1 /* 2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This copyrighted material is made available to anyone wishing to use, 6 * modify, copy, or redistribute it subject to the terms and conditions 7 * of the GNU General Public License version 2. 8 */ 9 10 #include <linux/slab.h> 11 #include <linux/spinlock.h> 12 #include <linux/completion.h> 13 #include <linux/buffer_head.h> 14 #include <linux/fs.h> 15 #include <linux/gfs2_ondisk.h> 16 #include <linux/prefetch.h> 17 #include <linux/blkdev.h> 18 #include <linux/rbtree.h> 19 20 #include "gfs2.h" 21 #include "incore.h" 22 #include "glock.h" 23 #include "glops.h" 24 #include "lops.h" 25 #include "meta_io.h" 26 #include "quota.h" 27 #include "rgrp.h" 28 #include "super.h" 29 #include "trans.h" 30 #include "util.h" 31 #include "log.h" 32 #include "inode.h" 33 #include "trace_gfs2.h" 34 35 #define BFITNOENT ((u32)~0) 36 #define NO_BLOCK ((u64)~0) 37 38 #if BITS_PER_LONG == 32 39 #define LBITMASK (0x55555555UL) 40 #define LBITSKIP55 (0x55555555UL) 41 #define LBITSKIP00 (0x00000000UL) 42 #else 43 #define LBITMASK (0x5555555555555555UL) 44 #define LBITSKIP55 (0x5555555555555555UL) 45 #define LBITSKIP00 (0x0000000000000000UL) 46 #endif 47 48 /* 49 * These routines are used by the resource group routines (rgrp.c) 50 * to keep track of block allocation. Each block is represented by two 51 * bits. So, each byte represents GFS2_NBBY (i.e. 4) blocks. 52 * 53 * 0 = Free 54 * 1 = Used (not metadata) 55 * 2 = Unlinked (still in use) inode 56 * 3 = Used (metadata) 57 */ 58 59 static const char valid_change[16] = { 60 /* current */ 61 /* n */ 0, 1, 1, 1, 62 /* e */ 1, 0, 0, 0, 63 /* w */ 0, 0, 0, 1, 64 1, 0, 0, 0 65 }; 66 67 static u32 rgblk_search(struct gfs2_rgrpd *rgd, u32 goal, 68 unsigned char old_state, 69 struct gfs2_bitmap **rbi); 70 71 /** 72 * gfs2_setbit - Set a bit in the bitmaps 73 * @buffer: the buffer that holds the bitmaps 74 * @buflen: the length (in bytes) of the buffer 75 * @block: the block to set 76 * @new_state: the new state of the block 77 * 78 */ 79 80 static inline void gfs2_setbit(struct gfs2_rgrpd *rgd, unsigned char *buf1, 81 unsigned char *buf2, unsigned int offset, 82 struct gfs2_bitmap *bi, u32 block, 83 unsigned char new_state) 84 { 85 unsigned char *byte1, *byte2, *end, cur_state; 86 unsigned int buflen = bi->bi_len; 87 const unsigned int bit = (block % GFS2_NBBY) * GFS2_BIT_SIZE; 88 89 byte1 = buf1 + offset + (block / GFS2_NBBY); 90 end = buf1 + offset + buflen; 91 92 BUG_ON(byte1 >= end); 93 94 cur_state = (*byte1 >> bit) & GFS2_BIT_MASK; 95 96 if (unlikely(!valid_change[new_state * 4 + cur_state])) { 97 printk(KERN_WARNING "GFS2: buf_blk = 0x%llx old_state=%d, " 98 "new_state=%d\n", 99 (unsigned long long)block, cur_state, new_state); 100 printk(KERN_WARNING "GFS2: rgrp=0x%llx bi_start=0x%lx\n", 101 (unsigned long long)rgd->rd_addr, 102 (unsigned long)bi->bi_start); 103 printk(KERN_WARNING "GFS2: bi_offset=0x%lx bi_len=0x%lx\n", 104 (unsigned long)bi->bi_offset, 105 (unsigned long)bi->bi_len); 106 dump_stack(); 107 gfs2_consist_rgrpd(rgd); 108 return; 109 } 110 *byte1 ^= (cur_state ^ new_state) << bit; 111 112 if (buf2) { 113 byte2 = buf2 + offset + (block / GFS2_NBBY); 114 cur_state = (*byte2 >> bit) & GFS2_BIT_MASK; 115 *byte2 ^= (cur_state ^ new_state) << bit; 116 } 117 } 118 119 /** 120 * gfs2_testbit - test a bit in the bitmaps 121 * @buffer: the buffer that holds the bitmaps 122 * @buflen: the length (in bytes) of the buffer 123 * @block: the block to read 124 * 125 */ 126 127 static inline unsigned char gfs2_testbit(struct gfs2_rgrpd *rgd, 128 const unsigned char *buffer, 129 unsigned int buflen, u32 block) 130 { 131 const unsigned char *byte, *end; 132 unsigned char cur_state; 133 unsigned int bit; 134 135 byte = buffer + (block / GFS2_NBBY); 136 bit = (block % GFS2_NBBY) * GFS2_BIT_SIZE; 137 end = buffer + buflen; 138 139 gfs2_assert(rgd->rd_sbd, byte < end); 140 141 cur_state = (*byte >> bit) & GFS2_BIT_MASK; 142 143 return cur_state; 144 } 145 146 /** 147 * gfs2_bit_search 148 * @ptr: Pointer to bitmap data 149 * @mask: Mask to use (normally 0x55555.... but adjusted for search start) 150 * @state: The state we are searching for 151 * 152 * We xor the bitmap data with a patter which is the bitwise opposite 153 * of what we are looking for, this gives rise to a pattern of ones 154 * wherever there is a match. Since we have two bits per entry, we 155 * take this pattern, shift it down by one place and then and it with 156 * the original. All the even bit positions (0,2,4, etc) then represent 157 * successful matches, so we mask with 0x55555..... to remove the unwanted 158 * odd bit positions. 159 * 160 * This allows searching of a whole u64 at once (32 blocks) with a 161 * single test (on 64 bit arches). 162 */ 163 164 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state) 165 { 166 u64 tmp; 167 static const u64 search[] = { 168 [0] = 0xffffffffffffffffULL, 169 [1] = 0xaaaaaaaaaaaaaaaaULL, 170 [2] = 0x5555555555555555ULL, 171 [3] = 0x0000000000000000ULL, 172 }; 173 tmp = le64_to_cpu(*ptr) ^ search[state]; 174 tmp &= (tmp >> 1); 175 tmp &= mask; 176 return tmp; 177 } 178 179 /** 180 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing 181 * a block in a given allocation state. 182 * @buffer: the buffer that holds the bitmaps 183 * @len: the length (in bytes) of the buffer 184 * @goal: start search at this block's bit-pair (within @buffer) 185 * @state: GFS2_BLKST_XXX the state of the block we're looking for. 186 * 187 * Scope of @goal and returned block number is only within this bitmap buffer, 188 * not entire rgrp or filesystem. @buffer will be offset from the actual 189 * beginning of a bitmap block buffer, skipping any header structures, but 190 * headers are always a multiple of 64 bits long so that the buffer is 191 * always aligned to a 64 bit boundary. 192 * 193 * The size of the buffer is in bytes, but is it assumed that it is 194 * always ok to read a complete multiple of 64 bits at the end 195 * of the block in case the end is no aligned to a natural boundary. 196 * 197 * Return: the block number (bitmap buffer scope) that was found 198 */ 199 200 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len, 201 u32 goal, u8 state) 202 { 203 u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1); 204 const __le64 *ptr = ((__le64 *)buf) + (goal >> 5); 205 const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64))); 206 u64 tmp; 207 u64 mask = 0x5555555555555555ULL; 208 u32 bit; 209 210 BUG_ON(state > 3); 211 212 /* Mask off bits we don't care about at the start of the search */ 213 mask <<= spoint; 214 tmp = gfs2_bit_search(ptr, mask, state); 215 ptr++; 216 while(tmp == 0 && ptr < end) { 217 tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state); 218 ptr++; 219 } 220 /* Mask off any bits which are more than len bytes from the start */ 221 if (ptr == end && (len & (sizeof(u64) - 1))) 222 tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1)))); 223 /* Didn't find anything, so return */ 224 if (tmp == 0) 225 return BFITNOENT; 226 ptr--; 227 bit = __ffs64(tmp); 228 bit /= 2; /* two bits per entry in the bitmap */ 229 return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit; 230 } 231 232 /** 233 * gfs2_bitcount - count the number of bits in a certain state 234 * @buffer: the buffer that holds the bitmaps 235 * @buflen: the length (in bytes) of the buffer 236 * @state: the state of the block we're looking for 237 * 238 * Returns: The number of bits 239 */ 240 241 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer, 242 unsigned int buflen, u8 state) 243 { 244 const u8 *byte = buffer; 245 const u8 *end = buffer + buflen; 246 const u8 state1 = state << 2; 247 const u8 state2 = state << 4; 248 const u8 state3 = state << 6; 249 u32 count = 0; 250 251 for (; byte < end; byte++) { 252 if (((*byte) & 0x03) == state) 253 count++; 254 if (((*byte) & 0x0C) == state1) 255 count++; 256 if (((*byte) & 0x30) == state2) 257 count++; 258 if (((*byte) & 0xC0) == state3) 259 count++; 260 } 261 262 return count; 263 } 264 265 /** 266 * gfs2_rgrp_verify - Verify that a resource group is consistent 267 * @sdp: the filesystem 268 * @rgd: the rgrp 269 * 270 */ 271 272 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd) 273 { 274 struct gfs2_sbd *sdp = rgd->rd_sbd; 275 struct gfs2_bitmap *bi = NULL; 276 u32 length = rgd->rd_length; 277 u32 count[4], tmp; 278 int buf, x; 279 280 memset(count, 0, 4 * sizeof(u32)); 281 282 /* Count # blocks in each of 4 possible allocation states */ 283 for (buf = 0; buf < length; buf++) { 284 bi = rgd->rd_bits + buf; 285 for (x = 0; x < 4; x++) 286 count[x] += gfs2_bitcount(rgd, 287 bi->bi_bh->b_data + 288 bi->bi_offset, 289 bi->bi_len, x); 290 } 291 292 if (count[0] != rgd->rd_free) { 293 if (gfs2_consist_rgrpd(rgd)) 294 fs_err(sdp, "free data mismatch: %u != %u\n", 295 count[0], rgd->rd_free); 296 return; 297 } 298 299 tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes; 300 if (count[1] != tmp) { 301 if (gfs2_consist_rgrpd(rgd)) 302 fs_err(sdp, "used data mismatch: %u != %u\n", 303 count[1], tmp); 304 return; 305 } 306 307 if (count[2] + count[3] != rgd->rd_dinodes) { 308 if (gfs2_consist_rgrpd(rgd)) 309 fs_err(sdp, "used metadata mismatch: %u != %u\n", 310 count[2] + count[3], rgd->rd_dinodes); 311 return; 312 } 313 } 314 315 static inline int rgrp_contains_block(struct gfs2_rgrpd *rgd, u64 block) 316 { 317 u64 first = rgd->rd_data0; 318 u64 last = first + rgd->rd_data; 319 return first <= block && block < last; 320 } 321 322 /** 323 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number 324 * @sdp: The GFS2 superblock 325 * @n: The data block number 326 * 327 * Returns: The resource group, or NULL if not found 328 */ 329 330 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk) 331 { 332 struct rb_node **newn; 333 struct gfs2_rgrpd *cur; 334 335 spin_lock(&sdp->sd_rindex_spin); 336 newn = &sdp->sd_rindex_tree.rb_node; 337 while (*newn) { 338 cur = rb_entry(*newn, struct gfs2_rgrpd, rd_node); 339 if (blk < cur->rd_addr) 340 newn = &((*newn)->rb_left); 341 else if (blk >= cur->rd_data0 + cur->rd_data) 342 newn = &((*newn)->rb_right); 343 else { 344 spin_unlock(&sdp->sd_rindex_spin); 345 return cur; 346 } 347 } 348 spin_unlock(&sdp->sd_rindex_spin); 349 350 return NULL; 351 } 352 353 /** 354 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem 355 * @sdp: The GFS2 superblock 356 * 357 * Returns: The first rgrp in the filesystem 358 */ 359 360 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp) 361 { 362 const struct rb_node *n; 363 struct gfs2_rgrpd *rgd; 364 365 spin_lock(&sdp->sd_rindex_spin); 366 n = rb_first(&sdp->sd_rindex_tree); 367 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 368 spin_unlock(&sdp->sd_rindex_spin); 369 370 return rgd; 371 } 372 373 /** 374 * gfs2_rgrpd_get_next - get the next RG 375 * @rgd: A RG 376 * 377 * Returns: The next rgrp 378 */ 379 380 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd) 381 { 382 struct gfs2_sbd *sdp = rgd->rd_sbd; 383 const struct rb_node *n; 384 385 spin_lock(&sdp->sd_rindex_spin); 386 n = rb_next(&rgd->rd_node); 387 if (n == NULL) 388 n = rb_first(&sdp->sd_rindex_tree); 389 390 if (unlikely(&rgd->rd_node == n)) { 391 spin_unlock(&sdp->sd_rindex_spin); 392 return NULL; 393 } 394 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 395 spin_unlock(&sdp->sd_rindex_spin); 396 return rgd; 397 } 398 399 void gfs2_free_clones(struct gfs2_rgrpd *rgd) 400 { 401 int x; 402 403 for (x = 0; x < rgd->rd_length; x++) { 404 struct gfs2_bitmap *bi = rgd->rd_bits + x; 405 kfree(bi->bi_clone); 406 bi->bi_clone = NULL; 407 } 408 } 409 410 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp) 411 { 412 struct rb_node *n; 413 struct gfs2_rgrpd *rgd; 414 struct gfs2_glock *gl; 415 416 while ((n = rb_first(&sdp->sd_rindex_tree))) { 417 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 418 gl = rgd->rd_gl; 419 420 rb_erase(n, &sdp->sd_rindex_tree); 421 422 if (gl) { 423 spin_lock(&gl->gl_spin); 424 gl->gl_object = NULL; 425 spin_unlock(&gl->gl_spin); 426 gfs2_glock_add_to_lru(gl); 427 gfs2_glock_put(gl); 428 } 429 430 gfs2_free_clones(rgd); 431 kfree(rgd->rd_bits); 432 kmem_cache_free(gfs2_rgrpd_cachep, rgd); 433 } 434 } 435 436 static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd) 437 { 438 printk(KERN_INFO " ri_addr = %llu\n", (unsigned long long)rgd->rd_addr); 439 printk(KERN_INFO " ri_length = %u\n", rgd->rd_length); 440 printk(KERN_INFO " ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0); 441 printk(KERN_INFO " ri_data = %u\n", rgd->rd_data); 442 printk(KERN_INFO " ri_bitbytes = %u\n", rgd->rd_bitbytes); 443 } 444 445 /** 446 * gfs2_compute_bitstructs - Compute the bitmap sizes 447 * @rgd: The resource group descriptor 448 * 449 * Calculates bitmap descriptors, one for each block that contains bitmap data 450 * 451 * Returns: errno 452 */ 453 454 static int compute_bitstructs(struct gfs2_rgrpd *rgd) 455 { 456 struct gfs2_sbd *sdp = rgd->rd_sbd; 457 struct gfs2_bitmap *bi; 458 u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */ 459 u32 bytes_left, bytes; 460 int x; 461 462 if (!length) 463 return -EINVAL; 464 465 rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS); 466 if (!rgd->rd_bits) 467 return -ENOMEM; 468 469 bytes_left = rgd->rd_bitbytes; 470 471 for (x = 0; x < length; x++) { 472 bi = rgd->rd_bits + x; 473 474 bi->bi_flags = 0; 475 /* small rgrp; bitmap stored completely in header block */ 476 if (length == 1) { 477 bytes = bytes_left; 478 bi->bi_offset = sizeof(struct gfs2_rgrp); 479 bi->bi_start = 0; 480 bi->bi_len = bytes; 481 /* header block */ 482 } else if (x == 0) { 483 bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp); 484 bi->bi_offset = sizeof(struct gfs2_rgrp); 485 bi->bi_start = 0; 486 bi->bi_len = bytes; 487 /* last block */ 488 } else if (x + 1 == length) { 489 bytes = bytes_left; 490 bi->bi_offset = sizeof(struct gfs2_meta_header); 491 bi->bi_start = rgd->rd_bitbytes - bytes_left; 492 bi->bi_len = bytes; 493 /* other blocks */ 494 } else { 495 bytes = sdp->sd_sb.sb_bsize - 496 sizeof(struct gfs2_meta_header); 497 bi->bi_offset = sizeof(struct gfs2_meta_header); 498 bi->bi_start = rgd->rd_bitbytes - bytes_left; 499 bi->bi_len = bytes; 500 } 501 502 bytes_left -= bytes; 503 } 504 505 if (bytes_left) { 506 gfs2_consist_rgrpd(rgd); 507 return -EIO; 508 } 509 bi = rgd->rd_bits + (length - 1); 510 if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) { 511 if (gfs2_consist_rgrpd(rgd)) { 512 gfs2_rindex_print(rgd); 513 fs_err(sdp, "start=%u len=%u offset=%u\n", 514 bi->bi_start, bi->bi_len, bi->bi_offset); 515 } 516 return -EIO; 517 } 518 519 return 0; 520 } 521 522 /** 523 * gfs2_ri_total - Total up the file system space, according to the rindex. 524 * 525 */ 526 u64 gfs2_ri_total(struct gfs2_sbd *sdp) 527 { 528 u64 total_data = 0; 529 struct inode *inode = sdp->sd_rindex; 530 struct gfs2_inode *ip = GFS2_I(inode); 531 char buf[sizeof(struct gfs2_rindex)]; 532 struct file_ra_state ra_state; 533 int error, rgrps; 534 535 mutex_lock(&sdp->sd_rindex_mutex); 536 file_ra_state_init(&ra_state, inode->i_mapping); 537 for (rgrps = 0;; rgrps++) { 538 loff_t pos = rgrps * sizeof(struct gfs2_rindex); 539 540 if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode)) 541 break; 542 error = gfs2_internal_read(ip, &ra_state, buf, &pos, 543 sizeof(struct gfs2_rindex)); 544 if (error != sizeof(struct gfs2_rindex)) 545 break; 546 total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data); 547 } 548 mutex_unlock(&sdp->sd_rindex_mutex); 549 return total_data; 550 } 551 552 static void rgd_insert(struct gfs2_rgrpd *rgd) 553 { 554 struct gfs2_sbd *sdp = rgd->rd_sbd; 555 struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL; 556 557 /* Figure out where to put new node */ 558 while (*newn) { 559 struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd, 560 rd_node); 561 562 parent = *newn; 563 if (rgd->rd_addr < cur->rd_addr) 564 newn = &((*newn)->rb_left); 565 else if (rgd->rd_addr > cur->rd_addr) 566 newn = &((*newn)->rb_right); 567 else 568 return; 569 } 570 571 rb_link_node(&rgd->rd_node, parent, newn); 572 rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree); 573 } 574 575 /** 576 * read_rindex_entry - Pull in a new resource index entry from the disk 577 * @gl: The glock covering the rindex inode 578 * 579 * Returns: 0 on success, > 0 on EOF, error code otherwise 580 */ 581 582 static int read_rindex_entry(struct gfs2_inode *ip, 583 struct file_ra_state *ra_state) 584 { 585 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 586 loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex); 587 struct gfs2_rindex buf; 588 int error; 589 struct gfs2_rgrpd *rgd; 590 591 if (pos >= i_size_read(&ip->i_inode)) 592 return 1; 593 594 error = gfs2_internal_read(ip, ra_state, (char *)&buf, &pos, 595 sizeof(struct gfs2_rindex)); 596 597 if (error != sizeof(struct gfs2_rindex)) 598 return (error == 0) ? 1 : error; 599 600 rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS); 601 error = -ENOMEM; 602 if (!rgd) 603 return error; 604 605 rgd->rd_sbd = sdp; 606 rgd->rd_addr = be64_to_cpu(buf.ri_addr); 607 rgd->rd_length = be32_to_cpu(buf.ri_length); 608 rgd->rd_data0 = be64_to_cpu(buf.ri_data0); 609 rgd->rd_data = be32_to_cpu(buf.ri_data); 610 rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes); 611 612 error = compute_bitstructs(rgd); 613 if (error) 614 goto fail; 615 616 error = gfs2_glock_get(sdp, rgd->rd_addr, 617 &gfs2_rgrp_glops, CREATE, &rgd->rd_gl); 618 if (error) 619 goto fail; 620 621 rgd->rd_gl->gl_object = rgd; 622 rgd->rd_flags &= ~GFS2_RDF_UPTODATE; 623 if (rgd->rd_data > sdp->sd_max_rg_data) 624 sdp->sd_max_rg_data = rgd->rd_data; 625 spin_lock(&sdp->sd_rindex_spin); 626 rgd_insert(rgd); 627 sdp->sd_rgrps++; 628 spin_unlock(&sdp->sd_rindex_spin); 629 return error; 630 631 fail: 632 kfree(rgd->rd_bits); 633 kmem_cache_free(gfs2_rgrpd_cachep, rgd); 634 return error; 635 } 636 637 /** 638 * gfs2_ri_update - Pull in a new resource index from the disk 639 * @ip: pointer to the rindex inode 640 * 641 * Returns: 0 on successful update, error code otherwise 642 */ 643 644 static int gfs2_ri_update(struct gfs2_inode *ip) 645 { 646 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 647 struct inode *inode = &ip->i_inode; 648 struct file_ra_state ra_state; 649 int error; 650 651 file_ra_state_init(&ra_state, inode->i_mapping); 652 do { 653 error = read_rindex_entry(ip, &ra_state); 654 } while (error == 0); 655 656 if (error < 0) 657 return error; 658 659 sdp->sd_rindex_uptodate = 1; 660 return 0; 661 } 662 663 /** 664 * gfs2_rindex_update - Update the rindex if required 665 * @sdp: The GFS2 superblock 666 * 667 * We grab a lock on the rindex inode to make sure that it doesn't 668 * change whilst we are performing an operation. We keep this lock 669 * for quite long periods of time compared to other locks. This 670 * doesn't matter, since it is shared and it is very, very rarely 671 * accessed in the exclusive mode (i.e. only when expanding the filesystem). 672 * 673 * This makes sure that we're using the latest copy of the resource index 674 * special file, which might have been updated if someone expanded the 675 * filesystem (via gfs2_grow utility), which adds new resource groups. 676 * 677 * Returns: 0 on succeess, error code otherwise 678 */ 679 680 int gfs2_rindex_update(struct gfs2_sbd *sdp) 681 { 682 struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex); 683 struct gfs2_glock *gl = ip->i_gl; 684 struct gfs2_holder ri_gh; 685 int error = 0; 686 687 /* Read new copy from disk if we don't have the latest */ 688 if (!sdp->sd_rindex_uptodate) { 689 mutex_lock(&sdp->sd_rindex_mutex); 690 error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh); 691 if (error) 692 return error; 693 if (!sdp->sd_rindex_uptodate) 694 error = gfs2_ri_update(ip); 695 gfs2_glock_dq_uninit(&ri_gh); 696 mutex_unlock(&sdp->sd_rindex_mutex); 697 } 698 699 700 return error; 701 } 702 703 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf) 704 { 705 const struct gfs2_rgrp *str = buf; 706 u32 rg_flags; 707 708 rg_flags = be32_to_cpu(str->rg_flags); 709 rg_flags &= ~GFS2_RDF_MASK; 710 rgd->rd_flags &= GFS2_RDF_MASK; 711 rgd->rd_flags |= rg_flags; 712 rgd->rd_free = be32_to_cpu(str->rg_free); 713 rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes); 714 rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration); 715 } 716 717 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf) 718 { 719 struct gfs2_rgrp *str = buf; 720 721 str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK); 722 str->rg_free = cpu_to_be32(rgd->rd_free); 723 str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes); 724 str->__pad = cpu_to_be32(0); 725 str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration); 726 memset(&str->rg_reserved, 0, sizeof(str->rg_reserved)); 727 } 728 729 /** 730 * gfs2_rgrp_go_lock - Read in a RG's header and bitmaps 731 * @rgd: the struct gfs2_rgrpd describing the RG to read in 732 * 733 * Read in all of a Resource Group's header and bitmap blocks. 734 * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps. 735 * 736 * Returns: errno 737 */ 738 739 int gfs2_rgrp_go_lock(struct gfs2_holder *gh) 740 { 741 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object; 742 struct gfs2_sbd *sdp = rgd->rd_sbd; 743 struct gfs2_glock *gl = rgd->rd_gl; 744 unsigned int length = rgd->rd_length; 745 struct gfs2_bitmap *bi; 746 unsigned int x, y; 747 int error; 748 749 for (x = 0; x < length; x++) { 750 bi = rgd->rd_bits + x; 751 error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, &bi->bi_bh); 752 if (error) 753 goto fail; 754 } 755 756 for (y = length; y--;) { 757 bi = rgd->rd_bits + y; 758 error = gfs2_meta_wait(sdp, bi->bi_bh); 759 if (error) 760 goto fail; 761 if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB : 762 GFS2_METATYPE_RG)) { 763 error = -EIO; 764 goto fail; 765 } 766 } 767 768 if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) { 769 for (x = 0; x < length; x++) 770 clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags); 771 gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data); 772 rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK); 773 rgd->rd_free_clone = rgd->rd_free; 774 } 775 776 return 0; 777 778 fail: 779 while (x--) { 780 bi = rgd->rd_bits + x; 781 brelse(bi->bi_bh); 782 bi->bi_bh = NULL; 783 gfs2_assert_warn(sdp, !bi->bi_clone); 784 } 785 786 return error; 787 } 788 789 /** 790 * gfs2_rgrp_go_unlock - Release RG bitmaps read in with gfs2_rgrp_bh_get() 791 * @rgd: the struct gfs2_rgrpd describing the RG to read in 792 * 793 */ 794 795 void gfs2_rgrp_go_unlock(struct gfs2_holder *gh) 796 { 797 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object; 798 int x, length = rgd->rd_length; 799 800 for (x = 0; x < length; x++) { 801 struct gfs2_bitmap *bi = rgd->rd_bits + x; 802 brelse(bi->bi_bh); 803 bi->bi_bh = NULL; 804 } 805 806 } 807 808 void gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset, 809 struct buffer_head *bh, 810 const struct gfs2_bitmap *bi) 811 { 812 struct super_block *sb = sdp->sd_vfs; 813 struct block_device *bdev = sb->s_bdev; 814 const unsigned int sects_per_blk = sdp->sd_sb.sb_bsize / 815 bdev_logical_block_size(sb->s_bdev); 816 u64 blk; 817 sector_t start = 0; 818 sector_t nr_sects = 0; 819 int rv; 820 unsigned int x; 821 822 for (x = 0; x < bi->bi_len; x++) { 823 const u8 *orig = bh->b_data + bi->bi_offset + x; 824 const u8 *clone = bi->bi_clone + bi->bi_offset + x; 825 u8 diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1)); 826 diff &= 0x55; 827 if (diff == 0) 828 continue; 829 blk = offset + ((bi->bi_start + x) * GFS2_NBBY); 830 blk *= sects_per_blk; /* convert to sectors */ 831 while(diff) { 832 if (diff & 1) { 833 if (nr_sects == 0) 834 goto start_new_extent; 835 if ((start + nr_sects) != blk) { 836 rv = blkdev_issue_discard(bdev, start, 837 nr_sects, GFP_NOFS, 838 0); 839 if (rv) 840 goto fail; 841 nr_sects = 0; 842 start_new_extent: 843 start = blk; 844 } 845 nr_sects += sects_per_blk; 846 } 847 diff >>= 2; 848 blk += sects_per_blk; 849 } 850 } 851 if (nr_sects) { 852 rv = blkdev_issue_discard(bdev, start, nr_sects, GFP_NOFS, 0); 853 if (rv) 854 goto fail; 855 } 856 return; 857 fail: 858 fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv); 859 sdp->sd_args.ar_discard = 0; 860 } 861 862 /** 863 * gfs2_qadata_get - get the struct gfs2_qadata structure for an inode 864 * @ip: the incore GFS2 inode structure 865 * 866 * Returns: the struct gfs2_qadata 867 */ 868 869 struct gfs2_qadata *gfs2_qadata_get(struct gfs2_inode *ip) 870 { 871 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 872 int error; 873 BUG_ON(ip->i_qadata != NULL); 874 ip->i_qadata = kzalloc(sizeof(struct gfs2_qadata), GFP_NOFS); 875 error = gfs2_rindex_update(sdp); 876 if (error) 877 fs_warn(sdp, "rindex update returns %d\n", error); 878 return ip->i_qadata; 879 } 880 881 /** 882 * gfs2_blkrsv_get - get the struct gfs2_blkreserv structure for an inode 883 * @ip: the incore GFS2 inode structure 884 * 885 * Returns: the struct gfs2_qadata 886 */ 887 888 static struct gfs2_blkreserv *gfs2_blkrsv_get(struct gfs2_inode *ip) 889 { 890 BUG_ON(ip->i_res != NULL); 891 ip->i_res = kzalloc(sizeof(struct gfs2_blkreserv), GFP_NOFS); 892 return ip->i_res; 893 } 894 895 /** 896 * try_rgrp_fit - See if a given reservation will fit in a given RG 897 * @rgd: the RG data 898 * @ip: the inode 899 * 900 * If there's room for the requested blocks to be allocated from the RG: 901 * 902 * Returns: 1 on success (it fits), 0 on failure (it doesn't fit) 903 */ 904 905 static int try_rgrp_fit(const struct gfs2_rgrpd *rgd, const struct gfs2_inode *ip) 906 { 907 const struct gfs2_blkreserv *rs = ip->i_res; 908 909 if (rgd->rd_flags & (GFS2_RGF_NOALLOC | GFS2_RDF_ERROR)) 910 return 0; 911 if (rgd->rd_free_clone >= rs->rs_requested) 912 return 1; 913 return 0; 914 } 915 916 static inline u32 gfs2_bi2rgd_blk(struct gfs2_bitmap *bi, u32 blk) 917 { 918 return (bi->bi_start * GFS2_NBBY) + blk; 919 } 920 921 /** 922 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes 923 * @rgd: The rgrp 924 * 925 * Returns: 0 if no error 926 * The inode, if one has been found, in inode. 927 */ 928 929 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip) 930 { 931 u32 goal = 0, block; 932 u64 no_addr; 933 struct gfs2_sbd *sdp = rgd->rd_sbd; 934 struct gfs2_glock *gl; 935 struct gfs2_inode *ip; 936 int error; 937 int found = 0; 938 struct gfs2_bitmap *bi; 939 940 while (goal < rgd->rd_data) { 941 down_write(&sdp->sd_log_flush_lock); 942 block = rgblk_search(rgd, goal, GFS2_BLKST_UNLINKED, &bi); 943 up_write(&sdp->sd_log_flush_lock); 944 if (block == BFITNOENT) 945 break; 946 947 block = gfs2_bi2rgd_blk(bi, block); 948 /* rgblk_search can return a block < goal, so we need to 949 keep it marching forward. */ 950 no_addr = block + rgd->rd_data0; 951 goal = max(block + 1, goal + 1); 952 if (*last_unlinked != NO_BLOCK && no_addr <= *last_unlinked) 953 continue; 954 if (no_addr == skip) 955 continue; 956 *last_unlinked = no_addr; 957 958 error = gfs2_glock_get(sdp, no_addr, &gfs2_inode_glops, CREATE, &gl); 959 if (error) 960 continue; 961 962 /* If the inode is already in cache, we can ignore it here 963 * because the existing inode disposal code will deal with 964 * it when all refs have gone away. Accessing gl_object like 965 * this is not safe in general. Here it is ok because we do 966 * not dereference the pointer, and we only need an approx 967 * answer to whether it is NULL or not. 968 */ 969 ip = gl->gl_object; 970 971 if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0) 972 gfs2_glock_put(gl); 973 else 974 found++; 975 976 /* Limit reclaim to sensible number of tasks */ 977 if (found > NR_CPUS) 978 return; 979 } 980 981 rgd->rd_flags &= ~GFS2_RDF_CHECK; 982 return; 983 } 984 985 /** 986 * get_local_rgrp - Choose and lock a rgrp for allocation 987 * @ip: the inode to reserve space for 988 * @rgp: the chosen and locked rgrp 989 * 990 * Try to acquire rgrp in way which avoids contending with others. 991 * 992 * Returns: errno 993 */ 994 995 static int get_local_rgrp(struct gfs2_inode *ip, u64 *last_unlinked) 996 { 997 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 998 struct gfs2_rgrpd *rgd, *begin = NULL; 999 struct gfs2_blkreserv *rs = ip->i_res; 1000 int error, rg_locked, flags = LM_FLAG_TRY; 1001 int loops = 0; 1002 1003 if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal)) 1004 rgd = begin = ip->i_rgd; 1005 else 1006 rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal); 1007 1008 if (rgd == NULL) 1009 return -EBADSLT; 1010 1011 while (loops < 3) { 1012 rg_locked = 0; 1013 1014 if (gfs2_glock_is_locked_by_me(rgd->rd_gl)) { 1015 rg_locked = 1; 1016 error = 0; 1017 } else { 1018 error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 1019 flags, &rs->rs_rgd_gh); 1020 } 1021 switch (error) { 1022 case 0: 1023 if (try_rgrp_fit(rgd, ip)) { 1024 ip->i_rgd = rgd; 1025 return 0; 1026 } 1027 if (rgd->rd_flags & GFS2_RDF_CHECK) 1028 try_rgrp_unlink(rgd, last_unlinked, ip->i_no_addr); 1029 if (!rg_locked) 1030 gfs2_glock_dq_uninit(&rs->rs_rgd_gh); 1031 /* fall through */ 1032 case GLR_TRYFAILED: 1033 rgd = gfs2_rgrpd_get_next(rgd); 1034 if (rgd == begin) { 1035 flags = 0; 1036 loops++; 1037 } 1038 break; 1039 default: 1040 return error; 1041 } 1042 } 1043 1044 return -ENOSPC; 1045 } 1046 1047 static void gfs2_blkrsv_put(struct gfs2_inode *ip) 1048 { 1049 BUG_ON(ip->i_res == NULL); 1050 kfree(ip->i_res); 1051 ip->i_res = NULL; 1052 } 1053 1054 /** 1055 * gfs2_inplace_reserve - Reserve space in the filesystem 1056 * @ip: the inode to reserve space for 1057 * 1058 * Returns: errno 1059 */ 1060 1061 int gfs2_inplace_reserve(struct gfs2_inode *ip, u32 requested) 1062 { 1063 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1064 struct gfs2_blkreserv *rs; 1065 int error = 0; 1066 u64 last_unlinked = NO_BLOCK; 1067 int tries = 0; 1068 1069 rs = gfs2_blkrsv_get(ip); 1070 if (!rs) 1071 return -ENOMEM; 1072 1073 rs->rs_requested = requested; 1074 if (gfs2_assert_warn(sdp, requested)) { 1075 error = -EINVAL; 1076 goto out; 1077 } 1078 1079 do { 1080 error = get_local_rgrp(ip, &last_unlinked); 1081 if (error != -ENOSPC) 1082 break; 1083 /* Check that fs hasn't grown if writing to rindex */ 1084 if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) { 1085 error = gfs2_ri_update(ip); 1086 if (error) 1087 break; 1088 continue; 1089 } 1090 /* Flushing the log may release space */ 1091 gfs2_log_flush(sdp, NULL); 1092 } while (tries++ < 3); 1093 1094 out: 1095 if (error) 1096 gfs2_blkrsv_put(ip); 1097 return error; 1098 } 1099 1100 /** 1101 * gfs2_inplace_release - release an inplace reservation 1102 * @ip: the inode the reservation was taken out on 1103 * 1104 * Release a reservation made by gfs2_inplace_reserve(). 1105 */ 1106 1107 void gfs2_inplace_release(struct gfs2_inode *ip) 1108 { 1109 struct gfs2_blkreserv *rs = ip->i_res; 1110 1111 if (rs->rs_rgd_gh.gh_gl) 1112 gfs2_glock_dq_uninit(&rs->rs_rgd_gh); 1113 gfs2_blkrsv_put(ip); 1114 } 1115 1116 /** 1117 * gfs2_get_block_type - Check a block in a RG is of given type 1118 * @rgd: the resource group holding the block 1119 * @block: the block number 1120 * 1121 * Returns: The block type (GFS2_BLKST_*) 1122 */ 1123 1124 static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block) 1125 { 1126 struct gfs2_bitmap *bi = NULL; 1127 u32 length, rgrp_block, buf_block; 1128 unsigned int buf; 1129 unsigned char type; 1130 1131 length = rgd->rd_length; 1132 rgrp_block = block - rgd->rd_data0; 1133 1134 for (buf = 0; buf < length; buf++) { 1135 bi = rgd->rd_bits + buf; 1136 if (rgrp_block < (bi->bi_start + bi->bi_len) * GFS2_NBBY) 1137 break; 1138 } 1139 1140 gfs2_assert(rgd->rd_sbd, buf < length); 1141 buf_block = rgrp_block - bi->bi_start * GFS2_NBBY; 1142 1143 type = gfs2_testbit(rgd, bi->bi_bh->b_data + bi->bi_offset, 1144 bi->bi_len, buf_block); 1145 1146 return type; 1147 } 1148 1149 /** 1150 * rgblk_search - find a block in @state 1151 * @rgd: the resource group descriptor 1152 * @goal: the goal block within the RG (start here to search for avail block) 1153 * @state: GFS2_BLKST_XXX the before-allocation state to find 1154 * @dinode: TRUE if the first block we allocate is for a dinode 1155 * @rbi: address of the pointer to the bitmap containing the block found 1156 * 1157 * Walk rgrp's bitmap to find bits that represent a block in @state. 1158 * 1159 * This function never fails, because we wouldn't call it unless we 1160 * know (from reservation results, etc.) that a block is available. 1161 * 1162 * Scope of @goal is just within rgrp, not the whole filesystem. 1163 * Scope of @returned block is just within bitmap, not the whole filesystem. 1164 * 1165 * Returns: the block number found relative to the bitmap rbi 1166 */ 1167 1168 static u32 rgblk_search(struct gfs2_rgrpd *rgd, u32 goal, 1169 unsigned char state, 1170 struct gfs2_bitmap **rbi) 1171 { 1172 struct gfs2_bitmap *bi = NULL; 1173 const u32 length = rgd->rd_length; 1174 u32 blk = BFITNOENT; 1175 unsigned int buf, x; 1176 const u8 *buffer = NULL; 1177 1178 *rbi = NULL; 1179 /* Find bitmap block that contains bits for goal block */ 1180 for (buf = 0; buf < length; buf++) { 1181 bi = rgd->rd_bits + buf; 1182 /* Convert scope of "goal" from rgrp-wide to within found bit block */ 1183 if (goal < (bi->bi_start + bi->bi_len) * GFS2_NBBY) { 1184 goal -= bi->bi_start * GFS2_NBBY; 1185 goto do_search; 1186 } 1187 } 1188 buf = 0; 1189 goal = 0; 1190 1191 do_search: 1192 /* Search (up to entire) bitmap in this rgrp for allocatable block. 1193 "x <= length", instead of "x < length", because we typically start 1194 the search in the middle of a bit block, but if we can't find an 1195 allocatable block anywhere else, we want to be able wrap around and 1196 search in the first part of our first-searched bit block. */ 1197 for (x = 0; x <= length; x++) { 1198 bi = rgd->rd_bits + buf; 1199 1200 if (test_bit(GBF_FULL, &bi->bi_flags) && 1201 (state == GFS2_BLKST_FREE)) 1202 goto skip; 1203 1204 /* The GFS2_BLKST_UNLINKED state doesn't apply to the clone 1205 bitmaps, so we must search the originals for that. */ 1206 buffer = bi->bi_bh->b_data + bi->bi_offset; 1207 WARN_ON(!buffer_uptodate(bi->bi_bh)); 1208 if (state != GFS2_BLKST_UNLINKED && bi->bi_clone) 1209 buffer = bi->bi_clone + bi->bi_offset; 1210 1211 blk = gfs2_bitfit(buffer, bi->bi_len, goal, state); 1212 if (blk != BFITNOENT) 1213 break; 1214 1215 if ((goal == 0) && (state == GFS2_BLKST_FREE)) 1216 set_bit(GBF_FULL, &bi->bi_flags); 1217 1218 /* Try next bitmap block (wrap back to rgrp header if at end) */ 1219 skip: 1220 buf++; 1221 buf %= length; 1222 goal = 0; 1223 } 1224 1225 if (blk != BFITNOENT) 1226 *rbi = bi; 1227 1228 return blk; 1229 } 1230 1231 /** 1232 * gfs2_alloc_extent - allocate an extent from a given bitmap 1233 * @rgd: the resource group descriptor 1234 * @bi: the bitmap within the rgrp 1235 * @blk: the block within the bitmap 1236 * @dinode: TRUE if the first block we allocate is for a dinode 1237 * @n: The extent length 1238 * 1239 * Add the found bitmap buffer to the transaction. 1240 * Set the found bits to @new_state to change block's allocation state. 1241 * Returns: starting block number of the extent (fs scope) 1242 */ 1243 static u64 gfs2_alloc_extent(struct gfs2_rgrpd *rgd, struct gfs2_bitmap *bi, 1244 u32 blk, bool dinode, unsigned int *n) 1245 { 1246 const unsigned int elen = *n; 1247 u32 goal; 1248 const u8 *buffer = NULL; 1249 1250 *n = 0; 1251 buffer = bi->bi_bh->b_data + bi->bi_offset; 1252 gfs2_trans_add_bh(rgd->rd_gl, bi->bi_bh, 1); 1253 gfs2_setbit(rgd, bi->bi_bh->b_data, bi->bi_clone, bi->bi_offset, 1254 bi, blk, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED); 1255 (*n)++; 1256 goal = blk; 1257 while (*n < elen) { 1258 goal++; 1259 if (goal >= (bi->bi_len * GFS2_NBBY)) 1260 break; 1261 if (gfs2_testbit(rgd, buffer, bi->bi_len, goal) != 1262 GFS2_BLKST_FREE) 1263 break; 1264 gfs2_setbit(rgd, bi->bi_bh->b_data, bi->bi_clone, bi->bi_offset, 1265 bi, goal, GFS2_BLKST_USED); 1266 (*n)++; 1267 } 1268 blk = gfs2_bi2rgd_blk(bi, blk); 1269 rgd->rd_last_alloc = blk + *n - 1; 1270 return rgd->rd_data0 + blk; 1271 } 1272 1273 /** 1274 * rgblk_free - Change alloc state of given block(s) 1275 * @sdp: the filesystem 1276 * @bstart: the start of a run of blocks to free 1277 * @blen: the length of the block run (all must lie within ONE RG!) 1278 * @new_state: GFS2_BLKST_XXX the after-allocation block state 1279 * 1280 * Returns: Resource group containing the block(s) 1281 */ 1282 1283 static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart, 1284 u32 blen, unsigned char new_state) 1285 { 1286 struct gfs2_rgrpd *rgd; 1287 struct gfs2_bitmap *bi = NULL; 1288 u32 length, rgrp_blk, buf_blk; 1289 unsigned int buf; 1290 1291 rgd = gfs2_blk2rgrpd(sdp, bstart); 1292 if (!rgd) { 1293 if (gfs2_consist(sdp)) 1294 fs_err(sdp, "block = %llu\n", (unsigned long long)bstart); 1295 return NULL; 1296 } 1297 1298 length = rgd->rd_length; 1299 1300 rgrp_blk = bstart - rgd->rd_data0; 1301 1302 while (blen--) { 1303 for (buf = 0; buf < length; buf++) { 1304 bi = rgd->rd_bits + buf; 1305 if (rgrp_blk < (bi->bi_start + bi->bi_len) * GFS2_NBBY) 1306 break; 1307 } 1308 1309 gfs2_assert(rgd->rd_sbd, buf < length); 1310 1311 buf_blk = rgrp_blk - bi->bi_start * GFS2_NBBY; 1312 rgrp_blk++; 1313 1314 if (!bi->bi_clone) { 1315 bi->bi_clone = kmalloc(bi->bi_bh->b_size, 1316 GFP_NOFS | __GFP_NOFAIL); 1317 memcpy(bi->bi_clone + bi->bi_offset, 1318 bi->bi_bh->b_data + bi->bi_offset, 1319 bi->bi_len); 1320 } 1321 gfs2_trans_add_bh(rgd->rd_gl, bi->bi_bh, 1); 1322 gfs2_setbit(rgd, bi->bi_bh->b_data, NULL, bi->bi_offset, 1323 bi, buf_blk, new_state); 1324 } 1325 1326 return rgd; 1327 } 1328 1329 /** 1330 * gfs2_rgrp_dump - print out an rgrp 1331 * @seq: The iterator 1332 * @gl: The glock in question 1333 * 1334 */ 1335 1336 int gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl) 1337 { 1338 const struct gfs2_rgrpd *rgd = gl->gl_object; 1339 if (rgd == NULL) 1340 return 0; 1341 gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u\n", 1342 (unsigned long long)rgd->rd_addr, rgd->rd_flags, 1343 rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes); 1344 return 0; 1345 } 1346 1347 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd) 1348 { 1349 struct gfs2_sbd *sdp = rgd->rd_sbd; 1350 fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n", 1351 (unsigned long long)rgd->rd_addr); 1352 fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n"); 1353 gfs2_rgrp_dump(NULL, rgd->rd_gl); 1354 rgd->rd_flags |= GFS2_RDF_ERROR; 1355 } 1356 1357 /** 1358 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode 1359 * @ip: the inode to allocate the block for 1360 * @bn: Used to return the starting block number 1361 * @ndata: requested number of blocks/extent length (value/result) 1362 * @dinode: 1 if we're allocating a dinode block, else 0 1363 * @generation: the generation number of the inode 1364 * 1365 * Returns: 0 or error 1366 */ 1367 1368 int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks, 1369 bool dinode, u64 *generation) 1370 { 1371 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1372 struct buffer_head *dibh; 1373 struct gfs2_rgrpd *rgd; 1374 unsigned int ndata; 1375 u32 goal, blk; /* block, within the rgrp scope */ 1376 u64 block; /* block, within the file system scope */ 1377 int error; 1378 struct gfs2_bitmap *bi; 1379 1380 /* Only happens if there is a bug in gfs2, return something distinctive 1381 * to ensure that it is noticed. 1382 */ 1383 if (ip->i_res == NULL) 1384 return -ECANCELED; 1385 1386 rgd = ip->i_rgd; 1387 1388 if (!dinode && rgrp_contains_block(rgd, ip->i_goal)) 1389 goal = ip->i_goal - rgd->rd_data0; 1390 else 1391 goal = rgd->rd_last_alloc; 1392 1393 blk = rgblk_search(rgd, goal, GFS2_BLKST_FREE, &bi); 1394 1395 /* Since all blocks are reserved in advance, this shouldn't happen */ 1396 if (blk == BFITNOENT) 1397 goto rgrp_error; 1398 1399 block = gfs2_alloc_extent(rgd, bi, blk, dinode, nblocks); 1400 ndata = *nblocks; 1401 if (dinode) 1402 ndata--; 1403 1404 if (!dinode) { 1405 ip->i_goal = block + ndata - 1; 1406 error = gfs2_meta_inode_buffer(ip, &dibh); 1407 if (error == 0) { 1408 struct gfs2_dinode *di = 1409 (struct gfs2_dinode *)dibh->b_data; 1410 gfs2_trans_add_bh(ip->i_gl, dibh, 1); 1411 di->di_goal_meta = di->di_goal_data = 1412 cpu_to_be64(ip->i_goal); 1413 brelse(dibh); 1414 } 1415 } 1416 if (rgd->rd_free < *nblocks) 1417 goto rgrp_error; 1418 1419 rgd->rd_free -= *nblocks; 1420 if (dinode) { 1421 rgd->rd_dinodes++; 1422 *generation = rgd->rd_igeneration++; 1423 if (*generation == 0) 1424 *generation = rgd->rd_igeneration++; 1425 } 1426 1427 gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1); 1428 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 1429 1430 gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0); 1431 if (dinode) 1432 gfs2_trans_add_unrevoke(sdp, block, 1); 1433 1434 /* 1435 * This needs reviewing to see why we cannot do the quota change 1436 * at this point in the dinode case. 1437 */ 1438 if (ndata) 1439 gfs2_quota_change(ip, ndata, ip->i_inode.i_uid, 1440 ip->i_inode.i_gid); 1441 1442 rgd->rd_free_clone -= *nblocks; 1443 trace_gfs2_block_alloc(ip, block, *nblocks, 1444 dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED); 1445 *bn = block; 1446 return 0; 1447 1448 rgrp_error: 1449 gfs2_rgrp_error(rgd); 1450 return -EIO; 1451 } 1452 1453 /** 1454 * __gfs2_free_blocks - free a contiguous run of block(s) 1455 * @ip: the inode these blocks are being freed from 1456 * @bstart: first block of a run of contiguous blocks 1457 * @blen: the length of the block run 1458 * @meta: 1 if the blocks represent metadata 1459 * 1460 */ 1461 1462 void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta) 1463 { 1464 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1465 struct gfs2_rgrpd *rgd; 1466 1467 rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE); 1468 if (!rgd) 1469 return; 1470 trace_gfs2_block_alloc(ip, bstart, blen, GFS2_BLKST_FREE); 1471 rgd->rd_free += blen; 1472 1473 gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1); 1474 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 1475 1476 /* Directories keep their data in the metadata address space */ 1477 if (meta || ip->i_depth) 1478 gfs2_meta_wipe(ip, bstart, blen); 1479 } 1480 1481 /** 1482 * gfs2_free_meta - free a contiguous run of data block(s) 1483 * @ip: the inode these blocks are being freed from 1484 * @bstart: first block of a run of contiguous blocks 1485 * @blen: the length of the block run 1486 * 1487 */ 1488 1489 void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen) 1490 { 1491 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1492 1493 __gfs2_free_blocks(ip, bstart, blen, 1); 1494 gfs2_statfs_change(sdp, 0, +blen, 0); 1495 gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid); 1496 } 1497 1498 void gfs2_unlink_di(struct inode *inode) 1499 { 1500 struct gfs2_inode *ip = GFS2_I(inode); 1501 struct gfs2_sbd *sdp = GFS2_SB(inode); 1502 struct gfs2_rgrpd *rgd; 1503 u64 blkno = ip->i_no_addr; 1504 1505 rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED); 1506 if (!rgd) 1507 return; 1508 trace_gfs2_block_alloc(ip, blkno, 1, GFS2_BLKST_UNLINKED); 1509 gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1); 1510 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 1511 } 1512 1513 static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno) 1514 { 1515 struct gfs2_sbd *sdp = rgd->rd_sbd; 1516 struct gfs2_rgrpd *tmp_rgd; 1517 1518 tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE); 1519 if (!tmp_rgd) 1520 return; 1521 gfs2_assert_withdraw(sdp, rgd == tmp_rgd); 1522 1523 if (!rgd->rd_dinodes) 1524 gfs2_consist_rgrpd(rgd); 1525 rgd->rd_dinodes--; 1526 rgd->rd_free++; 1527 1528 gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1); 1529 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 1530 1531 gfs2_statfs_change(sdp, 0, +1, -1); 1532 } 1533 1534 1535 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip) 1536 { 1537 gfs2_free_uninit_di(rgd, ip->i_no_addr); 1538 trace_gfs2_block_alloc(ip, ip->i_no_addr, 1, GFS2_BLKST_FREE); 1539 gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid); 1540 gfs2_meta_wipe(ip, ip->i_no_addr, 1); 1541 } 1542 1543 /** 1544 * gfs2_check_blk_type - Check the type of a block 1545 * @sdp: The superblock 1546 * @no_addr: The block number to check 1547 * @type: The block type we are looking for 1548 * 1549 * Returns: 0 if the block type matches the expected type 1550 * -ESTALE if it doesn't match 1551 * or -ve errno if something went wrong while checking 1552 */ 1553 1554 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type) 1555 { 1556 struct gfs2_rgrpd *rgd; 1557 struct gfs2_holder rgd_gh; 1558 int error; 1559 1560 error = gfs2_rindex_update(sdp); 1561 if (error) 1562 return error; 1563 1564 error = -EINVAL; 1565 rgd = gfs2_blk2rgrpd(sdp, no_addr); 1566 if (!rgd) 1567 goto fail; 1568 1569 error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh); 1570 if (error) 1571 goto fail; 1572 1573 if (gfs2_get_block_type(rgd, no_addr) != type) 1574 error = -ESTALE; 1575 1576 gfs2_glock_dq_uninit(&rgd_gh); 1577 fail: 1578 return error; 1579 } 1580 1581 /** 1582 * gfs2_rlist_add - add a RG to a list of RGs 1583 * @ip: the inode 1584 * @rlist: the list of resource groups 1585 * @block: the block 1586 * 1587 * Figure out what RG a block belongs to and add that RG to the list 1588 * 1589 * FIXME: Don't use NOFAIL 1590 * 1591 */ 1592 1593 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist, 1594 u64 block) 1595 { 1596 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1597 struct gfs2_rgrpd *rgd; 1598 struct gfs2_rgrpd **tmp; 1599 unsigned int new_space; 1600 unsigned int x; 1601 1602 if (gfs2_assert_warn(sdp, !rlist->rl_ghs)) 1603 return; 1604 1605 if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block)) 1606 rgd = ip->i_rgd; 1607 else 1608 rgd = gfs2_blk2rgrpd(sdp, block); 1609 if (!rgd) { 1610 fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block); 1611 return; 1612 } 1613 ip->i_rgd = rgd; 1614 1615 for (x = 0; x < rlist->rl_rgrps; x++) 1616 if (rlist->rl_rgd[x] == rgd) 1617 return; 1618 1619 if (rlist->rl_rgrps == rlist->rl_space) { 1620 new_space = rlist->rl_space + 10; 1621 1622 tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *), 1623 GFP_NOFS | __GFP_NOFAIL); 1624 1625 if (rlist->rl_rgd) { 1626 memcpy(tmp, rlist->rl_rgd, 1627 rlist->rl_space * sizeof(struct gfs2_rgrpd *)); 1628 kfree(rlist->rl_rgd); 1629 } 1630 1631 rlist->rl_space = new_space; 1632 rlist->rl_rgd = tmp; 1633 } 1634 1635 rlist->rl_rgd[rlist->rl_rgrps++] = rgd; 1636 } 1637 1638 /** 1639 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate 1640 * and initialize an array of glock holders for them 1641 * @rlist: the list of resource groups 1642 * @state: the lock state to acquire the RG lock in 1643 * @flags: the modifier flags for the holder structures 1644 * 1645 * FIXME: Don't use NOFAIL 1646 * 1647 */ 1648 1649 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state) 1650 { 1651 unsigned int x; 1652 1653 rlist->rl_ghs = kcalloc(rlist->rl_rgrps, sizeof(struct gfs2_holder), 1654 GFP_NOFS | __GFP_NOFAIL); 1655 for (x = 0; x < rlist->rl_rgrps; x++) 1656 gfs2_holder_init(rlist->rl_rgd[x]->rd_gl, 1657 state, 0, 1658 &rlist->rl_ghs[x]); 1659 } 1660 1661 /** 1662 * gfs2_rlist_free - free a resource group list 1663 * @list: the list of resource groups 1664 * 1665 */ 1666 1667 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist) 1668 { 1669 unsigned int x; 1670 1671 kfree(rlist->rl_rgd); 1672 1673 if (rlist->rl_ghs) { 1674 for (x = 0; x < rlist->rl_rgrps; x++) 1675 gfs2_holder_uninit(&rlist->rl_ghs[x]); 1676 kfree(rlist->rl_ghs); 1677 } 1678 } 1679 1680