bitmap *bi;
1379 
1380 	/* Only happens if there is a bug in gfs2, return something distinctive
1381 	 * to ensure that it is noticed.
1382 	 */
1383 	if (ip->i_res == NULL)
1384 		return -ECANCELED;
1385 
1386 	rgd = ip->i_rgd;
1387 
1388 	if (!dinode && rgrp_contains_block(rgd, ip->i_goal))
1389 		goal = ip->i_goal - rgd->rd_data0;
1390 	else
1391 		goal = rgd->rd_last_alloc;
1392 
1393 	blk = rgblk_search(rgd, goal, GFS2_BLKST_FREE, &bi);
1394 
1395 	/* Since all blocks are reserved in advance, this shouldn't happen */
1396 	if (blk == BFITNOENT)
1397 		goto rgrp_error;
1398 
1399 	block = gfs2_alloc_extent(rgd, bi, blk, dinode, nblocks);
1400 	ndata = *nblocks;
1401 	if (dinode)
1402 		ndata--;
1403 
1404 	if (!dinode) {
1405 		ip->i_goal = block + ndata - 1;
1406 		error = gfs2_meta_inode_buffer(ip, &dibh);
1407 		if (error == 0) {
1408 			struct gfs2_dinode *di =
1409 				(struct gfs2_dinode *)dibh->b_data;
1410 			gfs2_trans_add_bh(ip->i_gl, dibh, 1);
1411 			di->di_goal_meta = di->di_goal_data =
1412 				cpu_to_be64(ip->i_goal);
1413 			brelse(dibh);
1414 		}
1415 	}
1416 	if (rgd->rd_free < *nblocks)
1417 		goto rgrp_error;
1418 
1419 	rgd->rd_free -= *nblocks;
1420 	if (dinode) {
1421 		rgd->rd_dinodes++;
1422 		*generation = rgd->rd_igeneration++;
1423 		if (*generation == 0)
1424 			*generation = rgd->rd_igeneration++;
1425 	}
1426 
1427 	gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
1428 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
1429 
1430 	gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
1431 	if (dinode)
1432 		gfs2_trans_add_unrevoke(sdp, block, 1);
1433 
1434 	/*
1435 	 * This needs reviewing to see why we cannot do the quota change
1436 	 * at this point in the dinode case.
1437 	 */
1438 	if (ndata)
1439 		gfs2_quota_change(ip, ndata, ip->i_inode.i_uid,
1440 				  ip->i_inode.i_gid);
1441 
1442 	rgd->rd_free_clone -= *nblocks;
1443 	trace_gfs2_block_alloc(ip, block, *nblocks,
1444 			       dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
1445 	*bn = block;
1446 	return 0;
1447 
1448 rgrp_error:
1449 	gfs2_rgrp_error(rgd);
1450 	return -EIO;
1451 }
1452 
1453 /**
1454  * __gfs2_free_blocks - free a contiguous run of block(s)
1455  * @ip: the inode these blocks are being freed from
1456  * @bstart: first block of a run of contiguous blocks
1457  * @blen: the length of the block run
1458  * @meta: 1 if the blocks represent metadata
1459  *
1460  */
1461 
1462 void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta)
1463 {
1464 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1465 	struct gfs2_rgrpd *rgd;
1466 
1467 	rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE);
1468 	if (!rgd)
1469 		return;
1470 	trace_gfs2_block_alloc(ip, bstart, blen, GFS2_BLKST_FREE);
1471 	rgd->rd_free += blen;
1472 
1473 	gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
1474 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
1475 
1476 	/* Directories keep their data in the metadata address space */
1477 	if (meta || ip->i_depth)
1478 		gfs2_meta_wipe(ip, bstart, blen);
1479 }
1480 
1481 /**
1482  * gfs2_free_meta - free a contiguous run of data block(s)
1483  * @ip: the inode these blocks are being freed from
1484  * @bstart: first block of a run of contiguous blocks
1485  * @blen: the length of the block run
1486  *
1487  */
1488 
1489 void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen)
1490 {
1491 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1492 
1493 	__gfs2_free_blocks(ip, bstart, blen, 1);
1494 	gfs2_statfs_change(sdp, 0, +blen, 0);
1495 	gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
1496 }
1497 
1498 void gfs2_unlink_di(struct inode *inode)
1499 {
1500 	struct gfs2_inode *ip = GFS2_I(inode);
1501 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1502 	struct gfs2_rgrpd *rgd;
1503 	u64 blkno = ip->i_no_addr;
1504 
1505 	rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED);
1506 	if (!rgd)
1507 		return;
1508 	trace_gfs2_block_alloc(ip, blkno, 1, GFS2_BLKST_UNLINKED);
1509 	gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
1510 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
1511 }
1512 
1513 static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno)
1514 {
1515 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1516 	struct gfs2_rgrpd *tmp_rgd;
1517 
1518 	tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE);
1519 	if (!tmp_rgd)
1520 		return;
1521 	gfs2_assert_withdraw(sdp, rgd == tmp_rgd);
1522 
1523 	if (!rgd->rd_dinodes)
1524 		gfs2_consist_rgrpd(rgd);
1525 	rgd->rd_dinodes--;
1526 	rgd->rd_free++;
1527 
1528 	gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
1529 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
1530 
1531 	gfs2_statfs_change(sdp, 0, +1, -1);
1532 }
1533 
1534 
1535 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
1536 {
1537 	gfs2_free_uninit_di(rgd, ip->i_no_addr);
1538 	trace_gfs2_block_alloc(ip, ip->i_no_addr, 1, GFS2_BLKST_FREE);
1539 	gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
1540 	gfs2_meta_wipe(ip, ip->i_no_addr, 1);
1541 }
1542 
1543 /**
1544  * gfs2_check_blk_type - Check the type of a block
1545  * @sdp: The superblock
1546  * @no_addr: The block number to check
1547  * @type: The block type we are looking for
1548  *
1549  * Returns: 0 if the block type matches the expected type
1550  *          -ESTALE if it doesn't match
1551  *          or -ve errno if something went wrong while checking
1552  */
1553 
1554 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
1555 {
1556 	struct gfs2_rgrpd *rgd;
1557 	struct gfs2_holder rgd_gh;
1558 	int error;
1559 
1560 	error = gfs2_rindex_update(sdp);
1561 	if (error)
1562 		return error;
1563 
1564 	error = -EINVAL;
1565 	rgd = gfs2_blk2rgrpd(sdp, no_addr);
1566 	if (!rgd)
1567 		goto fail;
1568 
1569 	error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
1570 	if (error)
1571 		goto fail;
1572 
1573 	if (gfs2_get_block_type(rgd, no_addr) != type)
1574 		error = -ESTALE;
1575 
1576 	gfs2_glock_dq_uninit(&rgd_gh);
1577 fail:
1578 	return error;
1579 }
1580 
1581 /**
1582  * gfs2_rlist_add - add a RG to a list of RGs
1583  * @ip: the inode
1584  * @rlist: the list of resource groups
1585  * @block: the block
1586  *
1587  * Figure out what RG a block belongs to and add that RG to the list
1588  *
1589  * FIXME: Don't use NOFAIL
1590  *
1591  */
1592 
1593 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
1594 		    u64 block)
1595 {
1596 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1597 	struct gfs2_rgrpd *rgd;
1598 	struct gfs2_rgrpd **tmp;
1599 	unsigned int new_space;
1600 	unsigned int x;
1601 
1602 	if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
1603 		return;
1604 
1605 	if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block))
1606 		rgd = ip->i_rgd;
1607 	else
1608 		rgd = gfs2_blk2rgrpd(sdp, block);
1609 	if (!rgd) {
1610 		fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block);
1611 		return;
1612 	}
1613 	ip->i_rgd = rgd;
1614 
1615 	for (x = 0; x < rlist->rl_rgrps; x++)
1616 		if (rlist->rl_rgd[x] == rgd)
1617 			return;
1618 
1619 	if (rlist->rl_rgrps == rlist->rl_space) {
1620 		new_space = rlist->rl_space + 10;
1621 
1622 		tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
1623 			      GFP_NOFS | __GFP_NOFAIL);
1624 
1625 		if (rlist->rl_rgd) {
1626 			memcpy(tmp, rlist->rl_rgd,
1627 			       rlist->rl_space * sizeof(struct gfs2_rgrpd *));
1628 			kfree(rlist->rl_rgd);
1629 		}
1630 
1631 		rlist->rl_space = new_space;
1632 		rlist->rl_rgd = tmp;
1633 	}
1634 
1635 	rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
1636 }
1637 
1638 /**
1639  * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
1640  *      and initialize an array of glock holders for them
1641  * @rlist: the list of resource groups
1642  * @state: the lock state to acquire the RG lock in
1643  * @flags: the modifier flags for the holder structures
1644  *
1645  * FIXME: Don't use NOFAIL
1646  *
1647  */
1648 
1649 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state)
1650 {
1651 	unsigned int x;
1652 
1653 	rlist->rl_ghs = kcalloc(rlist->rl_rgrps, sizeof(struct gfs2_holder),
1654 				GFP_NOFS | __GFP_NOFAIL);
1655 	for (x = 0; x < rlist->rl_rgrps; x++)
1656 		gfs2_holder_init(rlist->rl_rgd[x]->rd_gl,
1657 				state, 0,
1658 				&rlist->rl_ghs[x]);
1659 }
1660 
1661 /**
1662  * gfs2_rlist_free - free a resource group list
1663  * @list: the list of resource groups
1664  *
1665  */
1666 
1667 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
1668 {
1669 	unsigned int x;
1670 
1671 	kfree(rlist->rl_rgd);
1672 
1673 	if (rlist->rl_ghs) {
1674 		for (x = 0; x < rlist->rl_rgrps; x++)
1675 			gfs2_holder_uninit(&rlist->rl_ghs[x]);
1676 		kfree(rlist->rl_ghs);
1677 	}
1678 }
1679 
1680