1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 5 */ 6 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 9 #include <linux/slab.h> 10 #include <linux/spinlock.h> 11 #include <linux/completion.h> 12 #include <linux/buffer_head.h> 13 #include <linux/fs.h> 14 #include <linux/gfs2_ondisk.h> 15 #include <linux/prefetch.h> 16 #include <linux/blkdev.h> 17 #include <linux/rbtree.h> 18 #include <linux/random.h> 19 20 #include "gfs2.h" 21 #include "incore.h" 22 #include "glock.h" 23 #include "glops.h" 24 #include "lops.h" 25 #include "meta_io.h" 26 #include "quota.h" 27 #include "rgrp.h" 28 #include "super.h" 29 #include "trans.h" 30 #include "util.h" 31 #include "log.h" 32 #include "inode.h" 33 #include "trace_gfs2.h" 34 #include "dir.h" 35 36 #define BFITNOENT ((u32)~0) 37 #define NO_BLOCK ((u64)~0) 38 39 #if BITS_PER_LONG == 32 40 #define LBITMASK (0x55555555UL) 41 #define LBITSKIP55 (0x55555555UL) 42 #define LBITSKIP00 (0x00000000UL) 43 #else 44 #define LBITMASK (0x5555555555555555UL) 45 #define LBITSKIP55 (0x5555555555555555UL) 46 #define LBITSKIP00 (0x0000000000000000UL) 47 #endif 48 49 /* 50 * These routines are used by the resource group routines (rgrp.c) 51 * to keep track of block allocation. Each block is represented by two 52 * bits. So, each byte represents GFS2_NBBY (i.e. 4) blocks. 53 * 54 * 0 = Free 55 * 1 = Used (not metadata) 56 * 2 = Unlinked (still in use) inode 57 * 3 = Used (metadata) 58 */ 59 60 struct gfs2_extent { 61 struct gfs2_rbm rbm; 62 u32 len; 63 }; 64 65 static const char valid_change[16] = { 66 /* current */ 67 /* n */ 0, 1, 1, 1, 68 /* e */ 1, 0, 0, 0, 69 /* w */ 0, 0, 0, 1, 70 1, 0, 0, 0 71 }; 72 73 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext, 74 const struct gfs2_inode *ip, bool nowrap); 75 76 77 /** 78 * gfs2_setbit - Set a bit in the bitmaps 79 * @rbm: The position of the bit to set 80 * @do_clone: Also set the clone bitmap, if it exists 81 * @new_state: the new state of the block 82 * 83 */ 84 85 static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone, 86 unsigned char new_state) 87 { 88 unsigned char *byte1, *byte2, *end, cur_state; 89 struct gfs2_bitmap *bi = rbm_bi(rbm); 90 unsigned int buflen = bi->bi_bytes; 91 const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE; 92 93 byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY); 94 end = bi->bi_bh->b_data + bi->bi_offset + buflen; 95 96 BUG_ON(byte1 >= end); 97 98 cur_state = (*byte1 >> bit) & GFS2_BIT_MASK; 99 100 if (unlikely(!valid_change[new_state * 4 + cur_state])) { 101 struct gfs2_sbd *sdp = rbm->rgd->rd_sbd; 102 103 fs_warn(sdp, "buf_blk = 0x%x old_state=%d, new_state=%d\n", 104 rbm->offset, cur_state, new_state); 105 fs_warn(sdp, "rgrp=0x%llx bi_start=0x%x biblk: 0x%llx\n", 106 (unsigned long long)rbm->rgd->rd_addr, bi->bi_start, 107 (unsigned long long)bi->bi_bh->b_blocknr); 108 fs_warn(sdp, "bi_offset=0x%x bi_bytes=0x%x block=0x%llx\n", 109 bi->bi_offset, bi->bi_bytes, 110 (unsigned long long)gfs2_rbm_to_block(rbm)); 111 dump_stack(); 112 gfs2_consist_rgrpd(rbm->rgd); 113 return; 114 } 115 *byte1 ^= (cur_state ^ new_state) << bit; 116 117 if (do_clone && bi->bi_clone) { 118 byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY); 119 cur_state = (*byte2 >> bit) & GFS2_BIT_MASK; 120 *byte2 ^= (cur_state ^ new_state) << bit; 121 } 122 } 123 124 /** 125 * gfs2_testbit - test a bit in the bitmaps 126 * @rbm: The bit to test 127 * @use_clone: If true, test the clone bitmap, not the official bitmap. 128 * 129 * Some callers like gfs2_unaligned_extlen need to test the clone bitmaps, 130 * not the "real" bitmaps, to avoid allocating recently freed blocks. 131 * 132 * Returns: The two bit block state of the requested bit 133 */ 134 135 static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm, bool use_clone) 136 { 137 struct gfs2_bitmap *bi = rbm_bi(rbm); 138 const u8 *buffer; 139 const u8 *byte; 140 unsigned int bit; 141 142 if (use_clone && bi->bi_clone) 143 buffer = bi->bi_clone; 144 else 145 buffer = bi->bi_bh->b_data; 146 buffer += bi->bi_offset; 147 byte = buffer + (rbm->offset / GFS2_NBBY); 148 bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE; 149 150 return (*byte >> bit) & GFS2_BIT_MASK; 151 } 152 153 /** 154 * gfs2_bit_search 155 * @ptr: Pointer to bitmap data 156 * @mask: Mask to use (normally 0x55555.... but adjusted for search start) 157 * @state: The state we are searching for 158 * 159 * We xor the bitmap data with a patter which is the bitwise opposite 160 * of what we are looking for, this gives rise to a pattern of ones 161 * wherever there is a match. Since we have two bits per entry, we 162 * take this pattern, shift it down by one place and then and it with 163 * the original. All the even bit positions (0,2,4, etc) then represent 164 * successful matches, so we mask with 0x55555..... to remove the unwanted 165 * odd bit positions. 166 * 167 * This allows searching of a whole u64 at once (32 blocks) with a 168 * single test (on 64 bit arches). 169 */ 170 171 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state) 172 { 173 u64 tmp; 174 static const u64 search[] = { 175 [0] = 0xffffffffffffffffULL, 176 [1] = 0xaaaaaaaaaaaaaaaaULL, 177 [2] = 0x5555555555555555ULL, 178 [3] = 0x0000000000000000ULL, 179 }; 180 tmp = le64_to_cpu(*ptr) ^ search[state]; 181 tmp &= (tmp >> 1); 182 tmp &= mask; 183 return tmp; 184 } 185 186 /** 187 * rs_cmp - multi-block reservation range compare 188 * @blk: absolute file system block number of the new reservation 189 * @len: number of blocks in the new reservation 190 * @rs: existing reservation to compare against 191 * 192 * returns: 1 if the block range is beyond the reach of the reservation 193 * -1 if the block range is before the start of the reservation 194 * 0 if the block range overlaps with the reservation 195 */ 196 static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs) 197 { 198 u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm); 199 200 if (blk >= startblk + rs->rs_free) 201 return 1; 202 if (blk + len - 1 < startblk) 203 return -1; 204 return 0; 205 } 206 207 /** 208 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing 209 * a block in a given allocation state. 210 * @buf: the buffer that holds the bitmaps 211 * @len: the length (in bytes) of the buffer 212 * @goal: start search at this block's bit-pair (within @buffer) 213 * @state: GFS2_BLKST_XXX the state of the block we're looking for. 214 * 215 * Scope of @goal and returned block number is only within this bitmap buffer, 216 * not entire rgrp or filesystem. @buffer will be offset from the actual 217 * beginning of a bitmap block buffer, skipping any header structures, but 218 * headers are always a multiple of 64 bits long so that the buffer is 219 * always aligned to a 64 bit boundary. 220 * 221 * The size of the buffer is in bytes, but is it assumed that it is 222 * always ok to read a complete multiple of 64 bits at the end 223 * of the block in case the end is no aligned to a natural boundary. 224 * 225 * Return: the block number (bitmap buffer scope) that was found 226 */ 227 228 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len, 229 u32 goal, u8 state) 230 { 231 u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1); 232 const __le64 *ptr = ((__le64 *)buf) + (goal >> 5); 233 const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64))); 234 u64 tmp; 235 u64 mask = 0x5555555555555555ULL; 236 u32 bit; 237 238 /* Mask off bits we don't care about at the start of the search */ 239 mask <<= spoint; 240 tmp = gfs2_bit_search(ptr, mask, state); 241 ptr++; 242 while(tmp == 0 && ptr < end) { 243 tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state); 244 ptr++; 245 } 246 /* Mask off any bits which are more than len bytes from the start */ 247 if (ptr == end && (len & (sizeof(u64) - 1))) 248 tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1)))); 249 /* Didn't find anything, so return */ 250 if (tmp == 0) 251 return BFITNOENT; 252 ptr--; 253 bit = __ffs64(tmp); 254 bit /= 2; /* two bits per entry in the bitmap */ 255 return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit; 256 } 257 258 /** 259 * gfs2_rbm_from_block - Set the rbm based upon rgd and block number 260 * @rbm: The rbm with rgd already set correctly 261 * @block: The block number (filesystem relative) 262 * 263 * This sets the bi and offset members of an rbm based on a 264 * resource group and a filesystem relative block number. The 265 * resource group must be set in the rbm on entry, the bi and 266 * offset members will be set by this function. 267 * 268 * Returns: 0 on success, or an error code 269 */ 270 271 static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block) 272 { 273 if (!rgrp_contains_block(rbm->rgd, block)) 274 return -E2BIG; 275 rbm->bii = 0; 276 rbm->offset = block - rbm->rgd->rd_data0; 277 /* Check if the block is within the first block */ 278 if (rbm->offset < rbm_bi(rbm)->bi_blocks) 279 return 0; 280 281 /* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */ 282 rbm->offset += (sizeof(struct gfs2_rgrp) - 283 sizeof(struct gfs2_meta_header)) * GFS2_NBBY; 284 rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap; 285 rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap; 286 return 0; 287 } 288 289 /** 290 * gfs2_rbm_incr - increment an rbm structure 291 * @rbm: The rbm with rgd already set correctly 292 * 293 * This function takes an existing rbm structure and increments it to the next 294 * viable block offset. 295 * 296 * Returns: If incrementing the offset would cause the rbm to go past the 297 * end of the rgrp, true is returned, otherwise false. 298 * 299 */ 300 301 static bool gfs2_rbm_incr(struct gfs2_rbm *rbm) 302 { 303 if (rbm->offset + 1 < rbm_bi(rbm)->bi_blocks) { /* in the same bitmap */ 304 rbm->offset++; 305 return false; 306 } 307 if (rbm->bii == rbm->rgd->rd_length - 1) /* at the last bitmap */ 308 return true; 309 310 rbm->offset = 0; 311 rbm->bii++; 312 return false; 313 } 314 315 /** 316 * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned 317 * @rbm: Position to search (value/result) 318 * @n_unaligned: Number of unaligned blocks to check 319 * @len: Decremented for each block found (terminate on zero) 320 * 321 * Returns: true if a non-free block is encountered 322 */ 323 324 static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len) 325 { 326 u32 n; 327 u8 res; 328 329 for (n = 0; n < n_unaligned; n++) { 330 res = gfs2_testbit(rbm, true); 331 if (res != GFS2_BLKST_FREE) 332 return true; 333 (*len)--; 334 if (*len == 0) 335 return true; 336 if (gfs2_rbm_incr(rbm)) 337 return true; 338 } 339 340 return false; 341 } 342 343 /** 344 * gfs2_free_extlen - Return extent length of free blocks 345 * @rrbm: Starting position 346 * @len: Max length to check 347 * 348 * Starting at the block specified by the rbm, see how many free blocks 349 * there are, not reading more than len blocks ahead. This can be done 350 * using memchr_inv when the blocks are byte aligned, but has to be done 351 * on a block by block basis in case of unaligned blocks. Also this 352 * function can cope with bitmap boundaries (although it must stop on 353 * a resource group boundary) 354 * 355 * Returns: Number of free blocks in the extent 356 */ 357 358 static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len) 359 { 360 struct gfs2_rbm rbm = *rrbm; 361 u32 n_unaligned = rbm.offset & 3; 362 u32 size = len; 363 u32 bytes; 364 u32 chunk_size; 365 u8 *ptr, *start, *end; 366 u64 block; 367 struct gfs2_bitmap *bi; 368 369 if (n_unaligned && 370 gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len)) 371 goto out; 372 373 n_unaligned = len & 3; 374 /* Start is now byte aligned */ 375 while (len > 3) { 376 bi = rbm_bi(&rbm); 377 start = bi->bi_bh->b_data; 378 if (bi->bi_clone) 379 start = bi->bi_clone; 380 start += bi->bi_offset; 381 end = start + bi->bi_bytes; 382 BUG_ON(rbm.offset & 3); 383 start += (rbm.offset / GFS2_NBBY); 384 bytes = min_t(u32, len / GFS2_NBBY, (end - start)); 385 ptr = memchr_inv(start, 0, bytes); 386 chunk_size = ((ptr == NULL) ? bytes : (ptr - start)); 387 chunk_size *= GFS2_NBBY; 388 BUG_ON(len < chunk_size); 389 len -= chunk_size; 390 block = gfs2_rbm_to_block(&rbm); 391 if (gfs2_rbm_from_block(&rbm, block + chunk_size)) { 392 n_unaligned = 0; 393 break; 394 } 395 if (ptr) { 396 n_unaligned = 3; 397 break; 398 } 399 n_unaligned = len & 3; 400 } 401 402 /* Deal with any bits left over at the end */ 403 if (n_unaligned) 404 gfs2_unaligned_extlen(&rbm, n_unaligned, &len); 405 out: 406 return size - len; 407 } 408 409 /** 410 * gfs2_bitcount - count the number of bits in a certain state 411 * @rgd: the resource group descriptor 412 * @buffer: the buffer that holds the bitmaps 413 * @buflen: the length (in bytes) of the buffer 414 * @state: the state of the block we're looking for 415 * 416 * Returns: The number of bits 417 */ 418 419 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer, 420 unsigned int buflen, u8 state) 421 { 422 const u8 *byte = buffer; 423 const u8 *end = buffer + buflen; 424 const u8 state1 = state << 2; 425 const u8 state2 = state << 4; 426 const u8 state3 = state << 6; 427 u32 count = 0; 428 429 for (; byte < end; byte++) { 430 if (((*byte) & 0x03) == state) 431 count++; 432 if (((*byte) & 0x0C) == state1) 433 count++; 434 if (((*byte) & 0x30) == state2) 435 count++; 436 if (((*byte) & 0xC0) == state3) 437 count++; 438 } 439 440 return count; 441 } 442 443 /** 444 * gfs2_rgrp_verify - Verify that a resource group is consistent 445 * @rgd: the rgrp 446 * 447 */ 448 449 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd) 450 { 451 struct gfs2_sbd *sdp = rgd->rd_sbd; 452 struct gfs2_bitmap *bi = NULL; 453 u32 length = rgd->rd_length; 454 u32 count[4], tmp; 455 int buf, x; 456 457 memset(count, 0, 4 * sizeof(u32)); 458 459 /* Count # blocks in each of 4 possible allocation states */ 460 for (buf = 0; buf < length; buf++) { 461 bi = rgd->rd_bits + buf; 462 for (x = 0; x < 4; x++) 463 count[x] += gfs2_bitcount(rgd, 464 bi->bi_bh->b_data + 465 bi->bi_offset, 466 bi->bi_bytes, x); 467 } 468 469 if (count[0] != rgd->rd_free) { 470 if (gfs2_consist_rgrpd(rgd)) 471 fs_err(sdp, "free data mismatch: %u != %u\n", 472 count[0], rgd->rd_free); 473 return; 474 } 475 476 tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes; 477 if (count[1] != tmp) { 478 if (gfs2_consist_rgrpd(rgd)) 479 fs_err(sdp, "used data mismatch: %u != %u\n", 480 count[1], tmp); 481 return; 482 } 483 484 if (count[2] + count[3] != rgd->rd_dinodes) { 485 if (gfs2_consist_rgrpd(rgd)) 486 fs_err(sdp, "used metadata mismatch: %u != %u\n", 487 count[2] + count[3], rgd->rd_dinodes); 488 return; 489 } 490 } 491 492 /** 493 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number 494 * @sdp: The GFS2 superblock 495 * @blk: The data block number 496 * @exact: True if this needs to be an exact match 497 * 498 * The @exact argument should be set to true by most callers. The exception 499 * is when we need to match blocks which are not represented by the rgrp 500 * bitmap, but which are part of the rgrp (i.e. padding blocks) which are 501 * there for alignment purposes. Another way of looking at it is that @exact 502 * matches only valid data/metadata blocks, but with @exact false, it will 503 * match any block within the extent of the rgrp. 504 * 505 * Returns: The resource group, or NULL if not found 506 */ 507 508 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact) 509 { 510 struct rb_node *n, *next; 511 struct gfs2_rgrpd *cur; 512 513 spin_lock(&sdp->sd_rindex_spin); 514 n = sdp->sd_rindex_tree.rb_node; 515 while (n) { 516 cur = rb_entry(n, struct gfs2_rgrpd, rd_node); 517 next = NULL; 518 if (blk < cur->rd_addr) 519 next = n->rb_left; 520 else if (blk >= cur->rd_data0 + cur->rd_data) 521 next = n->rb_right; 522 if (next == NULL) { 523 spin_unlock(&sdp->sd_rindex_spin); 524 if (exact) { 525 if (blk < cur->rd_addr) 526 return NULL; 527 if (blk >= cur->rd_data0 + cur->rd_data) 528 return NULL; 529 } 530 return cur; 531 } 532 n = next; 533 } 534 spin_unlock(&sdp->sd_rindex_spin); 535 536 return NULL; 537 } 538 539 /** 540 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem 541 * @sdp: The GFS2 superblock 542 * 543 * Returns: The first rgrp in the filesystem 544 */ 545 546 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp) 547 { 548 const struct rb_node *n; 549 struct gfs2_rgrpd *rgd; 550 551 spin_lock(&sdp->sd_rindex_spin); 552 n = rb_first(&sdp->sd_rindex_tree); 553 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 554 spin_unlock(&sdp->sd_rindex_spin); 555 556 return rgd; 557 } 558 559 /** 560 * gfs2_rgrpd_get_next - get the next RG 561 * @rgd: the resource group descriptor 562 * 563 * Returns: The next rgrp 564 */ 565 566 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd) 567 { 568 struct gfs2_sbd *sdp = rgd->rd_sbd; 569 const struct rb_node *n; 570 571 spin_lock(&sdp->sd_rindex_spin); 572 n = rb_next(&rgd->rd_node); 573 if (n == NULL) 574 n = rb_first(&sdp->sd_rindex_tree); 575 576 if (unlikely(&rgd->rd_node == n)) { 577 spin_unlock(&sdp->sd_rindex_spin); 578 return NULL; 579 } 580 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 581 spin_unlock(&sdp->sd_rindex_spin); 582 return rgd; 583 } 584 585 void check_and_update_goal(struct gfs2_inode *ip) 586 { 587 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 588 if (!ip->i_goal || gfs2_blk2rgrpd(sdp, ip->i_goal, 1) == NULL) 589 ip->i_goal = ip->i_no_addr; 590 } 591 592 void gfs2_free_clones(struct gfs2_rgrpd *rgd) 593 { 594 int x; 595 596 for (x = 0; x < rgd->rd_length; x++) { 597 struct gfs2_bitmap *bi = rgd->rd_bits + x; 598 kfree(bi->bi_clone); 599 bi->bi_clone = NULL; 600 } 601 } 602 603 /** 604 * gfs2_rsqa_alloc - make sure we have a reservation assigned to the inode 605 * plus a quota allocations data structure, if necessary 606 * @ip: the inode for this reservation 607 */ 608 int gfs2_rsqa_alloc(struct gfs2_inode *ip) 609 { 610 return gfs2_qa_alloc(ip); 611 } 612 613 static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs) 614 { 615 struct gfs2_inode *ip = container_of(rs, struct gfs2_inode, i_res); 616 617 gfs2_print_dbg(seq, " B: n:%llu s:%llu b:%u f:%u\n", 618 (unsigned long long)ip->i_no_addr, 619 (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm), 620 rs->rs_rbm.offset, rs->rs_free); 621 } 622 623 /** 624 * __rs_deltree - remove a multi-block reservation from the rgd tree 625 * @rs: The reservation to remove 626 * 627 */ 628 static void __rs_deltree(struct gfs2_blkreserv *rs) 629 { 630 struct gfs2_rgrpd *rgd; 631 632 if (!gfs2_rs_active(rs)) 633 return; 634 635 rgd = rs->rs_rbm.rgd; 636 trace_gfs2_rs(rs, TRACE_RS_TREEDEL); 637 rb_erase(&rs->rs_node, &rgd->rd_rstree); 638 RB_CLEAR_NODE(&rs->rs_node); 639 640 if (rs->rs_free) { 641 u64 last_block = gfs2_rbm_to_block(&rs->rs_rbm) + 642 rs->rs_free - 1; 643 struct gfs2_rbm last_rbm = { .rgd = rs->rs_rbm.rgd, }; 644 struct gfs2_bitmap *start, *last; 645 646 /* return reserved blocks to the rgrp */ 647 BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free); 648 rs->rs_rbm.rgd->rd_reserved -= rs->rs_free; 649 /* The rgrp extent failure point is likely not to increase; 650 it will only do so if the freed blocks are somehow 651 contiguous with a span of free blocks that follows. Still, 652 it will force the number to be recalculated later. */ 653 rgd->rd_extfail_pt += rs->rs_free; 654 rs->rs_free = 0; 655 if (gfs2_rbm_from_block(&last_rbm, last_block)) 656 return; 657 start = rbm_bi(&rs->rs_rbm); 658 last = rbm_bi(&last_rbm); 659 do 660 clear_bit(GBF_FULL, &start->bi_flags); 661 while (start++ != last); 662 } 663 } 664 665 /** 666 * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree 667 * @rs: The reservation to remove 668 * 669 */ 670 void gfs2_rs_deltree(struct gfs2_blkreserv *rs) 671 { 672 struct gfs2_rgrpd *rgd; 673 674 rgd = rs->rs_rbm.rgd; 675 if (rgd) { 676 spin_lock(&rgd->rd_rsspin); 677 __rs_deltree(rs); 678 BUG_ON(rs->rs_free); 679 spin_unlock(&rgd->rd_rsspin); 680 } 681 } 682 683 /** 684 * gfs2_rsqa_delete - delete a multi-block reservation and quota allocation 685 * @ip: The inode for this reservation 686 * @wcount: The inode's write count, or NULL 687 * 688 */ 689 void gfs2_rsqa_delete(struct gfs2_inode *ip, atomic_t *wcount) 690 { 691 down_write(&ip->i_rw_mutex); 692 if ((wcount == NULL) || (atomic_read(wcount) <= 1)) 693 gfs2_rs_deltree(&ip->i_res); 694 up_write(&ip->i_rw_mutex); 695 gfs2_qa_delete(ip, wcount); 696 } 697 698 /** 699 * return_all_reservations - return all reserved blocks back to the rgrp. 700 * @rgd: the rgrp that needs its space back 701 * 702 * We previously reserved a bunch of blocks for allocation. Now we need to 703 * give them back. This leave the reservation structures in tact, but removes 704 * all of their corresponding "no-fly zones". 705 */ 706 static void return_all_reservations(struct gfs2_rgrpd *rgd) 707 { 708 struct rb_node *n; 709 struct gfs2_blkreserv *rs; 710 711 spin_lock(&rgd->rd_rsspin); 712 while ((n = rb_first(&rgd->rd_rstree))) { 713 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 714 __rs_deltree(rs); 715 } 716 spin_unlock(&rgd->rd_rsspin); 717 } 718 719 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp) 720 { 721 struct rb_node *n; 722 struct gfs2_rgrpd *rgd; 723 struct gfs2_glock *gl; 724 725 while ((n = rb_first(&sdp->sd_rindex_tree))) { 726 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 727 gl = rgd->rd_gl; 728 729 rb_erase(n, &sdp->sd_rindex_tree); 730 731 if (gl) { 732 glock_clear_object(gl, rgd); 733 gfs2_rgrp_brelse(rgd); 734 gfs2_glock_put(gl); 735 } 736 737 gfs2_free_clones(rgd); 738 kfree(rgd->rd_bits); 739 rgd->rd_bits = NULL; 740 return_all_reservations(rgd); 741 kmem_cache_free(gfs2_rgrpd_cachep, rgd); 742 } 743 } 744 745 static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd) 746 { 747 struct gfs2_sbd *sdp = rgd->rd_sbd; 748 749 fs_info(sdp, "ri_addr = %llu\n", (unsigned long long)rgd->rd_addr); 750 fs_info(sdp, "ri_length = %u\n", rgd->rd_length); 751 fs_info(sdp, "ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0); 752 fs_info(sdp, "ri_data = %u\n", rgd->rd_data); 753 fs_info(sdp, "ri_bitbytes = %u\n", rgd->rd_bitbytes); 754 } 755 756 /** 757 * gfs2_compute_bitstructs - Compute the bitmap sizes 758 * @rgd: The resource group descriptor 759 * 760 * Calculates bitmap descriptors, one for each block that contains bitmap data 761 * 762 * Returns: errno 763 */ 764 765 static int compute_bitstructs(struct gfs2_rgrpd *rgd) 766 { 767 struct gfs2_sbd *sdp = rgd->rd_sbd; 768 struct gfs2_bitmap *bi; 769 u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */ 770 u32 bytes_left, bytes; 771 int x; 772 773 if (!length) 774 return -EINVAL; 775 776 rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS); 777 if (!rgd->rd_bits) 778 return -ENOMEM; 779 780 bytes_left = rgd->rd_bitbytes; 781 782 for (x = 0; x < length; x++) { 783 bi = rgd->rd_bits + x; 784 785 bi->bi_flags = 0; 786 /* small rgrp; bitmap stored completely in header block */ 787 if (length == 1) { 788 bytes = bytes_left; 789 bi->bi_offset = sizeof(struct gfs2_rgrp); 790 bi->bi_start = 0; 791 bi->bi_bytes = bytes; 792 bi->bi_blocks = bytes * GFS2_NBBY; 793 /* header block */ 794 } else if (x == 0) { 795 bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp); 796 bi->bi_offset = sizeof(struct gfs2_rgrp); 797 bi->bi_start = 0; 798 bi->bi_bytes = bytes; 799 bi->bi_blocks = bytes * GFS2_NBBY; 800 /* last block */ 801 } else if (x + 1 == length) { 802 bytes = bytes_left; 803 bi->bi_offset = sizeof(struct gfs2_meta_header); 804 bi->bi_start = rgd->rd_bitbytes - bytes_left; 805 bi->bi_bytes = bytes; 806 bi->bi_blocks = bytes * GFS2_NBBY; 807 /* other blocks */ 808 } else { 809 bytes = sdp->sd_sb.sb_bsize - 810 sizeof(struct gfs2_meta_header); 811 bi->bi_offset = sizeof(struct gfs2_meta_header); 812 bi->bi_start = rgd->rd_bitbytes - bytes_left; 813 bi->bi_bytes = bytes; 814 bi->bi_blocks = bytes * GFS2_NBBY; 815 } 816 817 bytes_left -= bytes; 818 } 819 820 if (bytes_left) { 821 gfs2_consist_rgrpd(rgd); 822 return -EIO; 823 } 824 bi = rgd->rd_bits + (length - 1); 825 if ((bi->bi_start + bi->bi_bytes) * GFS2_NBBY != rgd->rd_data) { 826 if (gfs2_consist_rgrpd(rgd)) { 827 gfs2_rindex_print(rgd); 828 fs_err(sdp, "start=%u len=%u offset=%u\n", 829 bi->bi_start, bi->bi_bytes, bi->bi_offset); 830 } 831 return -EIO; 832 } 833 834 return 0; 835 } 836 837 /** 838 * gfs2_ri_total - Total up the file system space, according to the rindex. 839 * @sdp: the filesystem 840 * 841 */ 842 u64 gfs2_ri_total(struct gfs2_sbd *sdp) 843 { 844 u64 total_data = 0; 845 struct inode *inode = sdp->sd_rindex; 846 struct gfs2_inode *ip = GFS2_I(inode); 847 char buf[sizeof(struct gfs2_rindex)]; 848 int error, rgrps; 849 850 for (rgrps = 0;; rgrps++) { 851 loff_t pos = rgrps * sizeof(struct gfs2_rindex); 852 853 if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode)) 854 break; 855 error = gfs2_internal_read(ip, buf, &pos, 856 sizeof(struct gfs2_rindex)); 857 if (error != sizeof(struct gfs2_rindex)) 858 break; 859 total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data); 860 } 861 return total_data; 862 } 863 864 static int rgd_insert(struct gfs2_rgrpd *rgd) 865 { 866 struct gfs2_sbd *sdp = rgd->rd_sbd; 867 struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL; 868 869 /* Figure out where to put new node */ 870 while (*newn) { 871 struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd, 872 rd_node); 873 874 parent = *newn; 875 if (rgd->rd_addr < cur->rd_addr) 876 newn = &((*newn)->rb_left); 877 else if (rgd->rd_addr > cur->rd_addr) 878 newn = &((*newn)->rb_right); 879 else 880 return -EEXIST; 881 } 882 883 rb_link_node(&rgd->rd_node, parent, newn); 884 rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree); 885 sdp->sd_rgrps++; 886 return 0; 887 } 888 889 /** 890 * read_rindex_entry - Pull in a new resource index entry from the disk 891 * @ip: Pointer to the rindex inode 892 * 893 * Returns: 0 on success, > 0 on EOF, error code otherwise 894 */ 895 896 static int read_rindex_entry(struct gfs2_inode *ip) 897 { 898 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 899 const unsigned bsize = sdp->sd_sb.sb_bsize; 900 loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex); 901 struct gfs2_rindex buf; 902 int error; 903 struct gfs2_rgrpd *rgd; 904 905 if (pos >= i_size_read(&ip->i_inode)) 906 return 1; 907 908 error = gfs2_internal_read(ip, (char *)&buf, &pos, 909 sizeof(struct gfs2_rindex)); 910 911 if (error != sizeof(struct gfs2_rindex)) 912 return (error == 0) ? 1 : error; 913 914 rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS); 915 error = -ENOMEM; 916 if (!rgd) 917 return error; 918 919 rgd->rd_sbd = sdp; 920 rgd->rd_addr = be64_to_cpu(buf.ri_addr); 921 rgd->rd_length = be32_to_cpu(buf.ri_length); 922 rgd->rd_data0 = be64_to_cpu(buf.ri_data0); 923 rgd->rd_data = be32_to_cpu(buf.ri_data); 924 rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes); 925 spin_lock_init(&rgd->rd_rsspin); 926 927 error = compute_bitstructs(rgd); 928 if (error) 929 goto fail; 930 931 error = gfs2_glock_get(sdp, rgd->rd_addr, 932 &gfs2_rgrp_glops, CREATE, &rgd->rd_gl); 933 if (error) 934 goto fail; 935 936 rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr; 937 rgd->rd_flags &= ~(GFS2_RDF_UPTODATE | GFS2_RDF_PREFERRED); 938 if (rgd->rd_data > sdp->sd_max_rg_data) 939 sdp->sd_max_rg_data = rgd->rd_data; 940 spin_lock(&sdp->sd_rindex_spin); 941 error = rgd_insert(rgd); 942 spin_unlock(&sdp->sd_rindex_spin); 943 if (!error) { 944 glock_set_object(rgd->rd_gl, rgd); 945 rgd->rd_gl->gl_vm.start = (rgd->rd_addr * bsize) & PAGE_MASK; 946 rgd->rd_gl->gl_vm.end = PAGE_ALIGN((rgd->rd_addr + 947 rgd->rd_length) * bsize) - 1; 948 return 0; 949 } 950 951 error = 0; /* someone else read in the rgrp; free it and ignore it */ 952 gfs2_glock_put(rgd->rd_gl); 953 954 fail: 955 kfree(rgd->rd_bits); 956 rgd->rd_bits = NULL; 957 kmem_cache_free(gfs2_rgrpd_cachep, rgd); 958 return error; 959 } 960 961 /** 962 * set_rgrp_preferences - Run all the rgrps, selecting some we prefer to use 963 * @sdp: the GFS2 superblock 964 * 965 * The purpose of this function is to select a subset of the resource groups 966 * and mark them as PREFERRED. We do it in such a way that each node prefers 967 * to use a unique set of rgrps to minimize glock contention. 968 */ 969 static void set_rgrp_preferences(struct gfs2_sbd *sdp) 970 { 971 struct gfs2_rgrpd *rgd, *first; 972 int i; 973 974 /* Skip an initial number of rgrps, based on this node's journal ID. 975 That should start each node out on its own set. */ 976 rgd = gfs2_rgrpd_get_first(sdp); 977 for (i = 0; i < sdp->sd_lockstruct.ls_jid; i++) 978 rgd = gfs2_rgrpd_get_next(rgd); 979 first = rgd; 980 981 do { 982 rgd->rd_flags |= GFS2_RDF_PREFERRED; 983 for (i = 0; i < sdp->sd_journals; i++) { 984 rgd = gfs2_rgrpd_get_next(rgd); 985 if (!rgd || rgd == first) 986 break; 987 } 988 } while (rgd && rgd != first); 989 } 990 991 /** 992 * gfs2_ri_update - Pull in a new resource index from the disk 993 * @ip: pointer to the rindex inode 994 * 995 * Returns: 0 on successful update, error code otherwise 996 */ 997 998 static int gfs2_ri_update(struct gfs2_inode *ip) 999 { 1000 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1001 int error; 1002 1003 do { 1004 error = read_rindex_entry(ip); 1005 } while (error == 0); 1006 1007 if (error < 0) 1008 return error; 1009 1010 set_rgrp_preferences(sdp); 1011 1012 sdp->sd_rindex_uptodate = 1; 1013 return 0; 1014 } 1015 1016 /** 1017 * gfs2_rindex_update - Update the rindex if required 1018 * @sdp: The GFS2 superblock 1019 * 1020 * We grab a lock on the rindex inode to make sure that it doesn't 1021 * change whilst we are performing an operation. We keep this lock 1022 * for quite long periods of time compared to other locks. This 1023 * doesn't matter, since it is shared and it is very, very rarely 1024 * accessed in the exclusive mode (i.e. only when expanding the filesystem). 1025 * 1026 * This makes sure that we're using the latest copy of the resource index 1027 * special file, which might have been updated if someone expanded the 1028 * filesystem (via gfs2_grow utility), which adds new resource groups. 1029 * 1030 * Returns: 0 on succeess, error code otherwise 1031 */ 1032 1033 int gfs2_rindex_update(struct gfs2_sbd *sdp) 1034 { 1035 struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex); 1036 struct gfs2_glock *gl = ip->i_gl; 1037 struct gfs2_holder ri_gh; 1038 int error = 0; 1039 int unlock_required = 0; 1040 1041 /* Read new copy from disk if we don't have the latest */ 1042 if (!sdp->sd_rindex_uptodate) { 1043 if (!gfs2_glock_is_locked_by_me(gl)) { 1044 error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh); 1045 if (error) 1046 return error; 1047 unlock_required = 1; 1048 } 1049 if (!sdp->sd_rindex_uptodate) 1050 error = gfs2_ri_update(ip); 1051 if (unlock_required) 1052 gfs2_glock_dq_uninit(&ri_gh); 1053 } 1054 1055 return error; 1056 } 1057 1058 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf) 1059 { 1060 const struct gfs2_rgrp *str = buf; 1061 u32 rg_flags; 1062 1063 rg_flags = be32_to_cpu(str->rg_flags); 1064 rg_flags &= ~GFS2_RDF_MASK; 1065 rgd->rd_flags &= GFS2_RDF_MASK; 1066 rgd->rd_flags |= rg_flags; 1067 rgd->rd_free = be32_to_cpu(str->rg_free); 1068 rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes); 1069 rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration); 1070 /* rd_data0, rd_data and rd_bitbytes already set from rindex */ 1071 } 1072 1073 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf) 1074 { 1075 const struct gfs2_rgrp *str = buf; 1076 1077 rgl->rl_magic = cpu_to_be32(GFS2_MAGIC); 1078 rgl->rl_flags = str->rg_flags; 1079 rgl->rl_free = str->rg_free; 1080 rgl->rl_dinodes = str->rg_dinodes; 1081 rgl->rl_igeneration = str->rg_igeneration; 1082 rgl->__pad = 0UL; 1083 } 1084 1085 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf) 1086 { 1087 struct gfs2_rgrpd *next = gfs2_rgrpd_get_next(rgd); 1088 struct gfs2_rgrp *str = buf; 1089 u32 crc; 1090 1091 str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK); 1092 str->rg_free = cpu_to_be32(rgd->rd_free); 1093 str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes); 1094 if (next == NULL) 1095 str->rg_skip = 0; 1096 else if (next->rd_addr > rgd->rd_addr) 1097 str->rg_skip = cpu_to_be32(next->rd_addr - rgd->rd_addr); 1098 str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration); 1099 str->rg_data0 = cpu_to_be64(rgd->rd_data0); 1100 str->rg_data = cpu_to_be32(rgd->rd_data); 1101 str->rg_bitbytes = cpu_to_be32(rgd->rd_bitbytes); 1102 str->rg_crc = 0; 1103 crc = gfs2_disk_hash(buf, sizeof(struct gfs2_rgrp)); 1104 str->rg_crc = cpu_to_be32(crc); 1105 1106 memset(&str->rg_reserved, 0, sizeof(str->rg_reserved)); 1107 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, buf); 1108 } 1109 1110 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd) 1111 { 1112 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl; 1113 struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data; 1114 int valid = 1; 1115 1116 if (rgl->rl_flags != str->rg_flags) { 1117 printk(KERN_WARNING "GFS2: rgd: %llu lvb flag mismatch %u/%u", 1118 (unsigned long long)rgd->rd_addr, 1119 be32_to_cpu(rgl->rl_flags), be32_to_cpu(str->rg_flags)); 1120 valid = 0; 1121 } 1122 if (rgl->rl_free != str->rg_free) { 1123 printk(KERN_WARNING "GFS2: rgd: %llu lvb free mismatch %u/%u", 1124 (unsigned long long)rgd->rd_addr, 1125 be32_to_cpu(rgl->rl_free), be32_to_cpu(str->rg_free)); 1126 valid = 0; 1127 } 1128 if (rgl->rl_dinodes != str->rg_dinodes) { 1129 printk(KERN_WARNING "GFS2: rgd: %llu lvb dinode mismatch %u/%u", 1130 (unsigned long long)rgd->rd_addr, 1131 be32_to_cpu(rgl->rl_dinodes), 1132 be32_to_cpu(str->rg_dinodes)); 1133 valid = 0; 1134 } 1135 if (rgl->rl_igeneration != str->rg_igeneration) { 1136 printk(KERN_WARNING "GFS2: rgd: %llu lvb igen mismatch " 1137 "%llu/%llu", (unsigned long long)rgd->rd_addr, 1138 (unsigned long long)be64_to_cpu(rgl->rl_igeneration), 1139 (unsigned long long)be64_to_cpu(str->rg_igeneration)); 1140 valid = 0; 1141 } 1142 return valid; 1143 } 1144 1145 static u32 count_unlinked(struct gfs2_rgrpd *rgd) 1146 { 1147 struct gfs2_bitmap *bi; 1148 const u32 length = rgd->rd_length; 1149 const u8 *buffer = NULL; 1150 u32 i, goal, count = 0; 1151 1152 for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) { 1153 goal = 0; 1154 buffer = bi->bi_bh->b_data + bi->bi_offset; 1155 WARN_ON(!buffer_uptodate(bi->bi_bh)); 1156 while (goal < bi->bi_blocks) { 1157 goal = gfs2_bitfit(buffer, bi->bi_bytes, goal, 1158 GFS2_BLKST_UNLINKED); 1159 if (goal == BFITNOENT) 1160 break; 1161 count++; 1162 goal++; 1163 } 1164 } 1165 1166 return count; 1167 } 1168 1169 1170 /** 1171 * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps 1172 * @rgd: the struct gfs2_rgrpd describing the RG to read in 1173 * 1174 * Read in all of a Resource Group's header and bitmap blocks. 1175 * Caller must eventually call gfs2_rgrp_brelse() to free the bitmaps. 1176 * 1177 * Returns: errno 1178 */ 1179 1180 static int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd) 1181 { 1182 struct gfs2_sbd *sdp = rgd->rd_sbd; 1183 struct gfs2_glock *gl = rgd->rd_gl; 1184 unsigned int length = rgd->rd_length; 1185 struct gfs2_bitmap *bi; 1186 unsigned int x, y; 1187 int error; 1188 1189 if (rgd->rd_bits[0].bi_bh != NULL) 1190 return 0; 1191 1192 for (x = 0; x < length; x++) { 1193 bi = rgd->rd_bits + x; 1194 error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, 0, &bi->bi_bh); 1195 if (error) 1196 goto fail; 1197 } 1198 1199 for (y = length; y--;) { 1200 bi = rgd->rd_bits + y; 1201 error = gfs2_meta_wait(sdp, bi->bi_bh); 1202 if (error) 1203 goto fail; 1204 if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB : 1205 GFS2_METATYPE_RG)) { 1206 error = -EIO; 1207 goto fail; 1208 } 1209 } 1210 1211 if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) { 1212 for (x = 0; x < length; x++) 1213 clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags); 1214 gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data); 1215 rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK); 1216 rgd->rd_free_clone = rgd->rd_free; 1217 /* max out the rgrp allocation failure point */ 1218 rgd->rd_extfail_pt = rgd->rd_free; 1219 } 1220 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) { 1221 rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd)); 1222 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, 1223 rgd->rd_bits[0].bi_bh->b_data); 1224 } 1225 else if (sdp->sd_args.ar_rgrplvb) { 1226 if (!gfs2_rgrp_lvb_valid(rgd)){ 1227 gfs2_consist_rgrpd(rgd); 1228 error = -EIO; 1229 goto fail; 1230 } 1231 if (rgd->rd_rgl->rl_unlinked == 0) 1232 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1233 } 1234 return 0; 1235 1236 fail: 1237 while (x--) { 1238 bi = rgd->rd_bits + x; 1239 brelse(bi->bi_bh); 1240 bi->bi_bh = NULL; 1241 gfs2_assert_warn(sdp, !bi->bi_clone); 1242 } 1243 1244 return error; 1245 } 1246 1247 static int update_rgrp_lvb(struct gfs2_rgrpd *rgd) 1248 { 1249 u32 rl_flags; 1250 1251 if (rgd->rd_flags & GFS2_RDF_UPTODATE) 1252 return 0; 1253 1254 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) 1255 return gfs2_rgrp_bh_get(rgd); 1256 1257 rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags); 1258 rl_flags &= ~GFS2_RDF_MASK; 1259 rgd->rd_flags &= GFS2_RDF_MASK; 1260 rgd->rd_flags |= (rl_flags | GFS2_RDF_CHECK); 1261 if (rgd->rd_rgl->rl_unlinked == 0) 1262 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1263 rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free); 1264 rgd->rd_free_clone = rgd->rd_free; 1265 rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes); 1266 rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration); 1267 return 0; 1268 } 1269 1270 int gfs2_rgrp_go_lock(struct gfs2_holder *gh) 1271 { 1272 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object; 1273 struct gfs2_sbd *sdp = rgd->rd_sbd; 1274 1275 if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb) 1276 return 0; 1277 return gfs2_rgrp_bh_get(rgd); 1278 } 1279 1280 /** 1281 * gfs2_rgrp_brelse - Release RG bitmaps read in with gfs2_rgrp_bh_get() 1282 * @rgd: The resource group 1283 * 1284 */ 1285 1286 void gfs2_rgrp_brelse(struct gfs2_rgrpd *rgd) 1287 { 1288 int x, length = rgd->rd_length; 1289 1290 for (x = 0; x < length; x++) { 1291 struct gfs2_bitmap *bi = rgd->rd_bits + x; 1292 if (bi->bi_bh) { 1293 brelse(bi->bi_bh); 1294 bi->bi_bh = NULL; 1295 } 1296 } 1297 1298 } 1299 1300 /** 1301 * gfs2_rgrp_go_unlock - Unlock a rgrp glock 1302 * @gh: The glock holder for the resource group 1303 * 1304 */ 1305 1306 void gfs2_rgrp_go_unlock(struct gfs2_holder *gh) 1307 { 1308 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object; 1309 int demote_requested = test_bit(GLF_DEMOTE, &gh->gh_gl->gl_flags) | 1310 test_bit(GLF_PENDING_DEMOTE, &gh->gh_gl->gl_flags); 1311 1312 if (rgd && demote_requested) 1313 gfs2_rgrp_brelse(rgd); 1314 } 1315 1316 int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset, 1317 struct buffer_head *bh, 1318 const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed) 1319 { 1320 struct super_block *sb = sdp->sd_vfs; 1321 u64 blk; 1322 sector_t start = 0; 1323 sector_t nr_blks = 0; 1324 int rv; 1325 unsigned int x; 1326 u32 trimmed = 0; 1327 u8 diff; 1328 1329 for (x = 0; x < bi->bi_bytes; x++) { 1330 const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data; 1331 clone += bi->bi_offset; 1332 clone += x; 1333 if (bh) { 1334 const u8 *orig = bh->b_data + bi->bi_offset + x; 1335 diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1)); 1336 } else { 1337 diff = ~(*clone | (*clone >> 1)); 1338 } 1339 diff &= 0x55; 1340 if (diff == 0) 1341 continue; 1342 blk = offset + ((bi->bi_start + x) * GFS2_NBBY); 1343 while(diff) { 1344 if (diff & 1) { 1345 if (nr_blks == 0) 1346 goto start_new_extent; 1347 if ((start + nr_blks) != blk) { 1348 if (nr_blks >= minlen) { 1349 rv = sb_issue_discard(sb, 1350 start, nr_blks, 1351 GFP_NOFS, 0); 1352 if (rv) 1353 goto fail; 1354 trimmed += nr_blks; 1355 } 1356 nr_blks = 0; 1357 start_new_extent: 1358 start = blk; 1359 } 1360 nr_blks++; 1361 } 1362 diff >>= 2; 1363 blk++; 1364 } 1365 } 1366 if (nr_blks >= minlen) { 1367 rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0); 1368 if (rv) 1369 goto fail; 1370 trimmed += nr_blks; 1371 } 1372 if (ptrimmed) 1373 *ptrimmed = trimmed; 1374 return 0; 1375 1376 fail: 1377 if (sdp->sd_args.ar_discard) 1378 fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem\n", rv); 1379 sdp->sd_args.ar_discard = 0; 1380 return -EIO; 1381 } 1382 1383 /** 1384 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem 1385 * @filp: Any file on the filesystem 1386 * @argp: Pointer to the arguments (also used to pass result) 1387 * 1388 * Returns: 0 on success, otherwise error code 1389 */ 1390 1391 int gfs2_fitrim(struct file *filp, void __user *argp) 1392 { 1393 struct inode *inode = file_inode(filp); 1394 struct gfs2_sbd *sdp = GFS2_SB(inode); 1395 struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev); 1396 struct buffer_head *bh; 1397 struct gfs2_rgrpd *rgd; 1398 struct gfs2_rgrpd *rgd_end; 1399 struct gfs2_holder gh; 1400 struct fstrim_range r; 1401 int ret = 0; 1402 u64 amt; 1403 u64 trimmed = 0; 1404 u64 start, end, minlen; 1405 unsigned int x; 1406 unsigned bs_shift = sdp->sd_sb.sb_bsize_shift; 1407 1408 if (!capable(CAP_SYS_ADMIN)) 1409 return -EPERM; 1410 1411 if (!blk_queue_discard(q)) 1412 return -EOPNOTSUPP; 1413 1414 if (copy_from_user(&r, argp, sizeof(r))) 1415 return -EFAULT; 1416 1417 ret = gfs2_rindex_update(sdp); 1418 if (ret) 1419 return ret; 1420 1421 start = r.start >> bs_shift; 1422 end = start + (r.len >> bs_shift); 1423 minlen = max_t(u64, r.minlen, 1424 q->limits.discard_granularity) >> bs_shift; 1425 1426 if (end <= start || minlen > sdp->sd_max_rg_data) 1427 return -EINVAL; 1428 1429 rgd = gfs2_blk2rgrpd(sdp, start, 0); 1430 rgd_end = gfs2_blk2rgrpd(sdp, end, 0); 1431 1432 if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end)) 1433 && (start > rgd_end->rd_data0 + rgd_end->rd_data)) 1434 return -EINVAL; /* start is beyond the end of the fs */ 1435 1436 while (1) { 1437 1438 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh); 1439 if (ret) 1440 goto out; 1441 1442 if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) { 1443 /* Trim each bitmap in the rgrp */ 1444 for (x = 0; x < rgd->rd_length; x++) { 1445 struct gfs2_bitmap *bi = rgd->rd_bits + x; 1446 ret = gfs2_rgrp_send_discards(sdp, 1447 rgd->rd_data0, NULL, bi, minlen, 1448 &amt); 1449 if (ret) { 1450 gfs2_glock_dq_uninit(&gh); 1451 goto out; 1452 } 1453 trimmed += amt; 1454 } 1455 1456 /* Mark rgrp as having been trimmed */ 1457 ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0); 1458 if (ret == 0) { 1459 bh = rgd->rd_bits[0].bi_bh; 1460 rgd->rd_flags |= GFS2_RGF_TRIMMED; 1461 gfs2_trans_add_meta(rgd->rd_gl, bh); 1462 gfs2_rgrp_out(rgd, bh->b_data); 1463 gfs2_trans_end(sdp); 1464 } 1465 } 1466 gfs2_glock_dq_uninit(&gh); 1467 1468 if (rgd == rgd_end) 1469 break; 1470 1471 rgd = gfs2_rgrpd_get_next(rgd); 1472 } 1473 1474 out: 1475 r.len = trimmed << bs_shift; 1476 if (copy_to_user(argp, &r, sizeof(r))) 1477 return -EFAULT; 1478 1479 return ret; 1480 } 1481 1482 /** 1483 * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree 1484 * @ip: the inode structure 1485 * 1486 */ 1487 static void rs_insert(struct gfs2_inode *ip) 1488 { 1489 struct rb_node **newn, *parent = NULL; 1490 int rc; 1491 struct gfs2_blkreserv *rs = &ip->i_res; 1492 struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd; 1493 u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm); 1494 1495 BUG_ON(gfs2_rs_active(rs)); 1496 1497 spin_lock(&rgd->rd_rsspin); 1498 newn = &rgd->rd_rstree.rb_node; 1499 while (*newn) { 1500 struct gfs2_blkreserv *cur = 1501 rb_entry(*newn, struct gfs2_blkreserv, rs_node); 1502 1503 parent = *newn; 1504 rc = rs_cmp(fsblock, rs->rs_free, cur); 1505 if (rc > 0) 1506 newn = &((*newn)->rb_right); 1507 else if (rc < 0) 1508 newn = &((*newn)->rb_left); 1509 else { 1510 spin_unlock(&rgd->rd_rsspin); 1511 WARN_ON(1); 1512 return; 1513 } 1514 } 1515 1516 rb_link_node(&rs->rs_node, parent, newn); 1517 rb_insert_color(&rs->rs_node, &rgd->rd_rstree); 1518 1519 /* Do our rgrp accounting for the reservation */ 1520 rgd->rd_reserved += rs->rs_free; /* blocks reserved */ 1521 spin_unlock(&rgd->rd_rsspin); 1522 trace_gfs2_rs(rs, TRACE_RS_INSERT); 1523 } 1524 1525 /** 1526 * rgd_free - return the number of free blocks we can allocate. 1527 * @rgd: the resource group 1528 * 1529 * This function returns the number of free blocks for an rgrp. 1530 * That's the clone-free blocks (blocks that are free, not including those 1531 * still being used for unlinked files that haven't been deleted.) 1532 * 1533 * It also subtracts any blocks reserved by someone else, but does not 1534 * include free blocks that are still part of our current reservation, 1535 * because obviously we can (and will) allocate them. 1536 */ 1537 static inline u32 rgd_free(struct gfs2_rgrpd *rgd, struct gfs2_blkreserv *rs) 1538 { 1539 u32 tot_reserved, tot_free; 1540 1541 if (WARN_ON_ONCE(rgd->rd_reserved < rs->rs_free)) 1542 return 0; 1543 tot_reserved = rgd->rd_reserved - rs->rs_free; 1544 1545 if (rgd->rd_free_clone < tot_reserved) 1546 tot_reserved = 0; 1547 1548 tot_free = rgd->rd_free_clone - tot_reserved; 1549 1550 return tot_free; 1551 } 1552 1553 /** 1554 * rg_mblk_search - find a group of multiple free blocks to form a reservation 1555 * @rgd: the resource group descriptor 1556 * @ip: pointer to the inode for which we're reserving blocks 1557 * @ap: the allocation parameters 1558 * 1559 */ 1560 1561 static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip, 1562 const struct gfs2_alloc_parms *ap) 1563 { 1564 struct gfs2_rbm rbm = { .rgd = rgd, }; 1565 u64 goal; 1566 struct gfs2_blkreserv *rs = &ip->i_res; 1567 u32 extlen; 1568 u32 free_blocks = rgd_free(rgd, rs); 1569 int ret; 1570 struct inode *inode = &ip->i_inode; 1571 1572 if (S_ISDIR(inode->i_mode)) 1573 extlen = 1; 1574 else { 1575 extlen = max_t(u32, atomic_read(&ip->i_sizehint), ap->target); 1576 extlen = clamp(extlen, (u32)RGRP_RSRV_MINBLKS, free_blocks); 1577 } 1578 if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen)) 1579 return; 1580 1581 /* Find bitmap block that contains bits for goal block */ 1582 if (rgrp_contains_block(rgd, ip->i_goal)) 1583 goal = ip->i_goal; 1584 else 1585 goal = rgd->rd_last_alloc + rgd->rd_data0; 1586 1587 if (WARN_ON(gfs2_rbm_from_block(&rbm, goal))) 1588 return; 1589 1590 ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, ip, true); 1591 if (ret == 0) { 1592 rs->rs_rbm = rbm; 1593 rs->rs_free = extlen; 1594 rs_insert(ip); 1595 } else { 1596 if (goal == rgd->rd_last_alloc + rgd->rd_data0) 1597 rgd->rd_last_alloc = 0; 1598 } 1599 } 1600 1601 /** 1602 * gfs2_next_unreserved_block - Return next block that is not reserved 1603 * @rgd: The resource group 1604 * @block: The starting block 1605 * @length: The required length 1606 * @ip: Ignore any reservations for this inode 1607 * 1608 * If the block does not appear in any reservation, then return the 1609 * block number unchanged. If it does appear in the reservation, then 1610 * keep looking through the tree of reservations in order to find the 1611 * first block number which is not reserved. 1612 */ 1613 1614 static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block, 1615 u32 length, 1616 const struct gfs2_inode *ip) 1617 { 1618 struct gfs2_blkreserv *rs; 1619 struct rb_node *n; 1620 int rc; 1621 1622 spin_lock(&rgd->rd_rsspin); 1623 n = rgd->rd_rstree.rb_node; 1624 while (n) { 1625 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 1626 rc = rs_cmp(block, length, rs); 1627 if (rc < 0) 1628 n = n->rb_left; 1629 else if (rc > 0) 1630 n = n->rb_right; 1631 else 1632 break; 1633 } 1634 1635 if (n) { 1636 while ((rs_cmp(block, length, rs) == 0) && (&ip->i_res != rs)) { 1637 block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free; 1638 n = n->rb_right; 1639 if (n == NULL) 1640 break; 1641 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 1642 } 1643 } 1644 1645 spin_unlock(&rgd->rd_rsspin); 1646 return block; 1647 } 1648 1649 /** 1650 * gfs2_reservation_check_and_update - Check for reservations during block alloc 1651 * @rbm: The current position in the resource group 1652 * @ip: The inode for which we are searching for blocks 1653 * @minext: The minimum extent length 1654 * @maxext: A pointer to the maximum extent structure 1655 * 1656 * This checks the current position in the rgrp to see whether there is 1657 * a reservation covering this block. If not then this function is a 1658 * no-op. If there is, then the position is moved to the end of the 1659 * contiguous reservation(s) so that we are pointing at the first 1660 * non-reserved block. 1661 * 1662 * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error 1663 */ 1664 1665 static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm, 1666 const struct gfs2_inode *ip, 1667 u32 minext, 1668 struct gfs2_extent *maxext) 1669 { 1670 u64 block = gfs2_rbm_to_block(rbm); 1671 u32 extlen = 1; 1672 u64 nblock; 1673 int ret; 1674 1675 /* 1676 * If we have a minimum extent length, then skip over any extent 1677 * which is less than the min extent length in size. 1678 */ 1679 if (minext) { 1680 extlen = gfs2_free_extlen(rbm, minext); 1681 if (extlen <= maxext->len) 1682 goto fail; 1683 } 1684 1685 /* 1686 * Check the extent which has been found against the reservations 1687 * and skip if parts of it are already reserved 1688 */ 1689 nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip); 1690 if (nblock == block) { 1691 if (!minext || extlen >= minext) 1692 return 0; 1693 1694 if (extlen > maxext->len) { 1695 maxext->len = extlen; 1696 maxext->rbm = *rbm; 1697 } 1698 fail: 1699 nblock = block + extlen; 1700 } 1701 ret = gfs2_rbm_from_block(rbm, nblock); 1702 if (ret < 0) 1703 return ret; 1704 return 1; 1705 } 1706 1707 /** 1708 * gfs2_rbm_find - Look for blocks of a particular state 1709 * @rbm: Value/result starting position and final position 1710 * @state: The state which we want to find 1711 * @minext: Pointer to the requested extent length (NULL for a single block) 1712 * This is updated to be the actual reservation size. 1713 * @ip: If set, check for reservations 1714 * @nowrap: Stop looking at the end of the rgrp, rather than wrapping 1715 * around until we've reached the starting point. 1716 * 1717 * Side effects: 1718 * - If looking for free blocks, we set GBF_FULL on each bitmap which 1719 * has no free blocks in it. 1720 * - If looking for free blocks, we set rd_extfail_pt on each rgrp which 1721 * has come up short on a free block search. 1722 * 1723 * Returns: 0 on success, -ENOSPC if there is no block of the requested state 1724 */ 1725 1726 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext, 1727 const struct gfs2_inode *ip, bool nowrap) 1728 { 1729 bool scan_from_start = rbm->bii == 0 && rbm->offset == 0; 1730 struct buffer_head *bh; 1731 int last_bii; 1732 u32 offset; 1733 u8 *buffer; 1734 bool wrapped = false; 1735 int ret; 1736 struct gfs2_bitmap *bi; 1737 struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, }; 1738 1739 /* 1740 * Determine the last bitmap to search. If we're not starting at the 1741 * beginning of a bitmap, we need to search that bitmap twice to scan 1742 * the entire resource group. 1743 */ 1744 last_bii = rbm->bii - (rbm->offset == 0); 1745 1746 while(1) { 1747 bi = rbm_bi(rbm); 1748 if ((ip == NULL || !gfs2_rs_active(&ip->i_res)) && 1749 test_bit(GBF_FULL, &bi->bi_flags) && 1750 (state == GFS2_BLKST_FREE)) 1751 goto next_bitmap; 1752 1753 bh = bi->bi_bh; 1754 buffer = bh->b_data + bi->bi_offset; 1755 WARN_ON(!buffer_uptodate(bh)); 1756 if (state != GFS2_BLKST_UNLINKED && bi->bi_clone) 1757 buffer = bi->bi_clone + bi->bi_offset; 1758 offset = gfs2_bitfit(buffer, bi->bi_bytes, rbm->offset, state); 1759 if (offset == BFITNOENT) { 1760 if (state == GFS2_BLKST_FREE && rbm->offset == 0) 1761 set_bit(GBF_FULL, &bi->bi_flags); 1762 goto next_bitmap; 1763 } 1764 rbm->offset = offset; 1765 if (ip == NULL) 1766 return 0; 1767 1768 ret = gfs2_reservation_check_and_update(rbm, ip, 1769 minext ? *minext : 0, 1770 &maxext); 1771 if (ret == 0) 1772 return 0; 1773 if (ret > 0) 1774 goto next_iter; 1775 if (ret == -E2BIG) { 1776 rbm->bii = 0; 1777 rbm->offset = 0; 1778 goto res_covered_end_of_rgrp; 1779 } 1780 return ret; 1781 1782 next_bitmap: /* Find next bitmap in the rgrp */ 1783 rbm->offset = 0; 1784 rbm->bii++; 1785 if (rbm->bii == rbm->rgd->rd_length) 1786 rbm->bii = 0; 1787 res_covered_end_of_rgrp: 1788 if (rbm->bii == 0) { 1789 if (wrapped) 1790 break; 1791 wrapped = true; 1792 if (nowrap) 1793 break; 1794 } 1795 next_iter: 1796 /* Have we scanned the entire resource group? */ 1797 if (wrapped && rbm->bii > last_bii) 1798 break; 1799 } 1800 1801 if (minext == NULL || state != GFS2_BLKST_FREE) 1802 return -ENOSPC; 1803 1804 /* If the extent was too small, and it's smaller than the smallest 1805 to have failed before, remember for future reference that it's 1806 useless to search this rgrp again for this amount or more. */ 1807 if (wrapped && (scan_from_start || rbm->bii > last_bii) && 1808 *minext < rbm->rgd->rd_extfail_pt) 1809 rbm->rgd->rd_extfail_pt = *minext; 1810 1811 /* If the maximum extent we found is big enough to fulfill the 1812 minimum requirements, use it anyway. */ 1813 if (maxext.len) { 1814 *rbm = maxext.rbm; 1815 *minext = maxext.len; 1816 return 0; 1817 } 1818 1819 return -ENOSPC; 1820 } 1821 1822 /** 1823 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes 1824 * @rgd: The rgrp 1825 * @last_unlinked: block address of the last dinode we unlinked 1826 * @skip: block address we should explicitly not unlink 1827 * 1828 * Returns: 0 if no error 1829 * The inode, if one has been found, in inode. 1830 */ 1831 1832 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip) 1833 { 1834 u64 block; 1835 struct gfs2_sbd *sdp = rgd->rd_sbd; 1836 struct gfs2_glock *gl; 1837 struct gfs2_inode *ip; 1838 int error; 1839 int found = 0; 1840 struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 }; 1841 1842 while (1) { 1843 down_write(&sdp->sd_log_flush_lock); 1844 error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL, 1845 true); 1846 up_write(&sdp->sd_log_flush_lock); 1847 if (error == -ENOSPC) 1848 break; 1849 if (WARN_ON_ONCE(error)) 1850 break; 1851 1852 block = gfs2_rbm_to_block(&rbm); 1853 if (gfs2_rbm_from_block(&rbm, block + 1)) 1854 break; 1855 if (*last_unlinked != NO_BLOCK && block <= *last_unlinked) 1856 continue; 1857 if (block == skip) 1858 continue; 1859 *last_unlinked = block; 1860 1861 error = gfs2_glock_get(sdp, block, &gfs2_iopen_glops, CREATE, &gl); 1862 if (error) 1863 continue; 1864 1865 /* If the inode is already in cache, we can ignore it here 1866 * because the existing inode disposal code will deal with 1867 * it when all refs have gone away. Accessing gl_object like 1868 * this is not safe in general. Here it is ok because we do 1869 * not dereference the pointer, and we only need an approx 1870 * answer to whether it is NULL or not. 1871 */ 1872 ip = gl->gl_object; 1873 1874 if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0) 1875 gfs2_glock_put(gl); 1876 else 1877 found++; 1878 1879 /* Limit reclaim to sensible number of tasks */ 1880 if (found > NR_CPUS) 1881 return; 1882 } 1883 1884 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1885 return; 1886 } 1887 1888 /** 1889 * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested 1890 * @rgd: The rgrp in question 1891 * @loops: An indication of how picky we can be (0=very, 1=less so) 1892 * 1893 * This function uses the recently added glock statistics in order to 1894 * figure out whether a parciular resource group is suffering from 1895 * contention from multiple nodes. This is done purely on the basis 1896 * of timings, since this is the only data we have to work with and 1897 * our aim here is to reject a resource group which is highly contended 1898 * but (very important) not to do this too often in order to ensure that 1899 * we do not land up introducing fragmentation by changing resource 1900 * groups when not actually required. 1901 * 1902 * The calculation is fairly simple, we want to know whether the SRTTB 1903 * (i.e. smoothed round trip time for blocking operations) to acquire 1904 * the lock for this rgrp's glock is significantly greater than the 1905 * time taken for resource groups on average. We introduce a margin in 1906 * the form of the variable @var which is computed as the sum of the two 1907 * respective variences, and multiplied by a factor depending on @loops 1908 * and whether we have a lot of data to base the decision on. This is 1909 * then tested against the square difference of the means in order to 1910 * decide whether the result is statistically significant or not. 1911 * 1912 * Returns: A boolean verdict on the congestion status 1913 */ 1914 1915 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops) 1916 { 1917 const struct gfs2_glock *gl = rgd->rd_gl; 1918 const struct gfs2_sbd *sdp = gl->gl_name.ln_sbd; 1919 struct gfs2_lkstats *st; 1920 u64 r_dcount, l_dcount; 1921 u64 l_srttb, a_srttb = 0; 1922 s64 srttb_diff; 1923 u64 sqr_diff; 1924 u64 var; 1925 int cpu, nonzero = 0; 1926 1927 preempt_disable(); 1928 for_each_present_cpu(cpu) { 1929 st = &per_cpu_ptr(sdp->sd_lkstats, cpu)->lkstats[LM_TYPE_RGRP]; 1930 if (st->stats[GFS2_LKS_SRTTB]) { 1931 a_srttb += st->stats[GFS2_LKS_SRTTB]; 1932 nonzero++; 1933 } 1934 } 1935 st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP]; 1936 if (nonzero) 1937 do_div(a_srttb, nonzero); 1938 r_dcount = st->stats[GFS2_LKS_DCOUNT]; 1939 var = st->stats[GFS2_LKS_SRTTVARB] + 1940 gl->gl_stats.stats[GFS2_LKS_SRTTVARB]; 1941 preempt_enable(); 1942 1943 l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB]; 1944 l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT]; 1945 1946 if ((l_dcount < 1) || (r_dcount < 1) || (a_srttb == 0)) 1947 return false; 1948 1949 srttb_diff = a_srttb - l_srttb; 1950 sqr_diff = srttb_diff * srttb_diff; 1951 1952 var *= 2; 1953 if (l_dcount < 8 || r_dcount < 8) 1954 var *= 2; 1955 if (loops == 1) 1956 var *= 2; 1957 1958 return ((srttb_diff < 0) && (sqr_diff > var)); 1959 } 1960 1961 /** 1962 * gfs2_rgrp_used_recently 1963 * @rs: The block reservation with the rgrp to test 1964 * @msecs: The time limit in milliseconds 1965 * 1966 * Returns: True if the rgrp glock has been used within the time limit 1967 */ 1968 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs, 1969 u64 msecs) 1970 { 1971 u64 tdiff; 1972 1973 tdiff = ktime_to_ns(ktime_sub(ktime_get_real(), 1974 rs->rs_rbm.rgd->rd_gl->gl_dstamp)); 1975 1976 return tdiff > (msecs * 1000 * 1000); 1977 } 1978 1979 static u32 gfs2_orlov_skip(const struct gfs2_inode *ip) 1980 { 1981 const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1982 u32 skip; 1983 1984 get_random_bytes(&skip, sizeof(skip)); 1985 return skip % sdp->sd_rgrps; 1986 } 1987 1988 static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin) 1989 { 1990 struct gfs2_rgrpd *rgd = *pos; 1991 struct gfs2_sbd *sdp = rgd->rd_sbd; 1992 1993 rgd = gfs2_rgrpd_get_next(rgd); 1994 if (rgd == NULL) 1995 rgd = gfs2_rgrpd_get_first(sdp); 1996 *pos = rgd; 1997 if (rgd != begin) /* If we didn't wrap */ 1998 return true; 1999 return false; 2000 } 2001 2002 /** 2003 * fast_to_acquire - determine if a resource group will be fast to acquire 2004 * 2005 * If this is one of our preferred rgrps, it should be quicker to acquire, 2006 * because we tried to set ourselves up as dlm lock master. 2007 */ 2008 static inline int fast_to_acquire(struct gfs2_rgrpd *rgd) 2009 { 2010 struct gfs2_glock *gl = rgd->rd_gl; 2011 2012 if (gl->gl_state != LM_ST_UNLOCKED && list_empty(&gl->gl_holders) && 2013 !test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags) && 2014 !test_bit(GLF_DEMOTE, &gl->gl_flags)) 2015 return 1; 2016 if (rgd->rd_flags & GFS2_RDF_PREFERRED) 2017 return 1; 2018 return 0; 2019 } 2020 2021 /** 2022 * gfs2_inplace_reserve - Reserve space in the filesystem 2023 * @ip: the inode to reserve space for 2024 * @ap: the allocation parameters 2025 * 2026 * We try our best to find an rgrp that has at least ap->target blocks 2027 * available. After a couple of passes (loops == 2), the prospects of finding 2028 * such an rgrp diminish. At this stage, we return the first rgrp that has 2029 * at least ap->min_target blocks available. Either way, we set ap->allowed to 2030 * the number of blocks available in the chosen rgrp. 2031 * 2032 * Returns: 0 on success, 2033 * -ENOMEM if a suitable rgrp can't be found 2034 * errno otherwise 2035 */ 2036 2037 int gfs2_inplace_reserve(struct gfs2_inode *ip, struct gfs2_alloc_parms *ap) 2038 { 2039 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2040 struct gfs2_rgrpd *begin = NULL; 2041 struct gfs2_blkreserv *rs = &ip->i_res; 2042 int error = 0, rg_locked, flags = 0; 2043 u64 last_unlinked = NO_BLOCK; 2044 int loops = 0; 2045 u32 free_blocks, skip = 0; 2046 2047 if (sdp->sd_args.ar_rgrplvb) 2048 flags |= GL_SKIP; 2049 if (gfs2_assert_warn(sdp, ap->target)) 2050 return -EINVAL; 2051 if (gfs2_rs_active(rs)) { 2052 begin = rs->rs_rbm.rgd; 2053 } else if (rs->rs_rbm.rgd && 2054 rgrp_contains_block(rs->rs_rbm.rgd, ip->i_goal)) { 2055 begin = rs->rs_rbm.rgd; 2056 } else { 2057 check_and_update_goal(ip); 2058 rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1); 2059 } 2060 if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV)) 2061 skip = gfs2_orlov_skip(ip); 2062 if (rs->rs_rbm.rgd == NULL) 2063 return -EBADSLT; 2064 2065 while (loops < 3) { 2066 rg_locked = 1; 2067 2068 if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) { 2069 rg_locked = 0; 2070 if (skip && skip--) 2071 goto next_rgrp; 2072 if (!gfs2_rs_active(rs)) { 2073 if (loops == 0 && 2074 !fast_to_acquire(rs->rs_rbm.rgd)) 2075 goto next_rgrp; 2076 if ((loops < 2) && 2077 gfs2_rgrp_used_recently(rs, 1000) && 2078 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops)) 2079 goto next_rgrp; 2080 } 2081 error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl, 2082 LM_ST_EXCLUSIVE, flags, 2083 &ip->i_rgd_gh); 2084 if (unlikely(error)) 2085 return error; 2086 if (!gfs2_rs_active(rs) && (loops < 2) && 2087 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops)) 2088 goto skip_rgrp; 2089 if (sdp->sd_args.ar_rgrplvb) { 2090 error = update_rgrp_lvb(rs->rs_rbm.rgd); 2091 if (unlikely(error)) { 2092 gfs2_glock_dq_uninit(&ip->i_rgd_gh); 2093 return error; 2094 } 2095 } 2096 } 2097 2098 /* Skip unusable resource groups */ 2099 if ((rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC | 2100 GFS2_RDF_ERROR)) || 2101 (loops == 0 && ap->target > rs->rs_rbm.rgd->rd_extfail_pt)) 2102 goto skip_rgrp; 2103 2104 if (sdp->sd_args.ar_rgrplvb) 2105 gfs2_rgrp_bh_get(rs->rs_rbm.rgd); 2106 2107 /* Get a reservation if we don't already have one */ 2108 if (!gfs2_rs_active(rs)) 2109 rg_mblk_search(rs->rs_rbm.rgd, ip, ap); 2110 2111 /* Skip rgrps when we can't get a reservation on first pass */ 2112 if (!gfs2_rs_active(rs) && (loops < 1)) 2113 goto check_rgrp; 2114 2115 /* If rgrp has enough free space, use it */ 2116 free_blocks = rgd_free(rs->rs_rbm.rgd, rs); 2117 if (free_blocks >= ap->target || 2118 (loops == 2 && ap->min_target && 2119 free_blocks >= ap->min_target)) { 2120 ap->allowed = free_blocks; 2121 return 0; 2122 } 2123 check_rgrp: 2124 /* Check for unlinked inodes which can be reclaimed */ 2125 if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK) 2126 try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked, 2127 ip->i_no_addr); 2128 skip_rgrp: 2129 /* Drop reservation, if we couldn't use reserved rgrp */ 2130 if (gfs2_rs_active(rs)) 2131 gfs2_rs_deltree(rs); 2132 2133 /* Unlock rgrp if required */ 2134 if (!rg_locked) 2135 gfs2_glock_dq_uninit(&ip->i_rgd_gh); 2136 next_rgrp: 2137 /* Find the next rgrp, and continue looking */ 2138 if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin)) 2139 continue; 2140 if (skip) 2141 continue; 2142 2143 /* If we've scanned all the rgrps, but found no free blocks 2144 * then this checks for some less likely conditions before 2145 * trying again. 2146 */ 2147 loops++; 2148 /* Check that fs hasn't grown if writing to rindex */ 2149 if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) { 2150 error = gfs2_ri_update(ip); 2151 if (error) 2152 return error; 2153 } 2154 /* Flushing the log may release space */ 2155 if (loops == 2) 2156 gfs2_log_flush(sdp, NULL, GFS2_LOG_HEAD_FLUSH_NORMAL | 2157 GFS2_LFC_INPLACE_RESERVE); 2158 } 2159 2160 return -ENOSPC; 2161 } 2162 2163 /** 2164 * gfs2_inplace_release - release an inplace reservation 2165 * @ip: the inode the reservation was taken out on 2166 * 2167 * Release a reservation made by gfs2_inplace_reserve(). 2168 */ 2169 2170 void gfs2_inplace_release(struct gfs2_inode *ip) 2171 { 2172 if (gfs2_holder_initialized(&ip->i_rgd_gh)) 2173 gfs2_glock_dq_uninit(&ip->i_rgd_gh); 2174 } 2175 2176 /** 2177 * gfs2_alloc_extent - allocate an extent from a given bitmap 2178 * @rbm: the resource group information 2179 * @dinode: TRUE if the first block we allocate is for a dinode 2180 * @n: The extent length (value/result) 2181 * 2182 * Add the bitmap buffer to the transaction. 2183 * Set the found bits to @new_state to change block's allocation state. 2184 */ 2185 static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode, 2186 unsigned int *n) 2187 { 2188 struct gfs2_rbm pos = { .rgd = rbm->rgd, }; 2189 const unsigned int elen = *n; 2190 u64 block; 2191 int ret; 2192 2193 *n = 1; 2194 block = gfs2_rbm_to_block(rbm); 2195 gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh); 2196 gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED); 2197 block++; 2198 while (*n < elen) { 2199 ret = gfs2_rbm_from_block(&pos, block); 2200 if (ret || gfs2_testbit(&pos, true) != GFS2_BLKST_FREE) 2201 break; 2202 gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh); 2203 gfs2_setbit(&pos, true, GFS2_BLKST_USED); 2204 (*n)++; 2205 block++; 2206 } 2207 } 2208 2209 /** 2210 * rgblk_free - Change alloc state of given block(s) 2211 * @sdp: the filesystem 2212 * @rgd: the resource group the blocks are in 2213 * @bstart: the start of a run of blocks to free 2214 * @blen: the length of the block run (all must lie within ONE RG!) 2215 * @new_state: GFS2_BLKST_XXX the after-allocation block state 2216 */ 2217 2218 static void rgblk_free(struct gfs2_sbd *sdp, struct gfs2_rgrpd *rgd, 2219 u64 bstart, u32 blen, unsigned char new_state) 2220 { 2221 struct gfs2_rbm rbm; 2222 struct gfs2_bitmap *bi, *bi_prev = NULL; 2223 2224 rbm.rgd = rgd; 2225 if (WARN_ON_ONCE(gfs2_rbm_from_block(&rbm, bstart))) 2226 return; 2227 while (blen--) { 2228 bi = rbm_bi(&rbm); 2229 if (bi != bi_prev) { 2230 if (!bi->bi_clone) { 2231 bi->bi_clone = kmalloc(bi->bi_bh->b_size, 2232 GFP_NOFS | __GFP_NOFAIL); 2233 memcpy(bi->bi_clone + bi->bi_offset, 2234 bi->bi_bh->b_data + bi->bi_offset, 2235 bi->bi_bytes); 2236 } 2237 gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh); 2238 bi_prev = bi; 2239 } 2240 gfs2_setbit(&rbm, false, new_state); 2241 gfs2_rbm_incr(&rbm); 2242 } 2243 } 2244 2245 /** 2246 * gfs2_rgrp_dump - print out an rgrp 2247 * @seq: The iterator 2248 * @gl: The glock in question 2249 * 2250 */ 2251 2252 void gfs2_rgrp_dump(struct seq_file *seq, struct gfs2_glock *gl) 2253 { 2254 struct gfs2_rgrpd *rgd = gl->gl_object; 2255 struct gfs2_blkreserv *trs; 2256 const struct rb_node *n; 2257 2258 if (rgd == NULL) 2259 return; 2260 gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u r:%u e:%u\n", 2261 (unsigned long long)rgd->rd_addr, rgd->rd_flags, 2262 rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes, 2263 rgd->rd_reserved, rgd->rd_extfail_pt); 2264 if (rgd->rd_sbd->sd_args.ar_rgrplvb) { 2265 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl; 2266 2267 gfs2_print_dbg(seq, " L: f:%02x b:%u i:%u\n", 2268 be32_to_cpu(rgl->rl_flags), 2269 be32_to_cpu(rgl->rl_free), 2270 be32_to_cpu(rgl->rl_dinodes)); 2271 } 2272 spin_lock(&rgd->rd_rsspin); 2273 for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) { 2274 trs = rb_entry(n, struct gfs2_blkreserv, rs_node); 2275 dump_rs(seq, trs); 2276 } 2277 spin_unlock(&rgd->rd_rsspin); 2278 } 2279 2280 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd) 2281 { 2282 struct gfs2_sbd *sdp = rgd->rd_sbd; 2283 fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n", 2284 (unsigned long long)rgd->rd_addr); 2285 fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n"); 2286 gfs2_rgrp_dump(NULL, rgd->rd_gl); 2287 rgd->rd_flags |= GFS2_RDF_ERROR; 2288 } 2289 2290 /** 2291 * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation 2292 * @ip: The inode we have just allocated blocks for 2293 * @rbm: The start of the allocated blocks 2294 * @len: The extent length 2295 * 2296 * Adjusts a reservation after an allocation has taken place. If the 2297 * reservation does not match the allocation, or if it is now empty 2298 * then it is removed. 2299 */ 2300 2301 static void gfs2_adjust_reservation(struct gfs2_inode *ip, 2302 const struct gfs2_rbm *rbm, unsigned len) 2303 { 2304 struct gfs2_blkreserv *rs = &ip->i_res; 2305 struct gfs2_rgrpd *rgd = rbm->rgd; 2306 unsigned rlen; 2307 u64 block; 2308 int ret; 2309 2310 spin_lock(&rgd->rd_rsspin); 2311 if (gfs2_rs_active(rs)) { 2312 if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) { 2313 block = gfs2_rbm_to_block(rbm); 2314 ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len); 2315 rlen = min(rs->rs_free, len); 2316 rs->rs_free -= rlen; 2317 rgd->rd_reserved -= rlen; 2318 trace_gfs2_rs(rs, TRACE_RS_CLAIM); 2319 if (rs->rs_free && !ret) 2320 goto out; 2321 /* We used up our block reservation, so we should 2322 reserve more blocks next time. */ 2323 atomic_add(RGRP_RSRV_ADDBLKS, &ip->i_sizehint); 2324 } 2325 __rs_deltree(rs); 2326 } 2327 out: 2328 spin_unlock(&rgd->rd_rsspin); 2329 } 2330 2331 /** 2332 * gfs2_set_alloc_start - Set starting point for block allocation 2333 * @rbm: The rbm which will be set to the required location 2334 * @ip: The gfs2 inode 2335 * @dinode: Flag to say if allocation includes a new inode 2336 * 2337 * This sets the starting point from the reservation if one is active 2338 * otherwise it falls back to guessing a start point based on the 2339 * inode's goal block or the last allocation point in the rgrp. 2340 */ 2341 2342 static void gfs2_set_alloc_start(struct gfs2_rbm *rbm, 2343 const struct gfs2_inode *ip, bool dinode) 2344 { 2345 u64 goal; 2346 2347 if (gfs2_rs_active(&ip->i_res)) { 2348 *rbm = ip->i_res.rs_rbm; 2349 return; 2350 } 2351 2352 if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal)) 2353 goal = ip->i_goal; 2354 else 2355 goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0; 2356 2357 if (WARN_ON_ONCE(gfs2_rbm_from_block(rbm, goal))) { 2358 rbm->bii = 0; 2359 rbm->offset = 0; 2360 } 2361 } 2362 2363 /** 2364 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode 2365 * @ip: the inode to allocate the block for 2366 * @bn: Used to return the starting block number 2367 * @nblocks: requested number of blocks/extent length (value/result) 2368 * @dinode: 1 if we're allocating a dinode block, else 0 2369 * @generation: the generation number of the inode 2370 * 2371 * Returns: 0 or error 2372 */ 2373 2374 int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks, 2375 bool dinode, u64 *generation) 2376 { 2377 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2378 struct buffer_head *dibh; 2379 struct gfs2_rbm rbm = { .rgd = ip->i_res.rs_rbm.rgd, }; 2380 unsigned int ndata; 2381 u64 block; /* block, within the file system scope */ 2382 int error; 2383 2384 gfs2_set_alloc_start(&rbm, ip, dinode); 2385 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, ip, false); 2386 2387 if (error == -ENOSPC) { 2388 gfs2_set_alloc_start(&rbm, ip, dinode); 2389 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, NULL, false); 2390 } 2391 2392 /* Since all blocks are reserved in advance, this shouldn't happen */ 2393 if (error) { 2394 fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n", 2395 (unsigned long long)ip->i_no_addr, error, *nblocks, 2396 test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags), 2397 rbm.rgd->rd_extfail_pt); 2398 goto rgrp_error; 2399 } 2400 2401 gfs2_alloc_extent(&rbm, dinode, nblocks); 2402 block = gfs2_rbm_to_block(&rbm); 2403 rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0; 2404 if (gfs2_rs_active(&ip->i_res)) 2405 gfs2_adjust_reservation(ip, &rbm, *nblocks); 2406 ndata = *nblocks; 2407 if (dinode) 2408 ndata--; 2409 2410 if (!dinode) { 2411 ip->i_goal = block + ndata - 1; 2412 error = gfs2_meta_inode_buffer(ip, &dibh); 2413 if (error == 0) { 2414 struct gfs2_dinode *di = 2415 (struct gfs2_dinode *)dibh->b_data; 2416 gfs2_trans_add_meta(ip->i_gl, dibh); 2417 di->di_goal_meta = di->di_goal_data = 2418 cpu_to_be64(ip->i_goal); 2419 brelse(dibh); 2420 } 2421 } 2422 if (rbm.rgd->rd_free < *nblocks) { 2423 fs_warn(sdp, "nblocks=%u\n", *nblocks); 2424 goto rgrp_error; 2425 } 2426 2427 rbm.rgd->rd_free -= *nblocks; 2428 if (dinode) { 2429 rbm.rgd->rd_dinodes++; 2430 *generation = rbm.rgd->rd_igeneration++; 2431 if (*generation == 0) 2432 *generation = rbm.rgd->rd_igeneration++; 2433 } 2434 2435 gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh); 2436 gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data); 2437 2438 gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0); 2439 if (dinode) 2440 gfs2_trans_remove_revoke(sdp, block, *nblocks); 2441 2442 gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid); 2443 2444 rbm.rgd->rd_free_clone -= *nblocks; 2445 trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks, 2446 dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED); 2447 *bn = block; 2448 return 0; 2449 2450 rgrp_error: 2451 gfs2_rgrp_error(rbm.rgd); 2452 return -EIO; 2453 } 2454 2455 /** 2456 * __gfs2_free_blocks - free a contiguous run of block(s) 2457 * @ip: the inode these blocks are being freed from 2458 * @rgd: the resource group the blocks are in 2459 * @bstart: first block of a run of contiguous blocks 2460 * @blen: the length of the block run 2461 * @meta: 1 if the blocks represent metadata 2462 * 2463 */ 2464 2465 void __gfs2_free_blocks(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd, 2466 u64 bstart, u32 blen, int meta) 2467 { 2468 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2469 2470 rgblk_free(sdp, rgd, bstart, blen, GFS2_BLKST_FREE); 2471 trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE); 2472 rgd->rd_free += blen; 2473 rgd->rd_flags &= ~GFS2_RGF_TRIMMED; 2474 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2475 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2476 2477 /* Directories keep their data in the metadata address space */ 2478 if (meta || ip->i_depth) 2479 gfs2_meta_wipe(ip, bstart, blen); 2480 } 2481 2482 /** 2483 * gfs2_free_meta - free a contiguous run of data block(s) 2484 * @ip: the inode these blocks are being freed from 2485 * @rgd: the resource group the blocks are in 2486 * @bstart: first block of a run of contiguous blocks 2487 * @blen: the length of the block run 2488 * 2489 */ 2490 2491 void gfs2_free_meta(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd, 2492 u64 bstart, u32 blen) 2493 { 2494 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2495 2496 __gfs2_free_blocks(ip, rgd, bstart, blen, 1); 2497 gfs2_statfs_change(sdp, 0, +blen, 0); 2498 gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid); 2499 } 2500 2501 void gfs2_unlink_di(struct inode *inode) 2502 { 2503 struct gfs2_inode *ip = GFS2_I(inode); 2504 struct gfs2_sbd *sdp = GFS2_SB(inode); 2505 struct gfs2_rgrpd *rgd; 2506 u64 blkno = ip->i_no_addr; 2507 2508 rgd = gfs2_blk2rgrpd(sdp, blkno, true); 2509 if (!rgd) 2510 return; 2511 rgblk_free(sdp, rgd, blkno, 1, GFS2_BLKST_UNLINKED); 2512 trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED); 2513 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2514 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2515 be32_add_cpu(&rgd->rd_rgl->rl_unlinked, 1); 2516 } 2517 2518 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip) 2519 { 2520 struct gfs2_sbd *sdp = rgd->rd_sbd; 2521 2522 rgblk_free(sdp, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE); 2523 if (!rgd->rd_dinodes) 2524 gfs2_consist_rgrpd(rgd); 2525 rgd->rd_dinodes--; 2526 rgd->rd_free++; 2527 2528 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2529 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2530 be32_add_cpu(&rgd->rd_rgl->rl_unlinked, -1); 2531 2532 gfs2_statfs_change(sdp, 0, +1, -1); 2533 trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE); 2534 gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid); 2535 gfs2_meta_wipe(ip, ip->i_no_addr, 1); 2536 } 2537 2538 /** 2539 * gfs2_check_blk_type - Check the type of a block 2540 * @sdp: The superblock 2541 * @no_addr: The block number to check 2542 * @type: The block type we are looking for 2543 * 2544 * Returns: 0 if the block type matches the expected type 2545 * -ESTALE if it doesn't match 2546 * or -ve errno if something went wrong while checking 2547 */ 2548 2549 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type) 2550 { 2551 struct gfs2_rgrpd *rgd; 2552 struct gfs2_holder rgd_gh; 2553 struct gfs2_rbm rbm; 2554 int error = -EINVAL; 2555 2556 rgd = gfs2_blk2rgrpd(sdp, no_addr, 1); 2557 if (!rgd) 2558 goto fail; 2559 2560 error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh); 2561 if (error) 2562 goto fail; 2563 2564 rbm.rgd = rgd; 2565 error = gfs2_rbm_from_block(&rbm, no_addr); 2566 if (WARN_ON_ONCE(error)) 2567 goto fail; 2568 2569 if (gfs2_testbit(&rbm, false) != type) 2570 error = -ESTALE; 2571 2572 gfs2_glock_dq_uninit(&rgd_gh); 2573 fail: 2574 return error; 2575 } 2576 2577 /** 2578 * gfs2_rlist_add - add a RG to a list of RGs 2579 * @ip: the inode 2580 * @rlist: the list of resource groups 2581 * @block: the block 2582 * 2583 * Figure out what RG a block belongs to and add that RG to the list 2584 * 2585 * FIXME: Don't use NOFAIL 2586 * 2587 */ 2588 2589 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist, 2590 u64 block) 2591 { 2592 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2593 struct gfs2_rgrpd *rgd; 2594 struct gfs2_rgrpd **tmp; 2595 unsigned int new_space; 2596 unsigned int x; 2597 2598 if (gfs2_assert_warn(sdp, !rlist->rl_ghs)) 2599 return; 2600 2601 /* 2602 * The resource group last accessed is kept in the last position. 2603 */ 2604 2605 if (rlist->rl_rgrps) { 2606 rgd = rlist->rl_rgd[rlist->rl_rgrps - 1]; 2607 if (rgrp_contains_block(rgd, block)) 2608 return; 2609 rgd = gfs2_blk2rgrpd(sdp, block, 1); 2610 } else { 2611 rgd = ip->i_res.rs_rbm.rgd; 2612 if (!rgd || !rgrp_contains_block(rgd, block)) 2613 rgd = gfs2_blk2rgrpd(sdp, block, 1); 2614 } 2615 2616 if (!rgd) { 2617 fs_err(sdp, "rlist_add: no rgrp for block %llu\n", 2618 (unsigned long long)block); 2619 return; 2620 } 2621 2622 for (x = 0; x < rlist->rl_rgrps; x++) { 2623 if (rlist->rl_rgd[x] == rgd) { 2624 swap(rlist->rl_rgd[x], 2625 rlist->rl_rgd[rlist->rl_rgrps - 1]); 2626 return; 2627 } 2628 } 2629 2630 if (rlist->rl_rgrps == rlist->rl_space) { 2631 new_space = rlist->rl_space + 10; 2632 2633 tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *), 2634 GFP_NOFS | __GFP_NOFAIL); 2635 2636 if (rlist->rl_rgd) { 2637 memcpy(tmp, rlist->rl_rgd, 2638 rlist->rl_space * sizeof(struct gfs2_rgrpd *)); 2639 kfree(rlist->rl_rgd); 2640 } 2641 2642 rlist->rl_space = new_space; 2643 rlist->rl_rgd = tmp; 2644 } 2645 2646 rlist->rl_rgd[rlist->rl_rgrps++] = rgd; 2647 } 2648 2649 /** 2650 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate 2651 * and initialize an array of glock holders for them 2652 * @rlist: the list of resource groups 2653 * 2654 * FIXME: Don't use NOFAIL 2655 * 2656 */ 2657 2658 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist) 2659 { 2660 unsigned int x; 2661 2662 rlist->rl_ghs = kmalloc_array(rlist->rl_rgrps, 2663 sizeof(struct gfs2_holder), 2664 GFP_NOFS | __GFP_NOFAIL); 2665 for (x = 0; x < rlist->rl_rgrps; x++) 2666 gfs2_holder_init(rlist->rl_rgd[x]->rd_gl, 2667 LM_ST_EXCLUSIVE, 0, 2668 &rlist->rl_ghs[x]); 2669 } 2670 2671 /** 2672 * gfs2_rlist_free - free a resource group list 2673 * @rlist: the list of resource groups 2674 * 2675 */ 2676 2677 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist) 2678 { 2679 unsigned int x; 2680 2681 kfree(rlist->rl_rgd); 2682 2683 if (rlist->rl_ghs) { 2684 for (x = 0; x < rlist->rl_rgrps; x++) 2685 gfs2_holder_uninit(&rlist->rl_ghs[x]); 2686 kfree(rlist->rl_ghs); 2687 rlist->rl_ghs = NULL; 2688 } 2689 } 2690 2691