1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 5 */ 6 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 9 #include <linux/slab.h> 10 #include <linux/spinlock.h> 11 #include <linux/completion.h> 12 #include <linux/buffer_head.h> 13 #include <linux/fs.h> 14 #include <linux/gfs2_ondisk.h> 15 #include <linux/prefetch.h> 16 #include <linux/blkdev.h> 17 #include <linux/rbtree.h> 18 #include <linux/random.h> 19 20 #include "gfs2.h" 21 #include "incore.h" 22 #include "glock.h" 23 #include "glops.h" 24 #include "lops.h" 25 #include "meta_io.h" 26 #include "quota.h" 27 #include "rgrp.h" 28 #include "super.h" 29 #include "trans.h" 30 #include "util.h" 31 #include "log.h" 32 #include "inode.h" 33 #include "trace_gfs2.h" 34 #include "dir.h" 35 36 #define BFITNOENT ((u32)~0) 37 #define NO_BLOCK ((u64)~0) 38 39 struct gfs2_rbm { 40 struct gfs2_rgrpd *rgd; 41 u32 offset; /* The offset is bitmap relative */ 42 int bii; /* Bitmap index */ 43 }; 44 45 static inline struct gfs2_bitmap *rbm_bi(const struct gfs2_rbm *rbm) 46 { 47 return rbm->rgd->rd_bits + rbm->bii; 48 } 49 50 static inline u64 gfs2_rbm_to_block(const struct gfs2_rbm *rbm) 51 { 52 BUG_ON(rbm->offset >= rbm->rgd->rd_data); 53 return rbm->rgd->rd_data0 + (rbm_bi(rbm)->bi_start * GFS2_NBBY) + 54 rbm->offset; 55 } 56 57 /* 58 * These routines are used by the resource group routines (rgrp.c) 59 * to keep track of block allocation. Each block is represented by two 60 * bits. So, each byte represents GFS2_NBBY (i.e. 4) blocks. 61 * 62 * 0 = Free 63 * 1 = Used (not metadata) 64 * 2 = Unlinked (still in use) inode 65 * 3 = Used (metadata) 66 */ 67 68 struct gfs2_extent { 69 struct gfs2_rbm rbm; 70 u32 len; 71 }; 72 73 static const char valid_change[16] = { 74 /* current */ 75 /* n */ 0, 1, 1, 1, 76 /* e */ 1, 0, 0, 0, 77 /* w */ 0, 0, 0, 1, 78 1, 0, 0, 0 79 }; 80 81 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext, 82 struct gfs2_blkreserv *rs, bool nowrap); 83 84 85 /** 86 * gfs2_setbit - Set a bit in the bitmaps 87 * @rbm: The position of the bit to set 88 * @do_clone: Also set the clone bitmap, if it exists 89 * @new_state: the new state of the block 90 * 91 */ 92 93 static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone, 94 unsigned char new_state) 95 { 96 unsigned char *byte1, *byte2, *end, cur_state; 97 struct gfs2_bitmap *bi = rbm_bi(rbm); 98 unsigned int buflen = bi->bi_bytes; 99 const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE; 100 101 byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY); 102 end = bi->bi_bh->b_data + bi->bi_offset + buflen; 103 104 BUG_ON(byte1 >= end); 105 106 cur_state = (*byte1 >> bit) & GFS2_BIT_MASK; 107 108 if (unlikely(!valid_change[new_state * 4 + cur_state])) { 109 struct gfs2_sbd *sdp = rbm->rgd->rd_sbd; 110 111 fs_warn(sdp, "buf_blk = 0x%x old_state=%d, new_state=%d\n", 112 rbm->offset, cur_state, new_state); 113 fs_warn(sdp, "rgrp=0x%llx bi_start=0x%x biblk: 0x%llx\n", 114 (unsigned long long)rbm->rgd->rd_addr, bi->bi_start, 115 (unsigned long long)bi->bi_bh->b_blocknr); 116 fs_warn(sdp, "bi_offset=0x%x bi_bytes=0x%x block=0x%llx\n", 117 bi->bi_offset, bi->bi_bytes, 118 (unsigned long long)gfs2_rbm_to_block(rbm)); 119 dump_stack(); 120 gfs2_consist_rgrpd(rbm->rgd); 121 return; 122 } 123 *byte1 ^= (cur_state ^ new_state) << bit; 124 125 if (do_clone && bi->bi_clone) { 126 byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY); 127 cur_state = (*byte2 >> bit) & GFS2_BIT_MASK; 128 *byte2 ^= (cur_state ^ new_state) << bit; 129 } 130 } 131 132 /** 133 * gfs2_testbit - test a bit in the bitmaps 134 * @rbm: The bit to test 135 * @use_clone: If true, test the clone bitmap, not the official bitmap. 136 * 137 * Some callers like gfs2_unaligned_extlen need to test the clone bitmaps, 138 * not the "real" bitmaps, to avoid allocating recently freed blocks. 139 * 140 * Returns: The two bit block state of the requested bit 141 */ 142 143 static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm, bool use_clone) 144 { 145 struct gfs2_bitmap *bi = rbm_bi(rbm); 146 const u8 *buffer; 147 const u8 *byte; 148 unsigned int bit; 149 150 if (use_clone && bi->bi_clone) 151 buffer = bi->bi_clone; 152 else 153 buffer = bi->bi_bh->b_data; 154 buffer += bi->bi_offset; 155 byte = buffer + (rbm->offset / GFS2_NBBY); 156 bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE; 157 158 return (*byte >> bit) & GFS2_BIT_MASK; 159 } 160 161 /** 162 * gfs2_bit_search 163 * @ptr: Pointer to bitmap data 164 * @mask: Mask to use (normally 0x55555.... but adjusted for search start) 165 * @state: The state we are searching for 166 * 167 * We xor the bitmap data with a patter which is the bitwise opposite 168 * of what we are looking for, this gives rise to a pattern of ones 169 * wherever there is a match. Since we have two bits per entry, we 170 * take this pattern, shift it down by one place and then and it with 171 * the original. All the even bit positions (0,2,4, etc) then represent 172 * successful matches, so we mask with 0x55555..... to remove the unwanted 173 * odd bit positions. 174 * 175 * This allows searching of a whole u64 at once (32 blocks) with a 176 * single test (on 64 bit arches). 177 */ 178 179 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state) 180 { 181 u64 tmp; 182 static const u64 search[] = { 183 [0] = 0xffffffffffffffffULL, 184 [1] = 0xaaaaaaaaaaaaaaaaULL, 185 [2] = 0x5555555555555555ULL, 186 [3] = 0x0000000000000000ULL, 187 }; 188 tmp = le64_to_cpu(*ptr) ^ search[state]; 189 tmp &= (tmp >> 1); 190 tmp &= mask; 191 return tmp; 192 } 193 194 /** 195 * rs_cmp - multi-block reservation range compare 196 * @start: start of the new reservation 197 * @len: number of blocks in the new reservation 198 * @rs: existing reservation to compare against 199 * 200 * returns: 1 if the block range is beyond the reach of the reservation 201 * -1 if the block range is before the start of the reservation 202 * 0 if the block range overlaps with the reservation 203 */ 204 static inline int rs_cmp(u64 start, u32 len, struct gfs2_blkreserv *rs) 205 { 206 if (start >= rs->rs_start + rs->rs_requested) 207 return 1; 208 if (rs->rs_start >= start + len) 209 return -1; 210 return 0; 211 } 212 213 /** 214 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing 215 * a block in a given allocation state. 216 * @buf: the buffer that holds the bitmaps 217 * @len: the length (in bytes) of the buffer 218 * @goal: start search at this block's bit-pair (within @buffer) 219 * @state: GFS2_BLKST_XXX the state of the block we're looking for. 220 * 221 * Scope of @goal and returned block number is only within this bitmap buffer, 222 * not entire rgrp or filesystem. @buffer will be offset from the actual 223 * beginning of a bitmap block buffer, skipping any header structures, but 224 * headers are always a multiple of 64 bits long so that the buffer is 225 * always aligned to a 64 bit boundary. 226 * 227 * The size of the buffer is in bytes, but is it assumed that it is 228 * always ok to read a complete multiple of 64 bits at the end 229 * of the block in case the end is no aligned to a natural boundary. 230 * 231 * Return: the block number (bitmap buffer scope) that was found 232 */ 233 234 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len, 235 u32 goal, u8 state) 236 { 237 u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1); 238 const __le64 *ptr = ((__le64 *)buf) + (goal >> 5); 239 const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64))); 240 u64 tmp; 241 u64 mask = 0x5555555555555555ULL; 242 u32 bit; 243 244 /* Mask off bits we don't care about at the start of the search */ 245 mask <<= spoint; 246 tmp = gfs2_bit_search(ptr, mask, state); 247 ptr++; 248 while(tmp == 0 && ptr < end) { 249 tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state); 250 ptr++; 251 } 252 /* Mask off any bits which are more than len bytes from the start */ 253 if (ptr == end && (len & (sizeof(u64) - 1))) 254 tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1)))); 255 /* Didn't find anything, so return */ 256 if (tmp == 0) 257 return BFITNOENT; 258 ptr--; 259 bit = __ffs64(tmp); 260 bit /= 2; /* two bits per entry in the bitmap */ 261 return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit; 262 } 263 264 /** 265 * gfs2_rbm_from_block - Set the rbm based upon rgd and block number 266 * @rbm: The rbm with rgd already set correctly 267 * @block: The block number (filesystem relative) 268 * 269 * This sets the bi and offset members of an rbm based on a 270 * resource group and a filesystem relative block number. The 271 * resource group must be set in the rbm on entry, the bi and 272 * offset members will be set by this function. 273 * 274 * Returns: 0 on success, or an error code 275 */ 276 277 static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block) 278 { 279 if (!rgrp_contains_block(rbm->rgd, block)) 280 return -E2BIG; 281 rbm->bii = 0; 282 rbm->offset = block - rbm->rgd->rd_data0; 283 /* Check if the block is within the first block */ 284 if (rbm->offset < rbm_bi(rbm)->bi_blocks) 285 return 0; 286 287 /* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */ 288 rbm->offset += (sizeof(struct gfs2_rgrp) - 289 sizeof(struct gfs2_meta_header)) * GFS2_NBBY; 290 rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap; 291 rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap; 292 return 0; 293 } 294 295 /** 296 * gfs2_rbm_add - add a number of blocks to an rbm 297 * @rbm: The rbm with rgd already set correctly 298 * @blocks: The number of blocks to add to rpm 299 * 300 * This function takes an existing rbm structure and adds a number of blocks to 301 * it. 302 * 303 * Returns: True if the new rbm would point past the end of the rgrp. 304 */ 305 306 static bool gfs2_rbm_add(struct gfs2_rbm *rbm, u32 blocks) 307 { 308 struct gfs2_rgrpd *rgd = rbm->rgd; 309 struct gfs2_bitmap *bi = rgd->rd_bits + rbm->bii; 310 311 if (rbm->offset + blocks < bi->bi_blocks) { 312 rbm->offset += blocks; 313 return false; 314 } 315 blocks -= bi->bi_blocks - rbm->offset; 316 317 for(;;) { 318 bi++; 319 if (bi == rgd->rd_bits + rgd->rd_length) 320 return true; 321 if (blocks < bi->bi_blocks) { 322 rbm->offset = blocks; 323 rbm->bii = bi - rgd->rd_bits; 324 return false; 325 } 326 blocks -= bi->bi_blocks; 327 } 328 } 329 330 /** 331 * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned 332 * @rbm: Position to search (value/result) 333 * @n_unaligned: Number of unaligned blocks to check 334 * @len: Decremented for each block found (terminate on zero) 335 * 336 * Returns: true if a non-free block is encountered or the end of the resource 337 * group is reached. 338 */ 339 340 static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len) 341 { 342 u32 n; 343 u8 res; 344 345 for (n = 0; n < n_unaligned; n++) { 346 res = gfs2_testbit(rbm, true); 347 if (res != GFS2_BLKST_FREE) 348 return true; 349 (*len)--; 350 if (*len == 0) 351 return true; 352 if (gfs2_rbm_add(rbm, 1)) 353 return true; 354 } 355 356 return false; 357 } 358 359 /** 360 * gfs2_free_extlen - Return extent length of free blocks 361 * @rrbm: Starting position 362 * @len: Max length to check 363 * 364 * Starting at the block specified by the rbm, see how many free blocks 365 * there are, not reading more than len blocks ahead. This can be done 366 * using memchr_inv when the blocks are byte aligned, but has to be done 367 * on a block by block basis in case of unaligned blocks. Also this 368 * function can cope with bitmap boundaries (although it must stop on 369 * a resource group boundary) 370 * 371 * Returns: Number of free blocks in the extent 372 */ 373 374 static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len) 375 { 376 struct gfs2_rbm rbm = *rrbm; 377 u32 n_unaligned = rbm.offset & 3; 378 u32 size = len; 379 u32 bytes; 380 u32 chunk_size; 381 u8 *ptr, *start, *end; 382 u64 block; 383 struct gfs2_bitmap *bi; 384 385 if (n_unaligned && 386 gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len)) 387 goto out; 388 389 n_unaligned = len & 3; 390 /* Start is now byte aligned */ 391 while (len > 3) { 392 bi = rbm_bi(&rbm); 393 start = bi->bi_bh->b_data; 394 if (bi->bi_clone) 395 start = bi->bi_clone; 396 start += bi->bi_offset; 397 end = start + bi->bi_bytes; 398 BUG_ON(rbm.offset & 3); 399 start += (rbm.offset / GFS2_NBBY); 400 bytes = min_t(u32, len / GFS2_NBBY, (end - start)); 401 ptr = memchr_inv(start, 0, bytes); 402 chunk_size = ((ptr == NULL) ? bytes : (ptr - start)); 403 chunk_size *= GFS2_NBBY; 404 BUG_ON(len < chunk_size); 405 len -= chunk_size; 406 block = gfs2_rbm_to_block(&rbm); 407 if (gfs2_rbm_from_block(&rbm, block + chunk_size)) { 408 n_unaligned = 0; 409 break; 410 } 411 if (ptr) { 412 n_unaligned = 3; 413 break; 414 } 415 n_unaligned = len & 3; 416 } 417 418 /* Deal with any bits left over at the end */ 419 if (n_unaligned) 420 gfs2_unaligned_extlen(&rbm, n_unaligned, &len); 421 out: 422 return size - len; 423 } 424 425 /** 426 * gfs2_bitcount - count the number of bits in a certain state 427 * @rgd: the resource group descriptor 428 * @buffer: the buffer that holds the bitmaps 429 * @buflen: the length (in bytes) of the buffer 430 * @state: the state of the block we're looking for 431 * 432 * Returns: The number of bits 433 */ 434 435 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer, 436 unsigned int buflen, u8 state) 437 { 438 const u8 *byte = buffer; 439 const u8 *end = buffer + buflen; 440 const u8 state1 = state << 2; 441 const u8 state2 = state << 4; 442 const u8 state3 = state << 6; 443 u32 count = 0; 444 445 for (; byte < end; byte++) { 446 if (((*byte) & 0x03) == state) 447 count++; 448 if (((*byte) & 0x0C) == state1) 449 count++; 450 if (((*byte) & 0x30) == state2) 451 count++; 452 if (((*byte) & 0xC0) == state3) 453 count++; 454 } 455 456 return count; 457 } 458 459 /** 460 * gfs2_rgrp_verify - Verify that a resource group is consistent 461 * @rgd: the rgrp 462 * 463 */ 464 465 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd) 466 { 467 struct gfs2_sbd *sdp = rgd->rd_sbd; 468 struct gfs2_bitmap *bi = NULL; 469 u32 length = rgd->rd_length; 470 u32 count[4], tmp; 471 int buf, x; 472 473 memset(count, 0, 4 * sizeof(u32)); 474 475 /* Count # blocks in each of 4 possible allocation states */ 476 for (buf = 0; buf < length; buf++) { 477 bi = rgd->rd_bits + buf; 478 for (x = 0; x < 4; x++) 479 count[x] += gfs2_bitcount(rgd, 480 bi->bi_bh->b_data + 481 bi->bi_offset, 482 bi->bi_bytes, x); 483 } 484 485 if (count[0] != rgd->rd_free) { 486 gfs2_lm(sdp, "free data mismatch: %u != %u\n", 487 count[0], rgd->rd_free); 488 gfs2_consist_rgrpd(rgd); 489 return; 490 } 491 492 tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes; 493 if (count[1] != tmp) { 494 gfs2_lm(sdp, "used data mismatch: %u != %u\n", 495 count[1], tmp); 496 gfs2_consist_rgrpd(rgd); 497 return; 498 } 499 500 if (count[2] + count[3] != rgd->rd_dinodes) { 501 gfs2_lm(sdp, "used metadata mismatch: %u != %u\n", 502 count[2] + count[3], rgd->rd_dinodes); 503 gfs2_consist_rgrpd(rgd); 504 return; 505 } 506 } 507 508 /** 509 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number 510 * @sdp: The GFS2 superblock 511 * @blk: The data block number 512 * @exact: True if this needs to be an exact match 513 * 514 * The @exact argument should be set to true by most callers. The exception 515 * is when we need to match blocks which are not represented by the rgrp 516 * bitmap, but which are part of the rgrp (i.e. padding blocks) which are 517 * there for alignment purposes. Another way of looking at it is that @exact 518 * matches only valid data/metadata blocks, but with @exact false, it will 519 * match any block within the extent of the rgrp. 520 * 521 * Returns: The resource group, or NULL if not found 522 */ 523 524 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact) 525 { 526 struct rb_node *n, *next; 527 struct gfs2_rgrpd *cur; 528 529 spin_lock(&sdp->sd_rindex_spin); 530 n = sdp->sd_rindex_tree.rb_node; 531 while (n) { 532 cur = rb_entry(n, struct gfs2_rgrpd, rd_node); 533 next = NULL; 534 if (blk < cur->rd_addr) 535 next = n->rb_left; 536 else if (blk >= cur->rd_data0 + cur->rd_data) 537 next = n->rb_right; 538 if (next == NULL) { 539 spin_unlock(&sdp->sd_rindex_spin); 540 if (exact) { 541 if (blk < cur->rd_addr) 542 return NULL; 543 if (blk >= cur->rd_data0 + cur->rd_data) 544 return NULL; 545 } 546 return cur; 547 } 548 n = next; 549 } 550 spin_unlock(&sdp->sd_rindex_spin); 551 552 return NULL; 553 } 554 555 /** 556 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem 557 * @sdp: The GFS2 superblock 558 * 559 * Returns: The first rgrp in the filesystem 560 */ 561 562 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp) 563 { 564 const struct rb_node *n; 565 struct gfs2_rgrpd *rgd; 566 567 spin_lock(&sdp->sd_rindex_spin); 568 n = rb_first(&sdp->sd_rindex_tree); 569 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 570 spin_unlock(&sdp->sd_rindex_spin); 571 572 return rgd; 573 } 574 575 /** 576 * gfs2_rgrpd_get_next - get the next RG 577 * @rgd: the resource group descriptor 578 * 579 * Returns: The next rgrp 580 */ 581 582 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd) 583 { 584 struct gfs2_sbd *sdp = rgd->rd_sbd; 585 const struct rb_node *n; 586 587 spin_lock(&sdp->sd_rindex_spin); 588 n = rb_next(&rgd->rd_node); 589 if (n == NULL) 590 n = rb_first(&sdp->sd_rindex_tree); 591 592 if (unlikely(&rgd->rd_node == n)) { 593 spin_unlock(&sdp->sd_rindex_spin); 594 return NULL; 595 } 596 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 597 spin_unlock(&sdp->sd_rindex_spin); 598 return rgd; 599 } 600 601 void check_and_update_goal(struct gfs2_inode *ip) 602 { 603 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 604 if (!ip->i_goal || gfs2_blk2rgrpd(sdp, ip->i_goal, 1) == NULL) 605 ip->i_goal = ip->i_no_addr; 606 } 607 608 void gfs2_free_clones(struct gfs2_rgrpd *rgd) 609 { 610 int x; 611 612 for (x = 0; x < rgd->rd_length; x++) { 613 struct gfs2_bitmap *bi = rgd->rd_bits + x; 614 kfree(bi->bi_clone); 615 bi->bi_clone = NULL; 616 } 617 } 618 619 static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs, 620 const char *fs_id_buf) 621 { 622 struct gfs2_inode *ip = container_of(rs, struct gfs2_inode, i_res); 623 624 gfs2_print_dbg(seq, "%s B: n:%llu s:%llu f:%u\n", 625 fs_id_buf, 626 (unsigned long long)ip->i_no_addr, 627 (unsigned long long)rs->rs_start, 628 rs->rs_requested); 629 } 630 631 /** 632 * __rs_deltree - remove a multi-block reservation from the rgd tree 633 * @rs: The reservation to remove 634 * 635 */ 636 static void __rs_deltree(struct gfs2_blkreserv *rs) 637 { 638 struct gfs2_rgrpd *rgd; 639 640 if (!gfs2_rs_active(rs)) 641 return; 642 643 rgd = rs->rs_rgd; 644 trace_gfs2_rs(rs, TRACE_RS_TREEDEL); 645 rb_erase(&rs->rs_node, &rgd->rd_rstree); 646 RB_CLEAR_NODE(&rs->rs_node); 647 648 if (rs->rs_requested) { 649 /* return requested blocks to the rgrp */ 650 BUG_ON(rs->rs_rgd->rd_requested < rs->rs_requested); 651 rs->rs_rgd->rd_requested -= rs->rs_requested; 652 653 /* The rgrp extent failure point is likely not to increase; 654 it will only do so if the freed blocks are somehow 655 contiguous with a span of free blocks that follows. Still, 656 it will force the number to be recalculated later. */ 657 rgd->rd_extfail_pt += rs->rs_requested; 658 rs->rs_requested = 0; 659 } 660 } 661 662 /** 663 * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree 664 * @rs: The reservation to remove 665 * 666 */ 667 void gfs2_rs_deltree(struct gfs2_blkreserv *rs) 668 { 669 struct gfs2_rgrpd *rgd; 670 671 rgd = rs->rs_rgd; 672 if (rgd) { 673 spin_lock(&rgd->rd_rsspin); 674 __rs_deltree(rs); 675 BUG_ON(rs->rs_requested); 676 spin_unlock(&rgd->rd_rsspin); 677 } 678 } 679 680 /** 681 * gfs2_rs_delete - delete a multi-block reservation 682 * @ip: The inode for this reservation 683 * @wcount: The inode's write count, or NULL 684 * 685 */ 686 void gfs2_rs_delete(struct gfs2_inode *ip, atomic_t *wcount) 687 { 688 down_write(&ip->i_rw_mutex); 689 if ((wcount == NULL) || (atomic_read(wcount) <= 1)) 690 gfs2_rs_deltree(&ip->i_res); 691 up_write(&ip->i_rw_mutex); 692 } 693 694 /** 695 * return_all_reservations - return all reserved blocks back to the rgrp. 696 * @rgd: the rgrp that needs its space back 697 * 698 * We previously reserved a bunch of blocks for allocation. Now we need to 699 * give them back. This leave the reservation structures in tact, but removes 700 * all of their corresponding "no-fly zones". 701 */ 702 static void return_all_reservations(struct gfs2_rgrpd *rgd) 703 { 704 struct rb_node *n; 705 struct gfs2_blkreserv *rs; 706 707 spin_lock(&rgd->rd_rsspin); 708 while ((n = rb_first(&rgd->rd_rstree))) { 709 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 710 __rs_deltree(rs); 711 } 712 spin_unlock(&rgd->rd_rsspin); 713 } 714 715 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp) 716 { 717 struct rb_node *n; 718 struct gfs2_rgrpd *rgd; 719 struct gfs2_glock *gl; 720 721 while ((n = rb_first(&sdp->sd_rindex_tree))) { 722 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 723 gl = rgd->rd_gl; 724 725 rb_erase(n, &sdp->sd_rindex_tree); 726 727 if (gl) { 728 if (gl->gl_state != LM_ST_UNLOCKED) { 729 gfs2_glock_cb(gl, LM_ST_UNLOCKED); 730 flush_delayed_work(&gl->gl_work); 731 } 732 gfs2_rgrp_brelse(rgd); 733 glock_clear_object(gl, rgd); 734 gfs2_glock_put(gl); 735 } 736 737 gfs2_free_clones(rgd); 738 return_all_reservations(rgd); 739 kfree(rgd->rd_bits); 740 rgd->rd_bits = NULL; 741 kmem_cache_free(gfs2_rgrpd_cachep, rgd); 742 } 743 } 744 745 /** 746 * gfs2_compute_bitstructs - Compute the bitmap sizes 747 * @rgd: The resource group descriptor 748 * 749 * Calculates bitmap descriptors, one for each block that contains bitmap data 750 * 751 * Returns: errno 752 */ 753 754 static int compute_bitstructs(struct gfs2_rgrpd *rgd) 755 { 756 struct gfs2_sbd *sdp = rgd->rd_sbd; 757 struct gfs2_bitmap *bi; 758 u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */ 759 u32 bytes_left, bytes; 760 int x; 761 762 if (!length) 763 return -EINVAL; 764 765 rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS); 766 if (!rgd->rd_bits) 767 return -ENOMEM; 768 769 bytes_left = rgd->rd_bitbytes; 770 771 for (x = 0; x < length; x++) { 772 bi = rgd->rd_bits + x; 773 774 bi->bi_flags = 0; 775 /* small rgrp; bitmap stored completely in header block */ 776 if (length == 1) { 777 bytes = bytes_left; 778 bi->bi_offset = sizeof(struct gfs2_rgrp); 779 bi->bi_start = 0; 780 bi->bi_bytes = bytes; 781 bi->bi_blocks = bytes * GFS2_NBBY; 782 /* header block */ 783 } else if (x == 0) { 784 bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp); 785 bi->bi_offset = sizeof(struct gfs2_rgrp); 786 bi->bi_start = 0; 787 bi->bi_bytes = bytes; 788 bi->bi_blocks = bytes * GFS2_NBBY; 789 /* last block */ 790 } else if (x + 1 == length) { 791 bytes = bytes_left; 792 bi->bi_offset = sizeof(struct gfs2_meta_header); 793 bi->bi_start = rgd->rd_bitbytes - bytes_left; 794 bi->bi_bytes = bytes; 795 bi->bi_blocks = bytes * GFS2_NBBY; 796 /* other blocks */ 797 } else { 798 bytes = sdp->sd_sb.sb_bsize - 799 sizeof(struct gfs2_meta_header); 800 bi->bi_offset = sizeof(struct gfs2_meta_header); 801 bi->bi_start = rgd->rd_bitbytes - bytes_left; 802 bi->bi_bytes = bytes; 803 bi->bi_blocks = bytes * GFS2_NBBY; 804 } 805 806 bytes_left -= bytes; 807 } 808 809 if (bytes_left) { 810 gfs2_consist_rgrpd(rgd); 811 return -EIO; 812 } 813 bi = rgd->rd_bits + (length - 1); 814 if ((bi->bi_start + bi->bi_bytes) * GFS2_NBBY != rgd->rd_data) { 815 gfs2_lm(sdp, 816 "ri_addr = %llu\n" 817 "ri_length = %u\n" 818 "ri_data0 = %llu\n" 819 "ri_data = %u\n" 820 "ri_bitbytes = %u\n" 821 "start=%u len=%u offset=%u\n", 822 (unsigned long long)rgd->rd_addr, 823 rgd->rd_length, 824 (unsigned long long)rgd->rd_data0, 825 rgd->rd_data, 826 rgd->rd_bitbytes, 827 bi->bi_start, bi->bi_bytes, bi->bi_offset); 828 gfs2_consist_rgrpd(rgd); 829 return -EIO; 830 } 831 832 return 0; 833 } 834 835 /** 836 * gfs2_ri_total - Total up the file system space, according to the rindex. 837 * @sdp: the filesystem 838 * 839 */ 840 u64 gfs2_ri_total(struct gfs2_sbd *sdp) 841 { 842 u64 total_data = 0; 843 struct inode *inode = sdp->sd_rindex; 844 struct gfs2_inode *ip = GFS2_I(inode); 845 char buf[sizeof(struct gfs2_rindex)]; 846 int error, rgrps; 847 848 for (rgrps = 0;; rgrps++) { 849 loff_t pos = rgrps * sizeof(struct gfs2_rindex); 850 851 if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode)) 852 break; 853 error = gfs2_internal_read(ip, buf, &pos, 854 sizeof(struct gfs2_rindex)); 855 if (error != sizeof(struct gfs2_rindex)) 856 break; 857 total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data); 858 } 859 return total_data; 860 } 861 862 static int rgd_insert(struct gfs2_rgrpd *rgd) 863 { 864 struct gfs2_sbd *sdp = rgd->rd_sbd; 865 struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL; 866 867 /* Figure out where to put new node */ 868 while (*newn) { 869 struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd, 870 rd_node); 871 872 parent = *newn; 873 if (rgd->rd_addr < cur->rd_addr) 874 newn = &((*newn)->rb_left); 875 else if (rgd->rd_addr > cur->rd_addr) 876 newn = &((*newn)->rb_right); 877 else 878 return -EEXIST; 879 } 880 881 rb_link_node(&rgd->rd_node, parent, newn); 882 rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree); 883 sdp->sd_rgrps++; 884 return 0; 885 } 886 887 /** 888 * read_rindex_entry - Pull in a new resource index entry from the disk 889 * @ip: Pointer to the rindex inode 890 * 891 * Returns: 0 on success, > 0 on EOF, error code otherwise 892 */ 893 894 static int read_rindex_entry(struct gfs2_inode *ip) 895 { 896 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 897 loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex); 898 struct gfs2_rindex buf; 899 int error; 900 struct gfs2_rgrpd *rgd; 901 902 if (pos >= i_size_read(&ip->i_inode)) 903 return 1; 904 905 error = gfs2_internal_read(ip, (char *)&buf, &pos, 906 sizeof(struct gfs2_rindex)); 907 908 if (error != sizeof(struct gfs2_rindex)) 909 return (error == 0) ? 1 : error; 910 911 rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS); 912 error = -ENOMEM; 913 if (!rgd) 914 return error; 915 916 rgd->rd_sbd = sdp; 917 rgd->rd_addr = be64_to_cpu(buf.ri_addr); 918 rgd->rd_length = be32_to_cpu(buf.ri_length); 919 rgd->rd_data0 = be64_to_cpu(buf.ri_data0); 920 rgd->rd_data = be32_to_cpu(buf.ri_data); 921 rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes); 922 spin_lock_init(&rgd->rd_rsspin); 923 mutex_init(&rgd->rd_mutex); 924 925 error = compute_bitstructs(rgd); 926 if (error) 927 goto fail; 928 929 error = gfs2_glock_get(sdp, rgd->rd_addr, 930 &gfs2_rgrp_glops, CREATE, &rgd->rd_gl); 931 if (error) 932 goto fail; 933 934 rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr; 935 rgd->rd_flags &= ~(GFS2_RDF_UPTODATE | GFS2_RDF_PREFERRED); 936 if (rgd->rd_data > sdp->sd_max_rg_data) 937 sdp->sd_max_rg_data = rgd->rd_data; 938 spin_lock(&sdp->sd_rindex_spin); 939 error = rgd_insert(rgd); 940 spin_unlock(&sdp->sd_rindex_spin); 941 if (!error) { 942 glock_set_object(rgd->rd_gl, rgd); 943 return 0; 944 } 945 946 error = 0; /* someone else read in the rgrp; free it and ignore it */ 947 gfs2_glock_put(rgd->rd_gl); 948 949 fail: 950 kfree(rgd->rd_bits); 951 rgd->rd_bits = NULL; 952 kmem_cache_free(gfs2_rgrpd_cachep, rgd); 953 return error; 954 } 955 956 /** 957 * set_rgrp_preferences - Run all the rgrps, selecting some we prefer to use 958 * @sdp: the GFS2 superblock 959 * 960 * The purpose of this function is to select a subset of the resource groups 961 * and mark them as PREFERRED. We do it in such a way that each node prefers 962 * to use a unique set of rgrps to minimize glock contention. 963 */ 964 static void set_rgrp_preferences(struct gfs2_sbd *sdp) 965 { 966 struct gfs2_rgrpd *rgd, *first; 967 int i; 968 969 /* Skip an initial number of rgrps, based on this node's journal ID. 970 That should start each node out on its own set. */ 971 rgd = gfs2_rgrpd_get_first(sdp); 972 for (i = 0; i < sdp->sd_lockstruct.ls_jid; i++) 973 rgd = gfs2_rgrpd_get_next(rgd); 974 first = rgd; 975 976 do { 977 rgd->rd_flags |= GFS2_RDF_PREFERRED; 978 for (i = 0; i < sdp->sd_journals; i++) { 979 rgd = gfs2_rgrpd_get_next(rgd); 980 if (!rgd || rgd == first) 981 break; 982 } 983 } while (rgd && rgd != first); 984 } 985 986 /** 987 * gfs2_ri_update - Pull in a new resource index from the disk 988 * @ip: pointer to the rindex inode 989 * 990 * Returns: 0 on successful update, error code otherwise 991 */ 992 993 static int gfs2_ri_update(struct gfs2_inode *ip) 994 { 995 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 996 int error; 997 998 do { 999 error = read_rindex_entry(ip); 1000 } while (error == 0); 1001 1002 if (error < 0) 1003 return error; 1004 1005 if (RB_EMPTY_ROOT(&sdp->sd_rindex_tree)) { 1006 fs_err(sdp, "no resource groups found in the file system.\n"); 1007 return -ENOENT; 1008 } 1009 set_rgrp_preferences(sdp); 1010 1011 sdp->sd_rindex_uptodate = 1; 1012 return 0; 1013 } 1014 1015 /** 1016 * gfs2_rindex_update - Update the rindex if required 1017 * @sdp: The GFS2 superblock 1018 * 1019 * We grab a lock on the rindex inode to make sure that it doesn't 1020 * change whilst we are performing an operation. We keep this lock 1021 * for quite long periods of time compared to other locks. This 1022 * doesn't matter, since it is shared and it is very, very rarely 1023 * accessed in the exclusive mode (i.e. only when expanding the filesystem). 1024 * 1025 * This makes sure that we're using the latest copy of the resource index 1026 * special file, which might have been updated if someone expanded the 1027 * filesystem (via gfs2_grow utility), which adds new resource groups. 1028 * 1029 * Returns: 0 on succeess, error code otherwise 1030 */ 1031 1032 int gfs2_rindex_update(struct gfs2_sbd *sdp) 1033 { 1034 struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex); 1035 struct gfs2_glock *gl = ip->i_gl; 1036 struct gfs2_holder ri_gh; 1037 int error = 0; 1038 int unlock_required = 0; 1039 1040 /* Read new copy from disk if we don't have the latest */ 1041 if (!sdp->sd_rindex_uptodate) { 1042 if (!gfs2_glock_is_locked_by_me(gl)) { 1043 error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh); 1044 if (error) 1045 return error; 1046 unlock_required = 1; 1047 } 1048 if (!sdp->sd_rindex_uptodate) 1049 error = gfs2_ri_update(ip); 1050 if (unlock_required) 1051 gfs2_glock_dq_uninit(&ri_gh); 1052 } 1053 1054 return error; 1055 } 1056 1057 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf) 1058 { 1059 const struct gfs2_rgrp *str = buf; 1060 u32 rg_flags; 1061 1062 rg_flags = be32_to_cpu(str->rg_flags); 1063 rg_flags &= ~GFS2_RDF_MASK; 1064 rgd->rd_flags &= GFS2_RDF_MASK; 1065 rgd->rd_flags |= rg_flags; 1066 rgd->rd_free = be32_to_cpu(str->rg_free); 1067 rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes); 1068 rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration); 1069 /* rd_data0, rd_data and rd_bitbytes already set from rindex */ 1070 } 1071 1072 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf) 1073 { 1074 const struct gfs2_rgrp *str = buf; 1075 1076 rgl->rl_magic = cpu_to_be32(GFS2_MAGIC); 1077 rgl->rl_flags = str->rg_flags; 1078 rgl->rl_free = str->rg_free; 1079 rgl->rl_dinodes = str->rg_dinodes; 1080 rgl->rl_igeneration = str->rg_igeneration; 1081 rgl->__pad = 0UL; 1082 } 1083 1084 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf) 1085 { 1086 struct gfs2_rgrpd *next = gfs2_rgrpd_get_next(rgd); 1087 struct gfs2_rgrp *str = buf; 1088 u32 crc; 1089 1090 str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK); 1091 str->rg_free = cpu_to_be32(rgd->rd_free); 1092 str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes); 1093 if (next == NULL) 1094 str->rg_skip = 0; 1095 else if (next->rd_addr > rgd->rd_addr) 1096 str->rg_skip = cpu_to_be32(next->rd_addr - rgd->rd_addr); 1097 str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration); 1098 str->rg_data0 = cpu_to_be64(rgd->rd_data0); 1099 str->rg_data = cpu_to_be32(rgd->rd_data); 1100 str->rg_bitbytes = cpu_to_be32(rgd->rd_bitbytes); 1101 str->rg_crc = 0; 1102 crc = gfs2_disk_hash(buf, sizeof(struct gfs2_rgrp)); 1103 str->rg_crc = cpu_to_be32(crc); 1104 1105 memset(&str->rg_reserved, 0, sizeof(str->rg_reserved)); 1106 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, buf); 1107 } 1108 1109 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd) 1110 { 1111 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl; 1112 struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data; 1113 struct gfs2_sbd *sdp = rgd->rd_sbd; 1114 int valid = 1; 1115 1116 if (rgl->rl_flags != str->rg_flags) { 1117 fs_warn(sdp, "GFS2: rgd: %llu lvb flag mismatch %u/%u", 1118 (unsigned long long)rgd->rd_addr, 1119 be32_to_cpu(rgl->rl_flags), be32_to_cpu(str->rg_flags)); 1120 valid = 0; 1121 } 1122 if (rgl->rl_free != str->rg_free) { 1123 fs_warn(sdp, "GFS2: rgd: %llu lvb free mismatch %u/%u", 1124 (unsigned long long)rgd->rd_addr, 1125 be32_to_cpu(rgl->rl_free), be32_to_cpu(str->rg_free)); 1126 valid = 0; 1127 } 1128 if (rgl->rl_dinodes != str->rg_dinodes) { 1129 fs_warn(sdp, "GFS2: rgd: %llu lvb dinode mismatch %u/%u", 1130 (unsigned long long)rgd->rd_addr, 1131 be32_to_cpu(rgl->rl_dinodes), 1132 be32_to_cpu(str->rg_dinodes)); 1133 valid = 0; 1134 } 1135 if (rgl->rl_igeneration != str->rg_igeneration) { 1136 fs_warn(sdp, "GFS2: rgd: %llu lvb igen mismatch %llu/%llu", 1137 (unsigned long long)rgd->rd_addr, 1138 (unsigned long long)be64_to_cpu(rgl->rl_igeneration), 1139 (unsigned long long)be64_to_cpu(str->rg_igeneration)); 1140 valid = 0; 1141 } 1142 return valid; 1143 } 1144 1145 static u32 count_unlinked(struct gfs2_rgrpd *rgd) 1146 { 1147 struct gfs2_bitmap *bi; 1148 const u32 length = rgd->rd_length; 1149 const u8 *buffer = NULL; 1150 u32 i, goal, count = 0; 1151 1152 for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) { 1153 goal = 0; 1154 buffer = bi->bi_bh->b_data + bi->bi_offset; 1155 WARN_ON(!buffer_uptodate(bi->bi_bh)); 1156 while (goal < bi->bi_blocks) { 1157 goal = gfs2_bitfit(buffer, bi->bi_bytes, goal, 1158 GFS2_BLKST_UNLINKED); 1159 if (goal == BFITNOENT) 1160 break; 1161 count++; 1162 goal++; 1163 } 1164 } 1165 1166 return count; 1167 } 1168 1169 static void rgrp_set_bitmap_flags(struct gfs2_rgrpd *rgd) 1170 { 1171 struct gfs2_bitmap *bi; 1172 int x; 1173 1174 if (rgd->rd_free) { 1175 for (x = 0; x < rgd->rd_length; x++) { 1176 bi = rgd->rd_bits + x; 1177 clear_bit(GBF_FULL, &bi->bi_flags); 1178 } 1179 } else { 1180 for (x = 0; x < rgd->rd_length; x++) { 1181 bi = rgd->rd_bits + x; 1182 set_bit(GBF_FULL, &bi->bi_flags); 1183 } 1184 } 1185 } 1186 1187 /** 1188 * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps 1189 * @rgd: the struct gfs2_rgrpd describing the RG to read in 1190 * 1191 * Read in all of a Resource Group's header and bitmap blocks. 1192 * Caller must eventually call gfs2_rgrp_brelse() to free the bitmaps. 1193 * 1194 * Returns: errno 1195 */ 1196 1197 static int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd) 1198 { 1199 struct gfs2_sbd *sdp = rgd->rd_sbd; 1200 struct gfs2_glock *gl = rgd->rd_gl; 1201 unsigned int length = rgd->rd_length; 1202 struct gfs2_bitmap *bi; 1203 unsigned int x, y; 1204 int error; 1205 1206 if (rgd->rd_bits[0].bi_bh != NULL) 1207 return 0; 1208 1209 for (x = 0; x < length; x++) { 1210 bi = rgd->rd_bits + x; 1211 error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, 0, &bi->bi_bh); 1212 if (error) 1213 goto fail; 1214 } 1215 1216 for (y = length; y--;) { 1217 bi = rgd->rd_bits + y; 1218 error = gfs2_meta_wait(sdp, bi->bi_bh); 1219 if (error) 1220 goto fail; 1221 if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB : 1222 GFS2_METATYPE_RG)) { 1223 error = -EIO; 1224 goto fail; 1225 } 1226 } 1227 1228 if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) { 1229 gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data); 1230 rgrp_set_bitmap_flags(rgd); 1231 rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK); 1232 rgd->rd_free_clone = rgd->rd_free; 1233 BUG_ON(rgd->rd_reserved); 1234 /* max out the rgrp allocation failure point */ 1235 rgd->rd_extfail_pt = rgd->rd_free; 1236 } 1237 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) { 1238 rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd)); 1239 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, 1240 rgd->rd_bits[0].bi_bh->b_data); 1241 } 1242 else if (sdp->sd_args.ar_rgrplvb) { 1243 if (!gfs2_rgrp_lvb_valid(rgd)){ 1244 gfs2_consist_rgrpd(rgd); 1245 error = -EIO; 1246 goto fail; 1247 } 1248 if (rgd->rd_rgl->rl_unlinked == 0) 1249 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1250 } 1251 return 0; 1252 1253 fail: 1254 while (x--) { 1255 bi = rgd->rd_bits + x; 1256 brelse(bi->bi_bh); 1257 bi->bi_bh = NULL; 1258 gfs2_assert_warn(sdp, !bi->bi_clone); 1259 } 1260 1261 return error; 1262 } 1263 1264 static int update_rgrp_lvb(struct gfs2_rgrpd *rgd) 1265 { 1266 u32 rl_flags; 1267 1268 if (rgd->rd_flags & GFS2_RDF_UPTODATE) 1269 return 0; 1270 1271 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) 1272 return gfs2_rgrp_bh_get(rgd); 1273 1274 rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags); 1275 rl_flags &= ~GFS2_RDF_MASK; 1276 rgd->rd_flags &= GFS2_RDF_MASK; 1277 rgd->rd_flags |= (rl_flags | GFS2_RDF_CHECK); 1278 if (rgd->rd_rgl->rl_unlinked == 0) 1279 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1280 rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free); 1281 rgrp_set_bitmap_flags(rgd); 1282 rgd->rd_free_clone = rgd->rd_free; 1283 BUG_ON(rgd->rd_reserved); 1284 /* max out the rgrp allocation failure point */ 1285 rgd->rd_extfail_pt = rgd->rd_free; 1286 rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes); 1287 rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration); 1288 return 0; 1289 } 1290 1291 int gfs2_rgrp_go_lock(struct gfs2_holder *gh) 1292 { 1293 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object; 1294 struct gfs2_sbd *sdp = rgd->rd_sbd; 1295 1296 if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb) 1297 return 0; 1298 return gfs2_rgrp_bh_get(rgd); 1299 } 1300 1301 /** 1302 * gfs2_rgrp_brelse - Release RG bitmaps read in with gfs2_rgrp_bh_get() 1303 * @rgd: The resource group 1304 * 1305 */ 1306 1307 void gfs2_rgrp_brelse(struct gfs2_rgrpd *rgd) 1308 { 1309 int x, length = rgd->rd_length; 1310 1311 for (x = 0; x < length; x++) { 1312 struct gfs2_bitmap *bi = rgd->rd_bits + x; 1313 if (bi->bi_bh) { 1314 brelse(bi->bi_bh); 1315 bi->bi_bh = NULL; 1316 } 1317 } 1318 } 1319 1320 int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset, 1321 struct buffer_head *bh, 1322 const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed) 1323 { 1324 struct super_block *sb = sdp->sd_vfs; 1325 u64 blk; 1326 sector_t start = 0; 1327 sector_t nr_blks = 0; 1328 int rv; 1329 unsigned int x; 1330 u32 trimmed = 0; 1331 u8 diff; 1332 1333 for (x = 0; x < bi->bi_bytes; x++) { 1334 const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data; 1335 clone += bi->bi_offset; 1336 clone += x; 1337 if (bh) { 1338 const u8 *orig = bh->b_data + bi->bi_offset + x; 1339 diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1)); 1340 } else { 1341 diff = ~(*clone | (*clone >> 1)); 1342 } 1343 diff &= 0x55; 1344 if (diff == 0) 1345 continue; 1346 blk = offset + ((bi->bi_start + x) * GFS2_NBBY); 1347 while(diff) { 1348 if (diff & 1) { 1349 if (nr_blks == 0) 1350 goto start_new_extent; 1351 if ((start + nr_blks) != blk) { 1352 if (nr_blks >= minlen) { 1353 rv = sb_issue_discard(sb, 1354 start, nr_blks, 1355 GFP_NOFS, 0); 1356 if (rv) 1357 goto fail; 1358 trimmed += nr_blks; 1359 } 1360 nr_blks = 0; 1361 start_new_extent: 1362 start = blk; 1363 } 1364 nr_blks++; 1365 } 1366 diff >>= 2; 1367 blk++; 1368 } 1369 } 1370 if (nr_blks >= minlen) { 1371 rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0); 1372 if (rv) 1373 goto fail; 1374 trimmed += nr_blks; 1375 } 1376 if (ptrimmed) 1377 *ptrimmed = trimmed; 1378 return 0; 1379 1380 fail: 1381 if (sdp->sd_args.ar_discard) 1382 fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem\n", rv); 1383 sdp->sd_args.ar_discard = 0; 1384 return -EIO; 1385 } 1386 1387 /** 1388 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem 1389 * @filp: Any file on the filesystem 1390 * @argp: Pointer to the arguments (also used to pass result) 1391 * 1392 * Returns: 0 on success, otherwise error code 1393 */ 1394 1395 int gfs2_fitrim(struct file *filp, void __user *argp) 1396 { 1397 struct inode *inode = file_inode(filp); 1398 struct gfs2_sbd *sdp = GFS2_SB(inode); 1399 struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev); 1400 struct buffer_head *bh; 1401 struct gfs2_rgrpd *rgd; 1402 struct gfs2_rgrpd *rgd_end; 1403 struct gfs2_holder gh; 1404 struct fstrim_range r; 1405 int ret = 0; 1406 u64 amt; 1407 u64 trimmed = 0; 1408 u64 start, end, minlen; 1409 unsigned int x; 1410 unsigned bs_shift = sdp->sd_sb.sb_bsize_shift; 1411 1412 if (!capable(CAP_SYS_ADMIN)) 1413 return -EPERM; 1414 1415 if (!test_bit(SDF_JOURNAL_LIVE, &sdp->sd_flags)) 1416 return -EROFS; 1417 1418 if (!blk_queue_discard(q)) 1419 return -EOPNOTSUPP; 1420 1421 if (copy_from_user(&r, argp, sizeof(r))) 1422 return -EFAULT; 1423 1424 ret = gfs2_rindex_update(sdp); 1425 if (ret) 1426 return ret; 1427 1428 start = r.start >> bs_shift; 1429 end = start + (r.len >> bs_shift); 1430 minlen = max_t(u64, r.minlen, 1431 q->limits.discard_granularity) >> bs_shift; 1432 1433 if (end <= start || minlen > sdp->sd_max_rg_data) 1434 return -EINVAL; 1435 1436 rgd = gfs2_blk2rgrpd(sdp, start, 0); 1437 rgd_end = gfs2_blk2rgrpd(sdp, end, 0); 1438 1439 if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end)) 1440 && (start > rgd_end->rd_data0 + rgd_end->rd_data)) 1441 return -EINVAL; /* start is beyond the end of the fs */ 1442 1443 while (1) { 1444 1445 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 1446 LM_FLAG_NODE_SCOPE, &gh); 1447 if (ret) 1448 goto out; 1449 1450 if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) { 1451 /* Trim each bitmap in the rgrp */ 1452 for (x = 0; x < rgd->rd_length; x++) { 1453 struct gfs2_bitmap *bi = rgd->rd_bits + x; 1454 rgrp_lock_local(rgd); 1455 ret = gfs2_rgrp_send_discards(sdp, 1456 rgd->rd_data0, NULL, bi, minlen, 1457 &amt); 1458 rgrp_unlock_local(rgd); 1459 if (ret) { 1460 gfs2_glock_dq_uninit(&gh); 1461 goto out; 1462 } 1463 trimmed += amt; 1464 } 1465 1466 /* Mark rgrp as having been trimmed */ 1467 ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0); 1468 if (ret == 0) { 1469 bh = rgd->rd_bits[0].bi_bh; 1470 rgrp_lock_local(rgd); 1471 rgd->rd_flags |= GFS2_RGF_TRIMMED; 1472 gfs2_trans_add_meta(rgd->rd_gl, bh); 1473 gfs2_rgrp_out(rgd, bh->b_data); 1474 rgrp_unlock_local(rgd); 1475 gfs2_trans_end(sdp); 1476 } 1477 } 1478 gfs2_glock_dq_uninit(&gh); 1479 1480 if (rgd == rgd_end) 1481 break; 1482 1483 rgd = gfs2_rgrpd_get_next(rgd); 1484 } 1485 1486 out: 1487 r.len = trimmed << bs_shift; 1488 if (copy_to_user(argp, &r, sizeof(r))) 1489 return -EFAULT; 1490 1491 return ret; 1492 } 1493 1494 /** 1495 * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree 1496 * @ip: the inode structure 1497 * 1498 */ 1499 static void rs_insert(struct gfs2_inode *ip) 1500 { 1501 struct rb_node **newn, *parent = NULL; 1502 int rc; 1503 struct gfs2_blkreserv *rs = &ip->i_res; 1504 struct gfs2_rgrpd *rgd = rs->rs_rgd; 1505 1506 BUG_ON(gfs2_rs_active(rs)); 1507 1508 spin_lock(&rgd->rd_rsspin); 1509 newn = &rgd->rd_rstree.rb_node; 1510 while (*newn) { 1511 struct gfs2_blkreserv *cur = 1512 rb_entry(*newn, struct gfs2_blkreserv, rs_node); 1513 1514 parent = *newn; 1515 rc = rs_cmp(rs->rs_start, rs->rs_requested, cur); 1516 if (rc > 0) 1517 newn = &((*newn)->rb_right); 1518 else if (rc < 0) 1519 newn = &((*newn)->rb_left); 1520 else { 1521 spin_unlock(&rgd->rd_rsspin); 1522 WARN_ON(1); 1523 return; 1524 } 1525 } 1526 1527 rb_link_node(&rs->rs_node, parent, newn); 1528 rb_insert_color(&rs->rs_node, &rgd->rd_rstree); 1529 1530 /* Do our rgrp accounting for the reservation */ 1531 rgd->rd_requested += rs->rs_requested; /* blocks requested */ 1532 spin_unlock(&rgd->rd_rsspin); 1533 trace_gfs2_rs(rs, TRACE_RS_INSERT); 1534 } 1535 1536 /** 1537 * rgd_free - return the number of free blocks we can allocate. 1538 * @rgd: the resource group 1539 * 1540 * This function returns the number of free blocks for an rgrp. 1541 * That's the clone-free blocks (blocks that are free, not including those 1542 * still being used for unlinked files that haven't been deleted.) 1543 * 1544 * It also subtracts any blocks reserved by someone else, but does not 1545 * include free blocks that are still part of our current reservation, 1546 * because obviously we can (and will) allocate them. 1547 */ 1548 static inline u32 rgd_free(struct gfs2_rgrpd *rgd, struct gfs2_blkreserv *rs) 1549 { 1550 u32 tot_reserved, tot_free; 1551 1552 if (WARN_ON_ONCE(rgd->rd_requested < rs->rs_requested)) 1553 return 0; 1554 tot_reserved = rgd->rd_requested - rs->rs_requested; 1555 1556 if (rgd->rd_free_clone < tot_reserved) 1557 tot_reserved = 0; 1558 1559 tot_free = rgd->rd_free_clone - tot_reserved; 1560 1561 return tot_free; 1562 } 1563 1564 /** 1565 * rg_mblk_search - find a group of multiple free blocks to form a reservation 1566 * @rgd: the resource group descriptor 1567 * @ip: pointer to the inode for which we're reserving blocks 1568 * @ap: the allocation parameters 1569 * 1570 */ 1571 1572 static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip, 1573 const struct gfs2_alloc_parms *ap) 1574 { 1575 struct gfs2_rbm rbm = { .rgd = rgd, }; 1576 u64 goal; 1577 struct gfs2_blkreserv *rs = &ip->i_res; 1578 u32 extlen; 1579 u32 free_blocks, blocks_available; 1580 int ret; 1581 struct inode *inode = &ip->i_inode; 1582 1583 spin_lock(&rgd->rd_rsspin); 1584 free_blocks = rgd_free(rgd, rs); 1585 if (rgd->rd_free_clone < rgd->rd_requested) 1586 free_blocks = 0; 1587 blocks_available = rgd->rd_free_clone - rgd->rd_reserved; 1588 if (rgd == rs->rs_rgd) 1589 blocks_available += rs->rs_reserved; 1590 spin_unlock(&rgd->rd_rsspin); 1591 1592 if (S_ISDIR(inode->i_mode)) 1593 extlen = 1; 1594 else { 1595 extlen = max_t(u32, atomic_read(&ip->i_sizehint), ap->target); 1596 extlen = clamp(extlen, (u32)RGRP_RSRV_MINBLKS, free_blocks); 1597 } 1598 if (free_blocks < extlen || blocks_available < extlen) 1599 return; 1600 1601 /* Find bitmap block that contains bits for goal block */ 1602 if (rgrp_contains_block(rgd, ip->i_goal)) 1603 goal = ip->i_goal; 1604 else 1605 goal = rgd->rd_last_alloc + rgd->rd_data0; 1606 1607 if (WARN_ON(gfs2_rbm_from_block(&rbm, goal))) 1608 return; 1609 1610 ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, &ip->i_res, true); 1611 if (ret == 0) { 1612 rs->rs_start = gfs2_rbm_to_block(&rbm); 1613 rs->rs_requested = extlen; 1614 rs_insert(ip); 1615 } else { 1616 if (goal == rgd->rd_last_alloc + rgd->rd_data0) 1617 rgd->rd_last_alloc = 0; 1618 } 1619 } 1620 1621 /** 1622 * gfs2_next_unreserved_block - Return next block that is not reserved 1623 * @rgd: The resource group 1624 * @block: The starting block 1625 * @length: The required length 1626 * @ignore_rs: Reservation to ignore 1627 * 1628 * If the block does not appear in any reservation, then return the 1629 * block number unchanged. If it does appear in the reservation, then 1630 * keep looking through the tree of reservations in order to find the 1631 * first block number which is not reserved. 1632 */ 1633 1634 static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block, 1635 u32 length, 1636 struct gfs2_blkreserv *ignore_rs) 1637 { 1638 struct gfs2_blkreserv *rs; 1639 struct rb_node *n; 1640 int rc; 1641 1642 spin_lock(&rgd->rd_rsspin); 1643 n = rgd->rd_rstree.rb_node; 1644 while (n) { 1645 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 1646 rc = rs_cmp(block, length, rs); 1647 if (rc < 0) 1648 n = n->rb_left; 1649 else if (rc > 0) 1650 n = n->rb_right; 1651 else 1652 break; 1653 } 1654 1655 if (n) { 1656 while (rs_cmp(block, length, rs) == 0 && rs != ignore_rs) { 1657 block = rs->rs_start + rs->rs_requested; 1658 n = n->rb_right; 1659 if (n == NULL) 1660 break; 1661 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 1662 } 1663 } 1664 1665 spin_unlock(&rgd->rd_rsspin); 1666 return block; 1667 } 1668 1669 /** 1670 * gfs2_reservation_check_and_update - Check for reservations during block alloc 1671 * @rbm: The current position in the resource group 1672 * @rs: Our own reservation 1673 * @minext: The minimum extent length 1674 * @maxext: A pointer to the maximum extent structure 1675 * 1676 * This checks the current position in the rgrp to see whether there is 1677 * a reservation covering this block. If not then this function is a 1678 * no-op. If there is, then the position is moved to the end of the 1679 * contiguous reservation(s) so that we are pointing at the first 1680 * non-reserved block. 1681 * 1682 * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error 1683 */ 1684 1685 static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm, 1686 struct gfs2_blkreserv *rs, 1687 u32 minext, 1688 struct gfs2_extent *maxext) 1689 { 1690 u64 block = gfs2_rbm_to_block(rbm); 1691 u32 extlen = 1; 1692 u64 nblock; 1693 1694 /* 1695 * If we have a minimum extent length, then skip over any extent 1696 * which is less than the min extent length in size. 1697 */ 1698 if (minext > 1) { 1699 extlen = gfs2_free_extlen(rbm, minext); 1700 if (extlen <= maxext->len) 1701 goto fail; 1702 } 1703 1704 /* 1705 * Check the extent which has been found against the reservations 1706 * and skip if parts of it are already reserved 1707 */ 1708 nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, rs); 1709 if (nblock == block) { 1710 if (!minext || extlen >= minext) 1711 return 0; 1712 1713 if (extlen > maxext->len) { 1714 maxext->len = extlen; 1715 maxext->rbm = *rbm; 1716 } 1717 } else { 1718 u64 len = nblock - block; 1719 if (len >= (u64)1 << 32) 1720 return -E2BIG; 1721 extlen = len; 1722 } 1723 fail: 1724 if (gfs2_rbm_add(rbm, extlen)) 1725 return -E2BIG; 1726 return 1; 1727 } 1728 1729 /** 1730 * gfs2_rbm_find - Look for blocks of a particular state 1731 * @rbm: Value/result starting position and final position 1732 * @state: The state which we want to find 1733 * @minext: Pointer to the requested extent length 1734 * This is updated to be the actual reservation size. 1735 * @rs: Our own reservation (NULL to skip checking for reservations) 1736 * @nowrap: Stop looking at the end of the rgrp, rather than wrapping 1737 * around until we've reached the starting point. 1738 * 1739 * Side effects: 1740 * - If looking for free blocks, we set GBF_FULL on each bitmap which 1741 * has no free blocks in it. 1742 * - If looking for free blocks, we set rd_extfail_pt on each rgrp which 1743 * has come up short on a free block search. 1744 * 1745 * Returns: 0 on success, -ENOSPC if there is no block of the requested state 1746 */ 1747 1748 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext, 1749 struct gfs2_blkreserv *rs, bool nowrap) 1750 { 1751 bool scan_from_start = rbm->bii == 0 && rbm->offset == 0; 1752 struct buffer_head *bh; 1753 int last_bii; 1754 u32 offset; 1755 u8 *buffer; 1756 bool wrapped = false; 1757 int ret; 1758 struct gfs2_bitmap *bi; 1759 struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, }; 1760 1761 /* 1762 * Determine the last bitmap to search. If we're not starting at the 1763 * beginning of a bitmap, we need to search that bitmap twice to scan 1764 * the entire resource group. 1765 */ 1766 last_bii = rbm->bii - (rbm->offset == 0); 1767 1768 while(1) { 1769 bi = rbm_bi(rbm); 1770 if (test_bit(GBF_FULL, &bi->bi_flags) && 1771 (state == GFS2_BLKST_FREE)) 1772 goto next_bitmap; 1773 1774 bh = bi->bi_bh; 1775 buffer = bh->b_data + bi->bi_offset; 1776 WARN_ON(!buffer_uptodate(bh)); 1777 if (state != GFS2_BLKST_UNLINKED && bi->bi_clone) 1778 buffer = bi->bi_clone + bi->bi_offset; 1779 offset = gfs2_bitfit(buffer, bi->bi_bytes, rbm->offset, state); 1780 if (offset == BFITNOENT) { 1781 if (state == GFS2_BLKST_FREE && rbm->offset == 0) 1782 set_bit(GBF_FULL, &bi->bi_flags); 1783 goto next_bitmap; 1784 } 1785 rbm->offset = offset; 1786 if (!rs) 1787 return 0; 1788 1789 ret = gfs2_reservation_check_and_update(rbm, rs, *minext, 1790 &maxext); 1791 if (ret == 0) 1792 return 0; 1793 if (ret > 0) 1794 goto next_iter; 1795 if (ret == -E2BIG) { 1796 rbm->bii = 0; 1797 rbm->offset = 0; 1798 goto res_covered_end_of_rgrp; 1799 } 1800 return ret; 1801 1802 next_bitmap: /* Find next bitmap in the rgrp */ 1803 rbm->offset = 0; 1804 rbm->bii++; 1805 if (rbm->bii == rbm->rgd->rd_length) 1806 rbm->bii = 0; 1807 res_covered_end_of_rgrp: 1808 if (rbm->bii == 0) { 1809 if (wrapped) 1810 break; 1811 wrapped = true; 1812 if (nowrap) 1813 break; 1814 } 1815 next_iter: 1816 /* Have we scanned the entire resource group? */ 1817 if (wrapped && rbm->bii > last_bii) 1818 break; 1819 } 1820 1821 if (state != GFS2_BLKST_FREE) 1822 return -ENOSPC; 1823 1824 /* If the extent was too small, and it's smaller than the smallest 1825 to have failed before, remember for future reference that it's 1826 useless to search this rgrp again for this amount or more. */ 1827 if (wrapped && (scan_from_start || rbm->bii > last_bii) && 1828 *minext < rbm->rgd->rd_extfail_pt) 1829 rbm->rgd->rd_extfail_pt = *minext - 1; 1830 1831 /* If the maximum extent we found is big enough to fulfill the 1832 minimum requirements, use it anyway. */ 1833 if (maxext.len) { 1834 *rbm = maxext.rbm; 1835 *minext = maxext.len; 1836 return 0; 1837 } 1838 1839 return -ENOSPC; 1840 } 1841 1842 /** 1843 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes 1844 * @rgd: The rgrp 1845 * @last_unlinked: block address of the last dinode we unlinked 1846 * @skip: block address we should explicitly not unlink 1847 * 1848 * Returns: 0 if no error 1849 * The inode, if one has been found, in inode. 1850 */ 1851 1852 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip) 1853 { 1854 u64 block; 1855 struct gfs2_sbd *sdp = rgd->rd_sbd; 1856 struct gfs2_glock *gl; 1857 struct gfs2_inode *ip; 1858 int error; 1859 int found = 0; 1860 struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 }; 1861 1862 while (1) { 1863 error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL, 1864 true); 1865 if (error == -ENOSPC) 1866 break; 1867 if (WARN_ON_ONCE(error)) 1868 break; 1869 1870 block = gfs2_rbm_to_block(&rbm); 1871 if (gfs2_rbm_from_block(&rbm, block + 1)) 1872 break; 1873 if (*last_unlinked != NO_BLOCK && block <= *last_unlinked) 1874 continue; 1875 if (block == skip) 1876 continue; 1877 *last_unlinked = block; 1878 1879 error = gfs2_glock_get(sdp, block, &gfs2_iopen_glops, CREATE, &gl); 1880 if (error) 1881 continue; 1882 1883 /* If the inode is already in cache, we can ignore it here 1884 * because the existing inode disposal code will deal with 1885 * it when all refs have gone away. Accessing gl_object like 1886 * this is not safe in general. Here it is ok because we do 1887 * not dereference the pointer, and we only need an approx 1888 * answer to whether it is NULL or not. 1889 */ 1890 ip = gl->gl_object; 1891 1892 if (ip || !gfs2_queue_delete_work(gl, 0)) 1893 gfs2_glock_put(gl); 1894 else 1895 found++; 1896 1897 /* Limit reclaim to sensible number of tasks */ 1898 if (found > NR_CPUS) 1899 return; 1900 } 1901 1902 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1903 return; 1904 } 1905 1906 /** 1907 * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested 1908 * @rgd: The rgrp in question 1909 * @loops: An indication of how picky we can be (0=very, 1=less so) 1910 * 1911 * This function uses the recently added glock statistics in order to 1912 * figure out whether a parciular resource group is suffering from 1913 * contention from multiple nodes. This is done purely on the basis 1914 * of timings, since this is the only data we have to work with and 1915 * our aim here is to reject a resource group which is highly contended 1916 * but (very important) not to do this too often in order to ensure that 1917 * we do not land up introducing fragmentation by changing resource 1918 * groups when not actually required. 1919 * 1920 * The calculation is fairly simple, we want to know whether the SRTTB 1921 * (i.e. smoothed round trip time for blocking operations) to acquire 1922 * the lock for this rgrp's glock is significantly greater than the 1923 * time taken for resource groups on average. We introduce a margin in 1924 * the form of the variable @var which is computed as the sum of the two 1925 * respective variences, and multiplied by a factor depending on @loops 1926 * and whether we have a lot of data to base the decision on. This is 1927 * then tested against the square difference of the means in order to 1928 * decide whether the result is statistically significant or not. 1929 * 1930 * Returns: A boolean verdict on the congestion status 1931 */ 1932 1933 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops) 1934 { 1935 const struct gfs2_glock *gl = rgd->rd_gl; 1936 const struct gfs2_sbd *sdp = gl->gl_name.ln_sbd; 1937 struct gfs2_lkstats *st; 1938 u64 r_dcount, l_dcount; 1939 u64 l_srttb, a_srttb = 0; 1940 s64 srttb_diff; 1941 u64 sqr_diff; 1942 u64 var; 1943 int cpu, nonzero = 0; 1944 1945 preempt_disable(); 1946 for_each_present_cpu(cpu) { 1947 st = &per_cpu_ptr(sdp->sd_lkstats, cpu)->lkstats[LM_TYPE_RGRP]; 1948 if (st->stats[GFS2_LKS_SRTTB]) { 1949 a_srttb += st->stats[GFS2_LKS_SRTTB]; 1950 nonzero++; 1951 } 1952 } 1953 st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP]; 1954 if (nonzero) 1955 do_div(a_srttb, nonzero); 1956 r_dcount = st->stats[GFS2_LKS_DCOUNT]; 1957 var = st->stats[GFS2_LKS_SRTTVARB] + 1958 gl->gl_stats.stats[GFS2_LKS_SRTTVARB]; 1959 preempt_enable(); 1960 1961 l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB]; 1962 l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT]; 1963 1964 if ((l_dcount < 1) || (r_dcount < 1) || (a_srttb == 0)) 1965 return false; 1966 1967 srttb_diff = a_srttb - l_srttb; 1968 sqr_diff = srttb_diff * srttb_diff; 1969 1970 var *= 2; 1971 if (l_dcount < 8 || r_dcount < 8) 1972 var *= 2; 1973 if (loops == 1) 1974 var *= 2; 1975 1976 return ((srttb_diff < 0) && (sqr_diff > var)); 1977 } 1978 1979 /** 1980 * gfs2_rgrp_used_recently 1981 * @rs: The block reservation with the rgrp to test 1982 * @msecs: The time limit in milliseconds 1983 * 1984 * Returns: True if the rgrp glock has been used within the time limit 1985 */ 1986 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs, 1987 u64 msecs) 1988 { 1989 u64 tdiff; 1990 1991 tdiff = ktime_to_ns(ktime_sub(ktime_get_real(), 1992 rs->rs_rgd->rd_gl->gl_dstamp)); 1993 1994 return tdiff > (msecs * 1000 * 1000); 1995 } 1996 1997 static u32 gfs2_orlov_skip(const struct gfs2_inode *ip) 1998 { 1999 const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2000 u32 skip; 2001 2002 get_random_bytes(&skip, sizeof(skip)); 2003 return skip % sdp->sd_rgrps; 2004 } 2005 2006 static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin) 2007 { 2008 struct gfs2_rgrpd *rgd = *pos; 2009 struct gfs2_sbd *sdp = rgd->rd_sbd; 2010 2011 rgd = gfs2_rgrpd_get_next(rgd); 2012 if (rgd == NULL) 2013 rgd = gfs2_rgrpd_get_first(sdp); 2014 *pos = rgd; 2015 if (rgd != begin) /* If we didn't wrap */ 2016 return true; 2017 return false; 2018 } 2019 2020 /** 2021 * fast_to_acquire - determine if a resource group will be fast to acquire 2022 * 2023 * If this is one of our preferred rgrps, it should be quicker to acquire, 2024 * because we tried to set ourselves up as dlm lock master. 2025 */ 2026 static inline int fast_to_acquire(struct gfs2_rgrpd *rgd) 2027 { 2028 struct gfs2_glock *gl = rgd->rd_gl; 2029 2030 if (gl->gl_state != LM_ST_UNLOCKED && list_empty(&gl->gl_holders) && 2031 !test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags) && 2032 !test_bit(GLF_DEMOTE, &gl->gl_flags)) 2033 return 1; 2034 if (rgd->rd_flags & GFS2_RDF_PREFERRED) 2035 return 1; 2036 return 0; 2037 } 2038 2039 /** 2040 * gfs2_inplace_reserve - Reserve space in the filesystem 2041 * @ip: the inode to reserve space for 2042 * @ap: the allocation parameters 2043 * 2044 * We try our best to find an rgrp that has at least ap->target blocks 2045 * available. After a couple of passes (loops == 2), the prospects of finding 2046 * such an rgrp diminish. At this stage, we return the first rgrp that has 2047 * at least ap->min_target blocks available. 2048 * 2049 * Returns: 0 on success, 2050 * -ENOMEM if a suitable rgrp can't be found 2051 * errno otherwise 2052 */ 2053 2054 int gfs2_inplace_reserve(struct gfs2_inode *ip, struct gfs2_alloc_parms *ap) 2055 { 2056 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2057 struct gfs2_rgrpd *begin = NULL; 2058 struct gfs2_blkreserv *rs = &ip->i_res; 2059 int error = 0, flags = LM_FLAG_NODE_SCOPE; 2060 bool rg_locked; 2061 u64 last_unlinked = NO_BLOCK; 2062 u32 target = ap->target; 2063 int loops = 0; 2064 u32 free_blocks, blocks_available, skip = 0; 2065 2066 BUG_ON(rs->rs_reserved); 2067 2068 if (sdp->sd_args.ar_rgrplvb) 2069 flags |= GL_SKIP; 2070 if (gfs2_assert_warn(sdp, target)) 2071 return -EINVAL; 2072 if (gfs2_rs_active(rs)) { 2073 begin = rs->rs_rgd; 2074 } else if (rs->rs_rgd && 2075 rgrp_contains_block(rs->rs_rgd, ip->i_goal)) { 2076 begin = rs->rs_rgd; 2077 } else { 2078 check_and_update_goal(ip); 2079 rs->rs_rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1); 2080 } 2081 if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV)) 2082 skip = gfs2_orlov_skip(ip); 2083 if (rs->rs_rgd == NULL) 2084 return -EBADSLT; 2085 2086 while (loops < 3) { 2087 struct gfs2_rgrpd *rgd; 2088 2089 rg_locked = gfs2_glock_is_locked_by_me(rs->rs_rgd->rd_gl); 2090 if (rg_locked) { 2091 rgrp_lock_local(rs->rs_rgd); 2092 } else { 2093 if (skip && skip--) 2094 goto next_rgrp; 2095 if (!gfs2_rs_active(rs)) { 2096 if (loops == 0 && 2097 !fast_to_acquire(rs->rs_rgd)) 2098 goto next_rgrp; 2099 if ((loops < 2) && 2100 gfs2_rgrp_used_recently(rs, 1000) && 2101 gfs2_rgrp_congested(rs->rs_rgd, loops)) 2102 goto next_rgrp; 2103 } 2104 error = gfs2_glock_nq_init(rs->rs_rgd->rd_gl, 2105 LM_ST_EXCLUSIVE, flags, 2106 &ip->i_rgd_gh); 2107 if (unlikely(error)) 2108 return error; 2109 rgrp_lock_local(rs->rs_rgd); 2110 if (!gfs2_rs_active(rs) && (loops < 2) && 2111 gfs2_rgrp_congested(rs->rs_rgd, loops)) 2112 goto skip_rgrp; 2113 if (sdp->sd_args.ar_rgrplvb) { 2114 error = update_rgrp_lvb(rs->rs_rgd); 2115 if (unlikely(error)) { 2116 rgrp_unlock_local(rs->rs_rgd); 2117 gfs2_glock_dq_uninit(&ip->i_rgd_gh); 2118 return error; 2119 } 2120 } 2121 } 2122 2123 /* Skip unusable resource groups */ 2124 if ((rs->rs_rgd->rd_flags & (GFS2_RGF_NOALLOC | 2125 GFS2_RDF_ERROR)) || 2126 (loops == 0 && target > rs->rs_rgd->rd_extfail_pt)) 2127 goto skip_rgrp; 2128 2129 if (sdp->sd_args.ar_rgrplvb) 2130 gfs2_rgrp_bh_get(rs->rs_rgd); 2131 2132 /* Get a reservation if we don't already have one */ 2133 if (!gfs2_rs_active(rs)) 2134 rg_mblk_search(rs->rs_rgd, ip, ap); 2135 2136 /* Skip rgrps when we can't get a reservation on first pass */ 2137 if (!gfs2_rs_active(rs) && (loops < 1)) 2138 goto check_rgrp; 2139 2140 /* If rgrp has enough free space, use it */ 2141 rgd = rs->rs_rgd; 2142 spin_lock(&rgd->rd_rsspin); 2143 free_blocks = rgd_free(rgd, rs); 2144 blocks_available = rgd->rd_free_clone - rgd->rd_reserved; 2145 if (free_blocks < target || blocks_available < target) { 2146 spin_unlock(&rgd->rd_rsspin); 2147 goto check_rgrp; 2148 } 2149 rs->rs_reserved = ap->target; 2150 if (rs->rs_reserved > blocks_available) 2151 rs->rs_reserved = blocks_available; 2152 rgd->rd_reserved += rs->rs_reserved; 2153 spin_unlock(&rgd->rd_rsspin); 2154 rgrp_unlock_local(rs->rs_rgd); 2155 return 0; 2156 check_rgrp: 2157 /* Check for unlinked inodes which can be reclaimed */ 2158 if (rs->rs_rgd->rd_flags & GFS2_RDF_CHECK) 2159 try_rgrp_unlink(rs->rs_rgd, &last_unlinked, 2160 ip->i_no_addr); 2161 skip_rgrp: 2162 rgrp_unlock_local(rs->rs_rgd); 2163 2164 /* Drop reservation, if we couldn't use reserved rgrp */ 2165 if (gfs2_rs_active(rs)) 2166 gfs2_rs_deltree(rs); 2167 2168 /* Unlock rgrp if required */ 2169 if (!rg_locked) 2170 gfs2_glock_dq_uninit(&ip->i_rgd_gh); 2171 next_rgrp: 2172 /* Find the next rgrp, and continue looking */ 2173 if (gfs2_select_rgrp(&rs->rs_rgd, begin)) 2174 continue; 2175 if (skip) 2176 continue; 2177 2178 /* If we've scanned all the rgrps, but found no free blocks 2179 * then this checks for some less likely conditions before 2180 * trying again. 2181 */ 2182 loops++; 2183 /* Check that fs hasn't grown if writing to rindex */ 2184 if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) { 2185 error = gfs2_ri_update(ip); 2186 if (error) 2187 return error; 2188 } 2189 /* Flushing the log may release space */ 2190 if (loops == 2) { 2191 if (ap->min_target) 2192 target = ap->min_target; 2193 gfs2_log_flush(sdp, NULL, GFS2_LOG_HEAD_FLUSH_NORMAL | 2194 GFS2_LFC_INPLACE_RESERVE); 2195 } 2196 } 2197 2198 return -ENOSPC; 2199 } 2200 2201 /** 2202 * gfs2_inplace_release - release an inplace reservation 2203 * @ip: the inode the reservation was taken out on 2204 * 2205 * Release a reservation made by gfs2_inplace_reserve(). 2206 */ 2207 2208 void gfs2_inplace_release(struct gfs2_inode *ip) 2209 { 2210 struct gfs2_blkreserv *rs = &ip->i_res; 2211 2212 if (rs->rs_reserved) { 2213 struct gfs2_rgrpd *rgd = rs->rs_rgd; 2214 2215 spin_lock(&rgd->rd_rsspin); 2216 BUG_ON(rgd->rd_reserved < rs->rs_reserved); 2217 rgd->rd_reserved -= rs->rs_reserved; 2218 spin_unlock(&rgd->rd_rsspin); 2219 rs->rs_reserved = 0; 2220 } 2221 if (gfs2_holder_initialized(&ip->i_rgd_gh)) 2222 gfs2_glock_dq_uninit(&ip->i_rgd_gh); 2223 } 2224 2225 /** 2226 * gfs2_alloc_extent - allocate an extent from a given bitmap 2227 * @rbm: the resource group information 2228 * @dinode: TRUE if the first block we allocate is for a dinode 2229 * @n: The extent length (value/result) 2230 * 2231 * Add the bitmap buffer to the transaction. 2232 * Set the found bits to @new_state to change block's allocation state. 2233 */ 2234 static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode, 2235 unsigned int *n) 2236 { 2237 struct gfs2_rbm pos = { .rgd = rbm->rgd, }; 2238 const unsigned int elen = *n; 2239 u64 block; 2240 int ret; 2241 2242 *n = 1; 2243 block = gfs2_rbm_to_block(rbm); 2244 gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh); 2245 gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED); 2246 block++; 2247 while (*n < elen) { 2248 ret = gfs2_rbm_from_block(&pos, block); 2249 if (ret || gfs2_testbit(&pos, true) != GFS2_BLKST_FREE) 2250 break; 2251 gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh); 2252 gfs2_setbit(&pos, true, GFS2_BLKST_USED); 2253 (*n)++; 2254 block++; 2255 } 2256 } 2257 2258 /** 2259 * rgblk_free - Change alloc state of given block(s) 2260 * @sdp: the filesystem 2261 * @rgd: the resource group the blocks are in 2262 * @bstart: the start of a run of blocks to free 2263 * @blen: the length of the block run (all must lie within ONE RG!) 2264 * @new_state: GFS2_BLKST_XXX the after-allocation block state 2265 */ 2266 2267 static void rgblk_free(struct gfs2_sbd *sdp, struct gfs2_rgrpd *rgd, 2268 u64 bstart, u32 blen, unsigned char new_state) 2269 { 2270 struct gfs2_rbm rbm; 2271 struct gfs2_bitmap *bi, *bi_prev = NULL; 2272 2273 rbm.rgd = rgd; 2274 if (WARN_ON_ONCE(gfs2_rbm_from_block(&rbm, bstart))) 2275 return; 2276 while (blen--) { 2277 bi = rbm_bi(&rbm); 2278 if (bi != bi_prev) { 2279 if (!bi->bi_clone) { 2280 bi->bi_clone = kmalloc(bi->bi_bh->b_size, 2281 GFP_NOFS | __GFP_NOFAIL); 2282 memcpy(bi->bi_clone + bi->bi_offset, 2283 bi->bi_bh->b_data + bi->bi_offset, 2284 bi->bi_bytes); 2285 } 2286 gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh); 2287 bi_prev = bi; 2288 } 2289 gfs2_setbit(&rbm, false, new_state); 2290 gfs2_rbm_add(&rbm, 1); 2291 } 2292 } 2293 2294 /** 2295 * gfs2_rgrp_dump - print out an rgrp 2296 * @seq: The iterator 2297 * @rgd: The rgrp in question 2298 * @fs_id_buf: pointer to file system id (if requested) 2299 * 2300 */ 2301 2302 void gfs2_rgrp_dump(struct seq_file *seq, struct gfs2_rgrpd *rgd, 2303 const char *fs_id_buf) 2304 { 2305 struct gfs2_blkreserv *trs; 2306 const struct rb_node *n; 2307 2308 spin_lock(&rgd->rd_rsspin); 2309 gfs2_print_dbg(seq, "%s R: n:%llu f:%02x b:%u/%u i:%u q:%u r:%u e:%u\n", 2310 fs_id_buf, 2311 (unsigned long long)rgd->rd_addr, rgd->rd_flags, 2312 rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes, 2313 rgd->rd_requested, rgd->rd_reserved, rgd->rd_extfail_pt); 2314 if (rgd->rd_sbd->sd_args.ar_rgrplvb) { 2315 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl; 2316 2317 gfs2_print_dbg(seq, "%s L: f:%02x b:%u i:%u\n", fs_id_buf, 2318 be32_to_cpu(rgl->rl_flags), 2319 be32_to_cpu(rgl->rl_free), 2320 be32_to_cpu(rgl->rl_dinodes)); 2321 } 2322 for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) { 2323 trs = rb_entry(n, struct gfs2_blkreserv, rs_node); 2324 dump_rs(seq, trs, fs_id_buf); 2325 } 2326 spin_unlock(&rgd->rd_rsspin); 2327 } 2328 2329 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd) 2330 { 2331 struct gfs2_sbd *sdp = rgd->rd_sbd; 2332 char fs_id_buf[sizeof(sdp->sd_fsname) + 7]; 2333 2334 fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n", 2335 (unsigned long long)rgd->rd_addr); 2336 fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n"); 2337 sprintf(fs_id_buf, "fsid=%s: ", sdp->sd_fsname); 2338 gfs2_rgrp_dump(NULL, rgd, fs_id_buf); 2339 rgd->rd_flags |= GFS2_RDF_ERROR; 2340 } 2341 2342 /** 2343 * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation 2344 * @ip: The inode we have just allocated blocks for 2345 * @rbm: The start of the allocated blocks 2346 * @len: The extent length 2347 * 2348 * Adjusts a reservation after an allocation has taken place. If the 2349 * reservation does not match the allocation, or if it is now empty 2350 * then it is removed. 2351 */ 2352 2353 static void gfs2_adjust_reservation(struct gfs2_inode *ip, 2354 const struct gfs2_rbm *rbm, unsigned len) 2355 { 2356 struct gfs2_blkreserv *rs = &ip->i_res; 2357 struct gfs2_rgrpd *rgd = rbm->rgd; 2358 2359 BUG_ON(rs->rs_reserved < len); 2360 rs->rs_reserved -= len; 2361 if (gfs2_rs_active(rs)) { 2362 u64 start = gfs2_rbm_to_block(rbm); 2363 2364 if (rs->rs_start == start) { 2365 unsigned int rlen; 2366 2367 rs->rs_start += len; 2368 rlen = min(rs->rs_requested, len); 2369 rs->rs_requested -= rlen; 2370 rgd->rd_requested -= rlen; 2371 trace_gfs2_rs(rs, TRACE_RS_CLAIM); 2372 if (rs->rs_start < rgd->rd_data0 + rgd->rd_data && 2373 rs->rs_requested) 2374 return; 2375 /* We used up our block reservation, so we should 2376 reserve more blocks next time. */ 2377 atomic_add(RGRP_RSRV_ADDBLKS, &ip->i_sizehint); 2378 } 2379 __rs_deltree(rs); 2380 } 2381 } 2382 2383 /** 2384 * gfs2_set_alloc_start - Set starting point for block allocation 2385 * @rbm: The rbm which will be set to the required location 2386 * @ip: The gfs2 inode 2387 * @dinode: Flag to say if allocation includes a new inode 2388 * 2389 * This sets the starting point from the reservation if one is active 2390 * otherwise it falls back to guessing a start point based on the 2391 * inode's goal block or the last allocation point in the rgrp. 2392 */ 2393 2394 static void gfs2_set_alloc_start(struct gfs2_rbm *rbm, 2395 const struct gfs2_inode *ip, bool dinode) 2396 { 2397 u64 goal; 2398 2399 if (gfs2_rs_active(&ip->i_res)) { 2400 goal = ip->i_res.rs_start; 2401 } else { 2402 if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal)) 2403 goal = ip->i_goal; 2404 else 2405 goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0; 2406 } 2407 if (WARN_ON_ONCE(gfs2_rbm_from_block(rbm, goal))) { 2408 rbm->bii = 0; 2409 rbm->offset = 0; 2410 } 2411 } 2412 2413 /** 2414 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode 2415 * @ip: the inode to allocate the block for 2416 * @bn: Used to return the starting block number 2417 * @nblocks: requested number of blocks/extent length (value/result) 2418 * @dinode: 1 if we're allocating a dinode block, else 0 2419 * @generation: the generation number of the inode 2420 * 2421 * Returns: 0 or error 2422 */ 2423 2424 int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks, 2425 bool dinode, u64 *generation) 2426 { 2427 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2428 struct buffer_head *dibh; 2429 struct gfs2_rbm rbm = { .rgd = ip->i_res.rs_rgd, }; 2430 u64 block; /* block, within the file system scope */ 2431 u32 minext = 1; 2432 int error = -ENOSPC; 2433 2434 BUG_ON(ip->i_res.rs_reserved < *nblocks); 2435 2436 rgrp_lock_local(rbm.rgd); 2437 if (gfs2_rs_active(&ip->i_res)) { 2438 gfs2_set_alloc_start(&rbm, ip, dinode); 2439 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &minext, &ip->i_res, false); 2440 } 2441 if (error == -ENOSPC) { 2442 gfs2_set_alloc_start(&rbm, ip, dinode); 2443 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &minext, NULL, false); 2444 } 2445 2446 /* Since all blocks are reserved in advance, this shouldn't happen */ 2447 if (error) { 2448 fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n", 2449 (unsigned long long)ip->i_no_addr, error, *nblocks, 2450 test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags), 2451 rbm.rgd->rd_extfail_pt); 2452 goto rgrp_error; 2453 } 2454 2455 gfs2_alloc_extent(&rbm, dinode, nblocks); 2456 block = gfs2_rbm_to_block(&rbm); 2457 rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0; 2458 if (!dinode) { 2459 ip->i_goal = block + *nblocks - 1; 2460 error = gfs2_meta_inode_buffer(ip, &dibh); 2461 if (error == 0) { 2462 struct gfs2_dinode *di = 2463 (struct gfs2_dinode *)dibh->b_data; 2464 gfs2_trans_add_meta(ip->i_gl, dibh); 2465 di->di_goal_meta = di->di_goal_data = 2466 cpu_to_be64(ip->i_goal); 2467 brelse(dibh); 2468 } 2469 } 2470 spin_lock(&rbm.rgd->rd_rsspin); 2471 gfs2_adjust_reservation(ip, &rbm, *nblocks); 2472 if (rbm.rgd->rd_free < *nblocks || rbm.rgd->rd_reserved < *nblocks) { 2473 fs_warn(sdp, "nblocks=%u\n", *nblocks); 2474 spin_unlock(&rbm.rgd->rd_rsspin); 2475 goto rgrp_error; 2476 } 2477 BUG_ON(rbm.rgd->rd_reserved < *nblocks); 2478 BUG_ON(rbm.rgd->rd_free_clone < *nblocks); 2479 BUG_ON(rbm.rgd->rd_free < *nblocks); 2480 rbm.rgd->rd_reserved -= *nblocks; 2481 rbm.rgd->rd_free_clone -= *nblocks; 2482 rbm.rgd->rd_free -= *nblocks; 2483 spin_unlock(&rbm.rgd->rd_rsspin); 2484 if (dinode) { 2485 rbm.rgd->rd_dinodes++; 2486 *generation = rbm.rgd->rd_igeneration++; 2487 if (*generation == 0) 2488 *generation = rbm.rgd->rd_igeneration++; 2489 } 2490 2491 gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh); 2492 gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data); 2493 rgrp_unlock_local(rbm.rgd); 2494 2495 gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0); 2496 if (dinode) 2497 gfs2_trans_remove_revoke(sdp, block, *nblocks); 2498 2499 gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid); 2500 2501 trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks, 2502 dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED); 2503 *bn = block; 2504 return 0; 2505 2506 rgrp_error: 2507 rgrp_unlock_local(rbm.rgd); 2508 gfs2_rgrp_error(rbm.rgd); 2509 return -EIO; 2510 } 2511 2512 /** 2513 * __gfs2_free_blocks - free a contiguous run of block(s) 2514 * @ip: the inode these blocks are being freed from 2515 * @rgd: the resource group the blocks are in 2516 * @bstart: first block of a run of contiguous blocks 2517 * @blen: the length of the block run 2518 * @meta: 1 if the blocks represent metadata 2519 * 2520 */ 2521 2522 void __gfs2_free_blocks(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd, 2523 u64 bstart, u32 blen, int meta) 2524 { 2525 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2526 2527 rgrp_lock_local(rgd); 2528 rgblk_free(sdp, rgd, bstart, blen, GFS2_BLKST_FREE); 2529 trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE); 2530 rgd->rd_free += blen; 2531 rgd->rd_flags &= ~GFS2_RGF_TRIMMED; 2532 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2533 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2534 rgrp_unlock_local(rgd); 2535 2536 /* Directories keep their data in the metadata address space */ 2537 if (meta || ip->i_depth || gfs2_is_jdata(ip)) 2538 gfs2_journal_wipe(ip, bstart, blen); 2539 } 2540 2541 /** 2542 * gfs2_free_meta - free a contiguous run of data block(s) 2543 * @ip: the inode these blocks are being freed from 2544 * @rgd: the resource group the blocks are in 2545 * @bstart: first block of a run of contiguous blocks 2546 * @blen: the length of the block run 2547 * 2548 */ 2549 2550 void gfs2_free_meta(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd, 2551 u64 bstart, u32 blen) 2552 { 2553 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2554 2555 __gfs2_free_blocks(ip, rgd, bstart, blen, 1); 2556 gfs2_statfs_change(sdp, 0, +blen, 0); 2557 gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid); 2558 } 2559 2560 void gfs2_unlink_di(struct inode *inode) 2561 { 2562 struct gfs2_inode *ip = GFS2_I(inode); 2563 struct gfs2_sbd *sdp = GFS2_SB(inode); 2564 struct gfs2_rgrpd *rgd; 2565 u64 blkno = ip->i_no_addr; 2566 2567 rgd = gfs2_blk2rgrpd(sdp, blkno, true); 2568 if (!rgd) 2569 return; 2570 rgrp_lock_local(rgd); 2571 rgblk_free(sdp, rgd, blkno, 1, GFS2_BLKST_UNLINKED); 2572 trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED); 2573 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2574 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2575 be32_add_cpu(&rgd->rd_rgl->rl_unlinked, 1); 2576 rgrp_unlock_local(rgd); 2577 } 2578 2579 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip) 2580 { 2581 struct gfs2_sbd *sdp = rgd->rd_sbd; 2582 2583 rgrp_lock_local(rgd); 2584 rgblk_free(sdp, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE); 2585 if (!rgd->rd_dinodes) 2586 gfs2_consist_rgrpd(rgd); 2587 rgd->rd_dinodes--; 2588 rgd->rd_free++; 2589 2590 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2591 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2592 rgrp_unlock_local(rgd); 2593 be32_add_cpu(&rgd->rd_rgl->rl_unlinked, -1); 2594 2595 gfs2_statfs_change(sdp, 0, +1, -1); 2596 trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE); 2597 gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid); 2598 gfs2_journal_wipe(ip, ip->i_no_addr, 1); 2599 } 2600 2601 /** 2602 * gfs2_check_blk_type - Check the type of a block 2603 * @sdp: The superblock 2604 * @no_addr: The block number to check 2605 * @type: The block type we are looking for 2606 * 2607 * The inode glock of @no_addr must be held. The @type to check for is either 2608 * GFS2_BLKST_DINODE or GFS2_BLKST_UNLINKED; checking for type GFS2_BLKST_FREE 2609 * or GFS2_BLKST_USED would make no sense. 2610 * 2611 * Returns: 0 if the block type matches the expected type 2612 * -ESTALE if it doesn't match 2613 * or -ve errno if something went wrong while checking 2614 */ 2615 2616 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type) 2617 { 2618 struct gfs2_rgrpd *rgd; 2619 struct gfs2_holder rgd_gh; 2620 struct gfs2_rbm rbm; 2621 int error = -EINVAL; 2622 2623 rgd = gfs2_blk2rgrpd(sdp, no_addr, 1); 2624 if (!rgd) 2625 goto fail; 2626 2627 error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh); 2628 if (error) 2629 goto fail; 2630 2631 rbm.rgd = rgd; 2632 error = gfs2_rbm_from_block(&rbm, no_addr); 2633 if (!WARN_ON_ONCE(error)) { 2634 /* 2635 * No need to take the local resource group lock here; the 2636 * inode glock of @no_addr provides the necessary 2637 * synchronization in case the block is an inode. (In case 2638 * the block is not an inode, the block type will not match 2639 * the @type we are looking for.) 2640 */ 2641 if (gfs2_testbit(&rbm, false) != type) 2642 error = -ESTALE; 2643 } 2644 2645 gfs2_glock_dq_uninit(&rgd_gh); 2646 2647 fail: 2648 return error; 2649 } 2650 2651 /** 2652 * gfs2_rlist_add - add a RG to a list of RGs 2653 * @ip: the inode 2654 * @rlist: the list of resource groups 2655 * @block: the block 2656 * 2657 * Figure out what RG a block belongs to and add that RG to the list 2658 * 2659 * FIXME: Don't use NOFAIL 2660 * 2661 */ 2662 2663 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist, 2664 u64 block) 2665 { 2666 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2667 struct gfs2_rgrpd *rgd; 2668 struct gfs2_rgrpd **tmp; 2669 unsigned int new_space; 2670 unsigned int x; 2671 2672 if (gfs2_assert_warn(sdp, !rlist->rl_ghs)) 2673 return; 2674 2675 /* 2676 * The resource group last accessed is kept in the last position. 2677 */ 2678 2679 if (rlist->rl_rgrps) { 2680 rgd = rlist->rl_rgd[rlist->rl_rgrps - 1]; 2681 if (rgrp_contains_block(rgd, block)) 2682 return; 2683 rgd = gfs2_blk2rgrpd(sdp, block, 1); 2684 } else { 2685 rgd = ip->i_res.rs_rgd; 2686 if (!rgd || !rgrp_contains_block(rgd, block)) 2687 rgd = gfs2_blk2rgrpd(sdp, block, 1); 2688 } 2689 2690 if (!rgd) { 2691 fs_err(sdp, "rlist_add: no rgrp for block %llu\n", 2692 (unsigned long long)block); 2693 return; 2694 } 2695 2696 for (x = 0; x < rlist->rl_rgrps; x++) { 2697 if (rlist->rl_rgd[x] == rgd) { 2698 swap(rlist->rl_rgd[x], 2699 rlist->rl_rgd[rlist->rl_rgrps - 1]); 2700 return; 2701 } 2702 } 2703 2704 if (rlist->rl_rgrps == rlist->rl_space) { 2705 new_space = rlist->rl_space + 10; 2706 2707 tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *), 2708 GFP_NOFS | __GFP_NOFAIL); 2709 2710 if (rlist->rl_rgd) { 2711 memcpy(tmp, rlist->rl_rgd, 2712 rlist->rl_space * sizeof(struct gfs2_rgrpd *)); 2713 kfree(rlist->rl_rgd); 2714 } 2715 2716 rlist->rl_space = new_space; 2717 rlist->rl_rgd = tmp; 2718 } 2719 2720 rlist->rl_rgd[rlist->rl_rgrps++] = rgd; 2721 } 2722 2723 /** 2724 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate 2725 * and initialize an array of glock holders for them 2726 * @rlist: the list of resource groups 2727 * 2728 * FIXME: Don't use NOFAIL 2729 * 2730 */ 2731 2732 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist) 2733 { 2734 unsigned int x; 2735 2736 rlist->rl_ghs = kmalloc_array(rlist->rl_rgrps, 2737 sizeof(struct gfs2_holder), 2738 GFP_NOFS | __GFP_NOFAIL); 2739 for (x = 0; x < rlist->rl_rgrps; x++) 2740 gfs2_holder_init(rlist->rl_rgd[x]->rd_gl, LM_ST_EXCLUSIVE, 2741 LM_FLAG_NODE_SCOPE, &rlist->rl_ghs[x]); 2742 } 2743 2744 /** 2745 * gfs2_rlist_free - free a resource group list 2746 * @rlist: the list of resource groups 2747 * 2748 */ 2749 2750 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist) 2751 { 2752 unsigned int x; 2753 2754 kfree(rlist->rl_rgd); 2755 2756 if (rlist->rl_ghs) { 2757 for (x = 0; x < rlist->rl_rgrps; x++) 2758 gfs2_holder_uninit(&rlist->rl_ghs[x]); 2759 kfree(rlist->rl_ghs); 2760 rlist->rl_ghs = NULL; 2761 } 2762 } 2763 2764 void rgrp_lock_local(struct gfs2_rgrpd *rgd) 2765 { 2766 BUG_ON(!gfs2_glock_is_held_excl(rgd->rd_gl) && 2767 !test_bit(SDF_NORECOVERY, &rgd->rd_sbd->sd_flags)); 2768 mutex_lock(&rgd->rd_mutex); 2769 } 2770 2771 void rgrp_unlock_local(struct gfs2_rgrpd *rgd) 2772 { 2773 mutex_unlock(&rgd->rd_mutex); 2774 } 2775