xref: /linux/fs/gfs2/rgrp.c (revision 4d5e3b06e1fc1428be14cd4ebe3b37c1bb34f95d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
4  * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
5  */
6 
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 
9 #include <linux/slab.h>
10 #include <linux/spinlock.h>
11 #include <linux/completion.h>
12 #include <linux/buffer_head.h>
13 #include <linux/fs.h>
14 #include <linux/gfs2_ondisk.h>
15 #include <linux/prefetch.h>
16 #include <linux/blkdev.h>
17 #include <linux/rbtree.h>
18 #include <linux/random.h>
19 
20 #include "gfs2.h"
21 #include "incore.h"
22 #include "glock.h"
23 #include "glops.h"
24 #include "lops.h"
25 #include "meta_io.h"
26 #include "quota.h"
27 #include "rgrp.h"
28 #include "super.h"
29 #include "trans.h"
30 #include "util.h"
31 #include "log.h"
32 #include "inode.h"
33 #include "trace_gfs2.h"
34 #include "dir.h"
35 
36 #define BFITNOENT ((u32)~0)
37 #define NO_BLOCK ((u64)~0)
38 
39 struct gfs2_rbm {
40 	struct gfs2_rgrpd *rgd;
41 	u32 offset;		/* The offset is bitmap relative */
42 	int bii;		/* Bitmap index */
43 };
44 
45 static inline struct gfs2_bitmap *rbm_bi(const struct gfs2_rbm *rbm)
46 {
47 	return rbm->rgd->rd_bits + rbm->bii;
48 }
49 
50 static inline u64 gfs2_rbm_to_block(const struct gfs2_rbm *rbm)
51 {
52 	BUG_ON(rbm->offset >= rbm->rgd->rd_data);
53 	return rbm->rgd->rd_data0 + (rbm_bi(rbm)->bi_start * GFS2_NBBY) +
54 		rbm->offset;
55 }
56 
57 /*
58  * These routines are used by the resource group routines (rgrp.c)
59  * to keep track of block allocation.  Each block is represented by two
60  * bits.  So, each byte represents GFS2_NBBY (i.e. 4) blocks.
61  *
62  * 0 = Free
63  * 1 = Used (not metadata)
64  * 2 = Unlinked (still in use) inode
65  * 3 = Used (metadata)
66  */
67 
68 struct gfs2_extent {
69 	struct gfs2_rbm rbm;
70 	u32 len;
71 };
72 
73 static const char valid_change[16] = {
74 	        /* current */
75 	/* n */ 0, 1, 1, 1,
76 	/* e */ 1, 0, 0, 0,
77 	/* w */ 0, 0, 0, 1,
78 	        1, 0, 0, 0
79 };
80 
81 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
82 			 struct gfs2_blkreserv *rs, bool nowrap);
83 
84 
85 /**
86  * gfs2_setbit - Set a bit in the bitmaps
87  * @rbm: The position of the bit to set
88  * @do_clone: Also set the clone bitmap, if it exists
89  * @new_state: the new state of the block
90  *
91  */
92 
93 static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone,
94 			       unsigned char new_state)
95 {
96 	unsigned char *byte1, *byte2, *end, cur_state;
97 	struct gfs2_bitmap *bi = rbm_bi(rbm);
98 	unsigned int buflen = bi->bi_bytes;
99 	const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
100 
101 	byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY);
102 	end = bi->bi_bh->b_data + bi->bi_offset + buflen;
103 
104 	BUG_ON(byte1 >= end);
105 
106 	cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
107 
108 	if (unlikely(!valid_change[new_state * 4 + cur_state])) {
109 		struct gfs2_sbd *sdp = rbm->rgd->rd_sbd;
110 
111 		fs_warn(sdp, "buf_blk = 0x%x old_state=%d, new_state=%d\n",
112 			rbm->offset, cur_state, new_state);
113 		fs_warn(sdp, "rgrp=0x%llx bi_start=0x%x biblk: 0x%llx\n",
114 			(unsigned long long)rbm->rgd->rd_addr, bi->bi_start,
115 			(unsigned long long)bi->bi_bh->b_blocknr);
116 		fs_warn(sdp, "bi_offset=0x%x bi_bytes=0x%x block=0x%llx\n",
117 			bi->bi_offset, bi->bi_bytes,
118 			(unsigned long long)gfs2_rbm_to_block(rbm));
119 		dump_stack();
120 		gfs2_consist_rgrpd(rbm->rgd);
121 		return;
122 	}
123 	*byte1 ^= (cur_state ^ new_state) << bit;
124 
125 	if (do_clone && bi->bi_clone) {
126 		byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY);
127 		cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
128 		*byte2 ^= (cur_state ^ new_state) << bit;
129 	}
130 }
131 
132 /**
133  * gfs2_testbit - test a bit in the bitmaps
134  * @rbm: The bit to test
135  * @use_clone: If true, test the clone bitmap, not the official bitmap.
136  *
137  * Some callers like gfs2_unaligned_extlen need to test the clone bitmaps,
138  * not the "real" bitmaps, to avoid allocating recently freed blocks.
139  *
140  * Returns: The two bit block state of the requested bit
141  */
142 
143 static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm, bool use_clone)
144 {
145 	struct gfs2_bitmap *bi = rbm_bi(rbm);
146 	const u8 *buffer;
147 	const u8 *byte;
148 	unsigned int bit;
149 
150 	if (use_clone && bi->bi_clone)
151 		buffer = bi->bi_clone;
152 	else
153 		buffer = bi->bi_bh->b_data;
154 	buffer += bi->bi_offset;
155 	byte = buffer + (rbm->offset / GFS2_NBBY);
156 	bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
157 
158 	return (*byte >> bit) & GFS2_BIT_MASK;
159 }
160 
161 /**
162  * gfs2_bit_search
163  * @ptr: Pointer to bitmap data
164  * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
165  * @state: The state we are searching for
166  *
167  * We xor the bitmap data with a patter which is the bitwise opposite
168  * of what we are looking for, this gives rise to a pattern of ones
169  * wherever there is a match. Since we have two bits per entry, we
170  * take this pattern, shift it down by one place and then and it with
171  * the original. All the even bit positions (0,2,4, etc) then represent
172  * successful matches, so we mask with 0x55555..... to remove the unwanted
173  * odd bit positions.
174  *
175  * This allows searching of a whole u64 at once (32 blocks) with a
176  * single test (on 64 bit arches).
177  */
178 
179 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
180 {
181 	u64 tmp;
182 	static const u64 search[] = {
183 		[0] = 0xffffffffffffffffULL,
184 		[1] = 0xaaaaaaaaaaaaaaaaULL,
185 		[2] = 0x5555555555555555ULL,
186 		[3] = 0x0000000000000000ULL,
187 	};
188 	tmp = le64_to_cpu(*ptr) ^ search[state];
189 	tmp &= (tmp >> 1);
190 	tmp &= mask;
191 	return tmp;
192 }
193 
194 /**
195  * rs_cmp - multi-block reservation range compare
196  * @start: start of the new reservation
197  * @len: number of blocks in the new reservation
198  * @rs: existing reservation to compare against
199  *
200  * returns: 1 if the block range is beyond the reach of the reservation
201  *         -1 if the block range is before the start of the reservation
202  *          0 if the block range overlaps with the reservation
203  */
204 static inline int rs_cmp(u64 start, u32 len, struct gfs2_blkreserv *rs)
205 {
206 	if (start >= rs->rs_start + rs->rs_requested)
207 		return 1;
208 	if (rs->rs_start >= start + len)
209 		return -1;
210 	return 0;
211 }
212 
213 /**
214  * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
215  *       a block in a given allocation state.
216  * @buf: the buffer that holds the bitmaps
217  * @len: the length (in bytes) of the buffer
218  * @goal: start search at this block's bit-pair (within @buffer)
219  * @state: GFS2_BLKST_XXX the state of the block we're looking for.
220  *
221  * Scope of @goal and returned block number is only within this bitmap buffer,
222  * not entire rgrp or filesystem.  @buffer will be offset from the actual
223  * beginning of a bitmap block buffer, skipping any header structures, but
224  * headers are always a multiple of 64 bits long so that the buffer is
225  * always aligned to a 64 bit boundary.
226  *
227  * The size of the buffer is in bytes, but is it assumed that it is
228  * always ok to read a complete multiple of 64 bits at the end
229  * of the block in case the end is no aligned to a natural boundary.
230  *
231  * Return: the block number (bitmap buffer scope) that was found
232  */
233 
234 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
235 		       u32 goal, u8 state)
236 {
237 	u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
238 	const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
239 	const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
240 	u64 tmp;
241 	u64 mask = 0x5555555555555555ULL;
242 	u32 bit;
243 
244 	/* Mask off bits we don't care about at the start of the search */
245 	mask <<= spoint;
246 	tmp = gfs2_bit_search(ptr, mask, state);
247 	ptr++;
248 	while(tmp == 0 && ptr < end) {
249 		tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
250 		ptr++;
251 	}
252 	/* Mask off any bits which are more than len bytes from the start */
253 	if (ptr == end && (len & (sizeof(u64) - 1)))
254 		tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
255 	/* Didn't find anything, so return */
256 	if (tmp == 0)
257 		return BFITNOENT;
258 	ptr--;
259 	bit = __ffs64(tmp);
260 	bit /= 2;	/* two bits per entry in the bitmap */
261 	return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
262 }
263 
264 /**
265  * gfs2_rbm_from_block - Set the rbm based upon rgd and block number
266  * @rbm: The rbm with rgd already set correctly
267  * @block: The block number (filesystem relative)
268  *
269  * This sets the bi and offset members of an rbm based on a
270  * resource group and a filesystem relative block number. The
271  * resource group must be set in the rbm on entry, the bi and
272  * offset members will be set by this function.
273  *
274  * Returns: 0 on success, or an error code
275  */
276 
277 static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block)
278 {
279 	if (!rgrp_contains_block(rbm->rgd, block))
280 		return -E2BIG;
281 	rbm->bii = 0;
282 	rbm->offset = block - rbm->rgd->rd_data0;
283 	/* Check if the block is within the first block */
284 	if (rbm->offset < rbm_bi(rbm)->bi_blocks)
285 		return 0;
286 
287 	/* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */
288 	rbm->offset += (sizeof(struct gfs2_rgrp) -
289 			sizeof(struct gfs2_meta_header)) * GFS2_NBBY;
290 	rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
291 	rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
292 	return 0;
293 }
294 
295 /**
296  * gfs2_rbm_add - add a number of blocks to an rbm
297  * @rbm: The rbm with rgd already set correctly
298  * @blocks: The number of blocks to add to rpm
299  *
300  * This function takes an existing rbm structure and adds a number of blocks to
301  * it.
302  *
303  * Returns: True if the new rbm would point past the end of the rgrp.
304  */
305 
306 static bool gfs2_rbm_add(struct gfs2_rbm *rbm, u32 blocks)
307 {
308 	struct gfs2_rgrpd *rgd = rbm->rgd;
309 	struct gfs2_bitmap *bi = rgd->rd_bits + rbm->bii;
310 
311 	if (rbm->offset + blocks < bi->bi_blocks) {
312 		rbm->offset += blocks;
313 		return false;
314 	}
315 	blocks -= bi->bi_blocks - rbm->offset;
316 
317 	for(;;) {
318 		bi++;
319 		if (bi == rgd->rd_bits + rgd->rd_length)
320 			return true;
321 		if (blocks < bi->bi_blocks) {
322 			rbm->offset = blocks;
323 			rbm->bii = bi - rgd->rd_bits;
324 			return false;
325 		}
326 		blocks -= bi->bi_blocks;
327 	}
328 }
329 
330 /**
331  * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned
332  * @rbm: Position to search (value/result)
333  * @n_unaligned: Number of unaligned blocks to check
334  * @len: Decremented for each block found (terminate on zero)
335  *
336  * Returns: true if a non-free block is encountered or the end of the resource
337  *	    group is reached.
338  */
339 
340 static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len)
341 {
342 	u32 n;
343 	u8 res;
344 
345 	for (n = 0; n < n_unaligned; n++) {
346 		res = gfs2_testbit(rbm, true);
347 		if (res != GFS2_BLKST_FREE)
348 			return true;
349 		(*len)--;
350 		if (*len == 0)
351 			return true;
352 		if (gfs2_rbm_add(rbm, 1))
353 			return true;
354 	}
355 
356 	return false;
357 }
358 
359 /**
360  * gfs2_free_extlen - Return extent length of free blocks
361  * @rrbm: Starting position
362  * @len: Max length to check
363  *
364  * Starting at the block specified by the rbm, see how many free blocks
365  * there are, not reading more than len blocks ahead. This can be done
366  * using memchr_inv when the blocks are byte aligned, but has to be done
367  * on a block by block basis in case of unaligned blocks. Also this
368  * function can cope with bitmap boundaries (although it must stop on
369  * a resource group boundary)
370  *
371  * Returns: Number of free blocks in the extent
372  */
373 
374 static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len)
375 {
376 	struct gfs2_rbm rbm = *rrbm;
377 	u32 n_unaligned = rbm.offset & 3;
378 	u32 size = len;
379 	u32 bytes;
380 	u32 chunk_size;
381 	u8 *ptr, *start, *end;
382 	u64 block;
383 	struct gfs2_bitmap *bi;
384 
385 	if (n_unaligned &&
386 	    gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len))
387 		goto out;
388 
389 	n_unaligned = len & 3;
390 	/* Start is now byte aligned */
391 	while (len > 3) {
392 		bi = rbm_bi(&rbm);
393 		start = bi->bi_bh->b_data;
394 		if (bi->bi_clone)
395 			start = bi->bi_clone;
396 		start += bi->bi_offset;
397 		end = start + bi->bi_bytes;
398 		BUG_ON(rbm.offset & 3);
399 		start += (rbm.offset / GFS2_NBBY);
400 		bytes = min_t(u32, len / GFS2_NBBY, (end - start));
401 		ptr = memchr_inv(start, 0, bytes);
402 		chunk_size = ((ptr == NULL) ? bytes : (ptr - start));
403 		chunk_size *= GFS2_NBBY;
404 		BUG_ON(len < chunk_size);
405 		len -= chunk_size;
406 		block = gfs2_rbm_to_block(&rbm);
407 		if (gfs2_rbm_from_block(&rbm, block + chunk_size)) {
408 			n_unaligned = 0;
409 			break;
410 		}
411 		if (ptr) {
412 			n_unaligned = 3;
413 			break;
414 		}
415 		n_unaligned = len & 3;
416 	}
417 
418 	/* Deal with any bits left over at the end */
419 	if (n_unaligned)
420 		gfs2_unaligned_extlen(&rbm, n_unaligned, &len);
421 out:
422 	return size - len;
423 }
424 
425 /**
426  * gfs2_bitcount - count the number of bits in a certain state
427  * @rgd: the resource group descriptor
428  * @buffer: the buffer that holds the bitmaps
429  * @buflen: the length (in bytes) of the buffer
430  * @state: the state of the block we're looking for
431  *
432  * Returns: The number of bits
433  */
434 
435 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
436 			 unsigned int buflen, u8 state)
437 {
438 	const u8 *byte = buffer;
439 	const u8 *end = buffer + buflen;
440 	const u8 state1 = state << 2;
441 	const u8 state2 = state << 4;
442 	const u8 state3 = state << 6;
443 	u32 count = 0;
444 
445 	for (; byte < end; byte++) {
446 		if (((*byte) & 0x03) == state)
447 			count++;
448 		if (((*byte) & 0x0C) == state1)
449 			count++;
450 		if (((*byte) & 0x30) == state2)
451 			count++;
452 		if (((*byte) & 0xC0) == state3)
453 			count++;
454 	}
455 
456 	return count;
457 }
458 
459 /**
460  * gfs2_rgrp_verify - Verify that a resource group is consistent
461  * @rgd: the rgrp
462  *
463  */
464 
465 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
466 {
467 	struct gfs2_sbd *sdp = rgd->rd_sbd;
468 	struct gfs2_bitmap *bi = NULL;
469 	u32 length = rgd->rd_length;
470 	u32 count[4], tmp;
471 	int buf, x;
472 
473 	memset(count, 0, 4 * sizeof(u32));
474 
475 	/* Count # blocks in each of 4 possible allocation states */
476 	for (buf = 0; buf < length; buf++) {
477 		bi = rgd->rd_bits + buf;
478 		for (x = 0; x < 4; x++)
479 			count[x] += gfs2_bitcount(rgd,
480 						  bi->bi_bh->b_data +
481 						  bi->bi_offset,
482 						  bi->bi_bytes, x);
483 	}
484 
485 	if (count[0] != rgd->rd_free) {
486 		gfs2_lm(sdp, "free data mismatch:  %u != %u\n",
487 			count[0], rgd->rd_free);
488 		gfs2_consist_rgrpd(rgd);
489 		return;
490 	}
491 
492 	tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
493 	if (count[1] != tmp) {
494 		gfs2_lm(sdp, "used data mismatch:  %u != %u\n",
495 			count[1], tmp);
496 		gfs2_consist_rgrpd(rgd);
497 		return;
498 	}
499 
500 	if (count[2] + count[3] != rgd->rd_dinodes) {
501 		gfs2_lm(sdp, "used metadata mismatch:  %u != %u\n",
502 			count[2] + count[3], rgd->rd_dinodes);
503 		gfs2_consist_rgrpd(rgd);
504 		return;
505 	}
506 }
507 
508 /**
509  * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
510  * @sdp: The GFS2 superblock
511  * @blk: The data block number
512  * @exact: True if this needs to be an exact match
513  *
514  * The @exact argument should be set to true by most callers. The exception
515  * is when we need to match blocks which are not represented by the rgrp
516  * bitmap, but which are part of the rgrp (i.e. padding blocks) which are
517  * there for alignment purposes. Another way of looking at it is that @exact
518  * matches only valid data/metadata blocks, but with @exact false, it will
519  * match any block within the extent of the rgrp.
520  *
521  * Returns: The resource group, or NULL if not found
522  */
523 
524 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
525 {
526 	struct rb_node *n, *next;
527 	struct gfs2_rgrpd *cur;
528 
529 	spin_lock(&sdp->sd_rindex_spin);
530 	n = sdp->sd_rindex_tree.rb_node;
531 	while (n) {
532 		cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
533 		next = NULL;
534 		if (blk < cur->rd_addr)
535 			next = n->rb_left;
536 		else if (blk >= cur->rd_data0 + cur->rd_data)
537 			next = n->rb_right;
538 		if (next == NULL) {
539 			spin_unlock(&sdp->sd_rindex_spin);
540 			if (exact) {
541 				if (blk < cur->rd_addr)
542 					return NULL;
543 				if (blk >= cur->rd_data0 + cur->rd_data)
544 					return NULL;
545 			}
546 			return cur;
547 		}
548 		n = next;
549 	}
550 	spin_unlock(&sdp->sd_rindex_spin);
551 
552 	return NULL;
553 }
554 
555 /**
556  * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
557  * @sdp: The GFS2 superblock
558  *
559  * Returns: The first rgrp in the filesystem
560  */
561 
562 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
563 {
564 	const struct rb_node *n;
565 	struct gfs2_rgrpd *rgd;
566 
567 	spin_lock(&sdp->sd_rindex_spin);
568 	n = rb_first(&sdp->sd_rindex_tree);
569 	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
570 	spin_unlock(&sdp->sd_rindex_spin);
571 
572 	return rgd;
573 }
574 
575 /**
576  * gfs2_rgrpd_get_next - get the next RG
577  * @rgd: the resource group descriptor
578  *
579  * Returns: The next rgrp
580  */
581 
582 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
583 {
584 	struct gfs2_sbd *sdp = rgd->rd_sbd;
585 	const struct rb_node *n;
586 
587 	spin_lock(&sdp->sd_rindex_spin);
588 	n = rb_next(&rgd->rd_node);
589 	if (n == NULL)
590 		n = rb_first(&sdp->sd_rindex_tree);
591 
592 	if (unlikely(&rgd->rd_node == n)) {
593 		spin_unlock(&sdp->sd_rindex_spin);
594 		return NULL;
595 	}
596 	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
597 	spin_unlock(&sdp->sd_rindex_spin);
598 	return rgd;
599 }
600 
601 void check_and_update_goal(struct gfs2_inode *ip)
602 {
603 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
604 	if (!ip->i_goal || gfs2_blk2rgrpd(sdp, ip->i_goal, 1) == NULL)
605 		ip->i_goal = ip->i_no_addr;
606 }
607 
608 void gfs2_free_clones(struct gfs2_rgrpd *rgd)
609 {
610 	int x;
611 
612 	for (x = 0; x < rgd->rd_length; x++) {
613 		struct gfs2_bitmap *bi = rgd->rd_bits + x;
614 		kfree(bi->bi_clone);
615 		bi->bi_clone = NULL;
616 	}
617 }
618 
619 static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs,
620 		    const char *fs_id_buf)
621 {
622 	struct gfs2_inode *ip = container_of(rs, struct gfs2_inode, i_res);
623 
624 	gfs2_print_dbg(seq, "%s  B: n:%llu s:%llu f:%u\n",
625 		       fs_id_buf,
626 		       (unsigned long long)ip->i_no_addr,
627 		       (unsigned long long)rs->rs_start,
628 		       rs->rs_requested);
629 }
630 
631 /**
632  * __rs_deltree - remove a multi-block reservation from the rgd tree
633  * @rs: The reservation to remove
634  *
635  */
636 static void __rs_deltree(struct gfs2_blkreserv *rs)
637 {
638 	struct gfs2_rgrpd *rgd;
639 
640 	if (!gfs2_rs_active(rs))
641 		return;
642 
643 	rgd = rs->rs_rgd;
644 	trace_gfs2_rs(rs, TRACE_RS_TREEDEL);
645 	rb_erase(&rs->rs_node, &rgd->rd_rstree);
646 	RB_CLEAR_NODE(&rs->rs_node);
647 
648 	if (rs->rs_requested) {
649 		/* return requested blocks to the rgrp */
650 		BUG_ON(rs->rs_rgd->rd_requested < rs->rs_requested);
651 		rs->rs_rgd->rd_requested -= rs->rs_requested;
652 
653 		/* The rgrp extent failure point is likely not to increase;
654 		   it will only do so if the freed blocks are somehow
655 		   contiguous with a span of free blocks that follows. Still,
656 		   it will force the number to be recalculated later. */
657 		rgd->rd_extfail_pt += rs->rs_requested;
658 		rs->rs_requested = 0;
659 	}
660 }
661 
662 /**
663  * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
664  * @rs: The reservation to remove
665  *
666  */
667 void gfs2_rs_deltree(struct gfs2_blkreserv *rs)
668 {
669 	struct gfs2_rgrpd *rgd;
670 
671 	rgd = rs->rs_rgd;
672 	if (rgd) {
673 		spin_lock(&rgd->rd_rsspin);
674 		__rs_deltree(rs);
675 		BUG_ON(rs->rs_requested);
676 		spin_unlock(&rgd->rd_rsspin);
677 	}
678 }
679 
680 /**
681  * gfs2_rs_delete - delete a multi-block reservation
682  * @ip: The inode for this reservation
683  *
684  */
685 void gfs2_rs_delete(struct gfs2_inode *ip)
686 {
687 	struct inode *inode = &ip->i_inode;
688 
689 	down_write(&ip->i_rw_mutex);
690 	if (atomic_read(&inode->i_writecount) <= 1)
691 		gfs2_rs_deltree(&ip->i_res);
692 	up_write(&ip->i_rw_mutex);
693 }
694 
695 /**
696  * return_all_reservations - return all reserved blocks back to the rgrp.
697  * @rgd: the rgrp that needs its space back
698  *
699  * We previously reserved a bunch of blocks for allocation. Now we need to
700  * give them back. This leave the reservation structures in tact, but removes
701  * all of their corresponding "no-fly zones".
702  */
703 static void return_all_reservations(struct gfs2_rgrpd *rgd)
704 {
705 	struct rb_node *n;
706 	struct gfs2_blkreserv *rs;
707 
708 	spin_lock(&rgd->rd_rsspin);
709 	while ((n = rb_first(&rgd->rd_rstree))) {
710 		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
711 		__rs_deltree(rs);
712 	}
713 	spin_unlock(&rgd->rd_rsspin);
714 }
715 
716 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
717 {
718 	struct rb_node *n;
719 	struct gfs2_rgrpd *rgd;
720 	struct gfs2_glock *gl;
721 
722 	while ((n = rb_first(&sdp->sd_rindex_tree))) {
723 		rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
724 		gl = rgd->rd_gl;
725 
726 		rb_erase(n, &sdp->sd_rindex_tree);
727 
728 		if (gl) {
729 			if (gl->gl_state != LM_ST_UNLOCKED) {
730 				gfs2_glock_cb(gl, LM_ST_UNLOCKED);
731 				flush_delayed_work(&gl->gl_work);
732 			}
733 			gfs2_rgrp_brelse(rgd);
734 			glock_clear_object(gl, rgd);
735 			gfs2_glock_put(gl);
736 		}
737 
738 		gfs2_free_clones(rgd);
739 		return_all_reservations(rgd);
740 		kfree(rgd->rd_bits);
741 		rgd->rd_bits = NULL;
742 		kmem_cache_free(gfs2_rgrpd_cachep, rgd);
743 	}
744 }
745 
746 /**
747  * compute_bitstructs - Compute the bitmap sizes
748  * @rgd: The resource group descriptor
749  *
750  * Calculates bitmap descriptors, one for each block that contains bitmap data
751  *
752  * Returns: errno
753  */
754 
755 static int compute_bitstructs(struct gfs2_rgrpd *rgd)
756 {
757 	struct gfs2_sbd *sdp = rgd->rd_sbd;
758 	struct gfs2_bitmap *bi;
759 	u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
760 	u32 bytes_left, bytes;
761 	int x;
762 
763 	if (!length)
764 		return -EINVAL;
765 
766 	rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
767 	if (!rgd->rd_bits)
768 		return -ENOMEM;
769 
770 	bytes_left = rgd->rd_bitbytes;
771 
772 	for (x = 0; x < length; x++) {
773 		bi = rgd->rd_bits + x;
774 
775 		bi->bi_flags = 0;
776 		/* small rgrp; bitmap stored completely in header block */
777 		if (length == 1) {
778 			bytes = bytes_left;
779 			bi->bi_offset = sizeof(struct gfs2_rgrp);
780 			bi->bi_start = 0;
781 			bi->bi_bytes = bytes;
782 			bi->bi_blocks = bytes * GFS2_NBBY;
783 		/* header block */
784 		} else if (x == 0) {
785 			bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
786 			bi->bi_offset = sizeof(struct gfs2_rgrp);
787 			bi->bi_start = 0;
788 			bi->bi_bytes = bytes;
789 			bi->bi_blocks = bytes * GFS2_NBBY;
790 		/* last block */
791 		} else if (x + 1 == length) {
792 			bytes = bytes_left;
793 			bi->bi_offset = sizeof(struct gfs2_meta_header);
794 			bi->bi_start = rgd->rd_bitbytes - bytes_left;
795 			bi->bi_bytes = bytes;
796 			bi->bi_blocks = bytes * GFS2_NBBY;
797 		/* other blocks */
798 		} else {
799 			bytes = sdp->sd_sb.sb_bsize -
800 				sizeof(struct gfs2_meta_header);
801 			bi->bi_offset = sizeof(struct gfs2_meta_header);
802 			bi->bi_start = rgd->rd_bitbytes - bytes_left;
803 			bi->bi_bytes = bytes;
804 			bi->bi_blocks = bytes * GFS2_NBBY;
805 		}
806 
807 		bytes_left -= bytes;
808 	}
809 
810 	if (bytes_left) {
811 		gfs2_consist_rgrpd(rgd);
812 		return -EIO;
813 	}
814 	bi = rgd->rd_bits + (length - 1);
815 	if ((bi->bi_start + bi->bi_bytes) * GFS2_NBBY != rgd->rd_data) {
816 		gfs2_lm(sdp,
817 			"ri_addr = %llu\n"
818 			"ri_length = %u\n"
819 			"ri_data0 = %llu\n"
820 			"ri_data = %u\n"
821 			"ri_bitbytes = %u\n"
822 			"start=%u len=%u offset=%u\n",
823 			(unsigned long long)rgd->rd_addr,
824 			rgd->rd_length,
825 			(unsigned long long)rgd->rd_data0,
826 			rgd->rd_data,
827 			rgd->rd_bitbytes,
828 			bi->bi_start, bi->bi_bytes, bi->bi_offset);
829 		gfs2_consist_rgrpd(rgd);
830 		return -EIO;
831 	}
832 
833 	return 0;
834 }
835 
836 /**
837  * gfs2_ri_total - Total up the file system space, according to the rindex.
838  * @sdp: the filesystem
839  *
840  */
841 u64 gfs2_ri_total(struct gfs2_sbd *sdp)
842 {
843 	u64 total_data = 0;
844 	struct inode *inode = sdp->sd_rindex;
845 	struct gfs2_inode *ip = GFS2_I(inode);
846 	char buf[sizeof(struct gfs2_rindex)];
847 	int error, rgrps;
848 
849 	for (rgrps = 0;; rgrps++) {
850 		loff_t pos = rgrps * sizeof(struct gfs2_rindex);
851 
852 		if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
853 			break;
854 		error = gfs2_internal_read(ip, buf, &pos,
855 					   sizeof(struct gfs2_rindex));
856 		if (error != sizeof(struct gfs2_rindex))
857 			break;
858 		total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
859 	}
860 	return total_data;
861 }
862 
863 static int rgd_insert(struct gfs2_rgrpd *rgd)
864 {
865 	struct gfs2_sbd *sdp = rgd->rd_sbd;
866 	struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
867 
868 	/* Figure out where to put new node */
869 	while (*newn) {
870 		struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
871 						  rd_node);
872 
873 		parent = *newn;
874 		if (rgd->rd_addr < cur->rd_addr)
875 			newn = &((*newn)->rb_left);
876 		else if (rgd->rd_addr > cur->rd_addr)
877 			newn = &((*newn)->rb_right);
878 		else
879 			return -EEXIST;
880 	}
881 
882 	rb_link_node(&rgd->rd_node, parent, newn);
883 	rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
884 	sdp->sd_rgrps++;
885 	return 0;
886 }
887 
888 /**
889  * read_rindex_entry - Pull in a new resource index entry from the disk
890  * @ip: Pointer to the rindex inode
891  *
892  * Returns: 0 on success, > 0 on EOF, error code otherwise
893  */
894 
895 static int read_rindex_entry(struct gfs2_inode *ip)
896 {
897 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
898 	loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
899 	struct gfs2_rindex buf;
900 	int error;
901 	struct gfs2_rgrpd *rgd;
902 
903 	if (pos >= i_size_read(&ip->i_inode))
904 		return 1;
905 
906 	error = gfs2_internal_read(ip, (char *)&buf, &pos,
907 				   sizeof(struct gfs2_rindex));
908 
909 	if (error != sizeof(struct gfs2_rindex))
910 		return (error == 0) ? 1 : error;
911 
912 	rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
913 	error = -ENOMEM;
914 	if (!rgd)
915 		return error;
916 
917 	rgd->rd_sbd = sdp;
918 	rgd->rd_addr = be64_to_cpu(buf.ri_addr);
919 	rgd->rd_length = be32_to_cpu(buf.ri_length);
920 	rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
921 	rgd->rd_data = be32_to_cpu(buf.ri_data);
922 	rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
923 	spin_lock_init(&rgd->rd_rsspin);
924 	mutex_init(&rgd->rd_mutex);
925 
926 	error = gfs2_glock_get(sdp, rgd->rd_addr,
927 			       &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
928 	if (error)
929 		goto fail;
930 
931 	error = compute_bitstructs(rgd);
932 	if (error)
933 		goto fail_glock;
934 
935 	rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr;
936 	rgd->rd_flags &= ~GFS2_RDF_PREFERRED;
937 	if (rgd->rd_data > sdp->sd_max_rg_data)
938 		sdp->sd_max_rg_data = rgd->rd_data;
939 	spin_lock(&sdp->sd_rindex_spin);
940 	error = rgd_insert(rgd);
941 	spin_unlock(&sdp->sd_rindex_spin);
942 	if (!error) {
943 		glock_set_object(rgd->rd_gl, rgd);
944 		return 0;
945 	}
946 
947 	error = 0; /* someone else read in the rgrp; free it and ignore it */
948 fail_glock:
949 	gfs2_glock_put(rgd->rd_gl);
950 
951 fail:
952 	kfree(rgd->rd_bits);
953 	rgd->rd_bits = NULL;
954 	kmem_cache_free(gfs2_rgrpd_cachep, rgd);
955 	return error;
956 }
957 
958 /**
959  * set_rgrp_preferences - Run all the rgrps, selecting some we prefer to use
960  * @sdp: the GFS2 superblock
961  *
962  * The purpose of this function is to select a subset of the resource groups
963  * and mark them as PREFERRED. We do it in such a way that each node prefers
964  * to use a unique set of rgrps to minimize glock contention.
965  */
966 static void set_rgrp_preferences(struct gfs2_sbd *sdp)
967 {
968 	struct gfs2_rgrpd *rgd, *first;
969 	int i;
970 
971 	/* Skip an initial number of rgrps, based on this node's journal ID.
972 	   That should start each node out on its own set. */
973 	rgd = gfs2_rgrpd_get_first(sdp);
974 	for (i = 0; i < sdp->sd_lockstruct.ls_jid; i++)
975 		rgd = gfs2_rgrpd_get_next(rgd);
976 	first = rgd;
977 
978 	do {
979 		rgd->rd_flags |= GFS2_RDF_PREFERRED;
980 		for (i = 0; i < sdp->sd_journals; i++) {
981 			rgd = gfs2_rgrpd_get_next(rgd);
982 			if (!rgd || rgd == first)
983 				break;
984 		}
985 	} while (rgd && rgd != first);
986 }
987 
988 /**
989  * gfs2_ri_update - Pull in a new resource index from the disk
990  * @ip: pointer to the rindex inode
991  *
992  * Returns: 0 on successful update, error code otherwise
993  */
994 
995 static int gfs2_ri_update(struct gfs2_inode *ip)
996 {
997 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
998 	int error;
999 
1000 	do {
1001 		error = read_rindex_entry(ip);
1002 	} while (error == 0);
1003 
1004 	if (error < 0)
1005 		return error;
1006 
1007 	if (RB_EMPTY_ROOT(&sdp->sd_rindex_tree)) {
1008 		fs_err(sdp, "no resource groups found in the file system.\n");
1009 		return -ENOENT;
1010 	}
1011 	set_rgrp_preferences(sdp);
1012 
1013 	sdp->sd_rindex_uptodate = 1;
1014 	return 0;
1015 }
1016 
1017 /**
1018  * gfs2_rindex_update - Update the rindex if required
1019  * @sdp: The GFS2 superblock
1020  *
1021  * We grab a lock on the rindex inode to make sure that it doesn't
1022  * change whilst we are performing an operation. We keep this lock
1023  * for quite long periods of time compared to other locks. This
1024  * doesn't matter, since it is shared and it is very, very rarely
1025  * accessed in the exclusive mode (i.e. only when expanding the filesystem).
1026  *
1027  * This makes sure that we're using the latest copy of the resource index
1028  * special file, which might have been updated if someone expanded the
1029  * filesystem (via gfs2_grow utility), which adds new resource groups.
1030  *
1031  * Returns: 0 on succeess, error code otherwise
1032  */
1033 
1034 int gfs2_rindex_update(struct gfs2_sbd *sdp)
1035 {
1036 	struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
1037 	struct gfs2_glock *gl = ip->i_gl;
1038 	struct gfs2_holder ri_gh;
1039 	int error = 0;
1040 	int unlock_required = 0;
1041 
1042 	/* Read new copy from disk if we don't have the latest */
1043 	if (!sdp->sd_rindex_uptodate) {
1044 		if (!gfs2_glock_is_locked_by_me(gl)) {
1045 			error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
1046 			if (error)
1047 				return error;
1048 			unlock_required = 1;
1049 		}
1050 		if (!sdp->sd_rindex_uptodate)
1051 			error = gfs2_ri_update(ip);
1052 		if (unlock_required)
1053 			gfs2_glock_dq_uninit(&ri_gh);
1054 	}
1055 
1056 	return error;
1057 }
1058 
1059 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
1060 {
1061 	const struct gfs2_rgrp *str = buf;
1062 	u32 rg_flags;
1063 
1064 	rg_flags = be32_to_cpu(str->rg_flags);
1065 	rg_flags &= ~GFS2_RDF_MASK;
1066 	rgd->rd_flags &= GFS2_RDF_MASK;
1067 	rgd->rd_flags |= rg_flags;
1068 	rgd->rd_free = be32_to_cpu(str->rg_free);
1069 	rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
1070 	rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
1071 	/* rd_data0, rd_data and rd_bitbytes already set from rindex */
1072 }
1073 
1074 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf)
1075 {
1076 	const struct gfs2_rgrp *str = buf;
1077 
1078 	rgl->rl_magic = cpu_to_be32(GFS2_MAGIC);
1079 	rgl->rl_flags = str->rg_flags;
1080 	rgl->rl_free = str->rg_free;
1081 	rgl->rl_dinodes = str->rg_dinodes;
1082 	rgl->rl_igeneration = str->rg_igeneration;
1083 	rgl->__pad = 0UL;
1084 }
1085 
1086 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
1087 {
1088 	struct gfs2_rgrpd *next = gfs2_rgrpd_get_next(rgd);
1089 	struct gfs2_rgrp *str = buf;
1090 	u32 crc;
1091 
1092 	str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
1093 	str->rg_free = cpu_to_be32(rgd->rd_free);
1094 	str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
1095 	if (next == NULL)
1096 		str->rg_skip = 0;
1097 	else if (next->rd_addr > rgd->rd_addr)
1098 		str->rg_skip = cpu_to_be32(next->rd_addr - rgd->rd_addr);
1099 	str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
1100 	str->rg_data0 = cpu_to_be64(rgd->rd_data0);
1101 	str->rg_data = cpu_to_be32(rgd->rd_data);
1102 	str->rg_bitbytes = cpu_to_be32(rgd->rd_bitbytes);
1103 	str->rg_crc = 0;
1104 	crc = gfs2_disk_hash(buf, sizeof(struct gfs2_rgrp));
1105 	str->rg_crc = cpu_to_be32(crc);
1106 
1107 	memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
1108 	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, buf);
1109 }
1110 
1111 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd)
1112 {
1113 	struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1114 	struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data;
1115 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1116 	int valid = 1;
1117 
1118 	if (rgl->rl_flags != str->rg_flags) {
1119 		fs_warn(sdp, "GFS2: rgd: %llu lvb flag mismatch %u/%u",
1120 			(unsigned long long)rgd->rd_addr,
1121 		       be32_to_cpu(rgl->rl_flags), be32_to_cpu(str->rg_flags));
1122 		valid = 0;
1123 	}
1124 	if (rgl->rl_free != str->rg_free) {
1125 		fs_warn(sdp, "GFS2: rgd: %llu lvb free mismatch %u/%u",
1126 			(unsigned long long)rgd->rd_addr,
1127 			be32_to_cpu(rgl->rl_free), be32_to_cpu(str->rg_free));
1128 		valid = 0;
1129 	}
1130 	if (rgl->rl_dinodes != str->rg_dinodes) {
1131 		fs_warn(sdp, "GFS2: rgd: %llu lvb dinode mismatch %u/%u",
1132 			(unsigned long long)rgd->rd_addr,
1133 			be32_to_cpu(rgl->rl_dinodes),
1134 			be32_to_cpu(str->rg_dinodes));
1135 		valid = 0;
1136 	}
1137 	if (rgl->rl_igeneration != str->rg_igeneration) {
1138 		fs_warn(sdp, "GFS2: rgd: %llu lvb igen mismatch %llu/%llu",
1139 			(unsigned long long)rgd->rd_addr,
1140 			(unsigned long long)be64_to_cpu(rgl->rl_igeneration),
1141 			(unsigned long long)be64_to_cpu(str->rg_igeneration));
1142 		valid = 0;
1143 	}
1144 	return valid;
1145 }
1146 
1147 static u32 count_unlinked(struct gfs2_rgrpd *rgd)
1148 {
1149 	struct gfs2_bitmap *bi;
1150 	const u32 length = rgd->rd_length;
1151 	const u8 *buffer = NULL;
1152 	u32 i, goal, count = 0;
1153 
1154 	for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) {
1155 		goal = 0;
1156 		buffer = bi->bi_bh->b_data + bi->bi_offset;
1157 		WARN_ON(!buffer_uptodate(bi->bi_bh));
1158 		while (goal < bi->bi_blocks) {
1159 			goal = gfs2_bitfit(buffer, bi->bi_bytes, goal,
1160 					   GFS2_BLKST_UNLINKED);
1161 			if (goal == BFITNOENT)
1162 				break;
1163 			count++;
1164 			goal++;
1165 		}
1166 	}
1167 
1168 	return count;
1169 }
1170 
1171 static void rgrp_set_bitmap_flags(struct gfs2_rgrpd *rgd)
1172 {
1173 	struct gfs2_bitmap *bi;
1174 	int x;
1175 
1176 	if (rgd->rd_free) {
1177 		for (x = 0; x < rgd->rd_length; x++) {
1178 			bi = rgd->rd_bits + x;
1179 			clear_bit(GBF_FULL, &bi->bi_flags);
1180 		}
1181 	} else {
1182 		for (x = 0; x < rgd->rd_length; x++) {
1183 			bi = rgd->rd_bits + x;
1184 			set_bit(GBF_FULL, &bi->bi_flags);
1185 		}
1186 	}
1187 }
1188 
1189 /**
1190  * gfs2_rgrp_go_instantiate - Read in a RG's header and bitmaps
1191  * @gh: the glock holder representing the rgrpd to read in
1192  *
1193  * Read in all of a Resource Group's header and bitmap blocks.
1194  * Caller must eventually call gfs2_rgrp_brelse() to free the bitmaps.
1195  *
1196  * Returns: errno
1197  */
1198 
1199 int gfs2_rgrp_go_instantiate(struct gfs2_holder *gh)
1200 {
1201 	struct gfs2_glock *gl = gh->gh_gl;
1202 	struct gfs2_rgrpd *rgd = gl->gl_object;
1203 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1204 	unsigned int length = rgd->rd_length;
1205 	struct gfs2_bitmap *bi;
1206 	unsigned int x, y;
1207 	int error;
1208 
1209 	if (rgd->rd_bits[0].bi_bh != NULL)
1210 		return 0;
1211 
1212 	for (x = 0; x < length; x++) {
1213 		bi = rgd->rd_bits + x;
1214 		error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, 0, &bi->bi_bh);
1215 		if (error)
1216 			goto fail;
1217 	}
1218 
1219 	for (y = length; y--;) {
1220 		bi = rgd->rd_bits + y;
1221 		error = gfs2_meta_wait(sdp, bi->bi_bh);
1222 		if (error)
1223 			goto fail;
1224 		if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
1225 					      GFS2_METATYPE_RG)) {
1226 			error = -EIO;
1227 			goto fail;
1228 		}
1229 	}
1230 
1231 	gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
1232 	rgrp_set_bitmap_flags(rgd);
1233 	rgd->rd_flags |= GFS2_RDF_CHECK;
1234 	rgd->rd_free_clone = rgd->rd_free;
1235 	GLOCK_BUG_ON(rgd->rd_gl, rgd->rd_reserved);
1236 	/* max out the rgrp allocation failure point */
1237 	rgd->rd_extfail_pt = rgd->rd_free;
1238 	if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) {
1239 		rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd));
1240 		gfs2_rgrp_ondisk2lvb(rgd->rd_rgl,
1241 				     rgd->rd_bits[0].bi_bh->b_data);
1242 	} else if (sdp->sd_args.ar_rgrplvb) {
1243 		if (!gfs2_rgrp_lvb_valid(rgd)){
1244 			gfs2_consist_rgrpd(rgd);
1245 			error = -EIO;
1246 			goto fail;
1247 		}
1248 		if (rgd->rd_rgl->rl_unlinked == 0)
1249 			rgd->rd_flags &= ~GFS2_RDF_CHECK;
1250 	}
1251 	return 0;
1252 
1253 fail:
1254 	while (x--) {
1255 		bi = rgd->rd_bits + x;
1256 		brelse(bi->bi_bh);
1257 		bi->bi_bh = NULL;
1258 		gfs2_assert_warn(sdp, !bi->bi_clone);
1259 	}
1260 	return error;
1261 }
1262 
1263 static int update_rgrp_lvb(struct gfs2_rgrpd *rgd, struct gfs2_holder *gh)
1264 {
1265 	u32 rl_flags;
1266 
1267 	if (!test_bit(GLF_INSTANTIATE_NEEDED, &gh->gh_gl->gl_flags))
1268 		return 0;
1269 
1270 	if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic)
1271 		return gfs2_instantiate(gh);
1272 
1273 	rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags);
1274 	rl_flags &= ~GFS2_RDF_MASK;
1275 	rgd->rd_flags &= GFS2_RDF_MASK;
1276 	rgd->rd_flags |= (rl_flags | GFS2_RDF_CHECK);
1277 	if (rgd->rd_rgl->rl_unlinked == 0)
1278 		rgd->rd_flags &= ~GFS2_RDF_CHECK;
1279 	rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free);
1280 	rgrp_set_bitmap_flags(rgd);
1281 	rgd->rd_free_clone = rgd->rd_free;
1282 	GLOCK_BUG_ON(rgd->rd_gl, rgd->rd_reserved);
1283 	/* max out the rgrp allocation failure point */
1284 	rgd->rd_extfail_pt = rgd->rd_free;
1285 	rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes);
1286 	rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration);
1287 	return 0;
1288 }
1289 
1290 /**
1291  * gfs2_rgrp_brelse - Release RG bitmaps read in with gfs2_rgrp_bh_get()
1292  * @rgd: The resource group
1293  *
1294  */
1295 
1296 void gfs2_rgrp_brelse(struct gfs2_rgrpd *rgd)
1297 {
1298 	int x, length = rgd->rd_length;
1299 
1300 	for (x = 0; x < length; x++) {
1301 		struct gfs2_bitmap *bi = rgd->rd_bits + x;
1302 		if (bi->bi_bh) {
1303 			brelse(bi->bi_bh);
1304 			bi->bi_bh = NULL;
1305 		}
1306 	}
1307 	set_bit(GLF_INSTANTIATE_NEEDED, &rgd->rd_gl->gl_flags);
1308 }
1309 
1310 int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
1311 			     struct buffer_head *bh,
1312 			     const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
1313 {
1314 	struct super_block *sb = sdp->sd_vfs;
1315 	u64 blk;
1316 	sector_t start = 0;
1317 	sector_t nr_blks = 0;
1318 	int rv = -EIO;
1319 	unsigned int x;
1320 	u32 trimmed = 0;
1321 	u8 diff;
1322 
1323 	for (x = 0; x < bi->bi_bytes; x++) {
1324 		const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
1325 		clone += bi->bi_offset;
1326 		clone += x;
1327 		if (bh) {
1328 			const u8 *orig = bh->b_data + bi->bi_offset + x;
1329 			diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
1330 		} else {
1331 			diff = ~(*clone | (*clone >> 1));
1332 		}
1333 		diff &= 0x55;
1334 		if (diff == 0)
1335 			continue;
1336 		blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
1337 		while(diff) {
1338 			if (diff & 1) {
1339 				if (nr_blks == 0)
1340 					goto start_new_extent;
1341 				if ((start + nr_blks) != blk) {
1342 					if (nr_blks >= minlen) {
1343 						rv = sb_issue_discard(sb,
1344 							start, nr_blks,
1345 							GFP_NOFS, 0);
1346 						if (rv)
1347 							goto fail;
1348 						trimmed += nr_blks;
1349 					}
1350 					nr_blks = 0;
1351 start_new_extent:
1352 					start = blk;
1353 				}
1354 				nr_blks++;
1355 			}
1356 			diff >>= 2;
1357 			blk++;
1358 		}
1359 	}
1360 	if (nr_blks >= minlen) {
1361 		rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0);
1362 		if (rv)
1363 			goto fail;
1364 		trimmed += nr_blks;
1365 	}
1366 	if (ptrimmed)
1367 		*ptrimmed = trimmed;
1368 	return 0;
1369 
1370 fail:
1371 	if (sdp->sd_args.ar_discard)
1372 		fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem\n", rv);
1373 	sdp->sd_args.ar_discard = 0;
1374 	return rv;
1375 }
1376 
1377 /**
1378  * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
1379  * @filp: Any file on the filesystem
1380  * @argp: Pointer to the arguments (also used to pass result)
1381  *
1382  * Returns: 0 on success, otherwise error code
1383  */
1384 
1385 int gfs2_fitrim(struct file *filp, void __user *argp)
1386 {
1387 	struct inode *inode = file_inode(filp);
1388 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1389 	struct block_device *bdev = sdp->sd_vfs->s_bdev;
1390 	struct buffer_head *bh;
1391 	struct gfs2_rgrpd *rgd;
1392 	struct gfs2_rgrpd *rgd_end;
1393 	struct gfs2_holder gh;
1394 	struct fstrim_range r;
1395 	int ret = 0;
1396 	u64 amt;
1397 	u64 trimmed = 0;
1398 	u64 start, end, minlen;
1399 	unsigned int x;
1400 	unsigned bs_shift = sdp->sd_sb.sb_bsize_shift;
1401 
1402 	if (!capable(CAP_SYS_ADMIN))
1403 		return -EPERM;
1404 
1405 	if (!test_bit(SDF_JOURNAL_LIVE, &sdp->sd_flags))
1406 		return -EROFS;
1407 
1408 	if (!bdev_max_discard_sectors(bdev))
1409 		return -EOPNOTSUPP;
1410 
1411 	if (copy_from_user(&r, argp, sizeof(r)))
1412 		return -EFAULT;
1413 
1414 	ret = gfs2_rindex_update(sdp);
1415 	if (ret)
1416 		return ret;
1417 
1418 	start = r.start >> bs_shift;
1419 	end = start + (r.len >> bs_shift);
1420 	minlen = max_t(u64, r.minlen, sdp->sd_sb.sb_bsize);
1421 	minlen = max_t(u64, minlen, bdev_discard_granularity(bdev)) >> bs_shift;
1422 
1423 	if (end <= start || minlen > sdp->sd_max_rg_data)
1424 		return -EINVAL;
1425 
1426 	rgd = gfs2_blk2rgrpd(sdp, start, 0);
1427 	rgd_end = gfs2_blk2rgrpd(sdp, end, 0);
1428 
1429 	if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end))
1430 	    && (start > rgd_end->rd_data0 + rgd_end->rd_data))
1431 		return -EINVAL; /* start is beyond the end of the fs */
1432 
1433 	while (1) {
1434 
1435 		ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE,
1436 					 LM_FLAG_NODE_SCOPE, &gh);
1437 		if (ret)
1438 			goto out;
1439 
1440 		if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
1441 			/* Trim each bitmap in the rgrp */
1442 			for (x = 0; x < rgd->rd_length; x++) {
1443 				struct gfs2_bitmap *bi = rgd->rd_bits + x;
1444 				rgrp_lock_local(rgd);
1445 				ret = gfs2_rgrp_send_discards(sdp,
1446 						rgd->rd_data0, NULL, bi, minlen,
1447 						&amt);
1448 				rgrp_unlock_local(rgd);
1449 				if (ret) {
1450 					gfs2_glock_dq_uninit(&gh);
1451 					goto out;
1452 				}
1453 				trimmed += amt;
1454 			}
1455 
1456 			/* Mark rgrp as having been trimmed */
1457 			ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
1458 			if (ret == 0) {
1459 				bh = rgd->rd_bits[0].bi_bh;
1460 				rgrp_lock_local(rgd);
1461 				rgd->rd_flags |= GFS2_RGF_TRIMMED;
1462 				gfs2_trans_add_meta(rgd->rd_gl, bh);
1463 				gfs2_rgrp_out(rgd, bh->b_data);
1464 				rgrp_unlock_local(rgd);
1465 				gfs2_trans_end(sdp);
1466 			}
1467 		}
1468 		gfs2_glock_dq_uninit(&gh);
1469 
1470 		if (rgd == rgd_end)
1471 			break;
1472 
1473 		rgd = gfs2_rgrpd_get_next(rgd);
1474 	}
1475 
1476 out:
1477 	r.len = trimmed << bs_shift;
1478 	if (copy_to_user(argp, &r, sizeof(r)))
1479 		return -EFAULT;
1480 
1481 	return ret;
1482 }
1483 
1484 /**
1485  * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
1486  * @ip: the inode structure
1487  *
1488  */
1489 static void rs_insert(struct gfs2_inode *ip)
1490 {
1491 	struct rb_node **newn, *parent = NULL;
1492 	int rc;
1493 	struct gfs2_blkreserv *rs = &ip->i_res;
1494 	struct gfs2_rgrpd *rgd = rs->rs_rgd;
1495 
1496 	BUG_ON(gfs2_rs_active(rs));
1497 
1498 	spin_lock(&rgd->rd_rsspin);
1499 	newn = &rgd->rd_rstree.rb_node;
1500 	while (*newn) {
1501 		struct gfs2_blkreserv *cur =
1502 			rb_entry(*newn, struct gfs2_blkreserv, rs_node);
1503 
1504 		parent = *newn;
1505 		rc = rs_cmp(rs->rs_start, rs->rs_requested, cur);
1506 		if (rc > 0)
1507 			newn = &((*newn)->rb_right);
1508 		else if (rc < 0)
1509 			newn = &((*newn)->rb_left);
1510 		else {
1511 			spin_unlock(&rgd->rd_rsspin);
1512 			WARN_ON(1);
1513 			return;
1514 		}
1515 	}
1516 
1517 	rb_link_node(&rs->rs_node, parent, newn);
1518 	rb_insert_color(&rs->rs_node, &rgd->rd_rstree);
1519 
1520 	/* Do our rgrp accounting for the reservation */
1521 	rgd->rd_requested += rs->rs_requested; /* blocks requested */
1522 	spin_unlock(&rgd->rd_rsspin);
1523 	trace_gfs2_rs(rs, TRACE_RS_INSERT);
1524 }
1525 
1526 /**
1527  * rgd_free - return the number of free blocks we can allocate
1528  * @rgd: the resource group
1529  * @rs: The reservation to free
1530  *
1531  * This function returns the number of free blocks for an rgrp.
1532  * That's the clone-free blocks (blocks that are free, not including those
1533  * still being used for unlinked files that haven't been deleted.)
1534  *
1535  * It also subtracts any blocks reserved by someone else, but does not
1536  * include free blocks that are still part of our current reservation,
1537  * because obviously we can (and will) allocate them.
1538  */
1539 static inline u32 rgd_free(struct gfs2_rgrpd *rgd, struct gfs2_blkreserv *rs)
1540 {
1541 	u32 tot_reserved, tot_free;
1542 
1543 	if (WARN_ON_ONCE(rgd->rd_requested < rs->rs_requested))
1544 		return 0;
1545 	tot_reserved = rgd->rd_requested - rs->rs_requested;
1546 
1547 	if (rgd->rd_free_clone < tot_reserved)
1548 		tot_reserved = 0;
1549 
1550 	tot_free = rgd->rd_free_clone - tot_reserved;
1551 
1552 	return tot_free;
1553 }
1554 
1555 /**
1556  * rg_mblk_search - find a group of multiple free blocks to form a reservation
1557  * @rgd: the resource group descriptor
1558  * @ip: pointer to the inode for which we're reserving blocks
1559  * @ap: the allocation parameters
1560  *
1561  */
1562 
1563 static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip,
1564 			   const struct gfs2_alloc_parms *ap)
1565 {
1566 	struct gfs2_rbm rbm = { .rgd = rgd, };
1567 	u64 goal;
1568 	struct gfs2_blkreserv *rs = &ip->i_res;
1569 	u32 extlen;
1570 	u32 free_blocks, blocks_available;
1571 	int ret;
1572 	struct inode *inode = &ip->i_inode;
1573 
1574 	spin_lock(&rgd->rd_rsspin);
1575 	free_blocks = rgd_free(rgd, rs);
1576 	if (rgd->rd_free_clone < rgd->rd_requested)
1577 		free_blocks = 0;
1578 	blocks_available = rgd->rd_free_clone - rgd->rd_reserved;
1579 	if (rgd == rs->rs_rgd)
1580 		blocks_available += rs->rs_reserved;
1581 	spin_unlock(&rgd->rd_rsspin);
1582 
1583 	if (S_ISDIR(inode->i_mode))
1584 		extlen = 1;
1585 	else {
1586 		extlen = max_t(u32, atomic_read(&ip->i_sizehint), ap->target);
1587 		extlen = clamp(extlen, (u32)RGRP_RSRV_MINBLKS, free_blocks);
1588 	}
1589 	if (free_blocks < extlen || blocks_available < extlen)
1590 		return;
1591 
1592 	/* Find bitmap block that contains bits for goal block */
1593 	if (rgrp_contains_block(rgd, ip->i_goal))
1594 		goal = ip->i_goal;
1595 	else
1596 		goal = rgd->rd_last_alloc + rgd->rd_data0;
1597 
1598 	if (WARN_ON(gfs2_rbm_from_block(&rbm, goal)))
1599 		return;
1600 
1601 	ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, &ip->i_res, true);
1602 	if (ret == 0) {
1603 		rs->rs_start = gfs2_rbm_to_block(&rbm);
1604 		rs->rs_requested = extlen;
1605 		rs_insert(ip);
1606 	} else {
1607 		if (goal == rgd->rd_last_alloc + rgd->rd_data0)
1608 			rgd->rd_last_alloc = 0;
1609 	}
1610 }
1611 
1612 /**
1613  * gfs2_next_unreserved_block - Return next block that is not reserved
1614  * @rgd: The resource group
1615  * @block: The starting block
1616  * @length: The required length
1617  * @ignore_rs: Reservation to ignore
1618  *
1619  * If the block does not appear in any reservation, then return the
1620  * block number unchanged. If it does appear in the reservation, then
1621  * keep looking through the tree of reservations in order to find the
1622  * first block number which is not reserved.
1623  */
1624 
1625 static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block,
1626 				      u32 length,
1627 				      struct gfs2_blkreserv *ignore_rs)
1628 {
1629 	struct gfs2_blkreserv *rs;
1630 	struct rb_node *n;
1631 	int rc;
1632 
1633 	spin_lock(&rgd->rd_rsspin);
1634 	n = rgd->rd_rstree.rb_node;
1635 	while (n) {
1636 		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1637 		rc = rs_cmp(block, length, rs);
1638 		if (rc < 0)
1639 			n = n->rb_left;
1640 		else if (rc > 0)
1641 			n = n->rb_right;
1642 		else
1643 			break;
1644 	}
1645 
1646 	if (n) {
1647 		while (rs_cmp(block, length, rs) == 0 && rs != ignore_rs) {
1648 			block = rs->rs_start + rs->rs_requested;
1649 			n = n->rb_right;
1650 			if (n == NULL)
1651 				break;
1652 			rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1653 		}
1654 	}
1655 
1656 	spin_unlock(&rgd->rd_rsspin);
1657 	return block;
1658 }
1659 
1660 /**
1661  * gfs2_reservation_check_and_update - Check for reservations during block alloc
1662  * @rbm: The current position in the resource group
1663  * @rs: Our own reservation
1664  * @minext: The minimum extent length
1665  * @maxext: A pointer to the maximum extent structure
1666  *
1667  * This checks the current position in the rgrp to see whether there is
1668  * a reservation covering this block. If not then this function is a
1669  * no-op. If there is, then the position is moved to the end of the
1670  * contiguous reservation(s) so that we are pointing at the first
1671  * non-reserved block.
1672  *
1673  * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error
1674  */
1675 
1676 static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm,
1677 					     struct gfs2_blkreserv *rs,
1678 					     u32 minext,
1679 					     struct gfs2_extent *maxext)
1680 {
1681 	u64 block = gfs2_rbm_to_block(rbm);
1682 	u32 extlen = 1;
1683 	u64 nblock;
1684 
1685 	/*
1686 	 * If we have a minimum extent length, then skip over any extent
1687 	 * which is less than the min extent length in size.
1688 	 */
1689 	if (minext > 1) {
1690 		extlen = gfs2_free_extlen(rbm, minext);
1691 		if (extlen <= maxext->len)
1692 			goto fail;
1693 	}
1694 
1695 	/*
1696 	 * Check the extent which has been found against the reservations
1697 	 * and skip if parts of it are already reserved
1698 	 */
1699 	nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, rs);
1700 	if (nblock == block) {
1701 		if (!minext || extlen >= minext)
1702 			return 0;
1703 
1704 		if (extlen > maxext->len) {
1705 			maxext->len = extlen;
1706 			maxext->rbm = *rbm;
1707 		}
1708 	} else {
1709 		u64 len = nblock - block;
1710 		if (len >= (u64)1 << 32)
1711 			return -E2BIG;
1712 		extlen = len;
1713 	}
1714 fail:
1715 	if (gfs2_rbm_add(rbm, extlen))
1716 		return -E2BIG;
1717 	return 1;
1718 }
1719 
1720 /**
1721  * gfs2_rbm_find - Look for blocks of a particular state
1722  * @rbm: Value/result starting position and final position
1723  * @state: The state which we want to find
1724  * @minext: Pointer to the requested extent length
1725  *          This is updated to be the actual reservation size.
1726  * @rs: Our own reservation (NULL to skip checking for reservations)
1727  * @nowrap: Stop looking at the end of the rgrp, rather than wrapping
1728  *          around until we've reached the starting point.
1729  *
1730  * Side effects:
1731  * - If looking for free blocks, we set GBF_FULL on each bitmap which
1732  *   has no free blocks in it.
1733  * - If looking for free blocks, we set rd_extfail_pt on each rgrp which
1734  *   has come up short on a free block search.
1735  *
1736  * Returns: 0 on success, -ENOSPC if there is no block of the requested state
1737  */
1738 
1739 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
1740 			 struct gfs2_blkreserv *rs, bool nowrap)
1741 {
1742 	bool scan_from_start = rbm->bii == 0 && rbm->offset == 0;
1743 	struct buffer_head *bh;
1744 	int last_bii;
1745 	u32 offset;
1746 	u8 *buffer;
1747 	bool wrapped = false;
1748 	int ret;
1749 	struct gfs2_bitmap *bi;
1750 	struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, };
1751 
1752 	/*
1753 	 * Determine the last bitmap to search.  If we're not starting at the
1754 	 * beginning of a bitmap, we need to search that bitmap twice to scan
1755 	 * the entire resource group.
1756 	 */
1757 	last_bii = rbm->bii - (rbm->offset == 0);
1758 
1759 	while(1) {
1760 		bi = rbm_bi(rbm);
1761 		if (test_bit(GBF_FULL, &bi->bi_flags) &&
1762 		    (state == GFS2_BLKST_FREE))
1763 			goto next_bitmap;
1764 
1765 		bh = bi->bi_bh;
1766 		buffer = bh->b_data + bi->bi_offset;
1767 		WARN_ON(!buffer_uptodate(bh));
1768 		if (state != GFS2_BLKST_UNLINKED && bi->bi_clone)
1769 			buffer = bi->bi_clone + bi->bi_offset;
1770 		offset = gfs2_bitfit(buffer, bi->bi_bytes, rbm->offset, state);
1771 		if (offset == BFITNOENT) {
1772 			if (state == GFS2_BLKST_FREE && rbm->offset == 0)
1773 				set_bit(GBF_FULL, &bi->bi_flags);
1774 			goto next_bitmap;
1775 		}
1776 		rbm->offset = offset;
1777 		if (!rs || !minext)
1778 			return 0;
1779 
1780 		ret = gfs2_reservation_check_and_update(rbm, rs, *minext,
1781 							&maxext);
1782 		if (ret == 0)
1783 			return 0;
1784 		if (ret > 0)
1785 			goto next_iter;
1786 		if (ret == -E2BIG) {
1787 			rbm->bii = 0;
1788 			rbm->offset = 0;
1789 			goto res_covered_end_of_rgrp;
1790 		}
1791 		return ret;
1792 
1793 next_bitmap:	/* Find next bitmap in the rgrp */
1794 		rbm->offset = 0;
1795 		rbm->bii++;
1796 		if (rbm->bii == rbm->rgd->rd_length)
1797 			rbm->bii = 0;
1798 res_covered_end_of_rgrp:
1799 		if (rbm->bii == 0) {
1800 			if (wrapped)
1801 				break;
1802 			wrapped = true;
1803 			if (nowrap)
1804 				break;
1805 		}
1806 next_iter:
1807 		/* Have we scanned the entire resource group? */
1808 		if (wrapped && rbm->bii > last_bii)
1809 			break;
1810 	}
1811 
1812 	if (state != GFS2_BLKST_FREE)
1813 		return -ENOSPC;
1814 
1815 	/* If the extent was too small, and it's smaller than the smallest
1816 	   to have failed before, remember for future reference that it's
1817 	   useless to search this rgrp again for this amount or more. */
1818 	if (wrapped && (scan_from_start || rbm->bii > last_bii) &&
1819 	    *minext < rbm->rgd->rd_extfail_pt)
1820 		rbm->rgd->rd_extfail_pt = *minext - 1;
1821 
1822 	/* If the maximum extent we found is big enough to fulfill the
1823 	   minimum requirements, use it anyway. */
1824 	if (maxext.len) {
1825 		*rbm = maxext.rbm;
1826 		*minext = maxext.len;
1827 		return 0;
1828 	}
1829 
1830 	return -ENOSPC;
1831 }
1832 
1833 /**
1834  * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1835  * @rgd: The rgrp
1836  * @last_unlinked: block address of the last dinode we unlinked
1837  * @skip: block address we should explicitly not unlink
1838  *
1839  * Returns: 0 if no error
1840  *          The inode, if one has been found, in inode.
1841  */
1842 
1843 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
1844 {
1845 	u64 block;
1846 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1847 	struct gfs2_glock *gl;
1848 	struct gfs2_inode *ip;
1849 	int error;
1850 	int found = 0;
1851 	struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 };
1852 
1853 	while (1) {
1854 		error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL,
1855 				      true);
1856 		if (error == -ENOSPC)
1857 			break;
1858 		if (WARN_ON_ONCE(error))
1859 			break;
1860 
1861 		block = gfs2_rbm_to_block(&rbm);
1862 		if (gfs2_rbm_from_block(&rbm, block + 1))
1863 			break;
1864 		if (*last_unlinked != NO_BLOCK && block <= *last_unlinked)
1865 			continue;
1866 		if (block == skip)
1867 			continue;
1868 		*last_unlinked = block;
1869 
1870 		error = gfs2_glock_get(sdp, block, &gfs2_iopen_glops, CREATE, &gl);
1871 		if (error)
1872 			continue;
1873 
1874 		/* If the inode is already in cache, we can ignore it here
1875 		 * because the existing inode disposal code will deal with
1876 		 * it when all refs have gone away. Accessing gl_object like
1877 		 * this is not safe in general. Here it is ok because we do
1878 		 * not dereference the pointer, and we only need an approx
1879 		 * answer to whether it is NULL or not.
1880 		 */
1881 		ip = gl->gl_object;
1882 
1883 		if (ip || !gfs2_queue_delete_work(gl, 0))
1884 			gfs2_glock_put(gl);
1885 		else
1886 			found++;
1887 
1888 		/* Limit reclaim to sensible number of tasks */
1889 		if (found > NR_CPUS)
1890 			return;
1891 	}
1892 
1893 	rgd->rd_flags &= ~GFS2_RDF_CHECK;
1894 	return;
1895 }
1896 
1897 /**
1898  * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested
1899  * @rgd: The rgrp in question
1900  * @loops: An indication of how picky we can be (0=very, 1=less so)
1901  *
1902  * This function uses the recently added glock statistics in order to
1903  * figure out whether a parciular resource group is suffering from
1904  * contention from multiple nodes. This is done purely on the basis
1905  * of timings, since this is the only data we have to work with and
1906  * our aim here is to reject a resource group which is highly contended
1907  * but (very important) not to do this too often in order to ensure that
1908  * we do not land up introducing fragmentation by changing resource
1909  * groups when not actually required.
1910  *
1911  * The calculation is fairly simple, we want to know whether the SRTTB
1912  * (i.e. smoothed round trip time for blocking operations) to acquire
1913  * the lock for this rgrp's glock is significantly greater than the
1914  * time taken for resource groups on average. We introduce a margin in
1915  * the form of the variable @var which is computed as the sum of the two
1916  * respective variences, and multiplied by a factor depending on @loops
1917  * and whether we have a lot of data to base the decision on. This is
1918  * then tested against the square difference of the means in order to
1919  * decide whether the result is statistically significant or not.
1920  *
1921  * Returns: A boolean verdict on the congestion status
1922  */
1923 
1924 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops)
1925 {
1926 	const struct gfs2_glock *gl = rgd->rd_gl;
1927 	const struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
1928 	struct gfs2_lkstats *st;
1929 	u64 r_dcount, l_dcount;
1930 	u64 l_srttb, a_srttb = 0;
1931 	s64 srttb_diff;
1932 	u64 sqr_diff;
1933 	u64 var;
1934 	int cpu, nonzero = 0;
1935 
1936 	preempt_disable();
1937 	for_each_present_cpu(cpu) {
1938 		st = &per_cpu_ptr(sdp->sd_lkstats, cpu)->lkstats[LM_TYPE_RGRP];
1939 		if (st->stats[GFS2_LKS_SRTTB]) {
1940 			a_srttb += st->stats[GFS2_LKS_SRTTB];
1941 			nonzero++;
1942 		}
1943 	}
1944 	st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP];
1945 	if (nonzero)
1946 		do_div(a_srttb, nonzero);
1947 	r_dcount = st->stats[GFS2_LKS_DCOUNT];
1948 	var = st->stats[GFS2_LKS_SRTTVARB] +
1949 	      gl->gl_stats.stats[GFS2_LKS_SRTTVARB];
1950 	preempt_enable();
1951 
1952 	l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB];
1953 	l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT];
1954 
1955 	if ((l_dcount < 1) || (r_dcount < 1) || (a_srttb == 0))
1956 		return false;
1957 
1958 	srttb_diff = a_srttb - l_srttb;
1959 	sqr_diff = srttb_diff * srttb_diff;
1960 
1961 	var *= 2;
1962 	if (l_dcount < 8 || r_dcount < 8)
1963 		var *= 2;
1964 	if (loops == 1)
1965 		var *= 2;
1966 
1967 	return ((srttb_diff < 0) && (sqr_diff > var));
1968 }
1969 
1970 /**
1971  * gfs2_rgrp_used_recently
1972  * @rs: The block reservation with the rgrp to test
1973  * @msecs: The time limit in milliseconds
1974  *
1975  * Returns: True if the rgrp glock has been used within the time limit
1976  */
1977 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs,
1978 				    u64 msecs)
1979 {
1980 	u64 tdiff;
1981 
1982 	tdiff = ktime_to_ns(ktime_sub(ktime_get_real(),
1983                             rs->rs_rgd->rd_gl->gl_dstamp));
1984 
1985 	return tdiff > (msecs * 1000 * 1000);
1986 }
1987 
1988 static u32 gfs2_orlov_skip(const struct gfs2_inode *ip)
1989 {
1990 	const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1991 	u32 skip;
1992 
1993 	get_random_bytes(&skip, sizeof(skip));
1994 	return skip % sdp->sd_rgrps;
1995 }
1996 
1997 static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin)
1998 {
1999 	struct gfs2_rgrpd *rgd = *pos;
2000 	struct gfs2_sbd *sdp = rgd->rd_sbd;
2001 
2002 	rgd = gfs2_rgrpd_get_next(rgd);
2003 	if (rgd == NULL)
2004 		rgd = gfs2_rgrpd_get_first(sdp);
2005 	*pos = rgd;
2006 	if (rgd != begin) /* If we didn't wrap */
2007 		return true;
2008 	return false;
2009 }
2010 
2011 /**
2012  * fast_to_acquire - determine if a resource group will be fast to acquire
2013  * @rgd: The rgrp
2014  *
2015  * If this is one of our preferred rgrps, it should be quicker to acquire,
2016  * because we tried to set ourselves up as dlm lock master.
2017  */
2018 static inline int fast_to_acquire(struct gfs2_rgrpd *rgd)
2019 {
2020 	struct gfs2_glock *gl = rgd->rd_gl;
2021 
2022 	if (gl->gl_state != LM_ST_UNLOCKED && list_empty(&gl->gl_holders) &&
2023 	    !test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags) &&
2024 	    !test_bit(GLF_DEMOTE, &gl->gl_flags))
2025 		return 1;
2026 	if (rgd->rd_flags & GFS2_RDF_PREFERRED)
2027 		return 1;
2028 	return 0;
2029 }
2030 
2031 /**
2032  * gfs2_inplace_reserve - Reserve space in the filesystem
2033  * @ip: the inode to reserve space for
2034  * @ap: the allocation parameters
2035  *
2036  * We try our best to find an rgrp that has at least ap->target blocks
2037  * available. After a couple of passes (loops == 2), the prospects of finding
2038  * such an rgrp diminish. At this stage, we return the first rgrp that has
2039  * at least ap->min_target blocks available.
2040  *
2041  * Returns: 0 on success,
2042  *          -ENOMEM if a suitable rgrp can't be found
2043  *          errno otherwise
2044  */
2045 
2046 int gfs2_inplace_reserve(struct gfs2_inode *ip, struct gfs2_alloc_parms *ap)
2047 {
2048 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2049 	struct gfs2_rgrpd *begin = NULL;
2050 	struct gfs2_blkreserv *rs = &ip->i_res;
2051 	int error = 0, flags = LM_FLAG_NODE_SCOPE;
2052 	bool rg_locked;
2053 	u64 last_unlinked = NO_BLOCK;
2054 	u32 target = ap->target;
2055 	int loops = 0;
2056 	u32 free_blocks, blocks_available, skip = 0;
2057 
2058 	BUG_ON(rs->rs_reserved);
2059 
2060 	if (sdp->sd_args.ar_rgrplvb)
2061 		flags |= GL_SKIP;
2062 	if (gfs2_assert_warn(sdp, target))
2063 		return -EINVAL;
2064 	if (gfs2_rs_active(rs)) {
2065 		begin = rs->rs_rgd;
2066 	} else if (rs->rs_rgd &&
2067 		   rgrp_contains_block(rs->rs_rgd, ip->i_goal)) {
2068 		begin = rs->rs_rgd;
2069 	} else {
2070 		check_and_update_goal(ip);
2071 		rs->rs_rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
2072 	}
2073 	if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV))
2074 		skip = gfs2_orlov_skip(ip);
2075 	if (rs->rs_rgd == NULL)
2076 		return -EBADSLT;
2077 
2078 	while (loops < 3) {
2079 		struct gfs2_rgrpd *rgd;
2080 
2081 		rg_locked = gfs2_glock_is_locked_by_me(rs->rs_rgd->rd_gl);
2082 		if (rg_locked) {
2083 			rgrp_lock_local(rs->rs_rgd);
2084 		} else {
2085 			if (skip && skip--)
2086 				goto next_rgrp;
2087 			if (!gfs2_rs_active(rs)) {
2088 				if (loops == 0 &&
2089 				    !fast_to_acquire(rs->rs_rgd))
2090 					goto next_rgrp;
2091 				if ((loops < 2) &&
2092 				    gfs2_rgrp_used_recently(rs, 1000) &&
2093 				    gfs2_rgrp_congested(rs->rs_rgd, loops))
2094 					goto next_rgrp;
2095 			}
2096 			error = gfs2_glock_nq_init(rs->rs_rgd->rd_gl,
2097 						   LM_ST_EXCLUSIVE, flags,
2098 						   &ip->i_rgd_gh);
2099 			if (unlikely(error))
2100 				return error;
2101 			rgrp_lock_local(rs->rs_rgd);
2102 			if (!gfs2_rs_active(rs) && (loops < 2) &&
2103 			    gfs2_rgrp_congested(rs->rs_rgd, loops))
2104 				goto skip_rgrp;
2105 			if (sdp->sd_args.ar_rgrplvb) {
2106 				error = update_rgrp_lvb(rs->rs_rgd,
2107 							&ip->i_rgd_gh);
2108 				if (unlikely(error)) {
2109 					rgrp_unlock_local(rs->rs_rgd);
2110 					gfs2_glock_dq_uninit(&ip->i_rgd_gh);
2111 					return error;
2112 				}
2113 			}
2114 		}
2115 
2116 		/* Skip unusable resource groups */
2117 		if ((rs->rs_rgd->rd_flags & (GFS2_RGF_NOALLOC |
2118 						 GFS2_RDF_ERROR)) ||
2119 		    (loops == 0 && target > rs->rs_rgd->rd_extfail_pt))
2120 			goto skip_rgrp;
2121 
2122 		if (sdp->sd_args.ar_rgrplvb) {
2123 			error = gfs2_instantiate(&ip->i_rgd_gh);
2124 			if (error)
2125 				goto skip_rgrp;
2126 		}
2127 
2128 		/* Get a reservation if we don't already have one */
2129 		if (!gfs2_rs_active(rs))
2130 			rg_mblk_search(rs->rs_rgd, ip, ap);
2131 
2132 		/* Skip rgrps when we can't get a reservation on first pass */
2133 		if (!gfs2_rs_active(rs) && (loops < 1))
2134 			goto check_rgrp;
2135 
2136 		/* If rgrp has enough free space, use it */
2137 		rgd = rs->rs_rgd;
2138 		spin_lock(&rgd->rd_rsspin);
2139 		free_blocks = rgd_free(rgd, rs);
2140 		blocks_available = rgd->rd_free_clone - rgd->rd_reserved;
2141 		if (free_blocks < target || blocks_available < target) {
2142 			spin_unlock(&rgd->rd_rsspin);
2143 			goto check_rgrp;
2144 		}
2145 		rs->rs_reserved = ap->target;
2146 		if (rs->rs_reserved > blocks_available)
2147 			rs->rs_reserved = blocks_available;
2148 		rgd->rd_reserved += rs->rs_reserved;
2149 		spin_unlock(&rgd->rd_rsspin);
2150 		rgrp_unlock_local(rs->rs_rgd);
2151 		return 0;
2152 check_rgrp:
2153 		/* Check for unlinked inodes which can be reclaimed */
2154 		if (rs->rs_rgd->rd_flags & GFS2_RDF_CHECK)
2155 			try_rgrp_unlink(rs->rs_rgd, &last_unlinked,
2156 					ip->i_no_addr);
2157 skip_rgrp:
2158 		rgrp_unlock_local(rs->rs_rgd);
2159 
2160 		/* Drop reservation, if we couldn't use reserved rgrp */
2161 		if (gfs2_rs_active(rs))
2162 			gfs2_rs_deltree(rs);
2163 
2164 		/* Unlock rgrp if required */
2165 		if (!rg_locked)
2166 			gfs2_glock_dq_uninit(&ip->i_rgd_gh);
2167 next_rgrp:
2168 		/* Find the next rgrp, and continue looking */
2169 		if (gfs2_select_rgrp(&rs->rs_rgd, begin))
2170 			continue;
2171 		if (skip)
2172 			continue;
2173 
2174 		/* If we've scanned all the rgrps, but found no free blocks
2175 		 * then this checks for some less likely conditions before
2176 		 * trying again.
2177 		 */
2178 		loops++;
2179 		/* Check that fs hasn't grown if writing to rindex */
2180 		if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
2181 			error = gfs2_ri_update(ip);
2182 			if (error)
2183 				return error;
2184 		}
2185 		/* Flushing the log may release space */
2186 		if (loops == 2) {
2187 			if (ap->min_target)
2188 				target = ap->min_target;
2189 			gfs2_log_flush(sdp, NULL, GFS2_LOG_HEAD_FLUSH_NORMAL |
2190 				       GFS2_LFC_INPLACE_RESERVE);
2191 		}
2192 	}
2193 
2194 	return -ENOSPC;
2195 }
2196 
2197 /**
2198  * gfs2_inplace_release - release an inplace reservation
2199  * @ip: the inode the reservation was taken out on
2200  *
2201  * Release a reservation made by gfs2_inplace_reserve().
2202  */
2203 
2204 void gfs2_inplace_release(struct gfs2_inode *ip)
2205 {
2206 	struct gfs2_blkreserv *rs = &ip->i_res;
2207 
2208 	if (rs->rs_reserved) {
2209 		struct gfs2_rgrpd *rgd = rs->rs_rgd;
2210 
2211 		spin_lock(&rgd->rd_rsspin);
2212 		GLOCK_BUG_ON(rgd->rd_gl, rgd->rd_reserved < rs->rs_reserved);
2213 		rgd->rd_reserved -= rs->rs_reserved;
2214 		spin_unlock(&rgd->rd_rsspin);
2215 		rs->rs_reserved = 0;
2216 	}
2217 	if (gfs2_holder_initialized(&ip->i_rgd_gh))
2218 		gfs2_glock_dq_uninit(&ip->i_rgd_gh);
2219 }
2220 
2221 /**
2222  * gfs2_alloc_extent - allocate an extent from a given bitmap
2223  * @rbm: the resource group information
2224  * @dinode: TRUE if the first block we allocate is for a dinode
2225  * @n: The extent length (value/result)
2226  *
2227  * Add the bitmap buffer to the transaction.
2228  * Set the found bits to @new_state to change block's allocation state.
2229  */
2230 static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode,
2231 			     unsigned int *n)
2232 {
2233 	struct gfs2_rbm pos = { .rgd = rbm->rgd, };
2234 	const unsigned int elen = *n;
2235 	u64 block;
2236 	int ret;
2237 
2238 	*n = 1;
2239 	block = gfs2_rbm_to_block(rbm);
2240 	gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh);
2241 	gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2242 	block++;
2243 	while (*n < elen) {
2244 		ret = gfs2_rbm_from_block(&pos, block);
2245 		if (ret || gfs2_testbit(&pos, true) != GFS2_BLKST_FREE)
2246 			break;
2247 		gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh);
2248 		gfs2_setbit(&pos, true, GFS2_BLKST_USED);
2249 		(*n)++;
2250 		block++;
2251 	}
2252 }
2253 
2254 /**
2255  * rgblk_free - Change alloc state of given block(s)
2256  * @sdp: the filesystem
2257  * @rgd: the resource group the blocks are in
2258  * @bstart: the start of a run of blocks to free
2259  * @blen: the length of the block run (all must lie within ONE RG!)
2260  * @new_state: GFS2_BLKST_XXX the after-allocation block state
2261  */
2262 
2263 static void rgblk_free(struct gfs2_sbd *sdp, struct gfs2_rgrpd *rgd,
2264 		       u64 bstart, u32 blen, unsigned char new_state)
2265 {
2266 	struct gfs2_rbm rbm;
2267 	struct gfs2_bitmap *bi, *bi_prev = NULL;
2268 
2269 	rbm.rgd = rgd;
2270 	if (WARN_ON_ONCE(gfs2_rbm_from_block(&rbm, bstart)))
2271 		return;
2272 	while (blen--) {
2273 		bi = rbm_bi(&rbm);
2274 		if (bi != bi_prev) {
2275 			if (!bi->bi_clone) {
2276 				bi->bi_clone = kmalloc(bi->bi_bh->b_size,
2277 						      GFP_NOFS | __GFP_NOFAIL);
2278 				memcpy(bi->bi_clone + bi->bi_offset,
2279 				       bi->bi_bh->b_data + bi->bi_offset,
2280 				       bi->bi_bytes);
2281 			}
2282 			gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh);
2283 			bi_prev = bi;
2284 		}
2285 		gfs2_setbit(&rbm, false, new_state);
2286 		gfs2_rbm_add(&rbm, 1);
2287 	}
2288 }
2289 
2290 /**
2291  * gfs2_rgrp_dump - print out an rgrp
2292  * @seq: The iterator
2293  * @rgd: The rgrp in question
2294  * @fs_id_buf: pointer to file system id (if requested)
2295  *
2296  */
2297 
2298 void gfs2_rgrp_dump(struct seq_file *seq, struct gfs2_rgrpd *rgd,
2299 		    const char *fs_id_buf)
2300 {
2301 	struct gfs2_blkreserv *trs;
2302 	const struct rb_node *n;
2303 
2304 	spin_lock(&rgd->rd_rsspin);
2305 	gfs2_print_dbg(seq, "%s R: n:%llu f:%02x b:%u/%u i:%u q:%u r:%u e:%u\n",
2306 		       fs_id_buf,
2307 		       (unsigned long long)rgd->rd_addr, rgd->rd_flags,
2308 		       rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes,
2309 		       rgd->rd_requested, rgd->rd_reserved, rgd->rd_extfail_pt);
2310 	if (rgd->rd_sbd->sd_args.ar_rgrplvb) {
2311 		struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
2312 
2313 		gfs2_print_dbg(seq, "%s  L: f:%02x b:%u i:%u\n", fs_id_buf,
2314 			       be32_to_cpu(rgl->rl_flags),
2315 			       be32_to_cpu(rgl->rl_free),
2316 			       be32_to_cpu(rgl->rl_dinodes));
2317 	}
2318 	for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) {
2319 		trs = rb_entry(n, struct gfs2_blkreserv, rs_node);
2320 		dump_rs(seq, trs, fs_id_buf);
2321 	}
2322 	spin_unlock(&rgd->rd_rsspin);
2323 }
2324 
2325 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
2326 {
2327 	struct gfs2_sbd *sdp = rgd->rd_sbd;
2328 	char fs_id_buf[sizeof(sdp->sd_fsname) + 7];
2329 
2330 	fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
2331 		(unsigned long long)rgd->rd_addr);
2332 	fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
2333 	sprintf(fs_id_buf, "fsid=%s: ", sdp->sd_fsname);
2334 	gfs2_rgrp_dump(NULL, rgd, fs_id_buf);
2335 	rgd->rd_flags |= GFS2_RDF_ERROR;
2336 }
2337 
2338 /**
2339  * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation
2340  * @ip: The inode we have just allocated blocks for
2341  * @rbm: The start of the allocated blocks
2342  * @len: The extent length
2343  *
2344  * Adjusts a reservation after an allocation has taken place. If the
2345  * reservation does not match the allocation, or if it is now empty
2346  * then it is removed.
2347  */
2348 
2349 static void gfs2_adjust_reservation(struct gfs2_inode *ip,
2350 				    const struct gfs2_rbm *rbm, unsigned len)
2351 {
2352 	struct gfs2_blkreserv *rs = &ip->i_res;
2353 	struct gfs2_rgrpd *rgd = rbm->rgd;
2354 
2355 	BUG_ON(rs->rs_reserved < len);
2356 	rs->rs_reserved -= len;
2357 	if (gfs2_rs_active(rs)) {
2358 		u64 start = gfs2_rbm_to_block(rbm);
2359 
2360 		if (rs->rs_start == start) {
2361 			unsigned int rlen;
2362 
2363 			rs->rs_start += len;
2364 			rlen = min(rs->rs_requested, len);
2365 			rs->rs_requested -= rlen;
2366 			rgd->rd_requested -= rlen;
2367 			trace_gfs2_rs(rs, TRACE_RS_CLAIM);
2368 			if (rs->rs_start < rgd->rd_data0 + rgd->rd_data &&
2369 			    rs->rs_requested)
2370 				return;
2371 			/* We used up our block reservation, so we should
2372 			   reserve more blocks next time. */
2373 			atomic_add(RGRP_RSRV_ADDBLKS, &ip->i_sizehint);
2374 		}
2375 		__rs_deltree(rs);
2376 	}
2377 }
2378 
2379 /**
2380  * gfs2_set_alloc_start - Set starting point for block allocation
2381  * @rbm: The rbm which will be set to the required location
2382  * @ip: The gfs2 inode
2383  * @dinode: Flag to say if allocation includes a new inode
2384  *
2385  * This sets the starting point from the reservation if one is active
2386  * otherwise it falls back to guessing a start point based on the
2387  * inode's goal block or the last allocation point in the rgrp.
2388  */
2389 
2390 static void gfs2_set_alloc_start(struct gfs2_rbm *rbm,
2391 				 const struct gfs2_inode *ip, bool dinode)
2392 {
2393 	u64 goal;
2394 
2395 	if (gfs2_rs_active(&ip->i_res)) {
2396 		goal = ip->i_res.rs_start;
2397 	} else {
2398 		if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal))
2399 			goal = ip->i_goal;
2400 		else
2401 			goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0;
2402 	}
2403 	if (WARN_ON_ONCE(gfs2_rbm_from_block(rbm, goal))) {
2404 		rbm->bii = 0;
2405 		rbm->offset = 0;
2406 	}
2407 }
2408 
2409 /**
2410  * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
2411  * @ip: the inode to allocate the block for
2412  * @bn: Used to return the starting block number
2413  * @nblocks: requested number of blocks/extent length (value/result)
2414  * @dinode: 1 if we're allocating a dinode block, else 0
2415  * @generation: the generation number of the inode
2416  *
2417  * Returns: 0 or error
2418  */
2419 
2420 int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
2421 		      bool dinode, u64 *generation)
2422 {
2423 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2424 	struct buffer_head *dibh;
2425 	struct gfs2_rbm rbm = { .rgd = ip->i_res.rs_rgd, };
2426 	u64 block; /* block, within the file system scope */
2427 	u32 minext = 1;
2428 	int error = -ENOSPC;
2429 
2430 	BUG_ON(ip->i_res.rs_reserved < *nblocks);
2431 
2432 	rgrp_lock_local(rbm.rgd);
2433 	if (gfs2_rs_active(&ip->i_res)) {
2434 		gfs2_set_alloc_start(&rbm, ip, dinode);
2435 		error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &minext, &ip->i_res, false);
2436 	}
2437 	if (error == -ENOSPC) {
2438 		gfs2_set_alloc_start(&rbm, ip, dinode);
2439 		error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &minext, NULL, false);
2440 	}
2441 
2442 	/* Since all blocks are reserved in advance, this shouldn't happen */
2443 	if (error) {
2444 		fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n",
2445 			(unsigned long long)ip->i_no_addr, error, *nblocks,
2446 			test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags),
2447 			rbm.rgd->rd_extfail_pt);
2448 		goto rgrp_error;
2449 	}
2450 
2451 	gfs2_alloc_extent(&rbm, dinode, nblocks);
2452 	block = gfs2_rbm_to_block(&rbm);
2453 	rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0;
2454 	if (!dinode) {
2455 		ip->i_goal = block + *nblocks - 1;
2456 		error = gfs2_meta_inode_buffer(ip, &dibh);
2457 		if (error == 0) {
2458 			struct gfs2_dinode *di =
2459 				(struct gfs2_dinode *)dibh->b_data;
2460 			gfs2_trans_add_meta(ip->i_gl, dibh);
2461 			di->di_goal_meta = di->di_goal_data =
2462 				cpu_to_be64(ip->i_goal);
2463 			brelse(dibh);
2464 		}
2465 	}
2466 	spin_lock(&rbm.rgd->rd_rsspin);
2467 	gfs2_adjust_reservation(ip, &rbm, *nblocks);
2468 	if (rbm.rgd->rd_free < *nblocks || rbm.rgd->rd_reserved < *nblocks) {
2469 		fs_warn(sdp, "nblocks=%u\n", *nblocks);
2470 		spin_unlock(&rbm.rgd->rd_rsspin);
2471 		goto rgrp_error;
2472 	}
2473 	GLOCK_BUG_ON(rbm.rgd->rd_gl, rbm.rgd->rd_reserved < *nblocks);
2474 	GLOCK_BUG_ON(rbm.rgd->rd_gl, rbm.rgd->rd_free_clone < *nblocks);
2475 	GLOCK_BUG_ON(rbm.rgd->rd_gl, rbm.rgd->rd_free < *nblocks);
2476 	rbm.rgd->rd_reserved -= *nblocks;
2477 	rbm.rgd->rd_free_clone -= *nblocks;
2478 	rbm.rgd->rd_free -= *nblocks;
2479 	spin_unlock(&rbm.rgd->rd_rsspin);
2480 	if (dinode) {
2481 		rbm.rgd->rd_dinodes++;
2482 		*generation = rbm.rgd->rd_igeneration++;
2483 		if (*generation == 0)
2484 			*generation = rbm.rgd->rd_igeneration++;
2485 	}
2486 
2487 	gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh);
2488 	gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data);
2489 	rgrp_unlock_local(rbm.rgd);
2490 
2491 	gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
2492 	if (dinode)
2493 		gfs2_trans_remove_revoke(sdp, block, *nblocks);
2494 
2495 	gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid);
2496 
2497 	trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks,
2498 			       dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2499 	*bn = block;
2500 	return 0;
2501 
2502 rgrp_error:
2503 	rgrp_unlock_local(rbm.rgd);
2504 	gfs2_rgrp_error(rbm.rgd);
2505 	return -EIO;
2506 }
2507 
2508 /**
2509  * __gfs2_free_blocks - free a contiguous run of block(s)
2510  * @ip: the inode these blocks are being freed from
2511  * @rgd: the resource group the blocks are in
2512  * @bstart: first block of a run of contiguous blocks
2513  * @blen: the length of the block run
2514  * @meta: 1 if the blocks represent metadata
2515  *
2516  */
2517 
2518 void __gfs2_free_blocks(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd,
2519 			u64 bstart, u32 blen, int meta)
2520 {
2521 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2522 
2523 	rgrp_lock_local(rgd);
2524 	rgblk_free(sdp, rgd, bstart, blen, GFS2_BLKST_FREE);
2525 	trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
2526 	rgd->rd_free += blen;
2527 	rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
2528 	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2529 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2530 	rgrp_unlock_local(rgd);
2531 
2532 	/* Directories keep their data in the metadata address space */
2533 	if (meta || ip->i_depth || gfs2_is_jdata(ip))
2534 		gfs2_journal_wipe(ip, bstart, blen);
2535 }
2536 
2537 /**
2538  * gfs2_free_meta - free a contiguous run of data block(s)
2539  * @ip: the inode these blocks are being freed from
2540  * @rgd: the resource group the blocks are in
2541  * @bstart: first block of a run of contiguous blocks
2542  * @blen: the length of the block run
2543  *
2544  */
2545 
2546 void gfs2_free_meta(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd,
2547 		    u64 bstart, u32 blen)
2548 {
2549 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2550 
2551 	__gfs2_free_blocks(ip, rgd, bstart, blen, 1);
2552 	gfs2_statfs_change(sdp, 0, +blen, 0);
2553 	gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
2554 }
2555 
2556 void gfs2_unlink_di(struct inode *inode)
2557 {
2558 	struct gfs2_inode *ip = GFS2_I(inode);
2559 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2560 	struct gfs2_rgrpd *rgd;
2561 	u64 blkno = ip->i_no_addr;
2562 
2563 	rgd = gfs2_blk2rgrpd(sdp, blkno, true);
2564 	if (!rgd)
2565 		return;
2566 	rgrp_lock_local(rgd);
2567 	rgblk_free(sdp, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2568 	trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2569 	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2570 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2571 	be32_add_cpu(&rgd->rd_rgl->rl_unlinked, 1);
2572 	rgrp_unlock_local(rgd);
2573 }
2574 
2575 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
2576 {
2577 	struct gfs2_sbd *sdp = rgd->rd_sbd;
2578 
2579 	rgrp_lock_local(rgd);
2580 	rgblk_free(sdp, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2581 	if (!rgd->rd_dinodes)
2582 		gfs2_consist_rgrpd(rgd);
2583 	rgd->rd_dinodes--;
2584 	rgd->rd_free++;
2585 
2586 	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2587 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2588 	rgrp_unlock_local(rgd);
2589 	be32_add_cpu(&rgd->rd_rgl->rl_unlinked, -1);
2590 
2591 	gfs2_statfs_change(sdp, 0, +1, -1);
2592 	trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2593 	gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
2594 	gfs2_journal_wipe(ip, ip->i_no_addr, 1);
2595 }
2596 
2597 /**
2598  * gfs2_check_blk_type - Check the type of a block
2599  * @sdp: The superblock
2600  * @no_addr: The block number to check
2601  * @type: The block type we are looking for
2602  *
2603  * The inode glock of @no_addr must be held.  The @type to check for is either
2604  * GFS2_BLKST_DINODE or GFS2_BLKST_UNLINKED; checking for type GFS2_BLKST_FREE
2605  * or GFS2_BLKST_USED would make no sense.
2606  *
2607  * Returns: 0 if the block type matches the expected type
2608  *          -ESTALE if it doesn't match
2609  *          or -ve errno if something went wrong while checking
2610  */
2611 
2612 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
2613 {
2614 	struct gfs2_rgrpd *rgd;
2615 	struct gfs2_holder rgd_gh;
2616 	struct gfs2_rbm rbm;
2617 	int error = -EINVAL;
2618 
2619 	rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
2620 	if (!rgd)
2621 		goto fail;
2622 
2623 	error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
2624 	if (error)
2625 		goto fail;
2626 
2627 	rbm.rgd = rgd;
2628 	error = gfs2_rbm_from_block(&rbm, no_addr);
2629 	if (!WARN_ON_ONCE(error)) {
2630 		/*
2631 		 * No need to take the local resource group lock here; the
2632 		 * inode glock of @no_addr provides the necessary
2633 		 * synchronization in case the block is an inode.  (In case
2634 		 * the block is not an inode, the block type will not match
2635 		 * the @type we are looking for.)
2636 		 */
2637 		if (gfs2_testbit(&rbm, false) != type)
2638 			error = -ESTALE;
2639 	}
2640 
2641 	gfs2_glock_dq_uninit(&rgd_gh);
2642 
2643 fail:
2644 	return error;
2645 }
2646 
2647 /**
2648  * gfs2_rlist_add - add a RG to a list of RGs
2649  * @ip: the inode
2650  * @rlist: the list of resource groups
2651  * @block: the block
2652  *
2653  * Figure out what RG a block belongs to and add that RG to the list
2654  *
2655  * FIXME: Don't use NOFAIL
2656  *
2657  */
2658 
2659 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
2660 		    u64 block)
2661 {
2662 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2663 	struct gfs2_rgrpd *rgd;
2664 	struct gfs2_rgrpd **tmp;
2665 	unsigned int new_space;
2666 	unsigned int x;
2667 
2668 	if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
2669 		return;
2670 
2671 	/*
2672 	 * The resource group last accessed is kept in the last position.
2673 	 */
2674 
2675 	if (rlist->rl_rgrps) {
2676 		rgd = rlist->rl_rgd[rlist->rl_rgrps - 1];
2677 		if (rgrp_contains_block(rgd, block))
2678 			return;
2679 		rgd = gfs2_blk2rgrpd(sdp, block, 1);
2680 	} else {
2681 		rgd = ip->i_res.rs_rgd;
2682 		if (!rgd || !rgrp_contains_block(rgd, block))
2683 			rgd = gfs2_blk2rgrpd(sdp, block, 1);
2684 	}
2685 
2686 	if (!rgd) {
2687 		fs_err(sdp, "rlist_add: no rgrp for block %llu\n",
2688 		       (unsigned long long)block);
2689 		return;
2690 	}
2691 
2692 	for (x = 0; x < rlist->rl_rgrps; x++) {
2693 		if (rlist->rl_rgd[x] == rgd) {
2694 			swap(rlist->rl_rgd[x],
2695 			     rlist->rl_rgd[rlist->rl_rgrps - 1]);
2696 			return;
2697 		}
2698 	}
2699 
2700 	if (rlist->rl_rgrps == rlist->rl_space) {
2701 		new_space = rlist->rl_space + 10;
2702 
2703 		tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
2704 			      GFP_NOFS | __GFP_NOFAIL);
2705 
2706 		if (rlist->rl_rgd) {
2707 			memcpy(tmp, rlist->rl_rgd,
2708 			       rlist->rl_space * sizeof(struct gfs2_rgrpd *));
2709 			kfree(rlist->rl_rgd);
2710 		}
2711 
2712 		rlist->rl_space = new_space;
2713 		rlist->rl_rgd = tmp;
2714 	}
2715 
2716 	rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
2717 }
2718 
2719 /**
2720  * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
2721  *      and initialize an array of glock holders for them
2722  * @rlist: the list of resource groups
2723  *
2724  * FIXME: Don't use NOFAIL
2725  *
2726  */
2727 
2728 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist)
2729 {
2730 	unsigned int x;
2731 
2732 	rlist->rl_ghs = kmalloc_array(rlist->rl_rgrps,
2733 				      sizeof(struct gfs2_holder),
2734 				      GFP_NOFS | __GFP_NOFAIL);
2735 	for (x = 0; x < rlist->rl_rgrps; x++)
2736 		gfs2_holder_init(rlist->rl_rgd[x]->rd_gl, LM_ST_EXCLUSIVE,
2737 				 LM_FLAG_NODE_SCOPE, &rlist->rl_ghs[x]);
2738 }
2739 
2740 /**
2741  * gfs2_rlist_free - free a resource group list
2742  * @rlist: the list of resource groups
2743  *
2744  */
2745 
2746 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
2747 {
2748 	unsigned int x;
2749 
2750 	kfree(rlist->rl_rgd);
2751 
2752 	if (rlist->rl_ghs) {
2753 		for (x = 0; x < rlist->rl_rgrps; x++)
2754 			gfs2_holder_uninit(&rlist->rl_ghs[x]);
2755 		kfree(rlist->rl_ghs);
2756 		rlist->rl_ghs = NULL;
2757 	}
2758 }
2759 
2760 void rgrp_lock_local(struct gfs2_rgrpd *rgd)
2761 {
2762 	mutex_lock(&rgd->rd_mutex);
2763 }
2764 
2765 void rgrp_unlock_local(struct gfs2_rgrpd *rgd)
2766 {
2767 	mutex_unlock(&rgd->rd_mutex);
2768 }
2769