xref: /linux/fs/gfs2/rgrp.c (revision 987b741c52c7c6c68d46fbaeb95b8d1087f10b7f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
4  * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
5  */
6 
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 
9 #include <linux/slab.h>
10 #include <linux/spinlock.h>
11 #include <linux/completion.h>
12 #include <linux/buffer_head.h>
13 #include <linux/fs.h>
14 #include <linux/gfs2_ondisk.h>
15 #include <linux/prefetch.h>
16 #include <linux/blkdev.h>
17 #include <linux/rbtree.h>
18 #include <linux/random.h>
19 
20 #include "gfs2.h"
21 #include "incore.h"
22 #include "glock.h"
23 #include "glops.h"
24 #include "lops.h"
25 #include "meta_io.h"
26 #include "quota.h"
27 #include "rgrp.h"
28 #include "super.h"
29 #include "trans.h"
30 #include "util.h"
31 #include "log.h"
32 #include "inode.h"
33 #include "trace_gfs2.h"
34 #include "dir.h"
35 
36 #define BFITNOENT ((u32)~0)
37 #define NO_BLOCK ((u64)~0)
38 
39 struct gfs2_rbm {
40 	struct gfs2_rgrpd *rgd;
41 	u32 offset;		/* The offset is bitmap relative */
42 	int bii;		/* Bitmap index */
43 };
44 
45 static inline struct gfs2_bitmap *rbm_bi(const struct gfs2_rbm *rbm)
46 {
47 	return rbm->rgd->rd_bits + rbm->bii;
48 }
49 
50 static inline u64 gfs2_rbm_to_block(const struct gfs2_rbm *rbm)
51 {
52 	BUG_ON(rbm->offset >= rbm->rgd->rd_data);
53 	return rbm->rgd->rd_data0 + (rbm_bi(rbm)->bi_start * GFS2_NBBY) +
54 		rbm->offset;
55 }
56 
57 /*
58  * These routines are used by the resource group routines (rgrp.c)
59  * to keep track of block allocation.  Each block is represented by two
60  * bits.  So, each byte represents GFS2_NBBY (i.e. 4) blocks.
61  *
62  * 0 = Free
63  * 1 = Used (not metadata)
64  * 2 = Unlinked (still in use) inode
65  * 3 = Used (metadata)
66  */
67 
68 struct gfs2_extent {
69 	struct gfs2_rbm rbm;
70 	u32 len;
71 };
72 
73 static const char valid_change[16] = {
74 	        /* current */
75 	/* n */ 0, 1, 1, 1,
76 	/* e */ 1, 0, 0, 0,
77 	/* w */ 0, 0, 0, 1,
78 	        1, 0, 0, 0
79 };
80 
81 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
82 			 struct gfs2_blkreserv *rs, bool nowrap);
83 
84 
85 /**
86  * gfs2_setbit - Set a bit in the bitmaps
87  * @rbm: The position of the bit to set
88  * @do_clone: Also set the clone bitmap, if it exists
89  * @new_state: the new state of the block
90  *
91  */
92 
93 static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone,
94 			       unsigned char new_state)
95 {
96 	unsigned char *byte1, *byte2, *end, cur_state;
97 	struct gfs2_bitmap *bi = rbm_bi(rbm);
98 	unsigned int buflen = bi->bi_bytes;
99 	const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
100 
101 	byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY);
102 	end = bi->bi_bh->b_data + bi->bi_offset + buflen;
103 
104 	BUG_ON(byte1 >= end);
105 
106 	cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
107 
108 	if (unlikely(!valid_change[new_state * 4 + cur_state])) {
109 		struct gfs2_sbd *sdp = rbm->rgd->rd_sbd;
110 
111 		fs_warn(sdp, "buf_blk = 0x%x old_state=%d, new_state=%d\n",
112 			rbm->offset, cur_state, new_state);
113 		fs_warn(sdp, "rgrp=0x%llx bi_start=0x%x biblk: 0x%llx\n",
114 			(unsigned long long)rbm->rgd->rd_addr, bi->bi_start,
115 			(unsigned long long)bi->bi_bh->b_blocknr);
116 		fs_warn(sdp, "bi_offset=0x%x bi_bytes=0x%x block=0x%llx\n",
117 			bi->bi_offset, bi->bi_bytes,
118 			(unsigned long long)gfs2_rbm_to_block(rbm));
119 		dump_stack();
120 		gfs2_consist_rgrpd(rbm->rgd);
121 		return;
122 	}
123 	*byte1 ^= (cur_state ^ new_state) << bit;
124 
125 	if (do_clone && bi->bi_clone) {
126 		byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY);
127 		cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
128 		*byte2 ^= (cur_state ^ new_state) << bit;
129 	}
130 }
131 
132 /**
133  * gfs2_testbit - test a bit in the bitmaps
134  * @rbm: The bit to test
135  * @use_clone: If true, test the clone bitmap, not the official bitmap.
136  *
137  * Some callers like gfs2_unaligned_extlen need to test the clone bitmaps,
138  * not the "real" bitmaps, to avoid allocating recently freed blocks.
139  *
140  * Returns: The two bit block state of the requested bit
141  */
142 
143 static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm, bool use_clone)
144 {
145 	struct gfs2_bitmap *bi = rbm_bi(rbm);
146 	const u8 *buffer;
147 	const u8 *byte;
148 	unsigned int bit;
149 
150 	if (use_clone && bi->bi_clone)
151 		buffer = bi->bi_clone;
152 	else
153 		buffer = bi->bi_bh->b_data;
154 	buffer += bi->bi_offset;
155 	byte = buffer + (rbm->offset / GFS2_NBBY);
156 	bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
157 
158 	return (*byte >> bit) & GFS2_BIT_MASK;
159 }
160 
161 /**
162  * gfs2_bit_search
163  * @ptr: Pointer to bitmap data
164  * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
165  * @state: The state we are searching for
166  *
167  * We xor the bitmap data with a patter which is the bitwise opposite
168  * of what we are looking for, this gives rise to a pattern of ones
169  * wherever there is a match. Since we have two bits per entry, we
170  * take this pattern, shift it down by one place and then and it with
171  * the original. All the even bit positions (0,2,4, etc) then represent
172  * successful matches, so we mask with 0x55555..... to remove the unwanted
173  * odd bit positions.
174  *
175  * This allows searching of a whole u64 at once (32 blocks) with a
176  * single test (on 64 bit arches).
177  */
178 
179 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
180 {
181 	u64 tmp;
182 	static const u64 search[] = {
183 		[0] = 0xffffffffffffffffULL,
184 		[1] = 0xaaaaaaaaaaaaaaaaULL,
185 		[2] = 0x5555555555555555ULL,
186 		[3] = 0x0000000000000000ULL,
187 	};
188 	tmp = le64_to_cpu(*ptr) ^ search[state];
189 	tmp &= (tmp >> 1);
190 	tmp &= mask;
191 	return tmp;
192 }
193 
194 /**
195  * rs_cmp - multi-block reservation range compare
196  * @start: start of the new reservation
197  * @len: number of blocks in the new reservation
198  * @rs: existing reservation to compare against
199  *
200  * returns: 1 if the block range is beyond the reach of the reservation
201  *         -1 if the block range is before the start of the reservation
202  *          0 if the block range overlaps with the reservation
203  */
204 static inline int rs_cmp(u64 start, u32 len, struct gfs2_blkreserv *rs)
205 {
206 	if (start >= rs->rs_start + rs->rs_requested)
207 		return 1;
208 	if (rs->rs_start >= start + len)
209 		return -1;
210 	return 0;
211 }
212 
213 /**
214  * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
215  *       a block in a given allocation state.
216  * @buf: the buffer that holds the bitmaps
217  * @len: the length (in bytes) of the buffer
218  * @goal: start search at this block's bit-pair (within @buffer)
219  * @state: GFS2_BLKST_XXX the state of the block we're looking for.
220  *
221  * Scope of @goal and returned block number is only within this bitmap buffer,
222  * not entire rgrp or filesystem.  @buffer will be offset from the actual
223  * beginning of a bitmap block buffer, skipping any header structures, but
224  * headers are always a multiple of 64 bits long so that the buffer is
225  * always aligned to a 64 bit boundary.
226  *
227  * The size of the buffer is in bytes, but is it assumed that it is
228  * always ok to read a complete multiple of 64 bits at the end
229  * of the block in case the end is no aligned to a natural boundary.
230  *
231  * Return: the block number (bitmap buffer scope) that was found
232  */
233 
234 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
235 		       u32 goal, u8 state)
236 {
237 	u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
238 	const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
239 	const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
240 	u64 tmp;
241 	u64 mask = 0x5555555555555555ULL;
242 	u32 bit;
243 
244 	/* Mask off bits we don't care about at the start of the search */
245 	mask <<= spoint;
246 	tmp = gfs2_bit_search(ptr, mask, state);
247 	ptr++;
248 	while(tmp == 0 && ptr < end) {
249 		tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
250 		ptr++;
251 	}
252 	/* Mask off any bits which are more than len bytes from the start */
253 	if (ptr == end && (len & (sizeof(u64) - 1)))
254 		tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
255 	/* Didn't find anything, so return */
256 	if (tmp == 0)
257 		return BFITNOENT;
258 	ptr--;
259 	bit = __ffs64(tmp);
260 	bit /= 2;	/* two bits per entry in the bitmap */
261 	return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
262 }
263 
264 /**
265  * gfs2_rbm_from_block - Set the rbm based upon rgd and block number
266  * @rbm: The rbm with rgd already set correctly
267  * @block: The block number (filesystem relative)
268  *
269  * This sets the bi and offset members of an rbm based on a
270  * resource group and a filesystem relative block number. The
271  * resource group must be set in the rbm on entry, the bi and
272  * offset members will be set by this function.
273  *
274  * Returns: 0 on success, or an error code
275  */
276 
277 static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block)
278 {
279 	if (!rgrp_contains_block(rbm->rgd, block))
280 		return -E2BIG;
281 	rbm->bii = 0;
282 	rbm->offset = block - rbm->rgd->rd_data0;
283 	/* Check if the block is within the first block */
284 	if (rbm->offset < rbm_bi(rbm)->bi_blocks)
285 		return 0;
286 
287 	/* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */
288 	rbm->offset += (sizeof(struct gfs2_rgrp) -
289 			sizeof(struct gfs2_meta_header)) * GFS2_NBBY;
290 	rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
291 	rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
292 	return 0;
293 }
294 
295 /**
296  * gfs2_rbm_add - add a number of blocks to an rbm
297  * @rbm: The rbm with rgd already set correctly
298  * @blocks: The number of blocks to add to rpm
299  *
300  * This function takes an existing rbm structure and adds a number of blocks to
301  * it.
302  *
303  * Returns: True if the new rbm would point past the end of the rgrp.
304  */
305 
306 static bool gfs2_rbm_add(struct gfs2_rbm *rbm, u32 blocks)
307 {
308 	struct gfs2_rgrpd *rgd = rbm->rgd;
309 	struct gfs2_bitmap *bi = rgd->rd_bits + rbm->bii;
310 
311 	if (rbm->offset + blocks < bi->bi_blocks) {
312 		rbm->offset += blocks;
313 		return false;
314 	}
315 	blocks -= bi->bi_blocks - rbm->offset;
316 
317 	for(;;) {
318 		bi++;
319 		if (bi == rgd->rd_bits + rgd->rd_length)
320 			return true;
321 		if (blocks < bi->bi_blocks) {
322 			rbm->offset = blocks;
323 			rbm->bii = bi - rgd->rd_bits;
324 			return false;
325 		}
326 		blocks -= bi->bi_blocks;
327 	}
328 }
329 
330 /**
331  * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned
332  * @rbm: Position to search (value/result)
333  * @n_unaligned: Number of unaligned blocks to check
334  * @len: Decremented for each block found (terminate on zero)
335  *
336  * Returns: true if a non-free block is encountered or the end of the resource
337  *	    group is reached.
338  */
339 
340 static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len)
341 {
342 	u32 n;
343 	u8 res;
344 
345 	for (n = 0; n < n_unaligned; n++) {
346 		res = gfs2_testbit(rbm, true);
347 		if (res != GFS2_BLKST_FREE)
348 			return true;
349 		(*len)--;
350 		if (*len == 0)
351 			return true;
352 		if (gfs2_rbm_add(rbm, 1))
353 			return true;
354 	}
355 
356 	return false;
357 }
358 
359 /**
360  * gfs2_free_extlen - Return extent length of free blocks
361  * @rrbm: Starting position
362  * @len: Max length to check
363  *
364  * Starting at the block specified by the rbm, see how many free blocks
365  * there are, not reading more than len blocks ahead. This can be done
366  * using memchr_inv when the blocks are byte aligned, but has to be done
367  * on a block by block basis in case of unaligned blocks. Also this
368  * function can cope with bitmap boundaries (although it must stop on
369  * a resource group boundary)
370  *
371  * Returns: Number of free blocks in the extent
372  */
373 
374 static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len)
375 {
376 	struct gfs2_rbm rbm = *rrbm;
377 	u32 n_unaligned = rbm.offset & 3;
378 	u32 size = len;
379 	u32 bytes;
380 	u32 chunk_size;
381 	u8 *ptr, *start, *end;
382 	u64 block;
383 	struct gfs2_bitmap *bi;
384 
385 	if (n_unaligned &&
386 	    gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len))
387 		goto out;
388 
389 	n_unaligned = len & 3;
390 	/* Start is now byte aligned */
391 	while (len > 3) {
392 		bi = rbm_bi(&rbm);
393 		start = bi->bi_bh->b_data;
394 		if (bi->bi_clone)
395 			start = bi->bi_clone;
396 		start += bi->bi_offset;
397 		end = start + bi->bi_bytes;
398 		BUG_ON(rbm.offset & 3);
399 		start += (rbm.offset / GFS2_NBBY);
400 		bytes = min_t(u32, len / GFS2_NBBY, (end - start));
401 		ptr = memchr_inv(start, 0, bytes);
402 		chunk_size = ((ptr == NULL) ? bytes : (ptr - start));
403 		chunk_size *= GFS2_NBBY;
404 		BUG_ON(len < chunk_size);
405 		len -= chunk_size;
406 		block = gfs2_rbm_to_block(&rbm);
407 		if (gfs2_rbm_from_block(&rbm, block + chunk_size)) {
408 			n_unaligned = 0;
409 			break;
410 		}
411 		if (ptr) {
412 			n_unaligned = 3;
413 			break;
414 		}
415 		n_unaligned = len & 3;
416 	}
417 
418 	/* Deal with any bits left over at the end */
419 	if (n_unaligned)
420 		gfs2_unaligned_extlen(&rbm, n_unaligned, &len);
421 out:
422 	return size - len;
423 }
424 
425 /**
426  * gfs2_bitcount - count the number of bits in a certain state
427  * @rgd: the resource group descriptor
428  * @buffer: the buffer that holds the bitmaps
429  * @buflen: the length (in bytes) of the buffer
430  * @state: the state of the block we're looking for
431  *
432  * Returns: The number of bits
433  */
434 
435 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
436 			 unsigned int buflen, u8 state)
437 {
438 	const u8 *byte = buffer;
439 	const u8 *end = buffer + buflen;
440 	const u8 state1 = state << 2;
441 	const u8 state2 = state << 4;
442 	const u8 state3 = state << 6;
443 	u32 count = 0;
444 
445 	for (; byte < end; byte++) {
446 		if (((*byte) & 0x03) == state)
447 			count++;
448 		if (((*byte) & 0x0C) == state1)
449 			count++;
450 		if (((*byte) & 0x30) == state2)
451 			count++;
452 		if (((*byte) & 0xC0) == state3)
453 			count++;
454 	}
455 
456 	return count;
457 }
458 
459 /**
460  * gfs2_rgrp_verify - Verify that a resource group is consistent
461  * @rgd: the rgrp
462  *
463  */
464 
465 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
466 {
467 	struct gfs2_sbd *sdp = rgd->rd_sbd;
468 	struct gfs2_bitmap *bi = NULL;
469 	u32 length = rgd->rd_length;
470 	u32 count[4], tmp;
471 	int buf, x;
472 
473 	memset(count, 0, 4 * sizeof(u32));
474 
475 	/* Count # blocks in each of 4 possible allocation states */
476 	for (buf = 0; buf < length; buf++) {
477 		bi = rgd->rd_bits + buf;
478 		for (x = 0; x < 4; x++)
479 			count[x] += gfs2_bitcount(rgd,
480 						  bi->bi_bh->b_data +
481 						  bi->bi_offset,
482 						  bi->bi_bytes, x);
483 	}
484 
485 	if (count[0] != rgd->rd_free) {
486 		gfs2_lm(sdp, "free data mismatch:  %u != %u\n",
487 			count[0], rgd->rd_free);
488 		gfs2_consist_rgrpd(rgd);
489 		return;
490 	}
491 
492 	tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
493 	if (count[1] != tmp) {
494 		gfs2_lm(sdp, "used data mismatch:  %u != %u\n",
495 			count[1], tmp);
496 		gfs2_consist_rgrpd(rgd);
497 		return;
498 	}
499 
500 	if (count[2] + count[3] != rgd->rd_dinodes) {
501 		gfs2_lm(sdp, "used metadata mismatch:  %u != %u\n",
502 			count[2] + count[3], rgd->rd_dinodes);
503 		gfs2_consist_rgrpd(rgd);
504 		return;
505 	}
506 }
507 
508 /**
509  * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
510  * @sdp: The GFS2 superblock
511  * @blk: The data block number
512  * @exact: True if this needs to be an exact match
513  *
514  * The @exact argument should be set to true by most callers. The exception
515  * is when we need to match blocks which are not represented by the rgrp
516  * bitmap, but which are part of the rgrp (i.e. padding blocks) which are
517  * there for alignment purposes. Another way of looking at it is that @exact
518  * matches only valid data/metadata blocks, but with @exact false, it will
519  * match any block within the extent of the rgrp.
520  *
521  * Returns: The resource group, or NULL if not found
522  */
523 
524 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
525 {
526 	struct rb_node *n, *next;
527 	struct gfs2_rgrpd *cur;
528 
529 	spin_lock(&sdp->sd_rindex_spin);
530 	n = sdp->sd_rindex_tree.rb_node;
531 	while (n) {
532 		cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
533 		next = NULL;
534 		if (blk < cur->rd_addr)
535 			next = n->rb_left;
536 		else if (blk >= cur->rd_data0 + cur->rd_data)
537 			next = n->rb_right;
538 		if (next == NULL) {
539 			spin_unlock(&sdp->sd_rindex_spin);
540 			if (exact) {
541 				if (blk < cur->rd_addr)
542 					return NULL;
543 				if (blk >= cur->rd_data0 + cur->rd_data)
544 					return NULL;
545 			}
546 			return cur;
547 		}
548 		n = next;
549 	}
550 	spin_unlock(&sdp->sd_rindex_spin);
551 
552 	return NULL;
553 }
554 
555 /**
556  * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
557  * @sdp: The GFS2 superblock
558  *
559  * Returns: The first rgrp in the filesystem
560  */
561 
562 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
563 {
564 	const struct rb_node *n;
565 	struct gfs2_rgrpd *rgd;
566 
567 	spin_lock(&sdp->sd_rindex_spin);
568 	n = rb_first(&sdp->sd_rindex_tree);
569 	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
570 	spin_unlock(&sdp->sd_rindex_spin);
571 
572 	return rgd;
573 }
574 
575 /**
576  * gfs2_rgrpd_get_next - get the next RG
577  * @rgd: the resource group descriptor
578  *
579  * Returns: The next rgrp
580  */
581 
582 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
583 {
584 	struct gfs2_sbd *sdp = rgd->rd_sbd;
585 	const struct rb_node *n;
586 
587 	spin_lock(&sdp->sd_rindex_spin);
588 	n = rb_next(&rgd->rd_node);
589 	if (n == NULL)
590 		n = rb_first(&sdp->sd_rindex_tree);
591 
592 	if (unlikely(&rgd->rd_node == n)) {
593 		spin_unlock(&sdp->sd_rindex_spin);
594 		return NULL;
595 	}
596 	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
597 	spin_unlock(&sdp->sd_rindex_spin);
598 	return rgd;
599 }
600 
601 void check_and_update_goal(struct gfs2_inode *ip)
602 {
603 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
604 	if (!ip->i_goal || gfs2_blk2rgrpd(sdp, ip->i_goal, 1) == NULL)
605 		ip->i_goal = ip->i_no_addr;
606 }
607 
608 void gfs2_free_clones(struct gfs2_rgrpd *rgd)
609 {
610 	int x;
611 
612 	for (x = 0; x < rgd->rd_length; x++) {
613 		struct gfs2_bitmap *bi = rgd->rd_bits + x;
614 		kfree(bi->bi_clone);
615 		bi->bi_clone = NULL;
616 	}
617 }
618 
619 static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs,
620 		    const char *fs_id_buf)
621 {
622 	struct gfs2_inode *ip = container_of(rs, struct gfs2_inode, i_res);
623 
624 	gfs2_print_dbg(seq, "%s  B: n:%llu s:%llu f:%u\n",
625 		       fs_id_buf,
626 		       (unsigned long long)ip->i_no_addr,
627 		       (unsigned long long)rs->rs_start,
628 		       rs->rs_requested);
629 }
630 
631 /**
632  * __rs_deltree - remove a multi-block reservation from the rgd tree
633  * @rs: The reservation to remove
634  *
635  */
636 static void __rs_deltree(struct gfs2_blkreserv *rs)
637 {
638 	struct gfs2_rgrpd *rgd;
639 
640 	if (!gfs2_rs_active(rs))
641 		return;
642 
643 	rgd = rs->rs_rgd;
644 	trace_gfs2_rs(rs, TRACE_RS_TREEDEL);
645 	rb_erase(&rs->rs_node, &rgd->rd_rstree);
646 	RB_CLEAR_NODE(&rs->rs_node);
647 
648 	if (rs->rs_requested) {
649 		/* return requested blocks to the rgrp */
650 		BUG_ON(rs->rs_rgd->rd_requested < rs->rs_requested);
651 		rs->rs_rgd->rd_requested -= rs->rs_requested;
652 
653 		/* The rgrp extent failure point is likely not to increase;
654 		   it will only do so if the freed blocks are somehow
655 		   contiguous with a span of free blocks that follows. Still,
656 		   it will force the number to be recalculated later. */
657 		rgd->rd_extfail_pt += rs->rs_requested;
658 		rs->rs_requested = 0;
659 	}
660 }
661 
662 /**
663  * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
664  * @rs: The reservation to remove
665  *
666  */
667 void gfs2_rs_deltree(struct gfs2_blkreserv *rs)
668 {
669 	struct gfs2_rgrpd *rgd;
670 
671 	rgd = rs->rs_rgd;
672 	if (rgd) {
673 		spin_lock(&rgd->rd_rsspin);
674 		__rs_deltree(rs);
675 		BUG_ON(rs->rs_requested);
676 		spin_unlock(&rgd->rd_rsspin);
677 	}
678 }
679 
680 /**
681  * gfs2_rs_delete - delete a multi-block reservation
682  * @ip: The inode for this reservation
683  * @wcount: The inode's write count, or NULL
684  *
685  */
686 void gfs2_rs_delete(struct gfs2_inode *ip, atomic_t *wcount)
687 {
688 	down_write(&ip->i_rw_mutex);
689 	if ((wcount == NULL) || (atomic_read(wcount) <= 1))
690 		gfs2_rs_deltree(&ip->i_res);
691 	up_write(&ip->i_rw_mutex);
692 }
693 
694 /**
695  * return_all_reservations - return all reserved blocks back to the rgrp.
696  * @rgd: the rgrp that needs its space back
697  *
698  * We previously reserved a bunch of blocks for allocation. Now we need to
699  * give them back. This leave the reservation structures in tact, but removes
700  * all of their corresponding "no-fly zones".
701  */
702 static void return_all_reservations(struct gfs2_rgrpd *rgd)
703 {
704 	struct rb_node *n;
705 	struct gfs2_blkreserv *rs;
706 
707 	spin_lock(&rgd->rd_rsspin);
708 	while ((n = rb_first(&rgd->rd_rstree))) {
709 		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
710 		__rs_deltree(rs);
711 	}
712 	spin_unlock(&rgd->rd_rsspin);
713 }
714 
715 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
716 {
717 	struct rb_node *n;
718 	struct gfs2_rgrpd *rgd;
719 	struct gfs2_glock *gl;
720 
721 	while ((n = rb_first(&sdp->sd_rindex_tree))) {
722 		rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
723 		gl = rgd->rd_gl;
724 
725 		rb_erase(n, &sdp->sd_rindex_tree);
726 
727 		if (gl) {
728 			if (gl->gl_state != LM_ST_UNLOCKED) {
729 				gfs2_glock_cb(gl, LM_ST_UNLOCKED);
730 				flush_delayed_work(&gl->gl_work);
731 			}
732 			gfs2_rgrp_brelse(rgd);
733 			glock_clear_object(gl, rgd);
734 			gfs2_glock_put(gl);
735 		}
736 
737 		gfs2_free_clones(rgd);
738 		return_all_reservations(rgd);
739 		kfree(rgd->rd_bits);
740 		rgd->rd_bits = NULL;
741 		kmem_cache_free(gfs2_rgrpd_cachep, rgd);
742 	}
743 }
744 
745 /**
746  * compute_bitstructs - Compute the bitmap sizes
747  * @rgd: The resource group descriptor
748  *
749  * Calculates bitmap descriptors, one for each block that contains bitmap data
750  *
751  * Returns: errno
752  */
753 
754 static int compute_bitstructs(struct gfs2_rgrpd *rgd)
755 {
756 	struct gfs2_sbd *sdp = rgd->rd_sbd;
757 	struct gfs2_bitmap *bi;
758 	u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
759 	u32 bytes_left, bytes;
760 	int x;
761 
762 	if (!length)
763 		return -EINVAL;
764 
765 	rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
766 	if (!rgd->rd_bits)
767 		return -ENOMEM;
768 
769 	bytes_left = rgd->rd_bitbytes;
770 
771 	for (x = 0; x < length; x++) {
772 		bi = rgd->rd_bits + x;
773 
774 		bi->bi_flags = 0;
775 		/* small rgrp; bitmap stored completely in header block */
776 		if (length == 1) {
777 			bytes = bytes_left;
778 			bi->bi_offset = sizeof(struct gfs2_rgrp);
779 			bi->bi_start = 0;
780 			bi->bi_bytes = bytes;
781 			bi->bi_blocks = bytes * GFS2_NBBY;
782 		/* header block */
783 		} else if (x == 0) {
784 			bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
785 			bi->bi_offset = sizeof(struct gfs2_rgrp);
786 			bi->bi_start = 0;
787 			bi->bi_bytes = bytes;
788 			bi->bi_blocks = bytes * GFS2_NBBY;
789 		/* last block */
790 		} else if (x + 1 == length) {
791 			bytes = bytes_left;
792 			bi->bi_offset = sizeof(struct gfs2_meta_header);
793 			bi->bi_start = rgd->rd_bitbytes - bytes_left;
794 			bi->bi_bytes = bytes;
795 			bi->bi_blocks = bytes * GFS2_NBBY;
796 		/* other blocks */
797 		} else {
798 			bytes = sdp->sd_sb.sb_bsize -
799 				sizeof(struct gfs2_meta_header);
800 			bi->bi_offset = sizeof(struct gfs2_meta_header);
801 			bi->bi_start = rgd->rd_bitbytes - bytes_left;
802 			bi->bi_bytes = bytes;
803 			bi->bi_blocks = bytes * GFS2_NBBY;
804 		}
805 
806 		bytes_left -= bytes;
807 	}
808 
809 	if (bytes_left) {
810 		gfs2_consist_rgrpd(rgd);
811 		return -EIO;
812 	}
813 	bi = rgd->rd_bits + (length - 1);
814 	if ((bi->bi_start + bi->bi_bytes) * GFS2_NBBY != rgd->rd_data) {
815 		gfs2_lm(sdp,
816 			"ri_addr = %llu\n"
817 			"ri_length = %u\n"
818 			"ri_data0 = %llu\n"
819 			"ri_data = %u\n"
820 			"ri_bitbytes = %u\n"
821 			"start=%u len=%u offset=%u\n",
822 			(unsigned long long)rgd->rd_addr,
823 			rgd->rd_length,
824 			(unsigned long long)rgd->rd_data0,
825 			rgd->rd_data,
826 			rgd->rd_bitbytes,
827 			bi->bi_start, bi->bi_bytes, bi->bi_offset);
828 		gfs2_consist_rgrpd(rgd);
829 		return -EIO;
830 	}
831 
832 	return 0;
833 }
834 
835 /**
836  * gfs2_ri_total - Total up the file system space, according to the rindex.
837  * @sdp: the filesystem
838  *
839  */
840 u64 gfs2_ri_total(struct gfs2_sbd *sdp)
841 {
842 	u64 total_data = 0;
843 	struct inode *inode = sdp->sd_rindex;
844 	struct gfs2_inode *ip = GFS2_I(inode);
845 	char buf[sizeof(struct gfs2_rindex)];
846 	int error, rgrps;
847 
848 	for (rgrps = 0;; rgrps++) {
849 		loff_t pos = rgrps * sizeof(struct gfs2_rindex);
850 
851 		if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
852 			break;
853 		error = gfs2_internal_read(ip, buf, &pos,
854 					   sizeof(struct gfs2_rindex));
855 		if (error != sizeof(struct gfs2_rindex))
856 			break;
857 		total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
858 	}
859 	return total_data;
860 }
861 
862 static int rgd_insert(struct gfs2_rgrpd *rgd)
863 {
864 	struct gfs2_sbd *sdp = rgd->rd_sbd;
865 	struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
866 
867 	/* Figure out where to put new node */
868 	while (*newn) {
869 		struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
870 						  rd_node);
871 
872 		parent = *newn;
873 		if (rgd->rd_addr < cur->rd_addr)
874 			newn = &((*newn)->rb_left);
875 		else if (rgd->rd_addr > cur->rd_addr)
876 			newn = &((*newn)->rb_right);
877 		else
878 			return -EEXIST;
879 	}
880 
881 	rb_link_node(&rgd->rd_node, parent, newn);
882 	rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
883 	sdp->sd_rgrps++;
884 	return 0;
885 }
886 
887 /**
888  * read_rindex_entry - Pull in a new resource index entry from the disk
889  * @ip: Pointer to the rindex inode
890  *
891  * Returns: 0 on success, > 0 on EOF, error code otherwise
892  */
893 
894 static int read_rindex_entry(struct gfs2_inode *ip)
895 {
896 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
897 	loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
898 	struct gfs2_rindex buf;
899 	int error;
900 	struct gfs2_rgrpd *rgd;
901 
902 	if (pos >= i_size_read(&ip->i_inode))
903 		return 1;
904 
905 	error = gfs2_internal_read(ip, (char *)&buf, &pos,
906 				   sizeof(struct gfs2_rindex));
907 
908 	if (error != sizeof(struct gfs2_rindex))
909 		return (error == 0) ? 1 : error;
910 
911 	rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
912 	error = -ENOMEM;
913 	if (!rgd)
914 		return error;
915 
916 	rgd->rd_sbd = sdp;
917 	rgd->rd_addr = be64_to_cpu(buf.ri_addr);
918 	rgd->rd_length = be32_to_cpu(buf.ri_length);
919 	rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
920 	rgd->rd_data = be32_to_cpu(buf.ri_data);
921 	rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
922 	spin_lock_init(&rgd->rd_rsspin);
923 	mutex_init(&rgd->rd_mutex);
924 
925 	error = compute_bitstructs(rgd);
926 	if (error)
927 		goto fail;
928 
929 	error = gfs2_glock_get(sdp, rgd->rd_addr,
930 			       &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
931 	if (error)
932 		goto fail;
933 
934 	rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr;
935 	rgd->rd_flags &= ~(GFS2_RDF_UPTODATE | GFS2_RDF_PREFERRED);
936 	if (rgd->rd_data > sdp->sd_max_rg_data)
937 		sdp->sd_max_rg_data = rgd->rd_data;
938 	spin_lock(&sdp->sd_rindex_spin);
939 	error = rgd_insert(rgd);
940 	spin_unlock(&sdp->sd_rindex_spin);
941 	if (!error) {
942 		glock_set_object(rgd->rd_gl, rgd);
943 		return 0;
944 	}
945 
946 	error = 0; /* someone else read in the rgrp; free it and ignore it */
947 	gfs2_glock_put(rgd->rd_gl);
948 
949 fail:
950 	kfree(rgd->rd_bits);
951 	rgd->rd_bits = NULL;
952 	kmem_cache_free(gfs2_rgrpd_cachep, rgd);
953 	return error;
954 }
955 
956 /**
957  * set_rgrp_preferences - Run all the rgrps, selecting some we prefer to use
958  * @sdp: the GFS2 superblock
959  *
960  * The purpose of this function is to select a subset of the resource groups
961  * and mark them as PREFERRED. We do it in such a way that each node prefers
962  * to use a unique set of rgrps to minimize glock contention.
963  */
964 static void set_rgrp_preferences(struct gfs2_sbd *sdp)
965 {
966 	struct gfs2_rgrpd *rgd, *first;
967 	int i;
968 
969 	/* Skip an initial number of rgrps, based on this node's journal ID.
970 	   That should start each node out on its own set. */
971 	rgd = gfs2_rgrpd_get_first(sdp);
972 	for (i = 0; i < sdp->sd_lockstruct.ls_jid; i++)
973 		rgd = gfs2_rgrpd_get_next(rgd);
974 	first = rgd;
975 
976 	do {
977 		rgd->rd_flags |= GFS2_RDF_PREFERRED;
978 		for (i = 0; i < sdp->sd_journals; i++) {
979 			rgd = gfs2_rgrpd_get_next(rgd);
980 			if (!rgd || rgd == first)
981 				break;
982 		}
983 	} while (rgd && rgd != first);
984 }
985 
986 /**
987  * gfs2_ri_update - Pull in a new resource index from the disk
988  * @ip: pointer to the rindex inode
989  *
990  * Returns: 0 on successful update, error code otherwise
991  */
992 
993 static int gfs2_ri_update(struct gfs2_inode *ip)
994 {
995 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
996 	int error;
997 
998 	do {
999 		error = read_rindex_entry(ip);
1000 	} while (error == 0);
1001 
1002 	if (error < 0)
1003 		return error;
1004 
1005 	if (RB_EMPTY_ROOT(&sdp->sd_rindex_tree)) {
1006 		fs_err(sdp, "no resource groups found in the file system.\n");
1007 		return -ENOENT;
1008 	}
1009 	set_rgrp_preferences(sdp);
1010 
1011 	sdp->sd_rindex_uptodate = 1;
1012 	return 0;
1013 }
1014 
1015 /**
1016  * gfs2_rindex_update - Update the rindex if required
1017  * @sdp: The GFS2 superblock
1018  *
1019  * We grab a lock on the rindex inode to make sure that it doesn't
1020  * change whilst we are performing an operation. We keep this lock
1021  * for quite long periods of time compared to other locks. This
1022  * doesn't matter, since it is shared and it is very, very rarely
1023  * accessed in the exclusive mode (i.e. only when expanding the filesystem).
1024  *
1025  * This makes sure that we're using the latest copy of the resource index
1026  * special file, which might have been updated if someone expanded the
1027  * filesystem (via gfs2_grow utility), which adds new resource groups.
1028  *
1029  * Returns: 0 on succeess, error code otherwise
1030  */
1031 
1032 int gfs2_rindex_update(struct gfs2_sbd *sdp)
1033 {
1034 	struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
1035 	struct gfs2_glock *gl = ip->i_gl;
1036 	struct gfs2_holder ri_gh;
1037 	int error = 0;
1038 	int unlock_required = 0;
1039 
1040 	/* Read new copy from disk if we don't have the latest */
1041 	if (!sdp->sd_rindex_uptodate) {
1042 		if (!gfs2_glock_is_locked_by_me(gl)) {
1043 			error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
1044 			if (error)
1045 				return error;
1046 			unlock_required = 1;
1047 		}
1048 		if (!sdp->sd_rindex_uptodate)
1049 			error = gfs2_ri_update(ip);
1050 		if (unlock_required)
1051 			gfs2_glock_dq_uninit(&ri_gh);
1052 	}
1053 
1054 	return error;
1055 }
1056 
1057 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
1058 {
1059 	const struct gfs2_rgrp *str = buf;
1060 	u32 rg_flags;
1061 
1062 	rg_flags = be32_to_cpu(str->rg_flags);
1063 	rg_flags &= ~GFS2_RDF_MASK;
1064 	rgd->rd_flags &= GFS2_RDF_MASK;
1065 	rgd->rd_flags |= rg_flags;
1066 	rgd->rd_free = be32_to_cpu(str->rg_free);
1067 	rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
1068 	rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
1069 	/* rd_data0, rd_data and rd_bitbytes already set from rindex */
1070 }
1071 
1072 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf)
1073 {
1074 	const struct gfs2_rgrp *str = buf;
1075 
1076 	rgl->rl_magic = cpu_to_be32(GFS2_MAGIC);
1077 	rgl->rl_flags = str->rg_flags;
1078 	rgl->rl_free = str->rg_free;
1079 	rgl->rl_dinodes = str->rg_dinodes;
1080 	rgl->rl_igeneration = str->rg_igeneration;
1081 	rgl->__pad = 0UL;
1082 }
1083 
1084 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
1085 {
1086 	struct gfs2_rgrpd *next = gfs2_rgrpd_get_next(rgd);
1087 	struct gfs2_rgrp *str = buf;
1088 	u32 crc;
1089 
1090 	str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
1091 	str->rg_free = cpu_to_be32(rgd->rd_free);
1092 	str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
1093 	if (next == NULL)
1094 		str->rg_skip = 0;
1095 	else if (next->rd_addr > rgd->rd_addr)
1096 		str->rg_skip = cpu_to_be32(next->rd_addr - rgd->rd_addr);
1097 	str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
1098 	str->rg_data0 = cpu_to_be64(rgd->rd_data0);
1099 	str->rg_data = cpu_to_be32(rgd->rd_data);
1100 	str->rg_bitbytes = cpu_to_be32(rgd->rd_bitbytes);
1101 	str->rg_crc = 0;
1102 	crc = gfs2_disk_hash(buf, sizeof(struct gfs2_rgrp));
1103 	str->rg_crc = cpu_to_be32(crc);
1104 
1105 	memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
1106 	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, buf);
1107 }
1108 
1109 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd)
1110 {
1111 	struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1112 	struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data;
1113 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1114 	int valid = 1;
1115 
1116 	if (rgl->rl_flags != str->rg_flags) {
1117 		fs_warn(sdp, "GFS2: rgd: %llu lvb flag mismatch %u/%u",
1118 			(unsigned long long)rgd->rd_addr,
1119 		       be32_to_cpu(rgl->rl_flags), be32_to_cpu(str->rg_flags));
1120 		valid = 0;
1121 	}
1122 	if (rgl->rl_free != str->rg_free) {
1123 		fs_warn(sdp, "GFS2: rgd: %llu lvb free mismatch %u/%u",
1124 			(unsigned long long)rgd->rd_addr,
1125 			be32_to_cpu(rgl->rl_free), be32_to_cpu(str->rg_free));
1126 		valid = 0;
1127 	}
1128 	if (rgl->rl_dinodes != str->rg_dinodes) {
1129 		fs_warn(sdp, "GFS2: rgd: %llu lvb dinode mismatch %u/%u",
1130 			(unsigned long long)rgd->rd_addr,
1131 			be32_to_cpu(rgl->rl_dinodes),
1132 			be32_to_cpu(str->rg_dinodes));
1133 		valid = 0;
1134 	}
1135 	if (rgl->rl_igeneration != str->rg_igeneration) {
1136 		fs_warn(sdp, "GFS2: rgd: %llu lvb igen mismatch %llu/%llu",
1137 			(unsigned long long)rgd->rd_addr,
1138 			(unsigned long long)be64_to_cpu(rgl->rl_igeneration),
1139 			(unsigned long long)be64_to_cpu(str->rg_igeneration));
1140 		valid = 0;
1141 	}
1142 	return valid;
1143 }
1144 
1145 static u32 count_unlinked(struct gfs2_rgrpd *rgd)
1146 {
1147 	struct gfs2_bitmap *bi;
1148 	const u32 length = rgd->rd_length;
1149 	const u8 *buffer = NULL;
1150 	u32 i, goal, count = 0;
1151 
1152 	for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) {
1153 		goal = 0;
1154 		buffer = bi->bi_bh->b_data + bi->bi_offset;
1155 		WARN_ON(!buffer_uptodate(bi->bi_bh));
1156 		while (goal < bi->bi_blocks) {
1157 			goal = gfs2_bitfit(buffer, bi->bi_bytes, goal,
1158 					   GFS2_BLKST_UNLINKED);
1159 			if (goal == BFITNOENT)
1160 				break;
1161 			count++;
1162 			goal++;
1163 		}
1164 	}
1165 
1166 	return count;
1167 }
1168 
1169 static void rgrp_set_bitmap_flags(struct gfs2_rgrpd *rgd)
1170 {
1171 	struct gfs2_bitmap *bi;
1172 	int x;
1173 
1174 	if (rgd->rd_free) {
1175 		for (x = 0; x < rgd->rd_length; x++) {
1176 			bi = rgd->rd_bits + x;
1177 			clear_bit(GBF_FULL, &bi->bi_flags);
1178 		}
1179 	} else {
1180 		for (x = 0; x < rgd->rd_length; x++) {
1181 			bi = rgd->rd_bits + x;
1182 			set_bit(GBF_FULL, &bi->bi_flags);
1183 		}
1184 	}
1185 }
1186 
1187 /**
1188  * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps
1189  * @rgd: the struct gfs2_rgrpd describing the RG to read in
1190  *
1191  * Read in all of a Resource Group's header and bitmap blocks.
1192  * Caller must eventually call gfs2_rgrp_brelse() to free the bitmaps.
1193  *
1194  * Returns: errno
1195  */
1196 
1197 static int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd)
1198 {
1199 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1200 	struct gfs2_glock *gl = rgd->rd_gl;
1201 	unsigned int length = rgd->rd_length;
1202 	struct gfs2_bitmap *bi;
1203 	unsigned int x, y;
1204 	int error;
1205 
1206 	if (rgd->rd_bits[0].bi_bh != NULL)
1207 		return 0;
1208 
1209 	for (x = 0; x < length; x++) {
1210 		bi = rgd->rd_bits + x;
1211 		error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, 0, &bi->bi_bh);
1212 		if (error)
1213 			goto fail;
1214 	}
1215 
1216 	for (y = length; y--;) {
1217 		bi = rgd->rd_bits + y;
1218 		error = gfs2_meta_wait(sdp, bi->bi_bh);
1219 		if (error)
1220 			goto fail;
1221 		if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
1222 					      GFS2_METATYPE_RG)) {
1223 			error = -EIO;
1224 			goto fail;
1225 		}
1226 	}
1227 
1228 	if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
1229 		gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
1230 		rgrp_set_bitmap_flags(rgd);
1231 		rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1232 		rgd->rd_free_clone = rgd->rd_free;
1233 		BUG_ON(rgd->rd_reserved);
1234 		/* max out the rgrp allocation failure point */
1235 		rgd->rd_extfail_pt = rgd->rd_free;
1236 	}
1237 	if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) {
1238 		rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd));
1239 		gfs2_rgrp_ondisk2lvb(rgd->rd_rgl,
1240 				     rgd->rd_bits[0].bi_bh->b_data);
1241 	}
1242 	else if (sdp->sd_args.ar_rgrplvb) {
1243 		if (!gfs2_rgrp_lvb_valid(rgd)){
1244 			gfs2_consist_rgrpd(rgd);
1245 			error = -EIO;
1246 			goto fail;
1247 		}
1248 		if (rgd->rd_rgl->rl_unlinked == 0)
1249 			rgd->rd_flags &= ~GFS2_RDF_CHECK;
1250 	}
1251 	return 0;
1252 
1253 fail:
1254 	while (x--) {
1255 		bi = rgd->rd_bits + x;
1256 		brelse(bi->bi_bh);
1257 		bi->bi_bh = NULL;
1258 		gfs2_assert_warn(sdp, !bi->bi_clone);
1259 	}
1260 
1261 	return error;
1262 }
1263 
1264 static int update_rgrp_lvb(struct gfs2_rgrpd *rgd)
1265 {
1266 	u32 rl_flags;
1267 
1268 	if (rgd->rd_flags & GFS2_RDF_UPTODATE)
1269 		return 0;
1270 
1271 	if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic)
1272 		return gfs2_rgrp_bh_get(rgd);
1273 
1274 	rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags);
1275 	rl_flags &= ~GFS2_RDF_MASK;
1276 	rgd->rd_flags &= GFS2_RDF_MASK;
1277 	rgd->rd_flags |= (rl_flags | GFS2_RDF_CHECK);
1278 	if (rgd->rd_rgl->rl_unlinked == 0)
1279 		rgd->rd_flags &= ~GFS2_RDF_CHECK;
1280 	rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free);
1281 	rgrp_set_bitmap_flags(rgd);
1282 	rgd->rd_free_clone = rgd->rd_free;
1283 	BUG_ON(rgd->rd_reserved);
1284 	/* max out the rgrp allocation failure point */
1285 	rgd->rd_extfail_pt = rgd->rd_free;
1286 	rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes);
1287 	rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration);
1288 	return 0;
1289 }
1290 
1291 int gfs2_rgrp_go_lock(struct gfs2_holder *gh)
1292 {
1293 	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1294 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1295 
1296 	if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb)
1297 		return 0;
1298 	return gfs2_rgrp_bh_get(rgd);
1299 }
1300 
1301 /**
1302  * gfs2_rgrp_brelse - Release RG bitmaps read in with gfs2_rgrp_bh_get()
1303  * @rgd: The resource group
1304  *
1305  */
1306 
1307 void gfs2_rgrp_brelse(struct gfs2_rgrpd *rgd)
1308 {
1309 	int x, length = rgd->rd_length;
1310 
1311 	for (x = 0; x < length; x++) {
1312 		struct gfs2_bitmap *bi = rgd->rd_bits + x;
1313 		if (bi->bi_bh) {
1314 			brelse(bi->bi_bh);
1315 			bi->bi_bh = NULL;
1316 		}
1317 	}
1318 }
1319 
1320 int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
1321 			     struct buffer_head *bh,
1322 			     const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
1323 {
1324 	struct super_block *sb = sdp->sd_vfs;
1325 	u64 blk;
1326 	sector_t start = 0;
1327 	sector_t nr_blks = 0;
1328 	int rv;
1329 	unsigned int x;
1330 	u32 trimmed = 0;
1331 	u8 diff;
1332 
1333 	for (x = 0; x < bi->bi_bytes; x++) {
1334 		const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
1335 		clone += bi->bi_offset;
1336 		clone += x;
1337 		if (bh) {
1338 			const u8 *orig = bh->b_data + bi->bi_offset + x;
1339 			diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
1340 		} else {
1341 			diff = ~(*clone | (*clone >> 1));
1342 		}
1343 		diff &= 0x55;
1344 		if (diff == 0)
1345 			continue;
1346 		blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
1347 		while(diff) {
1348 			if (diff & 1) {
1349 				if (nr_blks == 0)
1350 					goto start_new_extent;
1351 				if ((start + nr_blks) != blk) {
1352 					if (nr_blks >= minlen) {
1353 						rv = sb_issue_discard(sb,
1354 							start, nr_blks,
1355 							GFP_NOFS, 0);
1356 						if (rv)
1357 							goto fail;
1358 						trimmed += nr_blks;
1359 					}
1360 					nr_blks = 0;
1361 start_new_extent:
1362 					start = blk;
1363 				}
1364 				nr_blks++;
1365 			}
1366 			diff >>= 2;
1367 			blk++;
1368 		}
1369 	}
1370 	if (nr_blks >= minlen) {
1371 		rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0);
1372 		if (rv)
1373 			goto fail;
1374 		trimmed += nr_blks;
1375 	}
1376 	if (ptrimmed)
1377 		*ptrimmed = trimmed;
1378 	return 0;
1379 
1380 fail:
1381 	if (sdp->sd_args.ar_discard)
1382 		fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem\n", rv);
1383 	sdp->sd_args.ar_discard = 0;
1384 	return -EIO;
1385 }
1386 
1387 /**
1388  * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
1389  * @filp: Any file on the filesystem
1390  * @argp: Pointer to the arguments (also used to pass result)
1391  *
1392  * Returns: 0 on success, otherwise error code
1393  */
1394 
1395 int gfs2_fitrim(struct file *filp, void __user *argp)
1396 {
1397 	struct inode *inode = file_inode(filp);
1398 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1399 	struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev);
1400 	struct buffer_head *bh;
1401 	struct gfs2_rgrpd *rgd;
1402 	struct gfs2_rgrpd *rgd_end;
1403 	struct gfs2_holder gh;
1404 	struct fstrim_range r;
1405 	int ret = 0;
1406 	u64 amt;
1407 	u64 trimmed = 0;
1408 	u64 start, end, minlen;
1409 	unsigned int x;
1410 	unsigned bs_shift = sdp->sd_sb.sb_bsize_shift;
1411 
1412 	if (!capable(CAP_SYS_ADMIN))
1413 		return -EPERM;
1414 
1415 	if (!test_bit(SDF_JOURNAL_LIVE, &sdp->sd_flags))
1416 		return -EROFS;
1417 
1418 	if (!blk_queue_discard(q))
1419 		return -EOPNOTSUPP;
1420 
1421 	if (copy_from_user(&r, argp, sizeof(r)))
1422 		return -EFAULT;
1423 
1424 	ret = gfs2_rindex_update(sdp);
1425 	if (ret)
1426 		return ret;
1427 
1428 	start = r.start >> bs_shift;
1429 	end = start + (r.len >> bs_shift);
1430 	minlen = max_t(u64, r.minlen,
1431 		       q->limits.discard_granularity) >> bs_shift;
1432 
1433 	if (end <= start || minlen > sdp->sd_max_rg_data)
1434 		return -EINVAL;
1435 
1436 	rgd = gfs2_blk2rgrpd(sdp, start, 0);
1437 	rgd_end = gfs2_blk2rgrpd(sdp, end, 0);
1438 
1439 	if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end))
1440 	    && (start > rgd_end->rd_data0 + rgd_end->rd_data))
1441 		return -EINVAL; /* start is beyond the end of the fs */
1442 
1443 	while (1) {
1444 
1445 		ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE,
1446 					 LM_FLAG_NODE_SCOPE, &gh);
1447 		if (ret)
1448 			goto out;
1449 
1450 		if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
1451 			/* Trim each bitmap in the rgrp */
1452 			for (x = 0; x < rgd->rd_length; x++) {
1453 				struct gfs2_bitmap *bi = rgd->rd_bits + x;
1454 				rgrp_lock_local(rgd);
1455 				ret = gfs2_rgrp_send_discards(sdp,
1456 						rgd->rd_data0, NULL, bi, minlen,
1457 						&amt);
1458 				rgrp_unlock_local(rgd);
1459 				if (ret) {
1460 					gfs2_glock_dq_uninit(&gh);
1461 					goto out;
1462 				}
1463 				trimmed += amt;
1464 			}
1465 
1466 			/* Mark rgrp as having been trimmed */
1467 			ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
1468 			if (ret == 0) {
1469 				bh = rgd->rd_bits[0].bi_bh;
1470 				rgrp_lock_local(rgd);
1471 				rgd->rd_flags |= GFS2_RGF_TRIMMED;
1472 				gfs2_trans_add_meta(rgd->rd_gl, bh);
1473 				gfs2_rgrp_out(rgd, bh->b_data);
1474 				rgrp_unlock_local(rgd);
1475 				gfs2_trans_end(sdp);
1476 			}
1477 		}
1478 		gfs2_glock_dq_uninit(&gh);
1479 
1480 		if (rgd == rgd_end)
1481 			break;
1482 
1483 		rgd = gfs2_rgrpd_get_next(rgd);
1484 	}
1485 
1486 out:
1487 	r.len = trimmed << bs_shift;
1488 	if (copy_to_user(argp, &r, sizeof(r)))
1489 		return -EFAULT;
1490 
1491 	return ret;
1492 }
1493 
1494 /**
1495  * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
1496  * @ip: the inode structure
1497  *
1498  */
1499 static void rs_insert(struct gfs2_inode *ip)
1500 {
1501 	struct rb_node **newn, *parent = NULL;
1502 	int rc;
1503 	struct gfs2_blkreserv *rs = &ip->i_res;
1504 	struct gfs2_rgrpd *rgd = rs->rs_rgd;
1505 
1506 	BUG_ON(gfs2_rs_active(rs));
1507 
1508 	spin_lock(&rgd->rd_rsspin);
1509 	newn = &rgd->rd_rstree.rb_node;
1510 	while (*newn) {
1511 		struct gfs2_blkreserv *cur =
1512 			rb_entry(*newn, struct gfs2_blkreserv, rs_node);
1513 
1514 		parent = *newn;
1515 		rc = rs_cmp(rs->rs_start, rs->rs_requested, cur);
1516 		if (rc > 0)
1517 			newn = &((*newn)->rb_right);
1518 		else if (rc < 0)
1519 			newn = &((*newn)->rb_left);
1520 		else {
1521 			spin_unlock(&rgd->rd_rsspin);
1522 			WARN_ON(1);
1523 			return;
1524 		}
1525 	}
1526 
1527 	rb_link_node(&rs->rs_node, parent, newn);
1528 	rb_insert_color(&rs->rs_node, &rgd->rd_rstree);
1529 
1530 	/* Do our rgrp accounting for the reservation */
1531 	rgd->rd_requested += rs->rs_requested; /* blocks requested */
1532 	spin_unlock(&rgd->rd_rsspin);
1533 	trace_gfs2_rs(rs, TRACE_RS_INSERT);
1534 }
1535 
1536 /**
1537  * rgd_free - return the number of free blocks we can allocate
1538  * @rgd: the resource group
1539  * @rs: The reservation to free
1540  *
1541  * This function returns the number of free blocks for an rgrp.
1542  * That's the clone-free blocks (blocks that are free, not including those
1543  * still being used for unlinked files that haven't been deleted.)
1544  *
1545  * It also subtracts any blocks reserved by someone else, but does not
1546  * include free blocks that are still part of our current reservation,
1547  * because obviously we can (and will) allocate them.
1548  */
1549 static inline u32 rgd_free(struct gfs2_rgrpd *rgd, struct gfs2_blkreserv *rs)
1550 {
1551 	u32 tot_reserved, tot_free;
1552 
1553 	if (WARN_ON_ONCE(rgd->rd_requested < rs->rs_requested))
1554 		return 0;
1555 	tot_reserved = rgd->rd_requested - rs->rs_requested;
1556 
1557 	if (rgd->rd_free_clone < tot_reserved)
1558 		tot_reserved = 0;
1559 
1560 	tot_free = rgd->rd_free_clone - tot_reserved;
1561 
1562 	return tot_free;
1563 }
1564 
1565 /**
1566  * rg_mblk_search - find a group of multiple free blocks to form a reservation
1567  * @rgd: the resource group descriptor
1568  * @ip: pointer to the inode for which we're reserving blocks
1569  * @ap: the allocation parameters
1570  *
1571  */
1572 
1573 static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip,
1574 			   const struct gfs2_alloc_parms *ap)
1575 {
1576 	struct gfs2_rbm rbm = { .rgd = rgd, };
1577 	u64 goal;
1578 	struct gfs2_blkreserv *rs = &ip->i_res;
1579 	u32 extlen;
1580 	u32 free_blocks, blocks_available;
1581 	int ret;
1582 	struct inode *inode = &ip->i_inode;
1583 
1584 	spin_lock(&rgd->rd_rsspin);
1585 	free_blocks = rgd_free(rgd, rs);
1586 	if (rgd->rd_free_clone < rgd->rd_requested)
1587 		free_blocks = 0;
1588 	blocks_available = rgd->rd_free_clone - rgd->rd_reserved;
1589 	if (rgd == rs->rs_rgd)
1590 		blocks_available += rs->rs_reserved;
1591 	spin_unlock(&rgd->rd_rsspin);
1592 
1593 	if (S_ISDIR(inode->i_mode))
1594 		extlen = 1;
1595 	else {
1596 		extlen = max_t(u32, atomic_read(&ip->i_sizehint), ap->target);
1597 		extlen = clamp(extlen, (u32)RGRP_RSRV_MINBLKS, free_blocks);
1598 	}
1599 	if (free_blocks < extlen || blocks_available < extlen)
1600 		return;
1601 
1602 	/* Find bitmap block that contains bits for goal block */
1603 	if (rgrp_contains_block(rgd, ip->i_goal))
1604 		goal = ip->i_goal;
1605 	else
1606 		goal = rgd->rd_last_alloc + rgd->rd_data0;
1607 
1608 	if (WARN_ON(gfs2_rbm_from_block(&rbm, goal)))
1609 		return;
1610 
1611 	ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, &ip->i_res, true);
1612 	if (ret == 0) {
1613 		rs->rs_start = gfs2_rbm_to_block(&rbm);
1614 		rs->rs_requested = extlen;
1615 		rs_insert(ip);
1616 	} else {
1617 		if (goal == rgd->rd_last_alloc + rgd->rd_data0)
1618 			rgd->rd_last_alloc = 0;
1619 	}
1620 }
1621 
1622 /**
1623  * gfs2_next_unreserved_block - Return next block that is not reserved
1624  * @rgd: The resource group
1625  * @block: The starting block
1626  * @length: The required length
1627  * @ignore_rs: Reservation to ignore
1628  *
1629  * If the block does not appear in any reservation, then return the
1630  * block number unchanged. If it does appear in the reservation, then
1631  * keep looking through the tree of reservations in order to find the
1632  * first block number which is not reserved.
1633  */
1634 
1635 static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block,
1636 				      u32 length,
1637 				      struct gfs2_blkreserv *ignore_rs)
1638 {
1639 	struct gfs2_blkreserv *rs;
1640 	struct rb_node *n;
1641 	int rc;
1642 
1643 	spin_lock(&rgd->rd_rsspin);
1644 	n = rgd->rd_rstree.rb_node;
1645 	while (n) {
1646 		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1647 		rc = rs_cmp(block, length, rs);
1648 		if (rc < 0)
1649 			n = n->rb_left;
1650 		else if (rc > 0)
1651 			n = n->rb_right;
1652 		else
1653 			break;
1654 	}
1655 
1656 	if (n) {
1657 		while (rs_cmp(block, length, rs) == 0 && rs != ignore_rs) {
1658 			block = rs->rs_start + rs->rs_requested;
1659 			n = n->rb_right;
1660 			if (n == NULL)
1661 				break;
1662 			rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1663 		}
1664 	}
1665 
1666 	spin_unlock(&rgd->rd_rsspin);
1667 	return block;
1668 }
1669 
1670 /**
1671  * gfs2_reservation_check_and_update - Check for reservations during block alloc
1672  * @rbm: The current position in the resource group
1673  * @rs: Our own reservation
1674  * @minext: The minimum extent length
1675  * @maxext: A pointer to the maximum extent structure
1676  *
1677  * This checks the current position in the rgrp to see whether there is
1678  * a reservation covering this block. If not then this function is a
1679  * no-op. If there is, then the position is moved to the end of the
1680  * contiguous reservation(s) so that we are pointing at the first
1681  * non-reserved block.
1682  *
1683  * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error
1684  */
1685 
1686 static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm,
1687 					     struct gfs2_blkreserv *rs,
1688 					     u32 minext,
1689 					     struct gfs2_extent *maxext)
1690 {
1691 	u64 block = gfs2_rbm_to_block(rbm);
1692 	u32 extlen = 1;
1693 	u64 nblock;
1694 
1695 	/*
1696 	 * If we have a minimum extent length, then skip over any extent
1697 	 * which is less than the min extent length in size.
1698 	 */
1699 	if (minext > 1) {
1700 		extlen = gfs2_free_extlen(rbm, minext);
1701 		if (extlen <= maxext->len)
1702 			goto fail;
1703 	}
1704 
1705 	/*
1706 	 * Check the extent which has been found against the reservations
1707 	 * and skip if parts of it are already reserved
1708 	 */
1709 	nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, rs);
1710 	if (nblock == block) {
1711 		if (!minext || extlen >= minext)
1712 			return 0;
1713 
1714 		if (extlen > maxext->len) {
1715 			maxext->len = extlen;
1716 			maxext->rbm = *rbm;
1717 		}
1718 	} else {
1719 		u64 len = nblock - block;
1720 		if (len >= (u64)1 << 32)
1721 			return -E2BIG;
1722 		extlen = len;
1723 	}
1724 fail:
1725 	if (gfs2_rbm_add(rbm, extlen))
1726 		return -E2BIG;
1727 	return 1;
1728 }
1729 
1730 /**
1731  * gfs2_rbm_find - Look for blocks of a particular state
1732  * @rbm: Value/result starting position and final position
1733  * @state: The state which we want to find
1734  * @minext: Pointer to the requested extent length
1735  *          This is updated to be the actual reservation size.
1736  * @rs: Our own reservation (NULL to skip checking for reservations)
1737  * @nowrap: Stop looking at the end of the rgrp, rather than wrapping
1738  *          around until we've reached the starting point.
1739  *
1740  * Side effects:
1741  * - If looking for free blocks, we set GBF_FULL on each bitmap which
1742  *   has no free blocks in it.
1743  * - If looking for free blocks, we set rd_extfail_pt on each rgrp which
1744  *   has come up short on a free block search.
1745  *
1746  * Returns: 0 on success, -ENOSPC if there is no block of the requested state
1747  */
1748 
1749 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
1750 			 struct gfs2_blkreserv *rs, bool nowrap)
1751 {
1752 	bool scan_from_start = rbm->bii == 0 && rbm->offset == 0;
1753 	struct buffer_head *bh;
1754 	int last_bii;
1755 	u32 offset;
1756 	u8 *buffer;
1757 	bool wrapped = false;
1758 	int ret;
1759 	struct gfs2_bitmap *bi;
1760 	struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, };
1761 
1762 	/*
1763 	 * Determine the last bitmap to search.  If we're not starting at the
1764 	 * beginning of a bitmap, we need to search that bitmap twice to scan
1765 	 * the entire resource group.
1766 	 */
1767 	last_bii = rbm->bii - (rbm->offset == 0);
1768 
1769 	while(1) {
1770 		bi = rbm_bi(rbm);
1771 		if (test_bit(GBF_FULL, &bi->bi_flags) &&
1772 		    (state == GFS2_BLKST_FREE))
1773 			goto next_bitmap;
1774 
1775 		bh = bi->bi_bh;
1776 		buffer = bh->b_data + bi->bi_offset;
1777 		WARN_ON(!buffer_uptodate(bh));
1778 		if (state != GFS2_BLKST_UNLINKED && bi->bi_clone)
1779 			buffer = bi->bi_clone + bi->bi_offset;
1780 		offset = gfs2_bitfit(buffer, bi->bi_bytes, rbm->offset, state);
1781 		if (offset == BFITNOENT) {
1782 			if (state == GFS2_BLKST_FREE && rbm->offset == 0)
1783 				set_bit(GBF_FULL, &bi->bi_flags);
1784 			goto next_bitmap;
1785 		}
1786 		rbm->offset = offset;
1787 		if (!rs || !minext)
1788 			return 0;
1789 
1790 		ret = gfs2_reservation_check_and_update(rbm, rs, *minext,
1791 							&maxext);
1792 		if (ret == 0)
1793 			return 0;
1794 		if (ret > 0)
1795 			goto next_iter;
1796 		if (ret == -E2BIG) {
1797 			rbm->bii = 0;
1798 			rbm->offset = 0;
1799 			goto res_covered_end_of_rgrp;
1800 		}
1801 		return ret;
1802 
1803 next_bitmap:	/* Find next bitmap in the rgrp */
1804 		rbm->offset = 0;
1805 		rbm->bii++;
1806 		if (rbm->bii == rbm->rgd->rd_length)
1807 			rbm->bii = 0;
1808 res_covered_end_of_rgrp:
1809 		if (rbm->bii == 0) {
1810 			if (wrapped)
1811 				break;
1812 			wrapped = true;
1813 			if (nowrap)
1814 				break;
1815 		}
1816 next_iter:
1817 		/* Have we scanned the entire resource group? */
1818 		if (wrapped && rbm->bii > last_bii)
1819 			break;
1820 	}
1821 
1822 	if (state != GFS2_BLKST_FREE)
1823 		return -ENOSPC;
1824 
1825 	/* If the extent was too small, and it's smaller than the smallest
1826 	   to have failed before, remember for future reference that it's
1827 	   useless to search this rgrp again for this amount or more. */
1828 	if (wrapped && (scan_from_start || rbm->bii > last_bii) &&
1829 	    *minext < rbm->rgd->rd_extfail_pt)
1830 		rbm->rgd->rd_extfail_pt = *minext - 1;
1831 
1832 	/* If the maximum extent we found is big enough to fulfill the
1833 	   minimum requirements, use it anyway. */
1834 	if (maxext.len) {
1835 		*rbm = maxext.rbm;
1836 		*minext = maxext.len;
1837 		return 0;
1838 	}
1839 
1840 	return -ENOSPC;
1841 }
1842 
1843 /**
1844  * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1845  * @rgd: The rgrp
1846  * @last_unlinked: block address of the last dinode we unlinked
1847  * @skip: block address we should explicitly not unlink
1848  *
1849  * Returns: 0 if no error
1850  *          The inode, if one has been found, in inode.
1851  */
1852 
1853 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
1854 {
1855 	u64 block;
1856 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1857 	struct gfs2_glock *gl;
1858 	struct gfs2_inode *ip;
1859 	int error;
1860 	int found = 0;
1861 	struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 };
1862 
1863 	while (1) {
1864 		error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL,
1865 				      true);
1866 		if (error == -ENOSPC)
1867 			break;
1868 		if (WARN_ON_ONCE(error))
1869 			break;
1870 
1871 		block = gfs2_rbm_to_block(&rbm);
1872 		if (gfs2_rbm_from_block(&rbm, block + 1))
1873 			break;
1874 		if (*last_unlinked != NO_BLOCK && block <= *last_unlinked)
1875 			continue;
1876 		if (block == skip)
1877 			continue;
1878 		*last_unlinked = block;
1879 
1880 		error = gfs2_glock_get(sdp, block, &gfs2_iopen_glops, CREATE, &gl);
1881 		if (error)
1882 			continue;
1883 
1884 		/* If the inode is already in cache, we can ignore it here
1885 		 * because the existing inode disposal code will deal with
1886 		 * it when all refs have gone away. Accessing gl_object like
1887 		 * this is not safe in general. Here it is ok because we do
1888 		 * not dereference the pointer, and we only need an approx
1889 		 * answer to whether it is NULL or not.
1890 		 */
1891 		ip = gl->gl_object;
1892 
1893 		if (ip || !gfs2_queue_delete_work(gl, 0))
1894 			gfs2_glock_put(gl);
1895 		else
1896 			found++;
1897 
1898 		/* Limit reclaim to sensible number of tasks */
1899 		if (found > NR_CPUS)
1900 			return;
1901 	}
1902 
1903 	rgd->rd_flags &= ~GFS2_RDF_CHECK;
1904 	return;
1905 }
1906 
1907 /**
1908  * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested
1909  * @rgd: The rgrp in question
1910  * @loops: An indication of how picky we can be (0=very, 1=less so)
1911  *
1912  * This function uses the recently added glock statistics in order to
1913  * figure out whether a parciular resource group is suffering from
1914  * contention from multiple nodes. This is done purely on the basis
1915  * of timings, since this is the only data we have to work with and
1916  * our aim here is to reject a resource group which is highly contended
1917  * but (very important) not to do this too often in order to ensure that
1918  * we do not land up introducing fragmentation by changing resource
1919  * groups when not actually required.
1920  *
1921  * The calculation is fairly simple, we want to know whether the SRTTB
1922  * (i.e. smoothed round trip time for blocking operations) to acquire
1923  * the lock for this rgrp's glock is significantly greater than the
1924  * time taken for resource groups on average. We introduce a margin in
1925  * the form of the variable @var which is computed as the sum of the two
1926  * respective variences, and multiplied by a factor depending on @loops
1927  * and whether we have a lot of data to base the decision on. This is
1928  * then tested against the square difference of the means in order to
1929  * decide whether the result is statistically significant or not.
1930  *
1931  * Returns: A boolean verdict on the congestion status
1932  */
1933 
1934 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops)
1935 {
1936 	const struct gfs2_glock *gl = rgd->rd_gl;
1937 	const struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
1938 	struct gfs2_lkstats *st;
1939 	u64 r_dcount, l_dcount;
1940 	u64 l_srttb, a_srttb = 0;
1941 	s64 srttb_diff;
1942 	u64 sqr_diff;
1943 	u64 var;
1944 	int cpu, nonzero = 0;
1945 
1946 	preempt_disable();
1947 	for_each_present_cpu(cpu) {
1948 		st = &per_cpu_ptr(sdp->sd_lkstats, cpu)->lkstats[LM_TYPE_RGRP];
1949 		if (st->stats[GFS2_LKS_SRTTB]) {
1950 			a_srttb += st->stats[GFS2_LKS_SRTTB];
1951 			nonzero++;
1952 		}
1953 	}
1954 	st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP];
1955 	if (nonzero)
1956 		do_div(a_srttb, nonzero);
1957 	r_dcount = st->stats[GFS2_LKS_DCOUNT];
1958 	var = st->stats[GFS2_LKS_SRTTVARB] +
1959 	      gl->gl_stats.stats[GFS2_LKS_SRTTVARB];
1960 	preempt_enable();
1961 
1962 	l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB];
1963 	l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT];
1964 
1965 	if ((l_dcount < 1) || (r_dcount < 1) || (a_srttb == 0))
1966 		return false;
1967 
1968 	srttb_diff = a_srttb - l_srttb;
1969 	sqr_diff = srttb_diff * srttb_diff;
1970 
1971 	var *= 2;
1972 	if (l_dcount < 8 || r_dcount < 8)
1973 		var *= 2;
1974 	if (loops == 1)
1975 		var *= 2;
1976 
1977 	return ((srttb_diff < 0) && (sqr_diff > var));
1978 }
1979 
1980 /**
1981  * gfs2_rgrp_used_recently
1982  * @rs: The block reservation with the rgrp to test
1983  * @msecs: The time limit in milliseconds
1984  *
1985  * Returns: True if the rgrp glock has been used within the time limit
1986  */
1987 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs,
1988 				    u64 msecs)
1989 {
1990 	u64 tdiff;
1991 
1992 	tdiff = ktime_to_ns(ktime_sub(ktime_get_real(),
1993                             rs->rs_rgd->rd_gl->gl_dstamp));
1994 
1995 	return tdiff > (msecs * 1000 * 1000);
1996 }
1997 
1998 static u32 gfs2_orlov_skip(const struct gfs2_inode *ip)
1999 {
2000 	const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2001 	u32 skip;
2002 
2003 	get_random_bytes(&skip, sizeof(skip));
2004 	return skip % sdp->sd_rgrps;
2005 }
2006 
2007 static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin)
2008 {
2009 	struct gfs2_rgrpd *rgd = *pos;
2010 	struct gfs2_sbd *sdp = rgd->rd_sbd;
2011 
2012 	rgd = gfs2_rgrpd_get_next(rgd);
2013 	if (rgd == NULL)
2014 		rgd = gfs2_rgrpd_get_first(sdp);
2015 	*pos = rgd;
2016 	if (rgd != begin) /* If we didn't wrap */
2017 		return true;
2018 	return false;
2019 }
2020 
2021 /**
2022  * fast_to_acquire - determine if a resource group will be fast to acquire
2023  * @rgd: The rgrp
2024  *
2025  * If this is one of our preferred rgrps, it should be quicker to acquire,
2026  * because we tried to set ourselves up as dlm lock master.
2027  */
2028 static inline int fast_to_acquire(struct gfs2_rgrpd *rgd)
2029 {
2030 	struct gfs2_glock *gl = rgd->rd_gl;
2031 
2032 	if (gl->gl_state != LM_ST_UNLOCKED && list_empty(&gl->gl_holders) &&
2033 	    !test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags) &&
2034 	    !test_bit(GLF_DEMOTE, &gl->gl_flags))
2035 		return 1;
2036 	if (rgd->rd_flags & GFS2_RDF_PREFERRED)
2037 		return 1;
2038 	return 0;
2039 }
2040 
2041 /**
2042  * gfs2_inplace_reserve - Reserve space in the filesystem
2043  * @ip: the inode to reserve space for
2044  * @ap: the allocation parameters
2045  *
2046  * We try our best to find an rgrp that has at least ap->target blocks
2047  * available. After a couple of passes (loops == 2), the prospects of finding
2048  * such an rgrp diminish. At this stage, we return the first rgrp that has
2049  * at least ap->min_target blocks available.
2050  *
2051  * Returns: 0 on success,
2052  *          -ENOMEM if a suitable rgrp can't be found
2053  *          errno otherwise
2054  */
2055 
2056 int gfs2_inplace_reserve(struct gfs2_inode *ip, struct gfs2_alloc_parms *ap)
2057 {
2058 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2059 	struct gfs2_rgrpd *begin = NULL;
2060 	struct gfs2_blkreserv *rs = &ip->i_res;
2061 	int error = 0, flags = LM_FLAG_NODE_SCOPE;
2062 	bool rg_locked;
2063 	u64 last_unlinked = NO_BLOCK;
2064 	u32 target = ap->target;
2065 	int loops = 0;
2066 	u32 free_blocks, blocks_available, skip = 0;
2067 
2068 	BUG_ON(rs->rs_reserved);
2069 
2070 	if (sdp->sd_args.ar_rgrplvb)
2071 		flags |= GL_SKIP;
2072 	if (gfs2_assert_warn(sdp, target))
2073 		return -EINVAL;
2074 	if (gfs2_rs_active(rs)) {
2075 		begin = rs->rs_rgd;
2076 	} else if (rs->rs_rgd &&
2077 		   rgrp_contains_block(rs->rs_rgd, ip->i_goal)) {
2078 		begin = rs->rs_rgd;
2079 	} else {
2080 		check_and_update_goal(ip);
2081 		rs->rs_rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
2082 	}
2083 	if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV))
2084 		skip = gfs2_orlov_skip(ip);
2085 	if (rs->rs_rgd == NULL)
2086 		return -EBADSLT;
2087 
2088 	while (loops < 3) {
2089 		struct gfs2_rgrpd *rgd;
2090 
2091 		rg_locked = gfs2_glock_is_locked_by_me(rs->rs_rgd->rd_gl);
2092 		if (rg_locked) {
2093 			rgrp_lock_local(rs->rs_rgd);
2094 		} else {
2095 			if (skip && skip--)
2096 				goto next_rgrp;
2097 			if (!gfs2_rs_active(rs)) {
2098 				if (loops == 0 &&
2099 				    !fast_to_acquire(rs->rs_rgd))
2100 					goto next_rgrp;
2101 				if ((loops < 2) &&
2102 				    gfs2_rgrp_used_recently(rs, 1000) &&
2103 				    gfs2_rgrp_congested(rs->rs_rgd, loops))
2104 					goto next_rgrp;
2105 			}
2106 			error = gfs2_glock_nq_init(rs->rs_rgd->rd_gl,
2107 						   LM_ST_EXCLUSIVE, flags,
2108 						   &ip->i_rgd_gh);
2109 			if (unlikely(error))
2110 				return error;
2111 			rgrp_lock_local(rs->rs_rgd);
2112 			if (!gfs2_rs_active(rs) && (loops < 2) &&
2113 			    gfs2_rgrp_congested(rs->rs_rgd, loops))
2114 				goto skip_rgrp;
2115 			if (sdp->sd_args.ar_rgrplvb) {
2116 				error = update_rgrp_lvb(rs->rs_rgd);
2117 				if (unlikely(error)) {
2118 					rgrp_unlock_local(rs->rs_rgd);
2119 					gfs2_glock_dq_uninit(&ip->i_rgd_gh);
2120 					return error;
2121 				}
2122 			}
2123 		}
2124 
2125 		/* Skip unusable resource groups */
2126 		if ((rs->rs_rgd->rd_flags & (GFS2_RGF_NOALLOC |
2127 						 GFS2_RDF_ERROR)) ||
2128 		    (loops == 0 && target > rs->rs_rgd->rd_extfail_pt))
2129 			goto skip_rgrp;
2130 
2131 		if (sdp->sd_args.ar_rgrplvb)
2132 			gfs2_rgrp_bh_get(rs->rs_rgd);
2133 
2134 		/* Get a reservation if we don't already have one */
2135 		if (!gfs2_rs_active(rs))
2136 			rg_mblk_search(rs->rs_rgd, ip, ap);
2137 
2138 		/* Skip rgrps when we can't get a reservation on first pass */
2139 		if (!gfs2_rs_active(rs) && (loops < 1))
2140 			goto check_rgrp;
2141 
2142 		/* If rgrp has enough free space, use it */
2143 		rgd = rs->rs_rgd;
2144 		spin_lock(&rgd->rd_rsspin);
2145 		free_blocks = rgd_free(rgd, rs);
2146 		blocks_available = rgd->rd_free_clone - rgd->rd_reserved;
2147 		if (free_blocks < target || blocks_available < target) {
2148 			spin_unlock(&rgd->rd_rsspin);
2149 			goto check_rgrp;
2150 		}
2151 		rs->rs_reserved = ap->target;
2152 		if (rs->rs_reserved > blocks_available)
2153 			rs->rs_reserved = blocks_available;
2154 		rgd->rd_reserved += rs->rs_reserved;
2155 		spin_unlock(&rgd->rd_rsspin);
2156 		rgrp_unlock_local(rs->rs_rgd);
2157 		return 0;
2158 check_rgrp:
2159 		/* Check for unlinked inodes which can be reclaimed */
2160 		if (rs->rs_rgd->rd_flags & GFS2_RDF_CHECK)
2161 			try_rgrp_unlink(rs->rs_rgd, &last_unlinked,
2162 					ip->i_no_addr);
2163 skip_rgrp:
2164 		rgrp_unlock_local(rs->rs_rgd);
2165 
2166 		/* Drop reservation, if we couldn't use reserved rgrp */
2167 		if (gfs2_rs_active(rs))
2168 			gfs2_rs_deltree(rs);
2169 
2170 		/* Unlock rgrp if required */
2171 		if (!rg_locked)
2172 			gfs2_glock_dq_uninit(&ip->i_rgd_gh);
2173 next_rgrp:
2174 		/* Find the next rgrp, and continue looking */
2175 		if (gfs2_select_rgrp(&rs->rs_rgd, begin))
2176 			continue;
2177 		if (skip)
2178 			continue;
2179 
2180 		/* If we've scanned all the rgrps, but found no free blocks
2181 		 * then this checks for some less likely conditions before
2182 		 * trying again.
2183 		 */
2184 		loops++;
2185 		/* Check that fs hasn't grown if writing to rindex */
2186 		if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
2187 			error = gfs2_ri_update(ip);
2188 			if (error)
2189 				return error;
2190 		}
2191 		/* Flushing the log may release space */
2192 		if (loops == 2) {
2193 			if (ap->min_target)
2194 				target = ap->min_target;
2195 			gfs2_log_flush(sdp, NULL, GFS2_LOG_HEAD_FLUSH_NORMAL |
2196 				       GFS2_LFC_INPLACE_RESERVE);
2197 		}
2198 	}
2199 
2200 	return -ENOSPC;
2201 }
2202 
2203 /**
2204  * gfs2_inplace_release - release an inplace reservation
2205  * @ip: the inode the reservation was taken out on
2206  *
2207  * Release a reservation made by gfs2_inplace_reserve().
2208  */
2209 
2210 void gfs2_inplace_release(struct gfs2_inode *ip)
2211 {
2212 	struct gfs2_blkreserv *rs = &ip->i_res;
2213 
2214 	if (rs->rs_reserved) {
2215 		struct gfs2_rgrpd *rgd = rs->rs_rgd;
2216 
2217 		spin_lock(&rgd->rd_rsspin);
2218 		BUG_ON(rgd->rd_reserved < rs->rs_reserved);
2219 		rgd->rd_reserved -= rs->rs_reserved;
2220 		spin_unlock(&rgd->rd_rsspin);
2221 		rs->rs_reserved = 0;
2222 	}
2223 	if (gfs2_holder_initialized(&ip->i_rgd_gh))
2224 		gfs2_glock_dq_uninit(&ip->i_rgd_gh);
2225 }
2226 
2227 /**
2228  * gfs2_alloc_extent - allocate an extent from a given bitmap
2229  * @rbm: the resource group information
2230  * @dinode: TRUE if the first block we allocate is for a dinode
2231  * @n: The extent length (value/result)
2232  *
2233  * Add the bitmap buffer to the transaction.
2234  * Set the found bits to @new_state to change block's allocation state.
2235  */
2236 static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode,
2237 			     unsigned int *n)
2238 {
2239 	struct gfs2_rbm pos = { .rgd = rbm->rgd, };
2240 	const unsigned int elen = *n;
2241 	u64 block;
2242 	int ret;
2243 
2244 	*n = 1;
2245 	block = gfs2_rbm_to_block(rbm);
2246 	gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh);
2247 	gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2248 	block++;
2249 	while (*n < elen) {
2250 		ret = gfs2_rbm_from_block(&pos, block);
2251 		if (ret || gfs2_testbit(&pos, true) != GFS2_BLKST_FREE)
2252 			break;
2253 		gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh);
2254 		gfs2_setbit(&pos, true, GFS2_BLKST_USED);
2255 		(*n)++;
2256 		block++;
2257 	}
2258 }
2259 
2260 /**
2261  * rgblk_free - Change alloc state of given block(s)
2262  * @sdp: the filesystem
2263  * @rgd: the resource group the blocks are in
2264  * @bstart: the start of a run of blocks to free
2265  * @blen: the length of the block run (all must lie within ONE RG!)
2266  * @new_state: GFS2_BLKST_XXX the after-allocation block state
2267  */
2268 
2269 static void rgblk_free(struct gfs2_sbd *sdp, struct gfs2_rgrpd *rgd,
2270 		       u64 bstart, u32 blen, unsigned char new_state)
2271 {
2272 	struct gfs2_rbm rbm;
2273 	struct gfs2_bitmap *bi, *bi_prev = NULL;
2274 
2275 	rbm.rgd = rgd;
2276 	if (WARN_ON_ONCE(gfs2_rbm_from_block(&rbm, bstart)))
2277 		return;
2278 	while (blen--) {
2279 		bi = rbm_bi(&rbm);
2280 		if (bi != bi_prev) {
2281 			if (!bi->bi_clone) {
2282 				bi->bi_clone = kmalloc(bi->bi_bh->b_size,
2283 						      GFP_NOFS | __GFP_NOFAIL);
2284 				memcpy(bi->bi_clone + bi->bi_offset,
2285 				       bi->bi_bh->b_data + bi->bi_offset,
2286 				       bi->bi_bytes);
2287 			}
2288 			gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh);
2289 			bi_prev = bi;
2290 		}
2291 		gfs2_setbit(&rbm, false, new_state);
2292 		gfs2_rbm_add(&rbm, 1);
2293 	}
2294 }
2295 
2296 /**
2297  * gfs2_rgrp_dump - print out an rgrp
2298  * @seq: The iterator
2299  * @rgd: The rgrp in question
2300  * @fs_id_buf: pointer to file system id (if requested)
2301  *
2302  */
2303 
2304 void gfs2_rgrp_dump(struct seq_file *seq, struct gfs2_rgrpd *rgd,
2305 		    const char *fs_id_buf)
2306 {
2307 	struct gfs2_blkreserv *trs;
2308 	const struct rb_node *n;
2309 
2310 	spin_lock(&rgd->rd_rsspin);
2311 	gfs2_print_dbg(seq, "%s R: n:%llu f:%02x b:%u/%u i:%u q:%u r:%u e:%u\n",
2312 		       fs_id_buf,
2313 		       (unsigned long long)rgd->rd_addr, rgd->rd_flags,
2314 		       rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes,
2315 		       rgd->rd_requested, rgd->rd_reserved, rgd->rd_extfail_pt);
2316 	if (rgd->rd_sbd->sd_args.ar_rgrplvb) {
2317 		struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
2318 
2319 		gfs2_print_dbg(seq, "%s  L: f:%02x b:%u i:%u\n", fs_id_buf,
2320 			       be32_to_cpu(rgl->rl_flags),
2321 			       be32_to_cpu(rgl->rl_free),
2322 			       be32_to_cpu(rgl->rl_dinodes));
2323 	}
2324 	for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) {
2325 		trs = rb_entry(n, struct gfs2_blkreserv, rs_node);
2326 		dump_rs(seq, trs, fs_id_buf);
2327 	}
2328 	spin_unlock(&rgd->rd_rsspin);
2329 }
2330 
2331 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
2332 {
2333 	struct gfs2_sbd *sdp = rgd->rd_sbd;
2334 	char fs_id_buf[sizeof(sdp->sd_fsname) + 7];
2335 
2336 	fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
2337 		(unsigned long long)rgd->rd_addr);
2338 	fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
2339 	sprintf(fs_id_buf, "fsid=%s: ", sdp->sd_fsname);
2340 	gfs2_rgrp_dump(NULL, rgd, fs_id_buf);
2341 	rgd->rd_flags |= GFS2_RDF_ERROR;
2342 }
2343 
2344 /**
2345  * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation
2346  * @ip: The inode we have just allocated blocks for
2347  * @rbm: The start of the allocated blocks
2348  * @len: The extent length
2349  *
2350  * Adjusts a reservation after an allocation has taken place. If the
2351  * reservation does not match the allocation, or if it is now empty
2352  * then it is removed.
2353  */
2354 
2355 static void gfs2_adjust_reservation(struct gfs2_inode *ip,
2356 				    const struct gfs2_rbm *rbm, unsigned len)
2357 {
2358 	struct gfs2_blkreserv *rs = &ip->i_res;
2359 	struct gfs2_rgrpd *rgd = rbm->rgd;
2360 
2361 	BUG_ON(rs->rs_reserved < len);
2362 	rs->rs_reserved -= len;
2363 	if (gfs2_rs_active(rs)) {
2364 		u64 start = gfs2_rbm_to_block(rbm);
2365 
2366 		if (rs->rs_start == start) {
2367 			unsigned int rlen;
2368 
2369 			rs->rs_start += len;
2370 			rlen = min(rs->rs_requested, len);
2371 			rs->rs_requested -= rlen;
2372 			rgd->rd_requested -= rlen;
2373 			trace_gfs2_rs(rs, TRACE_RS_CLAIM);
2374 			if (rs->rs_start < rgd->rd_data0 + rgd->rd_data &&
2375 			    rs->rs_requested)
2376 				return;
2377 			/* We used up our block reservation, so we should
2378 			   reserve more blocks next time. */
2379 			atomic_add(RGRP_RSRV_ADDBLKS, &ip->i_sizehint);
2380 		}
2381 		__rs_deltree(rs);
2382 	}
2383 }
2384 
2385 /**
2386  * gfs2_set_alloc_start - Set starting point for block allocation
2387  * @rbm: The rbm which will be set to the required location
2388  * @ip: The gfs2 inode
2389  * @dinode: Flag to say if allocation includes a new inode
2390  *
2391  * This sets the starting point from the reservation if one is active
2392  * otherwise it falls back to guessing a start point based on the
2393  * inode's goal block or the last allocation point in the rgrp.
2394  */
2395 
2396 static void gfs2_set_alloc_start(struct gfs2_rbm *rbm,
2397 				 const struct gfs2_inode *ip, bool dinode)
2398 {
2399 	u64 goal;
2400 
2401 	if (gfs2_rs_active(&ip->i_res)) {
2402 		goal = ip->i_res.rs_start;
2403 	} else {
2404 		if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal))
2405 			goal = ip->i_goal;
2406 		else
2407 			goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0;
2408 	}
2409 	if (WARN_ON_ONCE(gfs2_rbm_from_block(rbm, goal))) {
2410 		rbm->bii = 0;
2411 		rbm->offset = 0;
2412 	}
2413 }
2414 
2415 /**
2416  * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
2417  * @ip: the inode to allocate the block for
2418  * @bn: Used to return the starting block number
2419  * @nblocks: requested number of blocks/extent length (value/result)
2420  * @dinode: 1 if we're allocating a dinode block, else 0
2421  * @generation: the generation number of the inode
2422  *
2423  * Returns: 0 or error
2424  */
2425 
2426 int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
2427 		      bool dinode, u64 *generation)
2428 {
2429 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2430 	struct buffer_head *dibh;
2431 	struct gfs2_rbm rbm = { .rgd = ip->i_res.rs_rgd, };
2432 	u64 block; /* block, within the file system scope */
2433 	u32 minext = 1;
2434 	int error = -ENOSPC;
2435 
2436 	BUG_ON(ip->i_res.rs_reserved < *nblocks);
2437 
2438 	rgrp_lock_local(rbm.rgd);
2439 	if (gfs2_rs_active(&ip->i_res)) {
2440 		gfs2_set_alloc_start(&rbm, ip, dinode);
2441 		error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &minext, &ip->i_res, false);
2442 	}
2443 	if (error == -ENOSPC) {
2444 		gfs2_set_alloc_start(&rbm, ip, dinode);
2445 		error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &minext, NULL, false);
2446 	}
2447 
2448 	/* Since all blocks are reserved in advance, this shouldn't happen */
2449 	if (error) {
2450 		fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n",
2451 			(unsigned long long)ip->i_no_addr, error, *nblocks,
2452 			test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags),
2453 			rbm.rgd->rd_extfail_pt);
2454 		goto rgrp_error;
2455 	}
2456 
2457 	gfs2_alloc_extent(&rbm, dinode, nblocks);
2458 	block = gfs2_rbm_to_block(&rbm);
2459 	rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0;
2460 	if (!dinode) {
2461 		ip->i_goal = block + *nblocks - 1;
2462 		error = gfs2_meta_inode_buffer(ip, &dibh);
2463 		if (error == 0) {
2464 			struct gfs2_dinode *di =
2465 				(struct gfs2_dinode *)dibh->b_data;
2466 			gfs2_trans_add_meta(ip->i_gl, dibh);
2467 			di->di_goal_meta = di->di_goal_data =
2468 				cpu_to_be64(ip->i_goal);
2469 			brelse(dibh);
2470 		}
2471 	}
2472 	spin_lock(&rbm.rgd->rd_rsspin);
2473 	gfs2_adjust_reservation(ip, &rbm, *nblocks);
2474 	if (rbm.rgd->rd_free < *nblocks || rbm.rgd->rd_reserved < *nblocks) {
2475 		fs_warn(sdp, "nblocks=%u\n", *nblocks);
2476 		spin_unlock(&rbm.rgd->rd_rsspin);
2477 		goto rgrp_error;
2478 	}
2479 	BUG_ON(rbm.rgd->rd_reserved < *nblocks);
2480 	BUG_ON(rbm.rgd->rd_free_clone < *nblocks);
2481 	BUG_ON(rbm.rgd->rd_free < *nblocks);
2482 	rbm.rgd->rd_reserved -= *nblocks;
2483 	rbm.rgd->rd_free_clone -= *nblocks;
2484 	rbm.rgd->rd_free -= *nblocks;
2485 	spin_unlock(&rbm.rgd->rd_rsspin);
2486 	if (dinode) {
2487 		rbm.rgd->rd_dinodes++;
2488 		*generation = rbm.rgd->rd_igeneration++;
2489 		if (*generation == 0)
2490 			*generation = rbm.rgd->rd_igeneration++;
2491 	}
2492 
2493 	gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh);
2494 	gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data);
2495 	rgrp_unlock_local(rbm.rgd);
2496 
2497 	gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
2498 	if (dinode)
2499 		gfs2_trans_remove_revoke(sdp, block, *nblocks);
2500 
2501 	gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid);
2502 
2503 	trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks,
2504 			       dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2505 	*bn = block;
2506 	return 0;
2507 
2508 rgrp_error:
2509 	rgrp_unlock_local(rbm.rgd);
2510 	gfs2_rgrp_error(rbm.rgd);
2511 	return -EIO;
2512 }
2513 
2514 /**
2515  * __gfs2_free_blocks - free a contiguous run of block(s)
2516  * @ip: the inode these blocks are being freed from
2517  * @rgd: the resource group the blocks are in
2518  * @bstart: first block of a run of contiguous blocks
2519  * @blen: the length of the block run
2520  * @meta: 1 if the blocks represent metadata
2521  *
2522  */
2523 
2524 void __gfs2_free_blocks(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd,
2525 			u64 bstart, u32 blen, int meta)
2526 {
2527 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2528 
2529 	rgrp_lock_local(rgd);
2530 	rgblk_free(sdp, rgd, bstart, blen, GFS2_BLKST_FREE);
2531 	trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
2532 	rgd->rd_free += blen;
2533 	rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
2534 	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2535 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2536 	rgrp_unlock_local(rgd);
2537 
2538 	/* Directories keep their data in the metadata address space */
2539 	if (meta || ip->i_depth || gfs2_is_jdata(ip))
2540 		gfs2_journal_wipe(ip, bstart, blen);
2541 }
2542 
2543 /**
2544  * gfs2_free_meta - free a contiguous run of data block(s)
2545  * @ip: the inode these blocks are being freed from
2546  * @rgd: the resource group the blocks are in
2547  * @bstart: first block of a run of contiguous blocks
2548  * @blen: the length of the block run
2549  *
2550  */
2551 
2552 void gfs2_free_meta(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd,
2553 		    u64 bstart, u32 blen)
2554 {
2555 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2556 
2557 	__gfs2_free_blocks(ip, rgd, bstart, blen, 1);
2558 	gfs2_statfs_change(sdp, 0, +blen, 0);
2559 	gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
2560 }
2561 
2562 void gfs2_unlink_di(struct inode *inode)
2563 {
2564 	struct gfs2_inode *ip = GFS2_I(inode);
2565 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2566 	struct gfs2_rgrpd *rgd;
2567 	u64 blkno = ip->i_no_addr;
2568 
2569 	rgd = gfs2_blk2rgrpd(sdp, blkno, true);
2570 	if (!rgd)
2571 		return;
2572 	rgrp_lock_local(rgd);
2573 	rgblk_free(sdp, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2574 	trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2575 	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2576 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2577 	be32_add_cpu(&rgd->rd_rgl->rl_unlinked, 1);
2578 	rgrp_unlock_local(rgd);
2579 }
2580 
2581 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
2582 {
2583 	struct gfs2_sbd *sdp = rgd->rd_sbd;
2584 
2585 	rgrp_lock_local(rgd);
2586 	rgblk_free(sdp, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2587 	if (!rgd->rd_dinodes)
2588 		gfs2_consist_rgrpd(rgd);
2589 	rgd->rd_dinodes--;
2590 	rgd->rd_free++;
2591 
2592 	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2593 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2594 	rgrp_unlock_local(rgd);
2595 	be32_add_cpu(&rgd->rd_rgl->rl_unlinked, -1);
2596 
2597 	gfs2_statfs_change(sdp, 0, +1, -1);
2598 	trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2599 	gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
2600 	gfs2_journal_wipe(ip, ip->i_no_addr, 1);
2601 }
2602 
2603 /**
2604  * gfs2_check_blk_type - Check the type of a block
2605  * @sdp: The superblock
2606  * @no_addr: The block number to check
2607  * @type: The block type we are looking for
2608  *
2609  * The inode glock of @no_addr must be held.  The @type to check for is either
2610  * GFS2_BLKST_DINODE or GFS2_BLKST_UNLINKED; checking for type GFS2_BLKST_FREE
2611  * or GFS2_BLKST_USED would make no sense.
2612  *
2613  * Returns: 0 if the block type matches the expected type
2614  *          -ESTALE if it doesn't match
2615  *          or -ve errno if something went wrong while checking
2616  */
2617 
2618 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
2619 {
2620 	struct gfs2_rgrpd *rgd;
2621 	struct gfs2_holder rgd_gh;
2622 	struct gfs2_rbm rbm;
2623 	int error = -EINVAL;
2624 
2625 	rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
2626 	if (!rgd)
2627 		goto fail;
2628 
2629 	error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
2630 	if (error)
2631 		goto fail;
2632 
2633 	rbm.rgd = rgd;
2634 	error = gfs2_rbm_from_block(&rbm, no_addr);
2635 	if (!WARN_ON_ONCE(error)) {
2636 		/*
2637 		 * No need to take the local resource group lock here; the
2638 		 * inode glock of @no_addr provides the necessary
2639 		 * synchronization in case the block is an inode.  (In case
2640 		 * the block is not an inode, the block type will not match
2641 		 * the @type we are looking for.)
2642 		 */
2643 		if (gfs2_testbit(&rbm, false) != type)
2644 			error = -ESTALE;
2645 	}
2646 
2647 	gfs2_glock_dq_uninit(&rgd_gh);
2648 
2649 fail:
2650 	return error;
2651 }
2652 
2653 /**
2654  * gfs2_rlist_add - add a RG to a list of RGs
2655  * @ip: the inode
2656  * @rlist: the list of resource groups
2657  * @block: the block
2658  *
2659  * Figure out what RG a block belongs to and add that RG to the list
2660  *
2661  * FIXME: Don't use NOFAIL
2662  *
2663  */
2664 
2665 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
2666 		    u64 block)
2667 {
2668 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2669 	struct gfs2_rgrpd *rgd;
2670 	struct gfs2_rgrpd **tmp;
2671 	unsigned int new_space;
2672 	unsigned int x;
2673 
2674 	if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
2675 		return;
2676 
2677 	/*
2678 	 * The resource group last accessed is kept in the last position.
2679 	 */
2680 
2681 	if (rlist->rl_rgrps) {
2682 		rgd = rlist->rl_rgd[rlist->rl_rgrps - 1];
2683 		if (rgrp_contains_block(rgd, block))
2684 			return;
2685 		rgd = gfs2_blk2rgrpd(sdp, block, 1);
2686 	} else {
2687 		rgd = ip->i_res.rs_rgd;
2688 		if (!rgd || !rgrp_contains_block(rgd, block))
2689 			rgd = gfs2_blk2rgrpd(sdp, block, 1);
2690 	}
2691 
2692 	if (!rgd) {
2693 		fs_err(sdp, "rlist_add: no rgrp for block %llu\n",
2694 		       (unsigned long long)block);
2695 		return;
2696 	}
2697 
2698 	for (x = 0; x < rlist->rl_rgrps; x++) {
2699 		if (rlist->rl_rgd[x] == rgd) {
2700 			swap(rlist->rl_rgd[x],
2701 			     rlist->rl_rgd[rlist->rl_rgrps - 1]);
2702 			return;
2703 		}
2704 	}
2705 
2706 	if (rlist->rl_rgrps == rlist->rl_space) {
2707 		new_space = rlist->rl_space + 10;
2708 
2709 		tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
2710 			      GFP_NOFS | __GFP_NOFAIL);
2711 
2712 		if (rlist->rl_rgd) {
2713 			memcpy(tmp, rlist->rl_rgd,
2714 			       rlist->rl_space * sizeof(struct gfs2_rgrpd *));
2715 			kfree(rlist->rl_rgd);
2716 		}
2717 
2718 		rlist->rl_space = new_space;
2719 		rlist->rl_rgd = tmp;
2720 	}
2721 
2722 	rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
2723 }
2724 
2725 /**
2726  * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
2727  *      and initialize an array of glock holders for them
2728  * @rlist: the list of resource groups
2729  *
2730  * FIXME: Don't use NOFAIL
2731  *
2732  */
2733 
2734 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist)
2735 {
2736 	unsigned int x;
2737 
2738 	rlist->rl_ghs = kmalloc_array(rlist->rl_rgrps,
2739 				      sizeof(struct gfs2_holder),
2740 				      GFP_NOFS | __GFP_NOFAIL);
2741 	for (x = 0; x < rlist->rl_rgrps; x++)
2742 		gfs2_holder_init(rlist->rl_rgd[x]->rd_gl, LM_ST_EXCLUSIVE,
2743 				 LM_FLAG_NODE_SCOPE, &rlist->rl_ghs[x]);
2744 }
2745 
2746 /**
2747  * gfs2_rlist_free - free a resource group list
2748  * @rlist: the list of resource groups
2749  *
2750  */
2751 
2752 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
2753 {
2754 	unsigned int x;
2755 
2756 	kfree(rlist->rl_rgd);
2757 
2758 	if (rlist->rl_ghs) {
2759 		for (x = 0; x < rlist->rl_rgrps; x++)
2760 			gfs2_holder_uninit(&rlist->rl_ghs[x]);
2761 		kfree(rlist->rl_ghs);
2762 		rlist->rl_ghs = NULL;
2763 	}
2764 }
2765 
2766 void rgrp_lock_local(struct gfs2_rgrpd *rgd)
2767 {
2768 	BUG_ON(!gfs2_glock_is_held_excl(rgd->rd_gl) &&
2769 	       !test_bit(SDF_NORECOVERY, &rgd->rd_sbd->sd_flags));
2770 	mutex_lock(&rgd->rd_mutex);
2771 }
2772 
2773 void rgrp_unlock_local(struct gfs2_rgrpd *rgd)
2774 {
2775 	mutex_unlock(&rgd->rd_mutex);
2776 }
2777