1 /* 2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This copyrighted material is made available to anyone wishing to use, 6 * modify, copy, or redistribute it subject to the terms and conditions 7 * of the GNU General Public License version 2. 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/slab.h> 13 #include <linux/spinlock.h> 14 #include <linux/completion.h> 15 #include <linux/buffer_head.h> 16 #include <linux/fs.h> 17 #include <linux/gfs2_ondisk.h> 18 #include <linux/prefetch.h> 19 #include <linux/blkdev.h> 20 #include <linux/rbtree.h> 21 #include <linux/random.h> 22 23 #include "gfs2.h" 24 #include "incore.h" 25 #include "glock.h" 26 #include "glops.h" 27 #include "lops.h" 28 #include "meta_io.h" 29 #include "quota.h" 30 #include "rgrp.h" 31 #include "super.h" 32 #include "trans.h" 33 #include "util.h" 34 #include "log.h" 35 #include "inode.h" 36 #include "trace_gfs2.h" 37 38 #define BFITNOENT ((u32)~0) 39 #define NO_BLOCK ((u64)~0) 40 41 #if BITS_PER_LONG == 32 42 #define LBITMASK (0x55555555UL) 43 #define LBITSKIP55 (0x55555555UL) 44 #define LBITSKIP00 (0x00000000UL) 45 #else 46 #define LBITMASK (0x5555555555555555UL) 47 #define LBITSKIP55 (0x5555555555555555UL) 48 #define LBITSKIP00 (0x0000000000000000UL) 49 #endif 50 51 /* 52 * These routines are used by the resource group routines (rgrp.c) 53 * to keep track of block allocation. Each block is represented by two 54 * bits. So, each byte represents GFS2_NBBY (i.e. 4) blocks. 55 * 56 * 0 = Free 57 * 1 = Used (not metadata) 58 * 2 = Unlinked (still in use) inode 59 * 3 = Used (metadata) 60 */ 61 62 struct gfs2_extent { 63 struct gfs2_rbm rbm; 64 u32 len; 65 }; 66 67 static const char valid_change[16] = { 68 /* current */ 69 /* n */ 0, 1, 1, 1, 70 /* e */ 1, 0, 0, 0, 71 /* w */ 0, 0, 0, 1, 72 1, 0, 0, 0 73 }; 74 75 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext, 76 const struct gfs2_inode *ip, bool nowrap, 77 const struct gfs2_alloc_parms *ap); 78 79 80 /** 81 * gfs2_setbit - Set a bit in the bitmaps 82 * @rbm: The position of the bit to set 83 * @do_clone: Also set the clone bitmap, if it exists 84 * @new_state: the new state of the block 85 * 86 */ 87 88 static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone, 89 unsigned char new_state) 90 { 91 unsigned char *byte1, *byte2, *end, cur_state; 92 struct gfs2_bitmap *bi = rbm_bi(rbm); 93 unsigned int buflen = bi->bi_len; 94 const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE; 95 96 byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY); 97 end = bi->bi_bh->b_data + bi->bi_offset + buflen; 98 99 BUG_ON(byte1 >= end); 100 101 cur_state = (*byte1 >> bit) & GFS2_BIT_MASK; 102 103 if (unlikely(!valid_change[new_state * 4 + cur_state])) { 104 pr_warn("buf_blk = 0x%x old_state=%d, new_state=%d\n", 105 rbm->offset, cur_state, new_state); 106 pr_warn("rgrp=0x%llx bi_start=0x%x\n", 107 (unsigned long long)rbm->rgd->rd_addr, bi->bi_start); 108 pr_warn("bi_offset=0x%x bi_len=0x%x\n", 109 bi->bi_offset, bi->bi_len); 110 dump_stack(); 111 gfs2_consist_rgrpd(rbm->rgd); 112 return; 113 } 114 *byte1 ^= (cur_state ^ new_state) << bit; 115 116 if (do_clone && bi->bi_clone) { 117 byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY); 118 cur_state = (*byte2 >> bit) & GFS2_BIT_MASK; 119 *byte2 ^= (cur_state ^ new_state) << bit; 120 } 121 } 122 123 /** 124 * gfs2_testbit - test a bit in the bitmaps 125 * @rbm: The bit to test 126 * 127 * Returns: The two bit block state of the requested bit 128 */ 129 130 static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm) 131 { 132 struct gfs2_bitmap *bi = rbm_bi(rbm); 133 const u8 *buffer = bi->bi_bh->b_data + bi->bi_offset; 134 const u8 *byte; 135 unsigned int bit; 136 137 byte = buffer + (rbm->offset / GFS2_NBBY); 138 bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE; 139 140 return (*byte >> bit) & GFS2_BIT_MASK; 141 } 142 143 /** 144 * gfs2_bit_search 145 * @ptr: Pointer to bitmap data 146 * @mask: Mask to use (normally 0x55555.... but adjusted for search start) 147 * @state: The state we are searching for 148 * 149 * We xor the bitmap data with a patter which is the bitwise opposite 150 * of what we are looking for, this gives rise to a pattern of ones 151 * wherever there is a match. Since we have two bits per entry, we 152 * take this pattern, shift it down by one place and then and it with 153 * the original. All the even bit positions (0,2,4, etc) then represent 154 * successful matches, so we mask with 0x55555..... to remove the unwanted 155 * odd bit positions. 156 * 157 * This allows searching of a whole u64 at once (32 blocks) with a 158 * single test (on 64 bit arches). 159 */ 160 161 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state) 162 { 163 u64 tmp; 164 static const u64 search[] = { 165 [0] = 0xffffffffffffffffULL, 166 [1] = 0xaaaaaaaaaaaaaaaaULL, 167 [2] = 0x5555555555555555ULL, 168 [3] = 0x0000000000000000ULL, 169 }; 170 tmp = le64_to_cpu(*ptr) ^ search[state]; 171 tmp &= (tmp >> 1); 172 tmp &= mask; 173 return tmp; 174 } 175 176 /** 177 * rs_cmp - multi-block reservation range compare 178 * @blk: absolute file system block number of the new reservation 179 * @len: number of blocks in the new reservation 180 * @rs: existing reservation to compare against 181 * 182 * returns: 1 if the block range is beyond the reach of the reservation 183 * -1 if the block range is before the start of the reservation 184 * 0 if the block range overlaps with the reservation 185 */ 186 static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs) 187 { 188 u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm); 189 190 if (blk >= startblk + rs->rs_free) 191 return 1; 192 if (blk + len - 1 < startblk) 193 return -1; 194 return 0; 195 } 196 197 /** 198 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing 199 * a block in a given allocation state. 200 * @buf: the buffer that holds the bitmaps 201 * @len: the length (in bytes) of the buffer 202 * @goal: start search at this block's bit-pair (within @buffer) 203 * @state: GFS2_BLKST_XXX the state of the block we're looking for. 204 * 205 * Scope of @goal and returned block number is only within this bitmap buffer, 206 * not entire rgrp or filesystem. @buffer will be offset from the actual 207 * beginning of a bitmap block buffer, skipping any header structures, but 208 * headers are always a multiple of 64 bits long so that the buffer is 209 * always aligned to a 64 bit boundary. 210 * 211 * The size of the buffer is in bytes, but is it assumed that it is 212 * always ok to read a complete multiple of 64 bits at the end 213 * of the block in case the end is no aligned to a natural boundary. 214 * 215 * Return: the block number (bitmap buffer scope) that was found 216 */ 217 218 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len, 219 u32 goal, u8 state) 220 { 221 u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1); 222 const __le64 *ptr = ((__le64 *)buf) + (goal >> 5); 223 const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64))); 224 u64 tmp; 225 u64 mask = 0x5555555555555555ULL; 226 u32 bit; 227 228 /* Mask off bits we don't care about at the start of the search */ 229 mask <<= spoint; 230 tmp = gfs2_bit_search(ptr, mask, state); 231 ptr++; 232 while(tmp == 0 && ptr < end) { 233 tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state); 234 ptr++; 235 } 236 /* Mask off any bits which are more than len bytes from the start */ 237 if (ptr == end && (len & (sizeof(u64) - 1))) 238 tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1)))); 239 /* Didn't find anything, so return */ 240 if (tmp == 0) 241 return BFITNOENT; 242 ptr--; 243 bit = __ffs64(tmp); 244 bit /= 2; /* two bits per entry in the bitmap */ 245 return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit; 246 } 247 248 /** 249 * gfs2_rbm_from_block - Set the rbm based upon rgd and block number 250 * @rbm: The rbm with rgd already set correctly 251 * @block: The block number (filesystem relative) 252 * 253 * This sets the bi and offset members of an rbm based on a 254 * resource group and a filesystem relative block number. The 255 * resource group must be set in the rbm on entry, the bi and 256 * offset members will be set by this function. 257 * 258 * Returns: 0 on success, or an error code 259 */ 260 261 static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block) 262 { 263 u64 rblock = block - rbm->rgd->rd_data0; 264 265 if (WARN_ON_ONCE(rblock > UINT_MAX)) 266 return -EINVAL; 267 if (block >= rbm->rgd->rd_data0 + rbm->rgd->rd_data) 268 return -E2BIG; 269 270 rbm->bii = 0; 271 rbm->offset = (u32)(rblock); 272 /* Check if the block is within the first block */ 273 if (rbm->offset < rbm_bi(rbm)->bi_blocks) 274 return 0; 275 276 /* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */ 277 rbm->offset += (sizeof(struct gfs2_rgrp) - 278 sizeof(struct gfs2_meta_header)) * GFS2_NBBY; 279 rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap; 280 rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap; 281 return 0; 282 } 283 284 /** 285 * gfs2_rbm_incr - increment an rbm structure 286 * @rbm: The rbm with rgd already set correctly 287 * 288 * This function takes an existing rbm structure and increments it to the next 289 * viable block offset. 290 * 291 * Returns: If incrementing the offset would cause the rbm to go past the 292 * end of the rgrp, true is returned, otherwise false. 293 * 294 */ 295 296 static bool gfs2_rbm_incr(struct gfs2_rbm *rbm) 297 { 298 if (rbm->offset + 1 < rbm_bi(rbm)->bi_blocks) { /* in the same bitmap */ 299 rbm->offset++; 300 return false; 301 } 302 if (rbm->bii == rbm->rgd->rd_length - 1) /* at the last bitmap */ 303 return true; 304 305 rbm->offset = 0; 306 rbm->bii++; 307 return false; 308 } 309 310 /** 311 * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned 312 * @rbm: Position to search (value/result) 313 * @n_unaligned: Number of unaligned blocks to check 314 * @len: Decremented for each block found (terminate on zero) 315 * 316 * Returns: true if a non-free block is encountered 317 */ 318 319 static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len) 320 { 321 u32 n; 322 u8 res; 323 324 for (n = 0; n < n_unaligned; n++) { 325 res = gfs2_testbit(rbm); 326 if (res != GFS2_BLKST_FREE) 327 return true; 328 (*len)--; 329 if (*len == 0) 330 return true; 331 if (gfs2_rbm_incr(rbm)) 332 return true; 333 } 334 335 return false; 336 } 337 338 /** 339 * gfs2_free_extlen - Return extent length of free blocks 340 * @rrbm: Starting position 341 * @len: Max length to check 342 * 343 * Starting at the block specified by the rbm, see how many free blocks 344 * there are, not reading more than len blocks ahead. This can be done 345 * using memchr_inv when the blocks are byte aligned, but has to be done 346 * on a block by block basis in case of unaligned blocks. Also this 347 * function can cope with bitmap boundaries (although it must stop on 348 * a resource group boundary) 349 * 350 * Returns: Number of free blocks in the extent 351 */ 352 353 static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len) 354 { 355 struct gfs2_rbm rbm = *rrbm; 356 u32 n_unaligned = rbm.offset & 3; 357 u32 size = len; 358 u32 bytes; 359 u32 chunk_size; 360 u8 *ptr, *start, *end; 361 u64 block; 362 struct gfs2_bitmap *bi; 363 364 if (n_unaligned && 365 gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len)) 366 goto out; 367 368 n_unaligned = len & 3; 369 /* Start is now byte aligned */ 370 while (len > 3) { 371 bi = rbm_bi(&rbm); 372 start = bi->bi_bh->b_data; 373 if (bi->bi_clone) 374 start = bi->bi_clone; 375 end = start + bi->bi_bh->b_size; 376 start += bi->bi_offset; 377 BUG_ON(rbm.offset & 3); 378 start += (rbm.offset / GFS2_NBBY); 379 bytes = min_t(u32, len / GFS2_NBBY, (end - start)); 380 ptr = memchr_inv(start, 0, bytes); 381 chunk_size = ((ptr == NULL) ? bytes : (ptr - start)); 382 chunk_size *= GFS2_NBBY; 383 BUG_ON(len < chunk_size); 384 len -= chunk_size; 385 block = gfs2_rbm_to_block(&rbm); 386 if (gfs2_rbm_from_block(&rbm, block + chunk_size)) { 387 n_unaligned = 0; 388 break; 389 } 390 if (ptr) { 391 n_unaligned = 3; 392 break; 393 } 394 n_unaligned = len & 3; 395 } 396 397 /* Deal with any bits left over at the end */ 398 if (n_unaligned) 399 gfs2_unaligned_extlen(&rbm, n_unaligned, &len); 400 out: 401 return size - len; 402 } 403 404 /** 405 * gfs2_bitcount - count the number of bits in a certain state 406 * @rgd: the resource group descriptor 407 * @buffer: the buffer that holds the bitmaps 408 * @buflen: the length (in bytes) of the buffer 409 * @state: the state of the block we're looking for 410 * 411 * Returns: The number of bits 412 */ 413 414 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer, 415 unsigned int buflen, u8 state) 416 { 417 const u8 *byte = buffer; 418 const u8 *end = buffer + buflen; 419 const u8 state1 = state << 2; 420 const u8 state2 = state << 4; 421 const u8 state3 = state << 6; 422 u32 count = 0; 423 424 for (; byte < end; byte++) { 425 if (((*byte) & 0x03) == state) 426 count++; 427 if (((*byte) & 0x0C) == state1) 428 count++; 429 if (((*byte) & 0x30) == state2) 430 count++; 431 if (((*byte) & 0xC0) == state3) 432 count++; 433 } 434 435 return count; 436 } 437 438 /** 439 * gfs2_rgrp_verify - Verify that a resource group is consistent 440 * @rgd: the rgrp 441 * 442 */ 443 444 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd) 445 { 446 struct gfs2_sbd *sdp = rgd->rd_sbd; 447 struct gfs2_bitmap *bi = NULL; 448 u32 length = rgd->rd_length; 449 u32 count[4], tmp; 450 int buf, x; 451 452 memset(count, 0, 4 * sizeof(u32)); 453 454 /* Count # blocks in each of 4 possible allocation states */ 455 for (buf = 0; buf < length; buf++) { 456 bi = rgd->rd_bits + buf; 457 for (x = 0; x < 4; x++) 458 count[x] += gfs2_bitcount(rgd, 459 bi->bi_bh->b_data + 460 bi->bi_offset, 461 bi->bi_len, x); 462 } 463 464 if (count[0] != rgd->rd_free) { 465 if (gfs2_consist_rgrpd(rgd)) 466 fs_err(sdp, "free data mismatch: %u != %u\n", 467 count[0], rgd->rd_free); 468 return; 469 } 470 471 tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes; 472 if (count[1] != tmp) { 473 if (gfs2_consist_rgrpd(rgd)) 474 fs_err(sdp, "used data mismatch: %u != %u\n", 475 count[1], tmp); 476 return; 477 } 478 479 if (count[2] + count[3] != rgd->rd_dinodes) { 480 if (gfs2_consist_rgrpd(rgd)) 481 fs_err(sdp, "used metadata mismatch: %u != %u\n", 482 count[2] + count[3], rgd->rd_dinodes); 483 return; 484 } 485 } 486 487 static inline int rgrp_contains_block(struct gfs2_rgrpd *rgd, u64 block) 488 { 489 u64 first = rgd->rd_data0; 490 u64 last = first + rgd->rd_data; 491 return first <= block && block < last; 492 } 493 494 /** 495 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number 496 * @sdp: The GFS2 superblock 497 * @blk: The data block number 498 * @exact: True if this needs to be an exact match 499 * 500 * Returns: The resource group, or NULL if not found 501 */ 502 503 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact) 504 { 505 struct rb_node *n, *next; 506 struct gfs2_rgrpd *cur; 507 508 spin_lock(&sdp->sd_rindex_spin); 509 n = sdp->sd_rindex_tree.rb_node; 510 while (n) { 511 cur = rb_entry(n, struct gfs2_rgrpd, rd_node); 512 next = NULL; 513 if (blk < cur->rd_addr) 514 next = n->rb_left; 515 else if (blk >= cur->rd_data0 + cur->rd_data) 516 next = n->rb_right; 517 if (next == NULL) { 518 spin_unlock(&sdp->sd_rindex_spin); 519 if (exact) { 520 if (blk < cur->rd_addr) 521 return NULL; 522 if (blk >= cur->rd_data0 + cur->rd_data) 523 return NULL; 524 } 525 return cur; 526 } 527 n = next; 528 } 529 spin_unlock(&sdp->sd_rindex_spin); 530 531 return NULL; 532 } 533 534 /** 535 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem 536 * @sdp: The GFS2 superblock 537 * 538 * Returns: The first rgrp in the filesystem 539 */ 540 541 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp) 542 { 543 const struct rb_node *n; 544 struct gfs2_rgrpd *rgd; 545 546 spin_lock(&sdp->sd_rindex_spin); 547 n = rb_first(&sdp->sd_rindex_tree); 548 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 549 spin_unlock(&sdp->sd_rindex_spin); 550 551 return rgd; 552 } 553 554 /** 555 * gfs2_rgrpd_get_next - get the next RG 556 * @rgd: the resource group descriptor 557 * 558 * Returns: The next rgrp 559 */ 560 561 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd) 562 { 563 struct gfs2_sbd *sdp = rgd->rd_sbd; 564 const struct rb_node *n; 565 566 spin_lock(&sdp->sd_rindex_spin); 567 n = rb_next(&rgd->rd_node); 568 if (n == NULL) 569 n = rb_first(&sdp->sd_rindex_tree); 570 571 if (unlikely(&rgd->rd_node == n)) { 572 spin_unlock(&sdp->sd_rindex_spin); 573 return NULL; 574 } 575 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 576 spin_unlock(&sdp->sd_rindex_spin); 577 return rgd; 578 } 579 580 void check_and_update_goal(struct gfs2_inode *ip) 581 { 582 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 583 if (!ip->i_goal || gfs2_blk2rgrpd(sdp, ip->i_goal, 1) == NULL) 584 ip->i_goal = ip->i_no_addr; 585 } 586 587 void gfs2_free_clones(struct gfs2_rgrpd *rgd) 588 { 589 int x; 590 591 for (x = 0; x < rgd->rd_length; x++) { 592 struct gfs2_bitmap *bi = rgd->rd_bits + x; 593 kfree(bi->bi_clone); 594 bi->bi_clone = NULL; 595 } 596 } 597 598 /** 599 * gfs2_rs_alloc - make sure we have a reservation assigned to the inode 600 * @ip: the inode for this reservation 601 */ 602 int gfs2_rs_alloc(struct gfs2_inode *ip) 603 { 604 int error = 0; 605 606 down_write(&ip->i_rw_mutex); 607 if (ip->i_res) 608 goto out; 609 610 ip->i_res = kmem_cache_zalloc(gfs2_rsrv_cachep, GFP_NOFS); 611 if (!ip->i_res) { 612 error = -ENOMEM; 613 goto out; 614 } 615 616 RB_CLEAR_NODE(&ip->i_res->rs_node); 617 out: 618 up_write(&ip->i_rw_mutex); 619 return error; 620 } 621 622 static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs) 623 { 624 gfs2_print_dbg(seq, " B: n:%llu s:%llu b:%u f:%u\n", 625 (unsigned long long)rs->rs_inum, 626 (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm), 627 rs->rs_rbm.offset, rs->rs_free); 628 } 629 630 /** 631 * __rs_deltree - remove a multi-block reservation from the rgd tree 632 * @rs: The reservation to remove 633 * 634 */ 635 static void __rs_deltree(struct gfs2_blkreserv *rs) 636 { 637 struct gfs2_rgrpd *rgd; 638 639 if (!gfs2_rs_active(rs)) 640 return; 641 642 rgd = rs->rs_rbm.rgd; 643 trace_gfs2_rs(rs, TRACE_RS_TREEDEL); 644 rb_erase(&rs->rs_node, &rgd->rd_rstree); 645 RB_CLEAR_NODE(&rs->rs_node); 646 647 if (rs->rs_free) { 648 struct gfs2_bitmap *bi = rbm_bi(&rs->rs_rbm); 649 650 /* return reserved blocks to the rgrp */ 651 BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free); 652 rs->rs_rbm.rgd->rd_reserved -= rs->rs_free; 653 /* The rgrp extent failure point is likely not to increase; 654 it will only do so if the freed blocks are somehow 655 contiguous with a span of free blocks that follows. Still, 656 it will force the number to be recalculated later. */ 657 rgd->rd_extfail_pt += rs->rs_free; 658 rs->rs_free = 0; 659 clear_bit(GBF_FULL, &bi->bi_flags); 660 } 661 } 662 663 /** 664 * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree 665 * @rs: The reservation to remove 666 * 667 */ 668 void gfs2_rs_deltree(struct gfs2_blkreserv *rs) 669 { 670 struct gfs2_rgrpd *rgd; 671 672 rgd = rs->rs_rbm.rgd; 673 if (rgd) { 674 spin_lock(&rgd->rd_rsspin); 675 __rs_deltree(rs); 676 spin_unlock(&rgd->rd_rsspin); 677 } 678 } 679 680 /** 681 * gfs2_rs_delete - delete a multi-block reservation 682 * @ip: The inode for this reservation 683 * @wcount: The inode's write count, or NULL 684 * 685 */ 686 void gfs2_rs_delete(struct gfs2_inode *ip, atomic_t *wcount) 687 { 688 down_write(&ip->i_rw_mutex); 689 if (ip->i_res && ((wcount == NULL) || (atomic_read(wcount) <= 1))) { 690 gfs2_rs_deltree(ip->i_res); 691 BUG_ON(ip->i_res->rs_free); 692 kmem_cache_free(gfs2_rsrv_cachep, ip->i_res); 693 ip->i_res = NULL; 694 } 695 up_write(&ip->i_rw_mutex); 696 } 697 698 /** 699 * return_all_reservations - return all reserved blocks back to the rgrp. 700 * @rgd: the rgrp that needs its space back 701 * 702 * We previously reserved a bunch of blocks for allocation. Now we need to 703 * give them back. This leave the reservation structures in tact, but removes 704 * all of their corresponding "no-fly zones". 705 */ 706 static void return_all_reservations(struct gfs2_rgrpd *rgd) 707 { 708 struct rb_node *n; 709 struct gfs2_blkreserv *rs; 710 711 spin_lock(&rgd->rd_rsspin); 712 while ((n = rb_first(&rgd->rd_rstree))) { 713 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 714 __rs_deltree(rs); 715 } 716 spin_unlock(&rgd->rd_rsspin); 717 } 718 719 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp) 720 { 721 struct rb_node *n; 722 struct gfs2_rgrpd *rgd; 723 struct gfs2_glock *gl; 724 725 while ((n = rb_first(&sdp->sd_rindex_tree))) { 726 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 727 gl = rgd->rd_gl; 728 729 rb_erase(n, &sdp->sd_rindex_tree); 730 731 if (gl) { 732 spin_lock(&gl->gl_spin); 733 gl->gl_object = NULL; 734 spin_unlock(&gl->gl_spin); 735 gfs2_glock_add_to_lru(gl); 736 gfs2_glock_put(gl); 737 } 738 739 gfs2_free_clones(rgd); 740 kfree(rgd->rd_bits); 741 return_all_reservations(rgd); 742 kmem_cache_free(gfs2_rgrpd_cachep, rgd); 743 } 744 } 745 746 static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd) 747 { 748 pr_info("ri_addr = %llu\n", (unsigned long long)rgd->rd_addr); 749 pr_info("ri_length = %u\n", rgd->rd_length); 750 pr_info("ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0); 751 pr_info("ri_data = %u\n", rgd->rd_data); 752 pr_info("ri_bitbytes = %u\n", rgd->rd_bitbytes); 753 } 754 755 /** 756 * gfs2_compute_bitstructs - Compute the bitmap sizes 757 * @rgd: The resource group descriptor 758 * 759 * Calculates bitmap descriptors, one for each block that contains bitmap data 760 * 761 * Returns: errno 762 */ 763 764 static int compute_bitstructs(struct gfs2_rgrpd *rgd) 765 { 766 struct gfs2_sbd *sdp = rgd->rd_sbd; 767 struct gfs2_bitmap *bi; 768 u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */ 769 u32 bytes_left, bytes; 770 int x; 771 772 if (!length) 773 return -EINVAL; 774 775 rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS); 776 if (!rgd->rd_bits) 777 return -ENOMEM; 778 779 bytes_left = rgd->rd_bitbytes; 780 781 for (x = 0; x < length; x++) { 782 bi = rgd->rd_bits + x; 783 784 bi->bi_flags = 0; 785 /* small rgrp; bitmap stored completely in header block */ 786 if (length == 1) { 787 bytes = bytes_left; 788 bi->bi_offset = sizeof(struct gfs2_rgrp); 789 bi->bi_start = 0; 790 bi->bi_len = bytes; 791 bi->bi_blocks = bytes * GFS2_NBBY; 792 /* header block */ 793 } else if (x == 0) { 794 bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp); 795 bi->bi_offset = sizeof(struct gfs2_rgrp); 796 bi->bi_start = 0; 797 bi->bi_len = bytes; 798 bi->bi_blocks = bytes * GFS2_NBBY; 799 /* last block */ 800 } else if (x + 1 == length) { 801 bytes = bytes_left; 802 bi->bi_offset = sizeof(struct gfs2_meta_header); 803 bi->bi_start = rgd->rd_bitbytes - bytes_left; 804 bi->bi_len = bytes; 805 bi->bi_blocks = bytes * GFS2_NBBY; 806 /* other blocks */ 807 } else { 808 bytes = sdp->sd_sb.sb_bsize - 809 sizeof(struct gfs2_meta_header); 810 bi->bi_offset = sizeof(struct gfs2_meta_header); 811 bi->bi_start = rgd->rd_bitbytes - bytes_left; 812 bi->bi_len = bytes; 813 bi->bi_blocks = bytes * GFS2_NBBY; 814 } 815 816 bytes_left -= bytes; 817 } 818 819 if (bytes_left) { 820 gfs2_consist_rgrpd(rgd); 821 return -EIO; 822 } 823 bi = rgd->rd_bits + (length - 1); 824 if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) { 825 if (gfs2_consist_rgrpd(rgd)) { 826 gfs2_rindex_print(rgd); 827 fs_err(sdp, "start=%u len=%u offset=%u\n", 828 bi->bi_start, bi->bi_len, bi->bi_offset); 829 } 830 return -EIO; 831 } 832 833 return 0; 834 } 835 836 /** 837 * gfs2_ri_total - Total up the file system space, according to the rindex. 838 * @sdp: the filesystem 839 * 840 */ 841 u64 gfs2_ri_total(struct gfs2_sbd *sdp) 842 { 843 u64 total_data = 0; 844 struct inode *inode = sdp->sd_rindex; 845 struct gfs2_inode *ip = GFS2_I(inode); 846 char buf[sizeof(struct gfs2_rindex)]; 847 int error, rgrps; 848 849 for (rgrps = 0;; rgrps++) { 850 loff_t pos = rgrps * sizeof(struct gfs2_rindex); 851 852 if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode)) 853 break; 854 error = gfs2_internal_read(ip, buf, &pos, 855 sizeof(struct gfs2_rindex)); 856 if (error != sizeof(struct gfs2_rindex)) 857 break; 858 total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data); 859 } 860 return total_data; 861 } 862 863 static int rgd_insert(struct gfs2_rgrpd *rgd) 864 { 865 struct gfs2_sbd *sdp = rgd->rd_sbd; 866 struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL; 867 868 /* Figure out where to put new node */ 869 while (*newn) { 870 struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd, 871 rd_node); 872 873 parent = *newn; 874 if (rgd->rd_addr < cur->rd_addr) 875 newn = &((*newn)->rb_left); 876 else if (rgd->rd_addr > cur->rd_addr) 877 newn = &((*newn)->rb_right); 878 else 879 return -EEXIST; 880 } 881 882 rb_link_node(&rgd->rd_node, parent, newn); 883 rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree); 884 sdp->sd_rgrps++; 885 return 0; 886 } 887 888 /** 889 * read_rindex_entry - Pull in a new resource index entry from the disk 890 * @ip: Pointer to the rindex inode 891 * 892 * Returns: 0 on success, > 0 on EOF, error code otherwise 893 */ 894 895 static int read_rindex_entry(struct gfs2_inode *ip) 896 { 897 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 898 const unsigned bsize = sdp->sd_sb.sb_bsize; 899 loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex); 900 struct gfs2_rindex buf; 901 int error; 902 struct gfs2_rgrpd *rgd; 903 904 if (pos >= i_size_read(&ip->i_inode)) 905 return 1; 906 907 error = gfs2_internal_read(ip, (char *)&buf, &pos, 908 sizeof(struct gfs2_rindex)); 909 910 if (error != sizeof(struct gfs2_rindex)) 911 return (error == 0) ? 1 : error; 912 913 rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS); 914 error = -ENOMEM; 915 if (!rgd) 916 return error; 917 918 rgd->rd_sbd = sdp; 919 rgd->rd_addr = be64_to_cpu(buf.ri_addr); 920 rgd->rd_length = be32_to_cpu(buf.ri_length); 921 rgd->rd_data0 = be64_to_cpu(buf.ri_data0); 922 rgd->rd_data = be32_to_cpu(buf.ri_data); 923 rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes); 924 spin_lock_init(&rgd->rd_rsspin); 925 926 error = compute_bitstructs(rgd); 927 if (error) 928 goto fail; 929 930 error = gfs2_glock_get(sdp, rgd->rd_addr, 931 &gfs2_rgrp_glops, CREATE, &rgd->rd_gl); 932 if (error) 933 goto fail; 934 935 rgd->rd_gl->gl_object = rgd; 936 rgd->rd_gl->gl_vm.start = rgd->rd_addr * bsize; 937 rgd->rd_gl->gl_vm.end = rgd->rd_gl->gl_vm.start + (rgd->rd_length * bsize) - 1; 938 rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr; 939 rgd->rd_flags &= ~(GFS2_RDF_UPTODATE | GFS2_RDF_PREFERRED); 940 if (rgd->rd_data > sdp->sd_max_rg_data) 941 sdp->sd_max_rg_data = rgd->rd_data; 942 spin_lock(&sdp->sd_rindex_spin); 943 error = rgd_insert(rgd); 944 spin_unlock(&sdp->sd_rindex_spin); 945 if (!error) 946 return 0; 947 948 error = 0; /* someone else read in the rgrp; free it and ignore it */ 949 gfs2_glock_put(rgd->rd_gl); 950 951 fail: 952 kfree(rgd->rd_bits); 953 kmem_cache_free(gfs2_rgrpd_cachep, rgd); 954 return error; 955 } 956 957 /** 958 * set_rgrp_preferences - Run all the rgrps, selecting some we prefer to use 959 * @sdp: the GFS2 superblock 960 * 961 * The purpose of this function is to select a subset of the resource groups 962 * and mark them as PREFERRED. We do it in such a way that each node prefers 963 * to use a unique set of rgrps to minimize glock contention. 964 */ 965 static void set_rgrp_preferences(struct gfs2_sbd *sdp) 966 { 967 struct gfs2_rgrpd *rgd, *first; 968 int i; 969 970 /* Skip an initial number of rgrps, based on this node's journal ID. 971 That should start each node out on its own set. */ 972 rgd = gfs2_rgrpd_get_first(sdp); 973 for (i = 0; i < sdp->sd_lockstruct.ls_jid; i++) 974 rgd = gfs2_rgrpd_get_next(rgd); 975 first = rgd; 976 977 do { 978 rgd->rd_flags |= GFS2_RDF_PREFERRED; 979 for (i = 0; i < sdp->sd_journals; i++) { 980 rgd = gfs2_rgrpd_get_next(rgd); 981 if (rgd == first) 982 break; 983 } 984 } while (rgd != first); 985 } 986 987 /** 988 * gfs2_ri_update - Pull in a new resource index from the disk 989 * @ip: pointer to the rindex inode 990 * 991 * Returns: 0 on successful update, error code otherwise 992 */ 993 994 static int gfs2_ri_update(struct gfs2_inode *ip) 995 { 996 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 997 int error; 998 999 do { 1000 error = read_rindex_entry(ip); 1001 } while (error == 0); 1002 1003 if (error < 0) 1004 return error; 1005 1006 set_rgrp_preferences(sdp); 1007 1008 sdp->sd_rindex_uptodate = 1; 1009 return 0; 1010 } 1011 1012 /** 1013 * gfs2_rindex_update - Update the rindex if required 1014 * @sdp: The GFS2 superblock 1015 * 1016 * We grab a lock on the rindex inode to make sure that it doesn't 1017 * change whilst we are performing an operation. We keep this lock 1018 * for quite long periods of time compared to other locks. This 1019 * doesn't matter, since it is shared and it is very, very rarely 1020 * accessed in the exclusive mode (i.e. only when expanding the filesystem). 1021 * 1022 * This makes sure that we're using the latest copy of the resource index 1023 * special file, which might have been updated if someone expanded the 1024 * filesystem (via gfs2_grow utility), which adds new resource groups. 1025 * 1026 * Returns: 0 on succeess, error code otherwise 1027 */ 1028 1029 int gfs2_rindex_update(struct gfs2_sbd *sdp) 1030 { 1031 struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex); 1032 struct gfs2_glock *gl = ip->i_gl; 1033 struct gfs2_holder ri_gh; 1034 int error = 0; 1035 int unlock_required = 0; 1036 1037 /* Read new copy from disk if we don't have the latest */ 1038 if (!sdp->sd_rindex_uptodate) { 1039 if (!gfs2_glock_is_locked_by_me(gl)) { 1040 error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh); 1041 if (error) 1042 return error; 1043 unlock_required = 1; 1044 } 1045 if (!sdp->sd_rindex_uptodate) 1046 error = gfs2_ri_update(ip); 1047 if (unlock_required) 1048 gfs2_glock_dq_uninit(&ri_gh); 1049 } 1050 1051 return error; 1052 } 1053 1054 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf) 1055 { 1056 const struct gfs2_rgrp *str = buf; 1057 u32 rg_flags; 1058 1059 rg_flags = be32_to_cpu(str->rg_flags); 1060 rg_flags &= ~GFS2_RDF_MASK; 1061 rgd->rd_flags &= GFS2_RDF_MASK; 1062 rgd->rd_flags |= rg_flags; 1063 rgd->rd_free = be32_to_cpu(str->rg_free); 1064 rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes); 1065 rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration); 1066 } 1067 1068 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf) 1069 { 1070 struct gfs2_rgrp *str = buf; 1071 1072 str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK); 1073 str->rg_free = cpu_to_be32(rgd->rd_free); 1074 str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes); 1075 str->__pad = cpu_to_be32(0); 1076 str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration); 1077 memset(&str->rg_reserved, 0, sizeof(str->rg_reserved)); 1078 } 1079 1080 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd) 1081 { 1082 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl; 1083 struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data; 1084 1085 if (rgl->rl_flags != str->rg_flags || rgl->rl_free != str->rg_free || 1086 rgl->rl_dinodes != str->rg_dinodes || 1087 rgl->rl_igeneration != str->rg_igeneration) 1088 return 0; 1089 return 1; 1090 } 1091 1092 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf) 1093 { 1094 const struct gfs2_rgrp *str = buf; 1095 1096 rgl->rl_magic = cpu_to_be32(GFS2_MAGIC); 1097 rgl->rl_flags = str->rg_flags; 1098 rgl->rl_free = str->rg_free; 1099 rgl->rl_dinodes = str->rg_dinodes; 1100 rgl->rl_igeneration = str->rg_igeneration; 1101 rgl->__pad = 0UL; 1102 } 1103 1104 static void update_rgrp_lvb_unlinked(struct gfs2_rgrpd *rgd, u32 change) 1105 { 1106 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl; 1107 u32 unlinked = be32_to_cpu(rgl->rl_unlinked) + change; 1108 rgl->rl_unlinked = cpu_to_be32(unlinked); 1109 } 1110 1111 static u32 count_unlinked(struct gfs2_rgrpd *rgd) 1112 { 1113 struct gfs2_bitmap *bi; 1114 const u32 length = rgd->rd_length; 1115 const u8 *buffer = NULL; 1116 u32 i, goal, count = 0; 1117 1118 for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) { 1119 goal = 0; 1120 buffer = bi->bi_bh->b_data + bi->bi_offset; 1121 WARN_ON(!buffer_uptodate(bi->bi_bh)); 1122 while (goal < bi->bi_len * GFS2_NBBY) { 1123 goal = gfs2_bitfit(buffer, bi->bi_len, goal, 1124 GFS2_BLKST_UNLINKED); 1125 if (goal == BFITNOENT) 1126 break; 1127 count++; 1128 goal++; 1129 } 1130 } 1131 1132 return count; 1133 } 1134 1135 1136 /** 1137 * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps 1138 * @rgd: the struct gfs2_rgrpd describing the RG to read in 1139 * 1140 * Read in all of a Resource Group's header and bitmap blocks. 1141 * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps. 1142 * 1143 * Returns: errno 1144 */ 1145 1146 static int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd) 1147 { 1148 struct gfs2_sbd *sdp = rgd->rd_sbd; 1149 struct gfs2_glock *gl = rgd->rd_gl; 1150 unsigned int length = rgd->rd_length; 1151 struct gfs2_bitmap *bi; 1152 unsigned int x, y; 1153 int error; 1154 1155 if (rgd->rd_bits[0].bi_bh != NULL) 1156 return 0; 1157 1158 for (x = 0; x < length; x++) { 1159 bi = rgd->rd_bits + x; 1160 error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, &bi->bi_bh); 1161 if (error) 1162 goto fail; 1163 } 1164 1165 for (y = length; y--;) { 1166 bi = rgd->rd_bits + y; 1167 error = gfs2_meta_wait(sdp, bi->bi_bh); 1168 if (error) 1169 goto fail; 1170 if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB : 1171 GFS2_METATYPE_RG)) { 1172 error = -EIO; 1173 goto fail; 1174 } 1175 } 1176 1177 if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) { 1178 for (x = 0; x < length; x++) 1179 clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags); 1180 gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data); 1181 rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK); 1182 rgd->rd_free_clone = rgd->rd_free; 1183 /* max out the rgrp allocation failure point */ 1184 rgd->rd_extfail_pt = rgd->rd_free; 1185 } 1186 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) { 1187 rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd)); 1188 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, 1189 rgd->rd_bits[0].bi_bh->b_data); 1190 } 1191 else if (sdp->sd_args.ar_rgrplvb) { 1192 if (!gfs2_rgrp_lvb_valid(rgd)){ 1193 gfs2_consist_rgrpd(rgd); 1194 error = -EIO; 1195 goto fail; 1196 } 1197 if (rgd->rd_rgl->rl_unlinked == 0) 1198 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1199 } 1200 return 0; 1201 1202 fail: 1203 while (x--) { 1204 bi = rgd->rd_bits + x; 1205 brelse(bi->bi_bh); 1206 bi->bi_bh = NULL; 1207 gfs2_assert_warn(sdp, !bi->bi_clone); 1208 } 1209 1210 return error; 1211 } 1212 1213 static int update_rgrp_lvb(struct gfs2_rgrpd *rgd) 1214 { 1215 u32 rl_flags; 1216 1217 if (rgd->rd_flags & GFS2_RDF_UPTODATE) 1218 return 0; 1219 1220 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) 1221 return gfs2_rgrp_bh_get(rgd); 1222 1223 rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags); 1224 rl_flags &= ~GFS2_RDF_MASK; 1225 rgd->rd_flags &= GFS2_RDF_MASK; 1226 rgd->rd_flags |= (rl_flags | GFS2_RDF_UPTODATE | GFS2_RDF_CHECK); 1227 if (rgd->rd_rgl->rl_unlinked == 0) 1228 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1229 rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free); 1230 rgd->rd_free_clone = rgd->rd_free; 1231 rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes); 1232 rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration); 1233 return 0; 1234 } 1235 1236 int gfs2_rgrp_go_lock(struct gfs2_holder *gh) 1237 { 1238 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object; 1239 struct gfs2_sbd *sdp = rgd->rd_sbd; 1240 1241 if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb) 1242 return 0; 1243 return gfs2_rgrp_bh_get(rgd); 1244 } 1245 1246 /** 1247 * gfs2_rgrp_go_unlock - Release RG bitmaps read in with gfs2_rgrp_bh_get() 1248 * @gh: The glock holder for the resource group 1249 * 1250 */ 1251 1252 void gfs2_rgrp_go_unlock(struct gfs2_holder *gh) 1253 { 1254 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object; 1255 int x, length = rgd->rd_length; 1256 1257 for (x = 0; x < length; x++) { 1258 struct gfs2_bitmap *bi = rgd->rd_bits + x; 1259 if (bi->bi_bh) { 1260 brelse(bi->bi_bh); 1261 bi->bi_bh = NULL; 1262 } 1263 } 1264 1265 } 1266 1267 int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset, 1268 struct buffer_head *bh, 1269 const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed) 1270 { 1271 struct super_block *sb = sdp->sd_vfs; 1272 u64 blk; 1273 sector_t start = 0; 1274 sector_t nr_blks = 0; 1275 int rv; 1276 unsigned int x; 1277 u32 trimmed = 0; 1278 u8 diff; 1279 1280 for (x = 0; x < bi->bi_len; x++) { 1281 const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data; 1282 clone += bi->bi_offset; 1283 clone += x; 1284 if (bh) { 1285 const u8 *orig = bh->b_data + bi->bi_offset + x; 1286 diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1)); 1287 } else { 1288 diff = ~(*clone | (*clone >> 1)); 1289 } 1290 diff &= 0x55; 1291 if (diff == 0) 1292 continue; 1293 blk = offset + ((bi->bi_start + x) * GFS2_NBBY); 1294 while(diff) { 1295 if (diff & 1) { 1296 if (nr_blks == 0) 1297 goto start_new_extent; 1298 if ((start + nr_blks) != blk) { 1299 if (nr_blks >= minlen) { 1300 rv = sb_issue_discard(sb, 1301 start, nr_blks, 1302 GFP_NOFS, 0); 1303 if (rv) 1304 goto fail; 1305 trimmed += nr_blks; 1306 } 1307 nr_blks = 0; 1308 start_new_extent: 1309 start = blk; 1310 } 1311 nr_blks++; 1312 } 1313 diff >>= 2; 1314 blk++; 1315 } 1316 } 1317 if (nr_blks >= minlen) { 1318 rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0); 1319 if (rv) 1320 goto fail; 1321 trimmed += nr_blks; 1322 } 1323 if (ptrimmed) 1324 *ptrimmed = trimmed; 1325 return 0; 1326 1327 fail: 1328 if (sdp->sd_args.ar_discard) 1329 fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv); 1330 sdp->sd_args.ar_discard = 0; 1331 return -EIO; 1332 } 1333 1334 /** 1335 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem 1336 * @filp: Any file on the filesystem 1337 * @argp: Pointer to the arguments (also used to pass result) 1338 * 1339 * Returns: 0 on success, otherwise error code 1340 */ 1341 1342 int gfs2_fitrim(struct file *filp, void __user *argp) 1343 { 1344 struct inode *inode = file_inode(filp); 1345 struct gfs2_sbd *sdp = GFS2_SB(inode); 1346 struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev); 1347 struct buffer_head *bh; 1348 struct gfs2_rgrpd *rgd; 1349 struct gfs2_rgrpd *rgd_end; 1350 struct gfs2_holder gh; 1351 struct fstrim_range r; 1352 int ret = 0; 1353 u64 amt; 1354 u64 trimmed = 0; 1355 u64 start, end, minlen; 1356 unsigned int x; 1357 unsigned bs_shift = sdp->sd_sb.sb_bsize_shift; 1358 1359 if (!capable(CAP_SYS_ADMIN)) 1360 return -EPERM; 1361 1362 if (!blk_queue_discard(q)) 1363 return -EOPNOTSUPP; 1364 1365 if (copy_from_user(&r, argp, sizeof(r))) 1366 return -EFAULT; 1367 1368 ret = gfs2_rindex_update(sdp); 1369 if (ret) 1370 return ret; 1371 1372 start = r.start >> bs_shift; 1373 end = start + (r.len >> bs_shift); 1374 minlen = max_t(u64, r.minlen, 1375 q->limits.discard_granularity) >> bs_shift; 1376 1377 if (end <= start || minlen > sdp->sd_max_rg_data) 1378 return -EINVAL; 1379 1380 rgd = gfs2_blk2rgrpd(sdp, start, 0); 1381 rgd_end = gfs2_blk2rgrpd(sdp, end, 0); 1382 1383 if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end)) 1384 && (start > rgd_end->rd_data0 + rgd_end->rd_data)) 1385 return -EINVAL; /* start is beyond the end of the fs */ 1386 1387 while (1) { 1388 1389 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh); 1390 if (ret) 1391 goto out; 1392 1393 if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) { 1394 /* Trim each bitmap in the rgrp */ 1395 for (x = 0; x < rgd->rd_length; x++) { 1396 struct gfs2_bitmap *bi = rgd->rd_bits + x; 1397 ret = gfs2_rgrp_send_discards(sdp, 1398 rgd->rd_data0, NULL, bi, minlen, 1399 &amt); 1400 if (ret) { 1401 gfs2_glock_dq_uninit(&gh); 1402 goto out; 1403 } 1404 trimmed += amt; 1405 } 1406 1407 /* Mark rgrp as having been trimmed */ 1408 ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0); 1409 if (ret == 0) { 1410 bh = rgd->rd_bits[0].bi_bh; 1411 rgd->rd_flags |= GFS2_RGF_TRIMMED; 1412 gfs2_trans_add_meta(rgd->rd_gl, bh); 1413 gfs2_rgrp_out(rgd, bh->b_data); 1414 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, bh->b_data); 1415 gfs2_trans_end(sdp); 1416 } 1417 } 1418 gfs2_glock_dq_uninit(&gh); 1419 1420 if (rgd == rgd_end) 1421 break; 1422 1423 rgd = gfs2_rgrpd_get_next(rgd); 1424 } 1425 1426 out: 1427 r.len = trimmed << bs_shift; 1428 if (copy_to_user(argp, &r, sizeof(r))) 1429 return -EFAULT; 1430 1431 return ret; 1432 } 1433 1434 /** 1435 * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree 1436 * @ip: the inode structure 1437 * 1438 */ 1439 static void rs_insert(struct gfs2_inode *ip) 1440 { 1441 struct rb_node **newn, *parent = NULL; 1442 int rc; 1443 struct gfs2_blkreserv *rs = ip->i_res; 1444 struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd; 1445 u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm); 1446 1447 BUG_ON(gfs2_rs_active(rs)); 1448 1449 spin_lock(&rgd->rd_rsspin); 1450 newn = &rgd->rd_rstree.rb_node; 1451 while (*newn) { 1452 struct gfs2_blkreserv *cur = 1453 rb_entry(*newn, struct gfs2_blkreserv, rs_node); 1454 1455 parent = *newn; 1456 rc = rs_cmp(fsblock, rs->rs_free, cur); 1457 if (rc > 0) 1458 newn = &((*newn)->rb_right); 1459 else if (rc < 0) 1460 newn = &((*newn)->rb_left); 1461 else { 1462 spin_unlock(&rgd->rd_rsspin); 1463 WARN_ON(1); 1464 return; 1465 } 1466 } 1467 1468 rb_link_node(&rs->rs_node, parent, newn); 1469 rb_insert_color(&rs->rs_node, &rgd->rd_rstree); 1470 1471 /* Do our rgrp accounting for the reservation */ 1472 rgd->rd_reserved += rs->rs_free; /* blocks reserved */ 1473 spin_unlock(&rgd->rd_rsspin); 1474 trace_gfs2_rs(rs, TRACE_RS_INSERT); 1475 } 1476 1477 /** 1478 * rg_mblk_search - find a group of multiple free blocks to form a reservation 1479 * @rgd: the resource group descriptor 1480 * @ip: pointer to the inode for which we're reserving blocks 1481 * @ap: the allocation parameters 1482 * 1483 */ 1484 1485 static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip, 1486 const struct gfs2_alloc_parms *ap) 1487 { 1488 struct gfs2_rbm rbm = { .rgd = rgd, }; 1489 u64 goal; 1490 struct gfs2_blkreserv *rs = ip->i_res; 1491 u32 extlen; 1492 u32 free_blocks = rgd->rd_free_clone - rgd->rd_reserved; 1493 int ret; 1494 struct inode *inode = &ip->i_inode; 1495 1496 if (S_ISDIR(inode->i_mode)) 1497 extlen = 1; 1498 else { 1499 extlen = max_t(u32, atomic_read(&rs->rs_sizehint), ap->target); 1500 extlen = clamp(extlen, RGRP_RSRV_MINBLKS, free_blocks); 1501 } 1502 if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen)) 1503 return; 1504 1505 /* Find bitmap block that contains bits for goal block */ 1506 if (rgrp_contains_block(rgd, ip->i_goal)) 1507 goal = ip->i_goal; 1508 else 1509 goal = rgd->rd_last_alloc + rgd->rd_data0; 1510 1511 if (WARN_ON(gfs2_rbm_from_block(&rbm, goal))) 1512 return; 1513 1514 ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, ip, true, ap); 1515 if (ret == 0) { 1516 rs->rs_rbm = rbm; 1517 rs->rs_free = extlen; 1518 rs->rs_inum = ip->i_no_addr; 1519 rs_insert(ip); 1520 } else { 1521 if (goal == rgd->rd_last_alloc + rgd->rd_data0) 1522 rgd->rd_last_alloc = 0; 1523 } 1524 } 1525 1526 /** 1527 * gfs2_next_unreserved_block - Return next block that is not reserved 1528 * @rgd: The resource group 1529 * @block: The starting block 1530 * @length: The required length 1531 * @ip: Ignore any reservations for this inode 1532 * 1533 * If the block does not appear in any reservation, then return the 1534 * block number unchanged. If it does appear in the reservation, then 1535 * keep looking through the tree of reservations in order to find the 1536 * first block number which is not reserved. 1537 */ 1538 1539 static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block, 1540 u32 length, 1541 const struct gfs2_inode *ip) 1542 { 1543 struct gfs2_blkreserv *rs; 1544 struct rb_node *n; 1545 int rc; 1546 1547 spin_lock(&rgd->rd_rsspin); 1548 n = rgd->rd_rstree.rb_node; 1549 while (n) { 1550 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 1551 rc = rs_cmp(block, length, rs); 1552 if (rc < 0) 1553 n = n->rb_left; 1554 else if (rc > 0) 1555 n = n->rb_right; 1556 else 1557 break; 1558 } 1559 1560 if (n) { 1561 while ((rs_cmp(block, length, rs) == 0) && (ip->i_res != rs)) { 1562 block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free; 1563 n = n->rb_right; 1564 if (n == NULL) 1565 break; 1566 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 1567 } 1568 } 1569 1570 spin_unlock(&rgd->rd_rsspin); 1571 return block; 1572 } 1573 1574 /** 1575 * gfs2_reservation_check_and_update - Check for reservations during block alloc 1576 * @rbm: The current position in the resource group 1577 * @ip: The inode for which we are searching for blocks 1578 * @minext: The minimum extent length 1579 * @maxext: A pointer to the maximum extent structure 1580 * 1581 * This checks the current position in the rgrp to see whether there is 1582 * a reservation covering this block. If not then this function is a 1583 * no-op. If there is, then the position is moved to the end of the 1584 * contiguous reservation(s) so that we are pointing at the first 1585 * non-reserved block. 1586 * 1587 * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error 1588 */ 1589 1590 static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm, 1591 const struct gfs2_inode *ip, 1592 u32 minext, 1593 struct gfs2_extent *maxext) 1594 { 1595 u64 block = gfs2_rbm_to_block(rbm); 1596 u32 extlen = 1; 1597 u64 nblock; 1598 int ret; 1599 1600 /* 1601 * If we have a minimum extent length, then skip over any extent 1602 * which is less than the min extent length in size. 1603 */ 1604 if (minext) { 1605 extlen = gfs2_free_extlen(rbm, minext); 1606 if (extlen <= maxext->len) 1607 goto fail; 1608 } 1609 1610 /* 1611 * Check the extent which has been found against the reservations 1612 * and skip if parts of it are already reserved 1613 */ 1614 nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip); 1615 if (nblock == block) { 1616 if (!minext || extlen >= minext) 1617 return 0; 1618 1619 if (extlen > maxext->len) { 1620 maxext->len = extlen; 1621 maxext->rbm = *rbm; 1622 } 1623 fail: 1624 nblock = block + extlen; 1625 } 1626 ret = gfs2_rbm_from_block(rbm, nblock); 1627 if (ret < 0) 1628 return ret; 1629 return 1; 1630 } 1631 1632 /** 1633 * gfs2_rbm_find - Look for blocks of a particular state 1634 * @rbm: Value/result starting position and final position 1635 * @state: The state which we want to find 1636 * @minext: Pointer to the requested extent length (NULL for a single block) 1637 * This is updated to be the actual reservation size. 1638 * @ip: If set, check for reservations 1639 * @nowrap: Stop looking at the end of the rgrp, rather than wrapping 1640 * around until we've reached the starting point. 1641 * @ap: the allocation parameters 1642 * 1643 * Side effects: 1644 * - If looking for free blocks, we set GBF_FULL on each bitmap which 1645 * has no free blocks in it. 1646 * - If looking for free blocks, we set rd_extfail_pt on each rgrp which 1647 * has come up short on a free block search. 1648 * 1649 * Returns: 0 on success, -ENOSPC if there is no block of the requested state 1650 */ 1651 1652 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext, 1653 const struct gfs2_inode *ip, bool nowrap, 1654 const struct gfs2_alloc_parms *ap) 1655 { 1656 struct buffer_head *bh; 1657 int initial_bii; 1658 u32 initial_offset; 1659 int first_bii = rbm->bii; 1660 u32 first_offset = rbm->offset; 1661 u32 offset; 1662 u8 *buffer; 1663 int n = 0; 1664 int iters = rbm->rgd->rd_length; 1665 int ret; 1666 struct gfs2_bitmap *bi; 1667 struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, }; 1668 1669 /* If we are not starting at the beginning of a bitmap, then we 1670 * need to add one to the bitmap count to ensure that we search 1671 * the starting bitmap twice. 1672 */ 1673 if (rbm->offset != 0) 1674 iters++; 1675 1676 while(1) { 1677 bi = rbm_bi(rbm); 1678 if (test_bit(GBF_FULL, &bi->bi_flags) && 1679 (state == GFS2_BLKST_FREE)) 1680 goto next_bitmap; 1681 1682 bh = bi->bi_bh; 1683 buffer = bh->b_data + bi->bi_offset; 1684 WARN_ON(!buffer_uptodate(bh)); 1685 if (state != GFS2_BLKST_UNLINKED && bi->bi_clone) 1686 buffer = bi->bi_clone + bi->bi_offset; 1687 initial_offset = rbm->offset; 1688 offset = gfs2_bitfit(buffer, bi->bi_len, rbm->offset, state); 1689 if (offset == BFITNOENT) 1690 goto bitmap_full; 1691 rbm->offset = offset; 1692 if (ip == NULL) 1693 return 0; 1694 1695 initial_bii = rbm->bii; 1696 ret = gfs2_reservation_check_and_update(rbm, ip, 1697 minext ? *minext : 0, 1698 &maxext); 1699 if (ret == 0) 1700 return 0; 1701 if (ret > 0) { 1702 n += (rbm->bii - initial_bii); 1703 goto next_iter; 1704 } 1705 if (ret == -E2BIG) { 1706 rbm->bii = 0; 1707 rbm->offset = 0; 1708 n += (rbm->bii - initial_bii); 1709 goto res_covered_end_of_rgrp; 1710 } 1711 return ret; 1712 1713 bitmap_full: /* Mark bitmap as full and fall through */ 1714 if ((state == GFS2_BLKST_FREE) && initial_offset == 0) { 1715 struct gfs2_bitmap *bi = rbm_bi(rbm); 1716 set_bit(GBF_FULL, &bi->bi_flags); 1717 } 1718 1719 next_bitmap: /* Find next bitmap in the rgrp */ 1720 rbm->offset = 0; 1721 rbm->bii++; 1722 if (rbm->bii == rbm->rgd->rd_length) 1723 rbm->bii = 0; 1724 res_covered_end_of_rgrp: 1725 if ((rbm->bii == 0) && nowrap) 1726 break; 1727 n++; 1728 next_iter: 1729 if (n >= iters) 1730 break; 1731 } 1732 1733 if (minext == NULL || state != GFS2_BLKST_FREE) 1734 return -ENOSPC; 1735 1736 /* If the extent was too small, and it's smaller than the smallest 1737 to have failed before, remember for future reference that it's 1738 useless to search this rgrp again for this amount or more. */ 1739 if ((first_offset == 0) && (first_bii == 0) && 1740 (*minext < rbm->rgd->rd_extfail_pt)) 1741 rbm->rgd->rd_extfail_pt = *minext; 1742 1743 /* If the maximum extent we found is big enough to fulfill the 1744 minimum requirements, use it anyway. */ 1745 if (maxext.len) { 1746 *rbm = maxext.rbm; 1747 *minext = maxext.len; 1748 return 0; 1749 } 1750 1751 return -ENOSPC; 1752 } 1753 1754 /** 1755 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes 1756 * @rgd: The rgrp 1757 * @last_unlinked: block address of the last dinode we unlinked 1758 * @skip: block address we should explicitly not unlink 1759 * 1760 * Returns: 0 if no error 1761 * The inode, if one has been found, in inode. 1762 */ 1763 1764 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip) 1765 { 1766 u64 block; 1767 struct gfs2_sbd *sdp = rgd->rd_sbd; 1768 struct gfs2_glock *gl; 1769 struct gfs2_inode *ip; 1770 int error; 1771 int found = 0; 1772 struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 }; 1773 1774 while (1) { 1775 down_write(&sdp->sd_log_flush_lock); 1776 error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL, 1777 true, NULL); 1778 up_write(&sdp->sd_log_flush_lock); 1779 if (error == -ENOSPC) 1780 break; 1781 if (WARN_ON_ONCE(error)) 1782 break; 1783 1784 block = gfs2_rbm_to_block(&rbm); 1785 if (gfs2_rbm_from_block(&rbm, block + 1)) 1786 break; 1787 if (*last_unlinked != NO_BLOCK && block <= *last_unlinked) 1788 continue; 1789 if (block == skip) 1790 continue; 1791 *last_unlinked = block; 1792 1793 error = gfs2_glock_get(sdp, block, &gfs2_inode_glops, CREATE, &gl); 1794 if (error) 1795 continue; 1796 1797 /* If the inode is already in cache, we can ignore it here 1798 * because the existing inode disposal code will deal with 1799 * it when all refs have gone away. Accessing gl_object like 1800 * this is not safe in general. Here it is ok because we do 1801 * not dereference the pointer, and we only need an approx 1802 * answer to whether it is NULL or not. 1803 */ 1804 ip = gl->gl_object; 1805 1806 if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0) 1807 gfs2_glock_put(gl); 1808 else 1809 found++; 1810 1811 /* Limit reclaim to sensible number of tasks */ 1812 if (found > NR_CPUS) 1813 return; 1814 } 1815 1816 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1817 return; 1818 } 1819 1820 /** 1821 * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested 1822 * @rgd: The rgrp in question 1823 * @loops: An indication of how picky we can be (0=very, 1=less so) 1824 * 1825 * This function uses the recently added glock statistics in order to 1826 * figure out whether a parciular resource group is suffering from 1827 * contention from multiple nodes. This is done purely on the basis 1828 * of timings, since this is the only data we have to work with and 1829 * our aim here is to reject a resource group which is highly contended 1830 * but (very important) not to do this too often in order to ensure that 1831 * we do not land up introducing fragmentation by changing resource 1832 * groups when not actually required. 1833 * 1834 * The calculation is fairly simple, we want to know whether the SRTTB 1835 * (i.e. smoothed round trip time for blocking operations) to acquire 1836 * the lock for this rgrp's glock is significantly greater than the 1837 * time taken for resource groups on average. We introduce a margin in 1838 * the form of the variable @var which is computed as the sum of the two 1839 * respective variences, and multiplied by a factor depending on @loops 1840 * and whether we have a lot of data to base the decision on. This is 1841 * then tested against the square difference of the means in order to 1842 * decide whether the result is statistically significant or not. 1843 * 1844 * Returns: A boolean verdict on the congestion status 1845 */ 1846 1847 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops) 1848 { 1849 const struct gfs2_glock *gl = rgd->rd_gl; 1850 const struct gfs2_sbd *sdp = gl->gl_sbd; 1851 struct gfs2_lkstats *st; 1852 s64 r_dcount, l_dcount; 1853 s64 r_srttb, l_srttb; 1854 s64 srttb_diff; 1855 s64 sqr_diff; 1856 s64 var; 1857 1858 preempt_disable(); 1859 st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP]; 1860 r_srttb = st->stats[GFS2_LKS_SRTTB]; 1861 r_dcount = st->stats[GFS2_LKS_DCOUNT]; 1862 var = st->stats[GFS2_LKS_SRTTVARB] + 1863 gl->gl_stats.stats[GFS2_LKS_SRTTVARB]; 1864 preempt_enable(); 1865 1866 l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB]; 1867 l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT]; 1868 1869 if ((l_dcount < 1) || (r_dcount < 1) || (r_srttb == 0)) 1870 return false; 1871 1872 srttb_diff = r_srttb - l_srttb; 1873 sqr_diff = srttb_diff * srttb_diff; 1874 1875 var *= 2; 1876 if (l_dcount < 8 || r_dcount < 8) 1877 var *= 2; 1878 if (loops == 1) 1879 var *= 2; 1880 1881 return ((srttb_diff < 0) && (sqr_diff > var)); 1882 } 1883 1884 /** 1885 * gfs2_rgrp_used_recently 1886 * @rs: The block reservation with the rgrp to test 1887 * @msecs: The time limit in milliseconds 1888 * 1889 * Returns: True if the rgrp glock has been used within the time limit 1890 */ 1891 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs, 1892 u64 msecs) 1893 { 1894 u64 tdiff; 1895 1896 tdiff = ktime_to_ns(ktime_sub(ktime_get_real(), 1897 rs->rs_rbm.rgd->rd_gl->gl_dstamp)); 1898 1899 return tdiff > (msecs * 1000 * 1000); 1900 } 1901 1902 static u32 gfs2_orlov_skip(const struct gfs2_inode *ip) 1903 { 1904 const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1905 u32 skip; 1906 1907 get_random_bytes(&skip, sizeof(skip)); 1908 return skip % sdp->sd_rgrps; 1909 } 1910 1911 static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin) 1912 { 1913 struct gfs2_rgrpd *rgd = *pos; 1914 struct gfs2_sbd *sdp = rgd->rd_sbd; 1915 1916 rgd = gfs2_rgrpd_get_next(rgd); 1917 if (rgd == NULL) 1918 rgd = gfs2_rgrpd_get_first(sdp); 1919 *pos = rgd; 1920 if (rgd != begin) /* If we didn't wrap */ 1921 return true; 1922 return false; 1923 } 1924 1925 /** 1926 * fast_to_acquire - determine if a resource group will be fast to acquire 1927 * 1928 * If this is one of our preferred rgrps, it should be quicker to acquire, 1929 * because we tried to set ourselves up as dlm lock master. 1930 */ 1931 static inline int fast_to_acquire(struct gfs2_rgrpd *rgd) 1932 { 1933 struct gfs2_glock *gl = rgd->rd_gl; 1934 1935 if (gl->gl_state != LM_ST_UNLOCKED && list_empty(&gl->gl_holders) && 1936 !test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags) && 1937 !test_bit(GLF_DEMOTE, &gl->gl_flags)) 1938 return 1; 1939 if (rgd->rd_flags & GFS2_RDF_PREFERRED) 1940 return 1; 1941 return 0; 1942 } 1943 1944 /** 1945 * gfs2_inplace_reserve - Reserve space in the filesystem 1946 * @ip: the inode to reserve space for 1947 * @ap: the allocation parameters 1948 * 1949 * We try our best to find an rgrp that has at least ap->target blocks 1950 * available. After a couple of passes (loops == 2), the prospects of finding 1951 * such an rgrp diminish. At this stage, we return the first rgrp that has 1952 * atleast ap->min_target blocks available. Either way, we set ap->allowed to 1953 * the number of blocks available in the chosen rgrp. 1954 * 1955 * Returns: 0 on success, 1956 * -ENOMEM if a suitable rgrp can't be found 1957 * errno otherwise 1958 */ 1959 1960 int gfs2_inplace_reserve(struct gfs2_inode *ip, struct gfs2_alloc_parms *ap) 1961 { 1962 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1963 struct gfs2_rgrpd *begin = NULL; 1964 struct gfs2_blkreserv *rs = ip->i_res; 1965 int error = 0, rg_locked, flags = 0; 1966 u64 last_unlinked = NO_BLOCK; 1967 int loops = 0; 1968 u32 skip = 0; 1969 1970 if (sdp->sd_args.ar_rgrplvb) 1971 flags |= GL_SKIP; 1972 if (gfs2_assert_warn(sdp, ap->target)) 1973 return -EINVAL; 1974 if (gfs2_rs_active(rs)) { 1975 begin = rs->rs_rbm.rgd; 1976 } else if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal)) { 1977 rs->rs_rbm.rgd = begin = ip->i_rgd; 1978 } else { 1979 check_and_update_goal(ip); 1980 rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1); 1981 } 1982 if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV)) 1983 skip = gfs2_orlov_skip(ip); 1984 if (rs->rs_rbm.rgd == NULL) 1985 return -EBADSLT; 1986 1987 while (loops < 3) { 1988 rg_locked = 1; 1989 1990 if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) { 1991 rg_locked = 0; 1992 if (skip && skip--) 1993 goto next_rgrp; 1994 if (!gfs2_rs_active(rs)) { 1995 if (loops == 0 && 1996 !fast_to_acquire(rs->rs_rbm.rgd)) 1997 goto next_rgrp; 1998 if ((loops < 2) && 1999 gfs2_rgrp_used_recently(rs, 1000) && 2000 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops)) 2001 goto next_rgrp; 2002 } 2003 error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl, 2004 LM_ST_EXCLUSIVE, flags, 2005 &rs->rs_rgd_gh); 2006 if (unlikely(error)) 2007 return error; 2008 if (!gfs2_rs_active(rs) && (loops < 2) && 2009 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops)) 2010 goto skip_rgrp; 2011 if (sdp->sd_args.ar_rgrplvb) { 2012 error = update_rgrp_lvb(rs->rs_rbm.rgd); 2013 if (unlikely(error)) { 2014 gfs2_glock_dq_uninit(&rs->rs_rgd_gh); 2015 return error; 2016 } 2017 } 2018 } 2019 2020 /* Skip unuseable resource groups */ 2021 if ((rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC | 2022 GFS2_RDF_ERROR)) || 2023 (loops == 0 && ap->target > rs->rs_rbm.rgd->rd_extfail_pt)) 2024 goto skip_rgrp; 2025 2026 if (sdp->sd_args.ar_rgrplvb) 2027 gfs2_rgrp_bh_get(rs->rs_rbm.rgd); 2028 2029 /* Get a reservation if we don't already have one */ 2030 if (!gfs2_rs_active(rs)) 2031 rg_mblk_search(rs->rs_rbm.rgd, ip, ap); 2032 2033 /* Skip rgrps when we can't get a reservation on first pass */ 2034 if (!gfs2_rs_active(rs) && (loops < 1)) 2035 goto check_rgrp; 2036 2037 /* If rgrp has enough free space, use it */ 2038 if (rs->rs_rbm.rgd->rd_free_clone >= ap->target || 2039 (loops == 2 && ap->min_target && 2040 rs->rs_rbm.rgd->rd_free_clone >= ap->min_target)) { 2041 ip->i_rgd = rs->rs_rbm.rgd; 2042 ap->allowed = ip->i_rgd->rd_free_clone; 2043 return 0; 2044 } 2045 check_rgrp: 2046 /* Check for unlinked inodes which can be reclaimed */ 2047 if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK) 2048 try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked, 2049 ip->i_no_addr); 2050 skip_rgrp: 2051 /* Drop reservation, if we couldn't use reserved rgrp */ 2052 if (gfs2_rs_active(rs)) 2053 gfs2_rs_deltree(rs); 2054 2055 /* Unlock rgrp if required */ 2056 if (!rg_locked) 2057 gfs2_glock_dq_uninit(&rs->rs_rgd_gh); 2058 next_rgrp: 2059 /* Find the next rgrp, and continue looking */ 2060 if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin)) 2061 continue; 2062 if (skip) 2063 continue; 2064 2065 /* If we've scanned all the rgrps, but found no free blocks 2066 * then this checks for some less likely conditions before 2067 * trying again. 2068 */ 2069 loops++; 2070 /* Check that fs hasn't grown if writing to rindex */ 2071 if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) { 2072 error = gfs2_ri_update(ip); 2073 if (error) 2074 return error; 2075 } 2076 /* Flushing the log may release space */ 2077 if (loops == 2) 2078 gfs2_log_flush(sdp, NULL, NORMAL_FLUSH); 2079 } 2080 2081 return -ENOSPC; 2082 } 2083 2084 /** 2085 * gfs2_inplace_release - release an inplace reservation 2086 * @ip: the inode the reservation was taken out on 2087 * 2088 * Release a reservation made by gfs2_inplace_reserve(). 2089 */ 2090 2091 void gfs2_inplace_release(struct gfs2_inode *ip) 2092 { 2093 struct gfs2_blkreserv *rs = ip->i_res; 2094 2095 if (rs->rs_rgd_gh.gh_gl) 2096 gfs2_glock_dq_uninit(&rs->rs_rgd_gh); 2097 } 2098 2099 /** 2100 * gfs2_get_block_type - Check a block in a RG is of given type 2101 * @rgd: the resource group holding the block 2102 * @block: the block number 2103 * 2104 * Returns: The block type (GFS2_BLKST_*) 2105 */ 2106 2107 static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block) 2108 { 2109 struct gfs2_rbm rbm = { .rgd = rgd, }; 2110 int ret; 2111 2112 ret = gfs2_rbm_from_block(&rbm, block); 2113 WARN_ON_ONCE(ret != 0); 2114 2115 return gfs2_testbit(&rbm); 2116 } 2117 2118 2119 /** 2120 * gfs2_alloc_extent - allocate an extent from a given bitmap 2121 * @rbm: the resource group information 2122 * @dinode: TRUE if the first block we allocate is for a dinode 2123 * @n: The extent length (value/result) 2124 * 2125 * Add the bitmap buffer to the transaction. 2126 * Set the found bits to @new_state to change block's allocation state. 2127 */ 2128 static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode, 2129 unsigned int *n) 2130 { 2131 struct gfs2_rbm pos = { .rgd = rbm->rgd, }; 2132 const unsigned int elen = *n; 2133 u64 block; 2134 int ret; 2135 2136 *n = 1; 2137 block = gfs2_rbm_to_block(rbm); 2138 gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh); 2139 gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED); 2140 block++; 2141 while (*n < elen) { 2142 ret = gfs2_rbm_from_block(&pos, block); 2143 if (ret || gfs2_testbit(&pos) != GFS2_BLKST_FREE) 2144 break; 2145 gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh); 2146 gfs2_setbit(&pos, true, GFS2_BLKST_USED); 2147 (*n)++; 2148 block++; 2149 } 2150 } 2151 2152 /** 2153 * rgblk_free - Change alloc state of given block(s) 2154 * @sdp: the filesystem 2155 * @bstart: the start of a run of blocks to free 2156 * @blen: the length of the block run (all must lie within ONE RG!) 2157 * @new_state: GFS2_BLKST_XXX the after-allocation block state 2158 * 2159 * Returns: Resource group containing the block(s) 2160 */ 2161 2162 static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart, 2163 u32 blen, unsigned char new_state) 2164 { 2165 struct gfs2_rbm rbm; 2166 struct gfs2_bitmap *bi, *bi_prev = NULL; 2167 2168 rbm.rgd = gfs2_blk2rgrpd(sdp, bstart, 1); 2169 if (!rbm.rgd) { 2170 if (gfs2_consist(sdp)) 2171 fs_err(sdp, "block = %llu\n", (unsigned long long)bstart); 2172 return NULL; 2173 } 2174 2175 gfs2_rbm_from_block(&rbm, bstart); 2176 while (blen--) { 2177 bi = rbm_bi(&rbm); 2178 if (bi != bi_prev) { 2179 if (!bi->bi_clone) { 2180 bi->bi_clone = kmalloc(bi->bi_bh->b_size, 2181 GFP_NOFS | __GFP_NOFAIL); 2182 memcpy(bi->bi_clone + bi->bi_offset, 2183 bi->bi_bh->b_data + bi->bi_offset, 2184 bi->bi_len); 2185 } 2186 gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh); 2187 bi_prev = bi; 2188 } 2189 gfs2_setbit(&rbm, false, new_state); 2190 gfs2_rbm_incr(&rbm); 2191 } 2192 2193 return rbm.rgd; 2194 } 2195 2196 /** 2197 * gfs2_rgrp_dump - print out an rgrp 2198 * @seq: The iterator 2199 * @gl: The glock in question 2200 * 2201 */ 2202 2203 void gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl) 2204 { 2205 struct gfs2_rgrpd *rgd = gl->gl_object; 2206 struct gfs2_blkreserv *trs; 2207 const struct rb_node *n; 2208 2209 if (rgd == NULL) 2210 return; 2211 gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u r:%u e:%u\n", 2212 (unsigned long long)rgd->rd_addr, rgd->rd_flags, 2213 rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes, 2214 rgd->rd_reserved, rgd->rd_extfail_pt); 2215 spin_lock(&rgd->rd_rsspin); 2216 for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) { 2217 trs = rb_entry(n, struct gfs2_blkreserv, rs_node); 2218 dump_rs(seq, trs); 2219 } 2220 spin_unlock(&rgd->rd_rsspin); 2221 } 2222 2223 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd) 2224 { 2225 struct gfs2_sbd *sdp = rgd->rd_sbd; 2226 fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n", 2227 (unsigned long long)rgd->rd_addr); 2228 fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n"); 2229 gfs2_rgrp_dump(NULL, rgd->rd_gl); 2230 rgd->rd_flags |= GFS2_RDF_ERROR; 2231 } 2232 2233 /** 2234 * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation 2235 * @ip: The inode we have just allocated blocks for 2236 * @rbm: The start of the allocated blocks 2237 * @len: The extent length 2238 * 2239 * Adjusts a reservation after an allocation has taken place. If the 2240 * reservation does not match the allocation, or if it is now empty 2241 * then it is removed. 2242 */ 2243 2244 static void gfs2_adjust_reservation(struct gfs2_inode *ip, 2245 const struct gfs2_rbm *rbm, unsigned len) 2246 { 2247 struct gfs2_blkreserv *rs = ip->i_res; 2248 struct gfs2_rgrpd *rgd = rbm->rgd; 2249 unsigned rlen; 2250 u64 block; 2251 int ret; 2252 2253 spin_lock(&rgd->rd_rsspin); 2254 if (gfs2_rs_active(rs)) { 2255 if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) { 2256 block = gfs2_rbm_to_block(rbm); 2257 ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len); 2258 rlen = min(rs->rs_free, len); 2259 rs->rs_free -= rlen; 2260 rgd->rd_reserved -= rlen; 2261 trace_gfs2_rs(rs, TRACE_RS_CLAIM); 2262 if (rs->rs_free && !ret) 2263 goto out; 2264 /* We used up our block reservation, so we should 2265 reserve more blocks next time. */ 2266 atomic_add(RGRP_RSRV_ADDBLKS, &rs->rs_sizehint); 2267 } 2268 __rs_deltree(rs); 2269 } 2270 out: 2271 spin_unlock(&rgd->rd_rsspin); 2272 } 2273 2274 /** 2275 * gfs2_set_alloc_start - Set starting point for block allocation 2276 * @rbm: The rbm which will be set to the required location 2277 * @ip: The gfs2 inode 2278 * @dinode: Flag to say if allocation includes a new inode 2279 * 2280 * This sets the starting point from the reservation if one is active 2281 * otherwise it falls back to guessing a start point based on the 2282 * inode's goal block or the last allocation point in the rgrp. 2283 */ 2284 2285 static void gfs2_set_alloc_start(struct gfs2_rbm *rbm, 2286 const struct gfs2_inode *ip, bool dinode) 2287 { 2288 u64 goal; 2289 2290 if (gfs2_rs_active(ip->i_res)) { 2291 *rbm = ip->i_res->rs_rbm; 2292 return; 2293 } 2294 2295 if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal)) 2296 goal = ip->i_goal; 2297 else 2298 goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0; 2299 2300 gfs2_rbm_from_block(rbm, goal); 2301 } 2302 2303 /** 2304 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode 2305 * @ip: the inode to allocate the block for 2306 * @bn: Used to return the starting block number 2307 * @nblocks: requested number of blocks/extent length (value/result) 2308 * @dinode: 1 if we're allocating a dinode block, else 0 2309 * @generation: the generation number of the inode 2310 * 2311 * Returns: 0 or error 2312 */ 2313 2314 int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks, 2315 bool dinode, u64 *generation) 2316 { 2317 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2318 struct buffer_head *dibh; 2319 struct gfs2_rbm rbm = { .rgd = ip->i_rgd, }; 2320 unsigned int ndata; 2321 u64 block; /* block, within the file system scope */ 2322 int error; 2323 2324 gfs2_set_alloc_start(&rbm, ip, dinode); 2325 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, ip, false, NULL); 2326 2327 if (error == -ENOSPC) { 2328 gfs2_set_alloc_start(&rbm, ip, dinode); 2329 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, NULL, false, 2330 NULL); 2331 } 2332 2333 /* Since all blocks are reserved in advance, this shouldn't happen */ 2334 if (error) { 2335 fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n", 2336 (unsigned long long)ip->i_no_addr, error, *nblocks, 2337 test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags), 2338 rbm.rgd->rd_extfail_pt); 2339 goto rgrp_error; 2340 } 2341 2342 gfs2_alloc_extent(&rbm, dinode, nblocks); 2343 block = gfs2_rbm_to_block(&rbm); 2344 rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0; 2345 if (gfs2_rs_active(ip->i_res)) 2346 gfs2_adjust_reservation(ip, &rbm, *nblocks); 2347 ndata = *nblocks; 2348 if (dinode) 2349 ndata--; 2350 2351 if (!dinode) { 2352 ip->i_goal = block + ndata - 1; 2353 error = gfs2_meta_inode_buffer(ip, &dibh); 2354 if (error == 0) { 2355 struct gfs2_dinode *di = 2356 (struct gfs2_dinode *)dibh->b_data; 2357 gfs2_trans_add_meta(ip->i_gl, dibh); 2358 di->di_goal_meta = di->di_goal_data = 2359 cpu_to_be64(ip->i_goal); 2360 brelse(dibh); 2361 } 2362 } 2363 if (rbm.rgd->rd_free < *nblocks) { 2364 pr_warn("nblocks=%u\n", *nblocks); 2365 goto rgrp_error; 2366 } 2367 2368 rbm.rgd->rd_free -= *nblocks; 2369 if (dinode) { 2370 rbm.rgd->rd_dinodes++; 2371 *generation = rbm.rgd->rd_igeneration++; 2372 if (*generation == 0) 2373 *generation = rbm.rgd->rd_igeneration++; 2374 } 2375 2376 gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh); 2377 gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data); 2378 gfs2_rgrp_ondisk2lvb(rbm.rgd->rd_rgl, rbm.rgd->rd_bits[0].bi_bh->b_data); 2379 2380 gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0); 2381 if (dinode) 2382 gfs2_trans_add_unrevoke(sdp, block, *nblocks); 2383 2384 gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid); 2385 2386 rbm.rgd->rd_free_clone -= *nblocks; 2387 trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks, 2388 dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED); 2389 *bn = block; 2390 return 0; 2391 2392 rgrp_error: 2393 gfs2_rgrp_error(rbm.rgd); 2394 return -EIO; 2395 } 2396 2397 /** 2398 * __gfs2_free_blocks - free a contiguous run of block(s) 2399 * @ip: the inode these blocks are being freed from 2400 * @bstart: first block of a run of contiguous blocks 2401 * @blen: the length of the block run 2402 * @meta: 1 if the blocks represent metadata 2403 * 2404 */ 2405 2406 void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta) 2407 { 2408 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2409 struct gfs2_rgrpd *rgd; 2410 2411 rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE); 2412 if (!rgd) 2413 return; 2414 trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE); 2415 rgd->rd_free += blen; 2416 rgd->rd_flags &= ~GFS2_RGF_TRIMMED; 2417 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2418 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2419 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data); 2420 2421 /* Directories keep their data in the metadata address space */ 2422 if (meta || ip->i_depth) 2423 gfs2_meta_wipe(ip, bstart, blen); 2424 } 2425 2426 /** 2427 * gfs2_free_meta - free a contiguous run of data block(s) 2428 * @ip: the inode these blocks are being freed from 2429 * @bstart: first block of a run of contiguous blocks 2430 * @blen: the length of the block run 2431 * 2432 */ 2433 2434 void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen) 2435 { 2436 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2437 2438 __gfs2_free_blocks(ip, bstart, blen, 1); 2439 gfs2_statfs_change(sdp, 0, +blen, 0); 2440 gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid); 2441 } 2442 2443 void gfs2_unlink_di(struct inode *inode) 2444 { 2445 struct gfs2_inode *ip = GFS2_I(inode); 2446 struct gfs2_sbd *sdp = GFS2_SB(inode); 2447 struct gfs2_rgrpd *rgd; 2448 u64 blkno = ip->i_no_addr; 2449 2450 rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED); 2451 if (!rgd) 2452 return; 2453 trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED); 2454 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2455 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2456 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data); 2457 update_rgrp_lvb_unlinked(rgd, 1); 2458 } 2459 2460 static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno) 2461 { 2462 struct gfs2_sbd *sdp = rgd->rd_sbd; 2463 struct gfs2_rgrpd *tmp_rgd; 2464 2465 tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE); 2466 if (!tmp_rgd) 2467 return; 2468 gfs2_assert_withdraw(sdp, rgd == tmp_rgd); 2469 2470 if (!rgd->rd_dinodes) 2471 gfs2_consist_rgrpd(rgd); 2472 rgd->rd_dinodes--; 2473 rgd->rd_free++; 2474 2475 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2476 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2477 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data); 2478 update_rgrp_lvb_unlinked(rgd, -1); 2479 2480 gfs2_statfs_change(sdp, 0, +1, -1); 2481 } 2482 2483 2484 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip) 2485 { 2486 gfs2_free_uninit_di(rgd, ip->i_no_addr); 2487 trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE); 2488 gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid); 2489 gfs2_meta_wipe(ip, ip->i_no_addr, 1); 2490 } 2491 2492 /** 2493 * gfs2_check_blk_type - Check the type of a block 2494 * @sdp: The superblock 2495 * @no_addr: The block number to check 2496 * @type: The block type we are looking for 2497 * 2498 * Returns: 0 if the block type matches the expected type 2499 * -ESTALE if it doesn't match 2500 * or -ve errno if something went wrong while checking 2501 */ 2502 2503 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type) 2504 { 2505 struct gfs2_rgrpd *rgd; 2506 struct gfs2_holder rgd_gh; 2507 int error = -EINVAL; 2508 2509 rgd = gfs2_blk2rgrpd(sdp, no_addr, 1); 2510 if (!rgd) 2511 goto fail; 2512 2513 error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh); 2514 if (error) 2515 goto fail; 2516 2517 if (gfs2_get_block_type(rgd, no_addr) != type) 2518 error = -ESTALE; 2519 2520 gfs2_glock_dq_uninit(&rgd_gh); 2521 fail: 2522 return error; 2523 } 2524 2525 /** 2526 * gfs2_rlist_add - add a RG to a list of RGs 2527 * @ip: the inode 2528 * @rlist: the list of resource groups 2529 * @block: the block 2530 * 2531 * Figure out what RG a block belongs to and add that RG to the list 2532 * 2533 * FIXME: Don't use NOFAIL 2534 * 2535 */ 2536 2537 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist, 2538 u64 block) 2539 { 2540 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2541 struct gfs2_rgrpd *rgd; 2542 struct gfs2_rgrpd **tmp; 2543 unsigned int new_space; 2544 unsigned int x; 2545 2546 if (gfs2_assert_warn(sdp, !rlist->rl_ghs)) 2547 return; 2548 2549 if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block)) 2550 rgd = ip->i_rgd; 2551 else 2552 rgd = gfs2_blk2rgrpd(sdp, block, 1); 2553 if (!rgd) { 2554 fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block); 2555 return; 2556 } 2557 ip->i_rgd = rgd; 2558 2559 for (x = 0; x < rlist->rl_rgrps; x++) 2560 if (rlist->rl_rgd[x] == rgd) 2561 return; 2562 2563 if (rlist->rl_rgrps == rlist->rl_space) { 2564 new_space = rlist->rl_space + 10; 2565 2566 tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *), 2567 GFP_NOFS | __GFP_NOFAIL); 2568 2569 if (rlist->rl_rgd) { 2570 memcpy(tmp, rlist->rl_rgd, 2571 rlist->rl_space * sizeof(struct gfs2_rgrpd *)); 2572 kfree(rlist->rl_rgd); 2573 } 2574 2575 rlist->rl_space = new_space; 2576 rlist->rl_rgd = tmp; 2577 } 2578 2579 rlist->rl_rgd[rlist->rl_rgrps++] = rgd; 2580 } 2581 2582 /** 2583 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate 2584 * and initialize an array of glock holders for them 2585 * @rlist: the list of resource groups 2586 * @state: the lock state to acquire the RG lock in 2587 * 2588 * FIXME: Don't use NOFAIL 2589 * 2590 */ 2591 2592 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state) 2593 { 2594 unsigned int x; 2595 2596 rlist->rl_ghs = kcalloc(rlist->rl_rgrps, sizeof(struct gfs2_holder), 2597 GFP_NOFS | __GFP_NOFAIL); 2598 for (x = 0; x < rlist->rl_rgrps; x++) 2599 gfs2_holder_init(rlist->rl_rgd[x]->rd_gl, 2600 state, 0, 2601 &rlist->rl_ghs[x]); 2602 } 2603 2604 /** 2605 * gfs2_rlist_free - free a resource group list 2606 * @rlist: the list of resource groups 2607 * 2608 */ 2609 2610 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist) 2611 { 2612 unsigned int x; 2613 2614 kfree(rlist->rl_rgd); 2615 2616 if (rlist->rl_ghs) { 2617 for (x = 0; x < rlist->rl_rgrps; x++) 2618 gfs2_holder_uninit(&rlist->rl_ghs[x]); 2619 kfree(rlist->rl_ghs); 2620 rlist->rl_ghs = NULL; 2621 } 2622 } 2623 2624