1 /* 2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This copyrighted material is made available to anyone wishing to use, 6 * modify, copy, or redistribute it subject to the terms and conditions 7 * of the GNU General Public License version 2. 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/slab.h> 13 #include <linux/spinlock.h> 14 #include <linux/completion.h> 15 #include <linux/buffer_head.h> 16 #include <linux/fs.h> 17 #include <linux/gfs2_ondisk.h> 18 #include <linux/prefetch.h> 19 #include <linux/blkdev.h> 20 #include <linux/rbtree.h> 21 #include <linux/random.h> 22 23 #include "gfs2.h" 24 #include "incore.h" 25 #include "glock.h" 26 #include "glops.h" 27 #include "lops.h" 28 #include "meta_io.h" 29 #include "quota.h" 30 #include "rgrp.h" 31 #include "super.h" 32 #include "trans.h" 33 #include "util.h" 34 #include "log.h" 35 #include "inode.h" 36 #include "trace_gfs2.h" 37 38 #define BFITNOENT ((u32)~0) 39 #define NO_BLOCK ((u64)~0) 40 41 #if BITS_PER_LONG == 32 42 #define LBITMASK (0x55555555UL) 43 #define LBITSKIP55 (0x55555555UL) 44 #define LBITSKIP00 (0x00000000UL) 45 #else 46 #define LBITMASK (0x5555555555555555UL) 47 #define LBITSKIP55 (0x5555555555555555UL) 48 #define LBITSKIP00 (0x0000000000000000UL) 49 #endif 50 51 /* 52 * These routines are used by the resource group routines (rgrp.c) 53 * to keep track of block allocation. Each block is represented by two 54 * bits. So, each byte represents GFS2_NBBY (i.e. 4) blocks. 55 * 56 * 0 = Free 57 * 1 = Used (not metadata) 58 * 2 = Unlinked (still in use) inode 59 * 3 = Used (metadata) 60 */ 61 62 struct gfs2_extent { 63 struct gfs2_rbm rbm; 64 u32 len; 65 }; 66 67 static const char valid_change[16] = { 68 /* current */ 69 /* n */ 0, 1, 1, 1, 70 /* e */ 1, 0, 0, 0, 71 /* w */ 0, 0, 0, 1, 72 1, 0, 0, 0 73 }; 74 75 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext, 76 const struct gfs2_inode *ip, bool nowrap, 77 const struct gfs2_alloc_parms *ap); 78 79 80 /** 81 * gfs2_setbit - Set a bit in the bitmaps 82 * @rbm: The position of the bit to set 83 * @do_clone: Also set the clone bitmap, if it exists 84 * @new_state: the new state of the block 85 * 86 */ 87 88 static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone, 89 unsigned char new_state) 90 { 91 unsigned char *byte1, *byte2, *end, cur_state; 92 struct gfs2_bitmap *bi = rbm_bi(rbm); 93 unsigned int buflen = bi->bi_len; 94 const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE; 95 96 byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY); 97 end = bi->bi_bh->b_data + bi->bi_offset + buflen; 98 99 BUG_ON(byte1 >= end); 100 101 cur_state = (*byte1 >> bit) & GFS2_BIT_MASK; 102 103 if (unlikely(!valid_change[new_state * 4 + cur_state])) { 104 pr_warn("buf_blk = 0x%x old_state=%d, new_state=%d\n", 105 rbm->offset, cur_state, new_state); 106 pr_warn("rgrp=0x%llx bi_start=0x%x\n", 107 (unsigned long long)rbm->rgd->rd_addr, bi->bi_start); 108 pr_warn("bi_offset=0x%x bi_len=0x%x\n", 109 bi->bi_offset, bi->bi_len); 110 dump_stack(); 111 gfs2_consist_rgrpd(rbm->rgd); 112 return; 113 } 114 *byte1 ^= (cur_state ^ new_state) << bit; 115 116 if (do_clone && bi->bi_clone) { 117 byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY); 118 cur_state = (*byte2 >> bit) & GFS2_BIT_MASK; 119 *byte2 ^= (cur_state ^ new_state) << bit; 120 } 121 } 122 123 /** 124 * gfs2_testbit - test a bit in the bitmaps 125 * @rbm: The bit to test 126 * 127 * Returns: The two bit block state of the requested bit 128 */ 129 130 static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm) 131 { 132 struct gfs2_bitmap *bi = rbm_bi(rbm); 133 const u8 *buffer = bi->bi_bh->b_data + bi->bi_offset; 134 const u8 *byte; 135 unsigned int bit; 136 137 byte = buffer + (rbm->offset / GFS2_NBBY); 138 bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE; 139 140 return (*byte >> bit) & GFS2_BIT_MASK; 141 } 142 143 /** 144 * gfs2_bit_search 145 * @ptr: Pointer to bitmap data 146 * @mask: Mask to use (normally 0x55555.... but adjusted for search start) 147 * @state: The state we are searching for 148 * 149 * We xor the bitmap data with a patter which is the bitwise opposite 150 * of what we are looking for, this gives rise to a pattern of ones 151 * wherever there is a match. Since we have two bits per entry, we 152 * take this pattern, shift it down by one place and then and it with 153 * the original. All the even bit positions (0,2,4, etc) then represent 154 * successful matches, so we mask with 0x55555..... to remove the unwanted 155 * odd bit positions. 156 * 157 * This allows searching of a whole u64 at once (32 blocks) with a 158 * single test (on 64 bit arches). 159 */ 160 161 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state) 162 { 163 u64 tmp; 164 static const u64 search[] = { 165 [0] = 0xffffffffffffffffULL, 166 [1] = 0xaaaaaaaaaaaaaaaaULL, 167 [2] = 0x5555555555555555ULL, 168 [3] = 0x0000000000000000ULL, 169 }; 170 tmp = le64_to_cpu(*ptr) ^ search[state]; 171 tmp &= (tmp >> 1); 172 tmp &= mask; 173 return tmp; 174 } 175 176 /** 177 * rs_cmp - multi-block reservation range compare 178 * @blk: absolute file system block number of the new reservation 179 * @len: number of blocks in the new reservation 180 * @rs: existing reservation to compare against 181 * 182 * returns: 1 if the block range is beyond the reach of the reservation 183 * -1 if the block range is before the start of the reservation 184 * 0 if the block range overlaps with the reservation 185 */ 186 static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs) 187 { 188 u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm); 189 190 if (blk >= startblk + rs->rs_free) 191 return 1; 192 if (blk + len - 1 < startblk) 193 return -1; 194 return 0; 195 } 196 197 /** 198 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing 199 * a block in a given allocation state. 200 * @buf: the buffer that holds the bitmaps 201 * @len: the length (in bytes) of the buffer 202 * @goal: start search at this block's bit-pair (within @buffer) 203 * @state: GFS2_BLKST_XXX the state of the block we're looking for. 204 * 205 * Scope of @goal and returned block number is only within this bitmap buffer, 206 * not entire rgrp or filesystem. @buffer will be offset from the actual 207 * beginning of a bitmap block buffer, skipping any header structures, but 208 * headers are always a multiple of 64 bits long so that the buffer is 209 * always aligned to a 64 bit boundary. 210 * 211 * The size of the buffer is in bytes, but is it assumed that it is 212 * always ok to read a complete multiple of 64 bits at the end 213 * of the block in case the end is no aligned to a natural boundary. 214 * 215 * Return: the block number (bitmap buffer scope) that was found 216 */ 217 218 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len, 219 u32 goal, u8 state) 220 { 221 u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1); 222 const __le64 *ptr = ((__le64 *)buf) + (goal >> 5); 223 const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64))); 224 u64 tmp; 225 u64 mask = 0x5555555555555555ULL; 226 u32 bit; 227 228 /* Mask off bits we don't care about at the start of the search */ 229 mask <<= spoint; 230 tmp = gfs2_bit_search(ptr, mask, state); 231 ptr++; 232 while(tmp == 0 && ptr < end) { 233 tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state); 234 ptr++; 235 } 236 /* Mask off any bits which are more than len bytes from the start */ 237 if (ptr == end && (len & (sizeof(u64) - 1))) 238 tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1)))); 239 /* Didn't find anything, so return */ 240 if (tmp == 0) 241 return BFITNOENT; 242 ptr--; 243 bit = __ffs64(tmp); 244 bit /= 2; /* two bits per entry in the bitmap */ 245 return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit; 246 } 247 248 /** 249 * gfs2_rbm_from_block - Set the rbm based upon rgd and block number 250 * @rbm: The rbm with rgd already set correctly 251 * @block: The block number (filesystem relative) 252 * 253 * This sets the bi and offset members of an rbm based on a 254 * resource group and a filesystem relative block number. The 255 * resource group must be set in the rbm on entry, the bi and 256 * offset members will be set by this function. 257 * 258 * Returns: 0 on success, or an error code 259 */ 260 261 static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block) 262 { 263 u64 rblock = block - rbm->rgd->rd_data0; 264 265 if (WARN_ON_ONCE(rblock > UINT_MAX)) 266 return -EINVAL; 267 if (block >= rbm->rgd->rd_data0 + rbm->rgd->rd_data) 268 return -E2BIG; 269 270 rbm->bii = 0; 271 rbm->offset = (u32)(rblock); 272 /* Check if the block is within the first block */ 273 if (rbm->offset < rbm_bi(rbm)->bi_blocks) 274 return 0; 275 276 /* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */ 277 rbm->offset += (sizeof(struct gfs2_rgrp) - 278 sizeof(struct gfs2_meta_header)) * GFS2_NBBY; 279 rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap; 280 rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap; 281 return 0; 282 } 283 284 /** 285 * gfs2_rbm_incr - increment an rbm structure 286 * @rbm: The rbm with rgd already set correctly 287 * 288 * This function takes an existing rbm structure and increments it to the next 289 * viable block offset. 290 * 291 * Returns: If incrementing the offset would cause the rbm to go past the 292 * end of the rgrp, true is returned, otherwise false. 293 * 294 */ 295 296 static bool gfs2_rbm_incr(struct gfs2_rbm *rbm) 297 { 298 if (rbm->offset + 1 < rbm_bi(rbm)->bi_blocks) { /* in the same bitmap */ 299 rbm->offset++; 300 return false; 301 } 302 if (rbm->bii == rbm->rgd->rd_length - 1) /* at the last bitmap */ 303 return true; 304 305 rbm->offset = 0; 306 rbm->bii++; 307 return false; 308 } 309 310 /** 311 * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned 312 * @rbm: Position to search (value/result) 313 * @n_unaligned: Number of unaligned blocks to check 314 * @len: Decremented for each block found (terminate on zero) 315 * 316 * Returns: true if a non-free block is encountered 317 */ 318 319 static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len) 320 { 321 u32 n; 322 u8 res; 323 324 for (n = 0; n < n_unaligned; n++) { 325 res = gfs2_testbit(rbm); 326 if (res != GFS2_BLKST_FREE) 327 return true; 328 (*len)--; 329 if (*len == 0) 330 return true; 331 if (gfs2_rbm_incr(rbm)) 332 return true; 333 } 334 335 return false; 336 } 337 338 /** 339 * gfs2_free_extlen - Return extent length of free blocks 340 * @rrbm: Starting position 341 * @len: Max length to check 342 * 343 * Starting at the block specified by the rbm, see how many free blocks 344 * there are, not reading more than len blocks ahead. This can be done 345 * using memchr_inv when the blocks are byte aligned, but has to be done 346 * on a block by block basis in case of unaligned blocks. Also this 347 * function can cope with bitmap boundaries (although it must stop on 348 * a resource group boundary) 349 * 350 * Returns: Number of free blocks in the extent 351 */ 352 353 static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len) 354 { 355 struct gfs2_rbm rbm = *rrbm; 356 u32 n_unaligned = rbm.offset & 3; 357 u32 size = len; 358 u32 bytes; 359 u32 chunk_size; 360 u8 *ptr, *start, *end; 361 u64 block; 362 struct gfs2_bitmap *bi; 363 364 if (n_unaligned && 365 gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len)) 366 goto out; 367 368 n_unaligned = len & 3; 369 /* Start is now byte aligned */ 370 while (len > 3) { 371 bi = rbm_bi(&rbm); 372 start = bi->bi_bh->b_data; 373 if (bi->bi_clone) 374 start = bi->bi_clone; 375 end = start + bi->bi_bh->b_size; 376 start += bi->bi_offset; 377 BUG_ON(rbm.offset & 3); 378 start += (rbm.offset / GFS2_NBBY); 379 bytes = min_t(u32, len / GFS2_NBBY, (end - start)); 380 ptr = memchr_inv(start, 0, bytes); 381 chunk_size = ((ptr == NULL) ? bytes : (ptr - start)); 382 chunk_size *= GFS2_NBBY; 383 BUG_ON(len < chunk_size); 384 len -= chunk_size; 385 block = gfs2_rbm_to_block(&rbm); 386 if (gfs2_rbm_from_block(&rbm, block + chunk_size)) { 387 n_unaligned = 0; 388 break; 389 } 390 if (ptr) { 391 n_unaligned = 3; 392 break; 393 } 394 n_unaligned = len & 3; 395 } 396 397 /* Deal with any bits left over at the end */ 398 if (n_unaligned) 399 gfs2_unaligned_extlen(&rbm, n_unaligned, &len); 400 out: 401 return size - len; 402 } 403 404 /** 405 * gfs2_bitcount - count the number of bits in a certain state 406 * @rgd: the resource group descriptor 407 * @buffer: the buffer that holds the bitmaps 408 * @buflen: the length (in bytes) of the buffer 409 * @state: the state of the block we're looking for 410 * 411 * Returns: The number of bits 412 */ 413 414 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer, 415 unsigned int buflen, u8 state) 416 { 417 const u8 *byte = buffer; 418 const u8 *end = buffer + buflen; 419 const u8 state1 = state << 2; 420 const u8 state2 = state << 4; 421 const u8 state3 = state << 6; 422 u32 count = 0; 423 424 for (; byte < end; byte++) { 425 if (((*byte) & 0x03) == state) 426 count++; 427 if (((*byte) & 0x0C) == state1) 428 count++; 429 if (((*byte) & 0x30) == state2) 430 count++; 431 if (((*byte) & 0xC0) == state3) 432 count++; 433 } 434 435 return count; 436 } 437 438 /** 439 * gfs2_rgrp_verify - Verify that a resource group is consistent 440 * @rgd: the rgrp 441 * 442 */ 443 444 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd) 445 { 446 struct gfs2_sbd *sdp = rgd->rd_sbd; 447 struct gfs2_bitmap *bi = NULL; 448 u32 length = rgd->rd_length; 449 u32 count[4], tmp; 450 int buf, x; 451 452 memset(count, 0, 4 * sizeof(u32)); 453 454 /* Count # blocks in each of 4 possible allocation states */ 455 for (buf = 0; buf < length; buf++) { 456 bi = rgd->rd_bits + buf; 457 for (x = 0; x < 4; x++) 458 count[x] += gfs2_bitcount(rgd, 459 bi->bi_bh->b_data + 460 bi->bi_offset, 461 bi->bi_len, x); 462 } 463 464 if (count[0] != rgd->rd_free) { 465 if (gfs2_consist_rgrpd(rgd)) 466 fs_err(sdp, "free data mismatch: %u != %u\n", 467 count[0], rgd->rd_free); 468 return; 469 } 470 471 tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes; 472 if (count[1] != tmp) { 473 if (gfs2_consist_rgrpd(rgd)) 474 fs_err(sdp, "used data mismatch: %u != %u\n", 475 count[1], tmp); 476 return; 477 } 478 479 if (count[2] + count[3] != rgd->rd_dinodes) { 480 if (gfs2_consist_rgrpd(rgd)) 481 fs_err(sdp, "used metadata mismatch: %u != %u\n", 482 count[2] + count[3], rgd->rd_dinodes); 483 return; 484 } 485 } 486 487 static inline int rgrp_contains_block(struct gfs2_rgrpd *rgd, u64 block) 488 { 489 u64 first = rgd->rd_data0; 490 u64 last = first + rgd->rd_data; 491 return first <= block && block < last; 492 } 493 494 /** 495 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number 496 * @sdp: The GFS2 superblock 497 * @blk: The data block number 498 * @exact: True if this needs to be an exact match 499 * 500 * Returns: The resource group, or NULL if not found 501 */ 502 503 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact) 504 { 505 struct rb_node *n, *next; 506 struct gfs2_rgrpd *cur; 507 508 spin_lock(&sdp->sd_rindex_spin); 509 n = sdp->sd_rindex_tree.rb_node; 510 while (n) { 511 cur = rb_entry(n, struct gfs2_rgrpd, rd_node); 512 next = NULL; 513 if (blk < cur->rd_addr) 514 next = n->rb_left; 515 else if (blk >= cur->rd_data0 + cur->rd_data) 516 next = n->rb_right; 517 if (next == NULL) { 518 spin_unlock(&sdp->sd_rindex_spin); 519 if (exact) { 520 if (blk < cur->rd_addr) 521 return NULL; 522 if (blk >= cur->rd_data0 + cur->rd_data) 523 return NULL; 524 } 525 return cur; 526 } 527 n = next; 528 } 529 spin_unlock(&sdp->sd_rindex_spin); 530 531 return NULL; 532 } 533 534 /** 535 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem 536 * @sdp: The GFS2 superblock 537 * 538 * Returns: The first rgrp in the filesystem 539 */ 540 541 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp) 542 { 543 const struct rb_node *n; 544 struct gfs2_rgrpd *rgd; 545 546 spin_lock(&sdp->sd_rindex_spin); 547 n = rb_first(&sdp->sd_rindex_tree); 548 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 549 spin_unlock(&sdp->sd_rindex_spin); 550 551 return rgd; 552 } 553 554 /** 555 * gfs2_rgrpd_get_next - get the next RG 556 * @rgd: the resource group descriptor 557 * 558 * Returns: The next rgrp 559 */ 560 561 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd) 562 { 563 struct gfs2_sbd *sdp = rgd->rd_sbd; 564 const struct rb_node *n; 565 566 spin_lock(&sdp->sd_rindex_spin); 567 n = rb_next(&rgd->rd_node); 568 if (n == NULL) 569 n = rb_first(&sdp->sd_rindex_tree); 570 571 if (unlikely(&rgd->rd_node == n)) { 572 spin_unlock(&sdp->sd_rindex_spin); 573 return NULL; 574 } 575 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 576 spin_unlock(&sdp->sd_rindex_spin); 577 return rgd; 578 } 579 580 void check_and_update_goal(struct gfs2_inode *ip) 581 { 582 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 583 if (!ip->i_goal || gfs2_blk2rgrpd(sdp, ip->i_goal, 1) == NULL) 584 ip->i_goal = ip->i_no_addr; 585 } 586 587 void gfs2_free_clones(struct gfs2_rgrpd *rgd) 588 { 589 int x; 590 591 for (x = 0; x < rgd->rd_length; x++) { 592 struct gfs2_bitmap *bi = rgd->rd_bits + x; 593 kfree(bi->bi_clone); 594 bi->bi_clone = NULL; 595 } 596 } 597 598 /** 599 * gfs2_rsqa_alloc - make sure we have a reservation assigned to the inode 600 * plus a quota allocations data structure, if necessary 601 * @ip: the inode for this reservation 602 */ 603 int gfs2_rsqa_alloc(struct gfs2_inode *ip) 604 { 605 return gfs2_qa_alloc(ip); 606 } 607 608 static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs) 609 { 610 gfs2_print_dbg(seq, " B: n:%llu s:%llu b:%u f:%u\n", 611 (unsigned long long)rs->rs_inum, 612 (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm), 613 rs->rs_rbm.offset, rs->rs_free); 614 } 615 616 /** 617 * __rs_deltree - remove a multi-block reservation from the rgd tree 618 * @rs: The reservation to remove 619 * 620 */ 621 static void __rs_deltree(struct gfs2_blkreserv *rs) 622 { 623 struct gfs2_rgrpd *rgd; 624 625 if (!gfs2_rs_active(rs)) 626 return; 627 628 rgd = rs->rs_rbm.rgd; 629 trace_gfs2_rs(rs, TRACE_RS_TREEDEL); 630 rb_erase(&rs->rs_node, &rgd->rd_rstree); 631 RB_CLEAR_NODE(&rs->rs_node); 632 633 if (rs->rs_free) { 634 struct gfs2_bitmap *bi = rbm_bi(&rs->rs_rbm); 635 636 /* return reserved blocks to the rgrp */ 637 BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free); 638 rs->rs_rbm.rgd->rd_reserved -= rs->rs_free; 639 /* The rgrp extent failure point is likely not to increase; 640 it will only do so if the freed blocks are somehow 641 contiguous with a span of free blocks that follows. Still, 642 it will force the number to be recalculated later. */ 643 rgd->rd_extfail_pt += rs->rs_free; 644 rs->rs_free = 0; 645 clear_bit(GBF_FULL, &bi->bi_flags); 646 } 647 } 648 649 /** 650 * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree 651 * @rs: The reservation to remove 652 * 653 */ 654 void gfs2_rs_deltree(struct gfs2_blkreserv *rs) 655 { 656 struct gfs2_rgrpd *rgd; 657 658 rgd = rs->rs_rbm.rgd; 659 if (rgd) { 660 spin_lock(&rgd->rd_rsspin); 661 __rs_deltree(rs); 662 spin_unlock(&rgd->rd_rsspin); 663 } 664 } 665 666 /** 667 * gfs2_rsqa_delete - delete a multi-block reservation and quota allocation 668 * @ip: The inode for this reservation 669 * @wcount: The inode's write count, or NULL 670 * 671 */ 672 void gfs2_rsqa_delete(struct gfs2_inode *ip, atomic_t *wcount) 673 { 674 down_write(&ip->i_rw_mutex); 675 if ((wcount == NULL) || (atomic_read(wcount) <= 1)) { 676 gfs2_rs_deltree(&ip->i_res); 677 BUG_ON(ip->i_res.rs_free); 678 } 679 up_write(&ip->i_rw_mutex); 680 gfs2_qa_delete(ip, wcount); 681 } 682 683 /** 684 * return_all_reservations - return all reserved blocks back to the rgrp. 685 * @rgd: the rgrp that needs its space back 686 * 687 * We previously reserved a bunch of blocks for allocation. Now we need to 688 * give them back. This leave the reservation structures in tact, but removes 689 * all of their corresponding "no-fly zones". 690 */ 691 static void return_all_reservations(struct gfs2_rgrpd *rgd) 692 { 693 struct rb_node *n; 694 struct gfs2_blkreserv *rs; 695 696 spin_lock(&rgd->rd_rsspin); 697 while ((n = rb_first(&rgd->rd_rstree))) { 698 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 699 __rs_deltree(rs); 700 } 701 spin_unlock(&rgd->rd_rsspin); 702 } 703 704 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp) 705 { 706 struct rb_node *n; 707 struct gfs2_rgrpd *rgd; 708 struct gfs2_glock *gl; 709 710 while ((n = rb_first(&sdp->sd_rindex_tree))) { 711 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 712 gl = rgd->rd_gl; 713 714 rb_erase(n, &sdp->sd_rindex_tree); 715 716 if (gl) { 717 spin_lock(&gl->gl_lockref.lock); 718 gl->gl_object = NULL; 719 spin_unlock(&gl->gl_lockref.lock); 720 gfs2_glock_add_to_lru(gl); 721 gfs2_glock_put(gl); 722 } 723 724 gfs2_free_clones(rgd); 725 kfree(rgd->rd_bits); 726 return_all_reservations(rgd); 727 kmem_cache_free(gfs2_rgrpd_cachep, rgd); 728 } 729 } 730 731 static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd) 732 { 733 pr_info("ri_addr = %llu\n", (unsigned long long)rgd->rd_addr); 734 pr_info("ri_length = %u\n", rgd->rd_length); 735 pr_info("ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0); 736 pr_info("ri_data = %u\n", rgd->rd_data); 737 pr_info("ri_bitbytes = %u\n", rgd->rd_bitbytes); 738 } 739 740 /** 741 * gfs2_compute_bitstructs - Compute the bitmap sizes 742 * @rgd: The resource group descriptor 743 * 744 * Calculates bitmap descriptors, one for each block that contains bitmap data 745 * 746 * Returns: errno 747 */ 748 749 static int compute_bitstructs(struct gfs2_rgrpd *rgd) 750 { 751 struct gfs2_sbd *sdp = rgd->rd_sbd; 752 struct gfs2_bitmap *bi; 753 u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */ 754 u32 bytes_left, bytes; 755 int x; 756 757 if (!length) 758 return -EINVAL; 759 760 rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS); 761 if (!rgd->rd_bits) 762 return -ENOMEM; 763 764 bytes_left = rgd->rd_bitbytes; 765 766 for (x = 0; x < length; x++) { 767 bi = rgd->rd_bits + x; 768 769 bi->bi_flags = 0; 770 /* small rgrp; bitmap stored completely in header block */ 771 if (length == 1) { 772 bytes = bytes_left; 773 bi->bi_offset = sizeof(struct gfs2_rgrp); 774 bi->bi_start = 0; 775 bi->bi_len = bytes; 776 bi->bi_blocks = bytes * GFS2_NBBY; 777 /* header block */ 778 } else if (x == 0) { 779 bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp); 780 bi->bi_offset = sizeof(struct gfs2_rgrp); 781 bi->bi_start = 0; 782 bi->bi_len = bytes; 783 bi->bi_blocks = bytes * GFS2_NBBY; 784 /* last block */ 785 } else if (x + 1 == length) { 786 bytes = bytes_left; 787 bi->bi_offset = sizeof(struct gfs2_meta_header); 788 bi->bi_start = rgd->rd_bitbytes - bytes_left; 789 bi->bi_len = bytes; 790 bi->bi_blocks = bytes * GFS2_NBBY; 791 /* other blocks */ 792 } else { 793 bytes = sdp->sd_sb.sb_bsize - 794 sizeof(struct gfs2_meta_header); 795 bi->bi_offset = sizeof(struct gfs2_meta_header); 796 bi->bi_start = rgd->rd_bitbytes - bytes_left; 797 bi->bi_len = bytes; 798 bi->bi_blocks = bytes * GFS2_NBBY; 799 } 800 801 bytes_left -= bytes; 802 } 803 804 if (bytes_left) { 805 gfs2_consist_rgrpd(rgd); 806 return -EIO; 807 } 808 bi = rgd->rd_bits + (length - 1); 809 if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) { 810 if (gfs2_consist_rgrpd(rgd)) { 811 gfs2_rindex_print(rgd); 812 fs_err(sdp, "start=%u len=%u offset=%u\n", 813 bi->bi_start, bi->bi_len, bi->bi_offset); 814 } 815 return -EIO; 816 } 817 818 return 0; 819 } 820 821 /** 822 * gfs2_ri_total - Total up the file system space, according to the rindex. 823 * @sdp: the filesystem 824 * 825 */ 826 u64 gfs2_ri_total(struct gfs2_sbd *sdp) 827 { 828 u64 total_data = 0; 829 struct inode *inode = sdp->sd_rindex; 830 struct gfs2_inode *ip = GFS2_I(inode); 831 char buf[sizeof(struct gfs2_rindex)]; 832 int error, rgrps; 833 834 for (rgrps = 0;; rgrps++) { 835 loff_t pos = rgrps * sizeof(struct gfs2_rindex); 836 837 if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode)) 838 break; 839 error = gfs2_internal_read(ip, buf, &pos, 840 sizeof(struct gfs2_rindex)); 841 if (error != sizeof(struct gfs2_rindex)) 842 break; 843 total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data); 844 } 845 return total_data; 846 } 847 848 static int rgd_insert(struct gfs2_rgrpd *rgd) 849 { 850 struct gfs2_sbd *sdp = rgd->rd_sbd; 851 struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL; 852 853 /* Figure out where to put new node */ 854 while (*newn) { 855 struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd, 856 rd_node); 857 858 parent = *newn; 859 if (rgd->rd_addr < cur->rd_addr) 860 newn = &((*newn)->rb_left); 861 else if (rgd->rd_addr > cur->rd_addr) 862 newn = &((*newn)->rb_right); 863 else 864 return -EEXIST; 865 } 866 867 rb_link_node(&rgd->rd_node, parent, newn); 868 rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree); 869 sdp->sd_rgrps++; 870 return 0; 871 } 872 873 /** 874 * read_rindex_entry - Pull in a new resource index entry from the disk 875 * @ip: Pointer to the rindex inode 876 * 877 * Returns: 0 on success, > 0 on EOF, error code otherwise 878 */ 879 880 static int read_rindex_entry(struct gfs2_inode *ip) 881 { 882 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 883 const unsigned bsize = sdp->sd_sb.sb_bsize; 884 loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex); 885 struct gfs2_rindex buf; 886 int error; 887 struct gfs2_rgrpd *rgd; 888 889 if (pos >= i_size_read(&ip->i_inode)) 890 return 1; 891 892 error = gfs2_internal_read(ip, (char *)&buf, &pos, 893 sizeof(struct gfs2_rindex)); 894 895 if (error != sizeof(struct gfs2_rindex)) 896 return (error == 0) ? 1 : error; 897 898 rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS); 899 error = -ENOMEM; 900 if (!rgd) 901 return error; 902 903 rgd->rd_sbd = sdp; 904 rgd->rd_addr = be64_to_cpu(buf.ri_addr); 905 rgd->rd_length = be32_to_cpu(buf.ri_length); 906 rgd->rd_data0 = be64_to_cpu(buf.ri_data0); 907 rgd->rd_data = be32_to_cpu(buf.ri_data); 908 rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes); 909 spin_lock_init(&rgd->rd_rsspin); 910 911 error = compute_bitstructs(rgd); 912 if (error) 913 goto fail; 914 915 error = gfs2_glock_get(sdp, rgd->rd_addr, 916 &gfs2_rgrp_glops, CREATE, &rgd->rd_gl); 917 if (error) 918 goto fail; 919 920 rgd->rd_gl->gl_object = rgd; 921 rgd->rd_gl->gl_vm.start = (rgd->rd_addr * bsize) & PAGE_MASK; 922 rgd->rd_gl->gl_vm.end = PAGE_ALIGN((rgd->rd_addr + rgd->rd_length) * bsize) - 1; 923 rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr; 924 rgd->rd_flags &= ~(GFS2_RDF_UPTODATE | GFS2_RDF_PREFERRED); 925 if (rgd->rd_data > sdp->sd_max_rg_data) 926 sdp->sd_max_rg_data = rgd->rd_data; 927 spin_lock(&sdp->sd_rindex_spin); 928 error = rgd_insert(rgd); 929 spin_unlock(&sdp->sd_rindex_spin); 930 if (!error) 931 return 0; 932 933 error = 0; /* someone else read in the rgrp; free it and ignore it */ 934 gfs2_glock_put(rgd->rd_gl); 935 936 fail: 937 kfree(rgd->rd_bits); 938 kmem_cache_free(gfs2_rgrpd_cachep, rgd); 939 return error; 940 } 941 942 /** 943 * set_rgrp_preferences - Run all the rgrps, selecting some we prefer to use 944 * @sdp: the GFS2 superblock 945 * 946 * The purpose of this function is to select a subset of the resource groups 947 * and mark them as PREFERRED. We do it in such a way that each node prefers 948 * to use a unique set of rgrps to minimize glock contention. 949 */ 950 static void set_rgrp_preferences(struct gfs2_sbd *sdp) 951 { 952 struct gfs2_rgrpd *rgd, *first; 953 int i; 954 955 /* Skip an initial number of rgrps, based on this node's journal ID. 956 That should start each node out on its own set. */ 957 rgd = gfs2_rgrpd_get_first(sdp); 958 for (i = 0; i < sdp->sd_lockstruct.ls_jid; i++) 959 rgd = gfs2_rgrpd_get_next(rgd); 960 first = rgd; 961 962 do { 963 rgd->rd_flags |= GFS2_RDF_PREFERRED; 964 for (i = 0; i < sdp->sd_journals; i++) { 965 rgd = gfs2_rgrpd_get_next(rgd); 966 if (!rgd || rgd == first) 967 break; 968 } 969 } while (rgd && rgd != first); 970 } 971 972 /** 973 * gfs2_ri_update - Pull in a new resource index from the disk 974 * @ip: pointer to the rindex inode 975 * 976 * Returns: 0 on successful update, error code otherwise 977 */ 978 979 static int gfs2_ri_update(struct gfs2_inode *ip) 980 { 981 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 982 int error; 983 984 do { 985 error = read_rindex_entry(ip); 986 } while (error == 0); 987 988 if (error < 0) 989 return error; 990 991 set_rgrp_preferences(sdp); 992 993 sdp->sd_rindex_uptodate = 1; 994 return 0; 995 } 996 997 /** 998 * gfs2_rindex_update - Update the rindex if required 999 * @sdp: The GFS2 superblock 1000 * 1001 * We grab a lock on the rindex inode to make sure that it doesn't 1002 * change whilst we are performing an operation. We keep this lock 1003 * for quite long periods of time compared to other locks. This 1004 * doesn't matter, since it is shared and it is very, very rarely 1005 * accessed in the exclusive mode (i.e. only when expanding the filesystem). 1006 * 1007 * This makes sure that we're using the latest copy of the resource index 1008 * special file, which might have been updated if someone expanded the 1009 * filesystem (via gfs2_grow utility), which adds new resource groups. 1010 * 1011 * Returns: 0 on succeess, error code otherwise 1012 */ 1013 1014 int gfs2_rindex_update(struct gfs2_sbd *sdp) 1015 { 1016 struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex); 1017 struct gfs2_glock *gl = ip->i_gl; 1018 struct gfs2_holder ri_gh; 1019 int error = 0; 1020 int unlock_required = 0; 1021 1022 /* Read new copy from disk if we don't have the latest */ 1023 if (!sdp->sd_rindex_uptodate) { 1024 if (!gfs2_glock_is_locked_by_me(gl)) { 1025 error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh); 1026 if (error) 1027 return error; 1028 unlock_required = 1; 1029 } 1030 if (!sdp->sd_rindex_uptodate) 1031 error = gfs2_ri_update(ip); 1032 if (unlock_required) 1033 gfs2_glock_dq_uninit(&ri_gh); 1034 } 1035 1036 return error; 1037 } 1038 1039 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf) 1040 { 1041 const struct gfs2_rgrp *str = buf; 1042 u32 rg_flags; 1043 1044 rg_flags = be32_to_cpu(str->rg_flags); 1045 rg_flags &= ~GFS2_RDF_MASK; 1046 rgd->rd_flags &= GFS2_RDF_MASK; 1047 rgd->rd_flags |= rg_flags; 1048 rgd->rd_free = be32_to_cpu(str->rg_free); 1049 rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes); 1050 rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration); 1051 } 1052 1053 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf) 1054 { 1055 struct gfs2_rgrp *str = buf; 1056 1057 str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK); 1058 str->rg_free = cpu_to_be32(rgd->rd_free); 1059 str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes); 1060 str->__pad = cpu_to_be32(0); 1061 str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration); 1062 memset(&str->rg_reserved, 0, sizeof(str->rg_reserved)); 1063 } 1064 1065 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd) 1066 { 1067 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl; 1068 struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data; 1069 1070 if (rgl->rl_flags != str->rg_flags || rgl->rl_free != str->rg_free || 1071 rgl->rl_dinodes != str->rg_dinodes || 1072 rgl->rl_igeneration != str->rg_igeneration) 1073 return 0; 1074 return 1; 1075 } 1076 1077 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf) 1078 { 1079 const struct gfs2_rgrp *str = buf; 1080 1081 rgl->rl_magic = cpu_to_be32(GFS2_MAGIC); 1082 rgl->rl_flags = str->rg_flags; 1083 rgl->rl_free = str->rg_free; 1084 rgl->rl_dinodes = str->rg_dinodes; 1085 rgl->rl_igeneration = str->rg_igeneration; 1086 rgl->__pad = 0UL; 1087 } 1088 1089 static void update_rgrp_lvb_unlinked(struct gfs2_rgrpd *rgd, u32 change) 1090 { 1091 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl; 1092 u32 unlinked = be32_to_cpu(rgl->rl_unlinked) + change; 1093 rgl->rl_unlinked = cpu_to_be32(unlinked); 1094 } 1095 1096 static u32 count_unlinked(struct gfs2_rgrpd *rgd) 1097 { 1098 struct gfs2_bitmap *bi; 1099 const u32 length = rgd->rd_length; 1100 const u8 *buffer = NULL; 1101 u32 i, goal, count = 0; 1102 1103 for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) { 1104 goal = 0; 1105 buffer = bi->bi_bh->b_data + bi->bi_offset; 1106 WARN_ON(!buffer_uptodate(bi->bi_bh)); 1107 while (goal < bi->bi_len * GFS2_NBBY) { 1108 goal = gfs2_bitfit(buffer, bi->bi_len, goal, 1109 GFS2_BLKST_UNLINKED); 1110 if (goal == BFITNOENT) 1111 break; 1112 count++; 1113 goal++; 1114 } 1115 } 1116 1117 return count; 1118 } 1119 1120 1121 /** 1122 * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps 1123 * @rgd: the struct gfs2_rgrpd describing the RG to read in 1124 * 1125 * Read in all of a Resource Group's header and bitmap blocks. 1126 * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps. 1127 * 1128 * Returns: errno 1129 */ 1130 1131 static int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd) 1132 { 1133 struct gfs2_sbd *sdp = rgd->rd_sbd; 1134 struct gfs2_glock *gl = rgd->rd_gl; 1135 unsigned int length = rgd->rd_length; 1136 struct gfs2_bitmap *bi; 1137 unsigned int x, y; 1138 int error; 1139 1140 if (rgd->rd_bits[0].bi_bh != NULL) 1141 return 0; 1142 1143 for (x = 0; x < length; x++) { 1144 bi = rgd->rd_bits + x; 1145 error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, 0, &bi->bi_bh); 1146 if (error) 1147 goto fail; 1148 } 1149 1150 for (y = length; y--;) { 1151 bi = rgd->rd_bits + y; 1152 error = gfs2_meta_wait(sdp, bi->bi_bh); 1153 if (error) 1154 goto fail; 1155 if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB : 1156 GFS2_METATYPE_RG)) { 1157 error = -EIO; 1158 goto fail; 1159 } 1160 } 1161 1162 if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) { 1163 for (x = 0; x < length; x++) 1164 clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags); 1165 gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data); 1166 rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK); 1167 rgd->rd_free_clone = rgd->rd_free; 1168 /* max out the rgrp allocation failure point */ 1169 rgd->rd_extfail_pt = rgd->rd_free; 1170 } 1171 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) { 1172 rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd)); 1173 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, 1174 rgd->rd_bits[0].bi_bh->b_data); 1175 } 1176 else if (sdp->sd_args.ar_rgrplvb) { 1177 if (!gfs2_rgrp_lvb_valid(rgd)){ 1178 gfs2_consist_rgrpd(rgd); 1179 error = -EIO; 1180 goto fail; 1181 } 1182 if (rgd->rd_rgl->rl_unlinked == 0) 1183 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1184 } 1185 return 0; 1186 1187 fail: 1188 while (x--) { 1189 bi = rgd->rd_bits + x; 1190 brelse(bi->bi_bh); 1191 bi->bi_bh = NULL; 1192 gfs2_assert_warn(sdp, !bi->bi_clone); 1193 } 1194 1195 return error; 1196 } 1197 1198 static int update_rgrp_lvb(struct gfs2_rgrpd *rgd) 1199 { 1200 u32 rl_flags; 1201 1202 if (rgd->rd_flags & GFS2_RDF_UPTODATE) 1203 return 0; 1204 1205 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) 1206 return gfs2_rgrp_bh_get(rgd); 1207 1208 rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags); 1209 rl_flags &= ~GFS2_RDF_MASK; 1210 rgd->rd_flags &= GFS2_RDF_MASK; 1211 rgd->rd_flags |= (rl_flags | GFS2_RDF_UPTODATE | GFS2_RDF_CHECK); 1212 if (rgd->rd_rgl->rl_unlinked == 0) 1213 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1214 rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free); 1215 rgd->rd_free_clone = rgd->rd_free; 1216 rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes); 1217 rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration); 1218 return 0; 1219 } 1220 1221 int gfs2_rgrp_go_lock(struct gfs2_holder *gh) 1222 { 1223 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object; 1224 struct gfs2_sbd *sdp = rgd->rd_sbd; 1225 1226 if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb) 1227 return 0; 1228 return gfs2_rgrp_bh_get(rgd); 1229 } 1230 1231 /** 1232 * gfs2_rgrp_brelse - Release RG bitmaps read in with gfs2_rgrp_bh_get() 1233 * @rgd: The resource group 1234 * 1235 */ 1236 1237 void gfs2_rgrp_brelse(struct gfs2_rgrpd *rgd) 1238 { 1239 int x, length = rgd->rd_length; 1240 1241 for (x = 0; x < length; x++) { 1242 struct gfs2_bitmap *bi = rgd->rd_bits + x; 1243 if (bi->bi_bh) { 1244 brelse(bi->bi_bh); 1245 bi->bi_bh = NULL; 1246 } 1247 } 1248 1249 } 1250 1251 /** 1252 * gfs2_rgrp_go_unlock - Unlock a rgrp glock 1253 * @gh: The glock holder for the resource group 1254 * 1255 */ 1256 1257 void gfs2_rgrp_go_unlock(struct gfs2_holder *gh) 1258 { 1259 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object; 1260 int demote_requested = test_bit(GLF_DEMOTE, &gh->gh_gl->gl_flags) | 1261 test_bit(GLF_PENDING_DEMOTE, &gh->gh_gl->gl_flags); 1262 1263 if (rgd && demote_requested) 1264 gfs2_rgrp_brelse(rgd); 1265 } 1266 1267 int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset, 1268 struct buffer_head *bh, 1269 const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed) 1270 { 1271 struct super_block *sb = sdp->sd_vfs; 1272 u64 blk; 1273 sector_t start = 0; 1274 sector_t nr_blks = 0; 1275 int rv; 1276 unsigned int x; 1277 u32 trimmed = 0; 1278 u8 diff; 1279 1280 for (x = 0; x < bi->bi_len; x++) { 1281 const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data; 1282 clone += bi->bi_offset; 1283 clone += x; 1284 if (bh) { 1285 const u8 *orig = bh->b_data + bi->bi_offset + x; 1286 diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1)); 1287 } else { 1288 diff = ~(*clone | (*clone >> 1)); 1289 } 1290 diff &= 0x55; 1291 if (diff == 0) 1292 continue; 1293 blk = offset + ((bi->bi_start + x) * GFS2_NBBY); 1294 while(diff) { 1295 if (diff & 1) { 1296 if (nr_blks == 0) 1297 goto start_new_extent; 1298 if ((start + nr_blks) != blk) { 1299 if (nr_blks >= minlen) { 1300 rv = sb_issue_discard(sb, 1301 start, nr_blks, 1302 GFP_NOFS, 0); 1303 if (rv) 1304 goto fail; 1305 trimmed += nr_blks; 1306 } 1307 nr_blks = 0; 1308 start_new_extent: 1309 start = blk; 1310 } 1311 nr_blks++; 1312 } 1313 diff >>= 2; 1314 blk++; 1315 } 1316 } 1317 if (nr_blks >= minlen) { 1318 rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0); 1319 if (rv) 1320 goto fail; 1321 trimmed += nr_blks; 1322 } 1323 if (ptrimmed) 1324 *ptrimmed = trimmed; 1325 return 0; 1326 1327 fail: 1328 if (sdp->sd_args.ar_discard) 1329 fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv); 1330 sdp->sd_args.ar_discard = 0; 1331 return -EIO; 1332 } 1333 1334 /** 1335 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem 1336 * @filp: Any file on the filesystem 1337 * @argp: Pointer to the arguments (also used to pass result) 1338 * 1339 * Returns: 0 on success, otherwise error code 1340 */ 1341 1342 int gfs2_fitrim(struct file *filp, void __user *argp) 1343 { 1344 struct inode *inode = file_inode(filp); 1345 struct gfs2_sbd *sdp = GFS2_SB(inode); 1346 struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev); 1347 struct buffer_head *bh; 1348 struct gfs2_rgrpd *rgd; 1349 struct gfs2_rgrpd *rgd_end; 1350 struct gfs2_holder gh; 1351 struct fstrim_range r; 1352 int ret = 0; 1353 u64 amt; 1354 u64 trimmed = 0; 1355 u64 start, end, minlen; 1356 unsigned int x; 1357 unsigned bs_shift = sdp->sd_sb.sb_bsize_shift; 1358 1359 if (!capable(CAP_SYS_ADMIN)) 1360 return -EPERM; 1361 1362 if (!blk_queue_discard(q)) 1363 return -EOPNOTSUPP; 1364 1365 if (copy_from_user(&r, argp, sizeof(r))) 1366 return -EFAULT; 1367 1368 ret = gfs2_rindex_update(sdp); 1369 if (ret) 1370 return ret; 1371 1372 start = r.start >> bs_shift; 1373 end = start + (r.len >> bs_shift); 1374 minlen = max_t(u64, r.minlen, 1375 q->limits.discard_granularity) >> bs_shift; 1376 1377 if (end <= start || minlen > sdp->sd_max_rg_data) 1378 return -EINVAL; 1379 1380 rgd = gfs2_blk2rgrpd(sdp, start, 0); 1381 rgd_end = gfs2_blk2rgrpd(sdp, end, 0); 1382 1383 if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end)) 1384 && (start > rgd_end->rd_data0 + rgd_end->rd_data)) 1385 return -EINVAL; /* start is beyond the end of the fs */ 1386 1387 while (1) { 1388 1389 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh); 1390 if (ret) 1391 goto out; 1392 1393 if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) { 1394 /* Trim each bitmap in the rgrp */ 1395 for (x = 0; x < rgd->rd_length; x++) { 1396 struct gfs2_bitmap *bi = rgd->rd_bits + x; 1397 ret = gfs2_rgrp_send_discards(sdp, 1398 rgd->rd_data0, NULL, bi, minlen, 1399 &amt); 1400 if (ret) { 1401 gfs2_glock_dq_uninit(&gh); 1402 goto out; 1403 } 1404 trimmed += amt; 1405 } 1406 1407 /* Mark rgrp as having been trimmed */ 1408 ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0); 1409 if (ret == 0) { 1410 bh = rgd->rd_bits[0].bi_bh; 1411 rgd->rd_flags |= GFS2_RGF_TRIMMED; 1412 gfs2_trans_add_meta(rgd->rd_gl, bh); 1413 gfs2_rgrp_out(rgd, bh->b_data); 1414 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, bh->b_data); 1415 gfs2_trans_end(sdp); 1416 } 1417 } 1418 gfs2_glock_dq_uninit(&gh); 1419 1420 if (rgd == rgd_end) 1421 break; 1422 1423 rgd = gfs2_rgrpd_get_next(rgd); 1424 } 1425 1426 out: 1427 r.len = trimmed << bs_shift; 1428 if (copy_to_user(argp, &r, sizeof(r))) 1429 return -EFAULT; 1430 1431 return ret; 1432 } 1433 1434 /** 1435 * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree 1436 * @ip: the inode structure 1437 * 1438 */ 1439 static void rs_insert(struct gfs2_inode *ip) 1440 { 1441 struct rb_node **newn, *parent = NULL; 1442 int rc; 1443 struct gfs2_blkreserv *rs = &ip->i_res; 1444 struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd; 1445 u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm); 1446 1447 BUG_ON(gfs2_rs_active(rs)); 1448 1449 spin_lock(&rgd->rd_rsspin); 1450 newn = &rgd->rd_rstree.rb_node; 1451 while (*newn) { 1452 struct gfs2_blkreserv *cur = 1453 rb_entry(*newn, struct gfs2_blkreserv, rs_node); 1454 1455 parent = *newn; 1456 rc = rs_cmp(fsblock, rs->rs_free, cur); 1457 if (rc > 0) 1458 newn = &((*newn)->rb_right); 1459 else if (rc < 0) 1460 newn = &((*newn)->rb_left); 1461 else { 1462 spin_unlock(&rgd->rd_rsspin); 1463 WARN_ON(1); 1464 return; 1465 } 1466 } 1467 1468 rb_link_node(&rs->rs_node, parent, newn); 1469 rb_insert_color(&rs->rs_node, &rgd->rd_rstree); 1470 1471 /* Do our rgrp accounting for the reservation */ 1472 rgd->rd_reserved += rs->rs_free; /* blocks reserved */ 1473 spin_unlock(&rgd->rd_rsspin); 1474 trace_gfs2_rs(rs, TRACE_RS_INSERT); 1475 } 1476 1477 /** 1478 * rg_mblk_search - find a group of multiple free blocks to form a reservation 1479 * @rgd: the resource group descriptor 1480 * @ip: pointer to the inode for which we're reserving blocks 1481 * @ap: the allocation parameters 1482 * 1483 */ 1484 1485 static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip, 1486 const struct gfs2_alloc_parms *ap) 1487 { 1488 struct gfs2_rbm rbm = { .rgd = rgd, }; 1489 u64 goal; 1490 struct gfs2_blkreserv *rs = &ip->i_res; 1491 u32 extlen; 1492 u32 free_blocks = rgd->rd_free_clone - rgd->rd_reserved; 1493 int ret; 1494 struct inode *inode = &ip->i_inode; 1495 1496 if (S_ISDIR(inode->i_mode)) 1497 extlen = 1; 1498 else { 1499 extlen = max_t(u32, atomic_read(&rs->rs_sizehint), ap->target); 1500 extlen = clamp(extlen, RGRP_RSRV_MINBLKS, free_blocks); 1501 } 1502 if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen)) 1503 return; 1504 1505 /* Find bitmap block that contains bits for goal block */ 1506 if (rgrp_contains_block(rgd, ip->i_goal)) 1507 goal = ip->i_goal; 1508 else 1509 goal = rgd->rd_last_alloc + rgd->rd_data0; 1510 1511 if (WARN_ON(gfs2_rbm_from_block(&rbm, goal))) 1512 return; 1513 1514 ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, ip, true, ap); 1515 if (ret == 0) { 1516 rs->rs_rbm = rbm; 1517 rs->rs_free = extlen; 1518 rs->rs_inum = ip->i_no_addr; 1519 rs_insert(ip); 1520 } else { 1521 if (goal == rgd->rd_last_alloc + rgd->rd_data0) 1522 rgd->rd_last_alloc = 0; 1523 } 1524 } 1525 1526 /** 1527 * gfs2_next_unreserved_block - Return next block that is not reserved 1528 * @rgd: The resource group 1529 * @block: The starting block 1530 * @length: The required length 1531 * @ip: Ignore any reservations for this inode 1532 * 1533 * If the block does not appear in any reservation, then return the 1534 * block number unchanged. If it does appear in the reservation, then 1535 * keep looking through the tree of reservations in order to find the 1536 * first block number which is not reserved. 1537 */ 1538 1539 static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block, 1540 u32 length, 1541 const struct gfs2_inode *ip) 1542 { 1543 struct gfs2_blkreserv *rs; 1544 struct rb_node *n; 1545 int rc; 1546 1547 spin_lock(&rgd->rd_rsspin); 1548 n = rgd->rd_rstree.rb_node; 1549 while (n) { 1550 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 1551 rc = rs_cmp(block, length, rs); 1552 if (rc < 0) 1553 n = n->rb_left; 1554 else if (rc > 0) 1555 n = n->rb_right; 1556 else 1557 break; 1558 } 1559 1560 if (n) { 1561 while ((rs_cmp(block, length, rs) == 0) && (&ip->i_res != rs)) { 1562 block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free; 1563 n = n->rb_right; 1564 if (n == NULL) 1565 break; 1566 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 1567 } 1568 } 1569 1570 spin_unlock(&rgd->rd_rsspin); 1571 return block; 1572 } 1573 1574 /** 1575 * gfs2_reservation_check_and_update - Check for reservations during block alloc 1576 * @rbm: The current position in the resource group 1577 * @ip: The inode for which we are searching for blocks 1578 * @minext: The minimum extent length 1579 * @maxext: A pointer to the maximum extent structure 1580 * 1581 * This checks the current position in the rgrp to see whether there is 1582 * a reservation covering this block. If not then this function is a 1583 * no-op. If there is, then the position is moved to the end of the 1584 * contiguous reservation(s) so that we are pointing at the first 1585 * non-reserved block. 1586 * 1587 * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error 1588 */ 1589 1590 static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm, 1591 const struct gfs2_inode *ip, 1592 u32 minext, 1593 struct gfs2_extent *maxext) 1594 { 1595 u64 block = gfs2_rbm_to_block(rbm); 1596 u32 extlen = 1; 1597 u64 nblock; 1598 int ret; 1599 1600 /* 1601 * If we have a minimum extent length, then skip over any extent 1602 * which is less than the min extent length in size. 1603 */ 1604 if (minext) { 1605 extlen = gfs2_free_extlen(rbm, minext); 1606 if (extlen <= maxext->len) 1607 goto fail; 1608 } 1609 1610 /* 1611 * Check the extent which has been found against the reservations 1612 * and skip if parts of it are already reserved 1613 */ 1614 nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip); 1615 if (nblock == block) { 1616 if (!minext || extlen >= minext) 1617 return 0; 1618 1619 if (extlen > maxext->len) { 1620 maxext->len = extlen; 1621 maxext->rbm = *rbm; 1622 } 1623 fail: 1624 nblock = block + extlen; 1625 } 1626 ret = gfs2_rbm_from_block(rbm, nblock); 1627 if (ret < 0) 1628 return ret; 1629 return 1; 1630 } 1631 1632 /** 1633 * gfs2_rbm_find - Look for blocks of a particular state 1634 * @rbm: Value/result starting position and final position 1635 * @state: The state which we want to find 1636 * @minext: Pointer to the requested extent length (NULL for a single block) 1637 * This is updated to be the actual reservation size. 1638 * @ip: If set, check for reservations 1639 * @nowrap: Stop looking at the end of the rgrp, rather than wrapping 1640 * around until we've reached the starting point. 1641 * @ap: the allocation parameters 1642 * 1643 * Side effects: 1644 * - If looking for free blocks, we set GBF_FULL on each bitmap which 1645 * has no free blocks in it. 1646 * - If looking for free blocks, we set rd_extfail_pt on each rgrp which 1647 * has come up short on a free block search. 1648 * 1649 * Returns: 0 on success, -ENOSPC if there is no block of the requested state 1650 */ 1651 1652 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext, 1653 const struct gfs2_inode *ip, bool nowrap, 1654 const struct gfs2_alloc_parms *ap) 1655 { 1656 struct buffer_head *bh; 1657 int initial_bii; 1658 u32 initial_offset; 1659 int first_bii = rbm->bii; 1660 u32 first_offset = rbm->offset; 1661 u32 offset; 1662 u8 *buffer; 1663 int n = 0; 1664 int iters = rbm->rgd->rd_length; 1665 int ret; 1666 struct gfs2_bitmap *bi; 1667 struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, }; 1668 1669 /* If we are not starting at the beginning of a bitmap, then we 1670 * need to add one to the bitmap count to ensure that we search 1671 * the starting bitmap twice. 1672 */ 1673 if (rbm->offset != 0) 1674 iters++; 1675 1676 while(1) { 1677 bi = rbm_bi(rbm); 1678 if (test_bit(GBF_FULL, &bi->bi_flags) && 1679 (state == GFS2_BLKST_FREE)) 1680 goto next_bitmap; 1681 1682 bh = bi->bi_bh; 1683 buffer = bh->b_data + bi->bi_offset; 1684 WARN_ON(!buffer_uptodate(bh)); 1685 if (state != GFS2_BLKST_UNLINKED && bi->bi_clone) 1686 buffer = bi->bi_clone + bi->bi_offset; 1687 initial_offset = rbm->offset; 1688 offset = gfs2_bitfit(buffer, bi->bi_len, rbm->offset, state); 1689 if (offset == BFITNOENT) 1690 goto bitmap_full; 1691 rbm->offset = offset; 1692 if (ip == NULL) 1693 return 0; 1694 1695 initial_bii = rbm->bii; 1696 ret = gfs2_reservation_check_and_update(rbm, ip, 1697 minext ? *minext : 0, 1698 &maxext); 1699 if (ret == 0) 1700 return 0; 1701 if (ret > 0) { 1702 n += (rbm->bii - initial_bii); 1703 goto next_iter; 1704 } 1705 if (ret == -E2BIG) { 1706 rbm->bii = 0; 1707 rbm->offset = 0; 1708 n += (rbm->bii - initial_bii); 1709 goto res_covered_end_of_rgrp; 1710 } 1711 return ret; 1712 1713 bitmap_full: /* Mark bitmap as full and fall through */ 1714 if ((state == GFS2_BLKST_FREE) && initial_offset == 0) 1715 set_bit(GBF_FULL, &bi->bi_flags); 1716 1717 next_bitmap: /* Find next bitmap in the rgrp */ 1718 rbm->offset = 0; 1719 rbm->bii++; 1720 if (rbm->bii == rbm->rgd->rd_length) 1721 rbm->bii = 0; 1722 res_covered_end_of_rgrp: 1723 if ((rbm->bii == 0) && nowrap) 1724 break; 1725 n++; 1726 next_iter: 1727 if (n >= iters) 1728 break; 1729 } 1730 1731 if (minext == NULL || state != GFS2_BLKST_FREE) 1732 return -ENOSPC; 1733 1734 /* If the extent was too small, and it's smaller than the smallest 1735 to have failed before, remember for future reference that it's 1736 useless to search this rgrp again for this amount or more. */ 1737 if ((first_offset == 0) && (first_bii == 0) && 1738 (*minext < rbm->rgd->rd_extfail_pt)) 1739 rbm->rgd->rd_extfail_pt = *minext; 1740 1741 /* If the maximum extent we found is big enough to fulfill the 1742 minimum requirements, use it anyway. */ 1743 if (maxext.len) { 1744 *rbm = maxext.rbm; 1745 *minext = maxext.len; 1746 return 0; 1747 } 1748 1749 return -ENOSPC; 1750 } 1751 1752 /** 1753 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes 1754 * @rgd: The rgrp 1755 * @last_unlinked: block address of the last dinode we unlinked 1756 * @skip: block address we should explicitly not unlink 1757 * 1758 * Returns: 0 if no error 1759 * The inode, if one has been found, in inode. 1760 */ 1761 1762 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip) 1763 { 1764 u64 block; 1765 struct gfs2_sbd *sdp = rgd->rd_sbd; 1766 struct gfs2_glock *gl; 1767 struct gfs2_inode *ip; 1768 int error; 1769 int found = 0; 1770 struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 }; 1771 1772 while (1) { 1773 down_write(&sdp->sd_log_flush_lock); 1774 error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL, 1775 true, NULL); 1776 up_write(&sdp->sd_log_flush_lock); 1777 if (error == -ENOSPC) 1778 break; 1779 if (WARN_ON_ONCE(error)) 1780 break; 1781 1782 block = gfs2_rbm_to_block(&rbm); 1783 if (gfs2_rbm_from_block(&rbm, block + 1)) 1784 break; 1785 if (*last_unlinked != NO_BLOCK && block <= *last_unlinked) 1786 continue; 1787 if (block == skip) 1788 continue; 1789 *last_unlinked = block; 1790 1791 error = gfs2_glock_get(sdp, block, &gfs2_iopen_glops, CREATE, &gl); 1792 if (error) 1793 continue; 1794 1795 /* If the inode is already in cache, we can ignore it here 1796 * because the existing inode disposal code will deal with 1797 * it when all refs have gone away. Accessing gl_object like 1798 * this is not safe in general. Here it is ok because we do 1799 * not dereference the pointer, and we only need an approx 1800 * answer to whether it is NULL or not. 1801 */ 1802 ip = gl->gl_object; 1803 1804 if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0) 1805 gfs2_glock_put(gl); 1806 else 1807 found++; 1808 1809 /* Limit reclaim to sensible number of tasks */ 1810 if (found > NR_CPUS) 1811 return; 1812 } 1813 1814 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1815 return; 1816 } 1817 1818 /** 1819 * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested 1820 * @rgd: The rgrp in question 1821 * @loops: An indication of how picky we can be (0=very, 1=less so) 1822 * 1823 * This function uses the recently added glock statistics in order to 1824 * figure out whether a parciular resource group is suffering from 1825 * contention from multiple nodes. This is done purely on the basis 1826 * of timings, since this is the only data we have to work with and 1827 * our aim here is to reject a resource group which is highly contended 1828 * but (very important) not to do this too often in order to ensure that 1829 * we do not land up introducing fragmentation by changing resource 1830 * groups when not actually required. 1831 * 1832 * The calculation is fairly simple, we want to know whether the SRTTB 1833 * (i.e. smoothed round trip time for blocking operations) to acquire 1834 * the lock for this rgrp's glock is significantly greater than the 1835 * time taken for resource groups on average. We introduce a margin in 1836 * the form of the variable @var which is computed as the sum of the two 1837 * respective variences, and multiplied by a factor depending on @loops 1838 * and whether we have a lot of data to base the decision on. This is 1839 * then tested against the square difference of the means in order to 1840 * decide whether the result is statistically significant or not. 1841 * 1842 * Returns: A boolean verdict on the congestion status 1843 */ 1844 1845 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops) 1846 { 1847 const struct gfs2_glock *gl = rgd->rd_gl; 1848 const struct gfs2_sbd *sdp = gl->gl_name.ln_sbd; 1849 struct gfs2_lkstats *st; 1850 u64 r_dcount, l_dcount; 1851 u64 l_srttb, a_srttb = 0; 1852 s64 srttb_diff; 1853 u64 sqr_diff; 1854 u64 var; 1855 int cpu, nonzero = 0; 1856 1857 preempt_disable(); 1858 for_each_present_cpu(cpu) { 1859 st = &per_cpu_ptr(sdp->sd_lkstats, cpu)->lkstats[LM_TYPE_RGRP]; 1860 if (st->stats[GFS2_LKS_SRTTB]) { 1861 a_srttb += st->stats[GFS2_LKS_SRTTB]; 1862 nonzero++; 1863 } 1864 } 1865 st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP]; 1866 if (nonzero) 1867 do_div(a_srttb, nonzero); 1868 r_dcount = st->stats[GFS2_LKS_DCOUNT]; 1869 var = st->stats[GFS2_LKS_SRTTVARB] + 1870 gl->gl_stats.stats[GFS2_LKS_SRTTVARB]; 1871 preempt_enable(); 1872 1873 l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB]; 1874 l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT]; 1875 1876 if ((l_dcount < 1) || (r_dcount < 1) || (a_srttb == 0)) 1877 return false; 1878 1879 srttb_diff = a_srttb - l_srttb; 1880 sqr_diff = srttb_diff * srttb_diff; 1881 1882 var *= 2; 1883 if (l_dcount < 8 || r_dcount < 8) 1884 var *= 2; 1885 if (loops == 1) 1886 var *= 2; 1887 1888 return ((srttb_diff < 0) && (sqr_diff > var)); 1889 } 1890 1891 /** 1892 * gfs2_rgrp_used_recently 1893 * @rs: The block reservation with the rgrp to test 1894 * @msecs: The time limit in milliseconds 1895 * 1896 * Returns: True if the rgrp glock has been used within the time limit 1897 */ 1898 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs, 1899 u64 msecs) 1900 { 1901 u64 tdiff; 1902 1903 tdiff = ktime_to_ns(ktime_sub(ktime_get_real(), 1904 rs->rs_rbm.rgd->rd_gl->gl_dstamp)); 1905 1906 return tdiff > (msecs * 1000 * 1000); 1907 } 1908 1909 static u32 gfs2_orlov_skip(const struct gfs2_inode *ip) 1910 { 1911 const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1912 u32 skip; 1913 1914 get_random_bytes(&skip, sizeof(skip)); 1915 return skip % sdp->sd_rgrps; 1916 } 1917 1918 static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin) 1919 { 1920 struct gfs2_rgrpd *rgd = *pos; 1921 struct gfs2_sbd *sdp = rgd->rd_sbd; 1922 1923 rgd = gfs2_rgrpd_get_next(rgd); 1924 if (rgd == NULL) 1925 rgd = gfs2_rgrpd_get_first(sdp); 1926 *pos = rgd; 1927 if (rgd != begin) /* If we didn't wrap */ 1928 return true; 1929 return false; 1930 } 1931 1932 /** 1933 * fast_to_acquire - determine if a resource group will be fast to acquire 1934 * 1935 * If this is one of our preferred rgrps, it should be quicker to acquire, 1936 * because we tried to set ourselves up as dlm lock master. 1937 */ 1938 static inline int fast_to_acquire(struct gfs2_rgrpd *rgd) 1939 { 1940 struct gfs2_glock *gl = rgd->rd_gl; 1941 1942 if (gl->gl_state != LM_ST_UNLOCKED && list_empty(&gl->gl_holders) && 1943 !test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags) && 1944 !test_bit(GLF_DEMOTE, &gl->gl_flags)) 1945 return 1; 1946 if (rgd->rd_flags & GFS2_RDF_PREFERRED) 1947 return 1; 1948 return 0; 1949 } 1950 1951 /** 1952 * gfs2_inplace_reserve - Reserve space in the filesystem 1953 * @ip: the inode to reserve space for 1954 * @ap: the allocation parameters 1955 * 1956 * We try our best to find an rgrp that has at least ap->target blocks 1957 * available. After a couple of passes (loops == 2), the prospects of finding 1958 * such an rgrp diminish. At this stage, we return the first rgrp that has 1959 * atleast ap->min_target blocks available. Either way, we set ap->allowed to 1960 * the number of blocks available in the chosen rgrp. 1961 * 1962 * Returns: 0 on success, 1963 * -ENOMEM if a suitable rgrp can't be found 1964 * errno otherwise 1965 */ 1966 1967 int gfs2_inplace_reserve(struct gfs2_inode *ip, struct gfs2_alloc_parms *ap) 1968 { 1969 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1970 struct gfs2_rgrpd *begin = NULL; 1971 struct gfs2_blkreserv *rs = &ip->i_res; 1972 int error = 0, rg_locked, flags = 0; 1973 u64 last_unlinked = NO_BLOCK; 1974 int loops = 0; 1975 u32 skip = 0; 1976 1977 if (sdp->sd_args.ar_rgrplvb) 1978 flags |= GL_SKIP; 1979 if (gfs2_assert_warn(sdp, ap->target)) 1980 return -EINVAL; 1981 if (gfs2_rs_active(rs)) { 1982 begin = rs->rs_rbm.rgd; 1983 } else if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal)) { 1984 rs->rs_rbm.rgd = begin = ip->i_rgd; 1985 } else { 1986 check_and_update_goal(ip); 1987 rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1); 1988 } 1989 if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV)) 1990 skip = gfs2_orlov_skip(ip); 1991 if (rs->rs_rbm.rgd == NULL) 1992 return -EBADSLT; 1993 1994 while (loops < 3) { 1995 rg_locked = 1; 1996 1997 if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) { 1998 rg_locked = 0; 1999 if (skip && skip--) 2000 goto next_rgrp; 2001 if (!gfs2_rs_active(rs)) { 2002 if (loops == 0 && 2003 !fast_to_acquire(rs->rs_rbm.rgd)) 2004 goto next_rgrp; 2005 if ((loops < 2) && 2006 gfs2_rgrp_used_recently(rs, 1000) && 2007 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops)) 2008 goto next_rgrp; 2009 } 2010 error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl, 2011 LM_ST_EXCLUSIVE, flags, 2012 &rs->rs_rgd_gh); 2013 if (unlikely(error)) 2014 return error; 2015 if (!gfs2_rs_active(rs) && (loops < 2) && 2016 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops)) 2017 goto skip_rgrp; 2018 if (sdp->sd_args.ar_rgrplvb) { 2019 error = update_rgrp_lvb(rs->rs_rbm.rgd); 2020 if (unlikely(error)) { 2021 gfs2_glock_dq_uninit(&rs->rs_rgd_gh); 2022 return error; 2023 } 2024 } 2025 } 2026 2027 /* Skip unuseable resource groups */ 2028 if ((rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC | 2029 GFS2_RDF_ERROR)) || 2030 (loops == 0 && ap->target > rs->rs_rbm.rgd->rd_extfail_pt)) 2031 goto skip_rgrp; 2032 2033 if (sdp->sd_args.ar_rgrplvb) 2034 gfs2_rgrp_bh_get(rs->rs_rbm.rgd); 2035 2036 /* Get a reservation if we don't already have one */ 2037 if (!gfs2_rs_active(rs)) 2038 rg_mblk_search(rs->rs_rbm.rgd, ip, ap); 2039 2040 /* Skip rgrps when we can't get a reservation on first pass */ 2041 if (!gfs2_rs_active(rs) && (loops < 1)) 2042 goto check_rgrp; 2043 2044 /* If rgrp has enough free space, use it */ 2045 if (rs->rs_rbm.rgd->rd_free_clone >= ap->target || 2046 (loops == 2 && ap->min_target && 2047 rs->rs_rbm.rgd->rd_free_clone >= ap->min_target)) { 2048 ip->i_rgd = rs->rs_rbm.rgd; 2049 ap->allowed = ip->i_rgd->rd_free_clone; 2050 return 0; 2051 } 2052 check_rgrp: 2053 /* Check for unlinked inodes which can be reclaimed */ 2054 if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK) 2055 try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked, 2056 ip->i_no_addr); 2057 skip_rgrp: 2058 /* Drop reservation, if we couldn't use reserved rgrp */ 2059 if (gfs2_rs_active(rs)) 2060 gfs2_rs_deltree(rs); 2061 2062 /* Unlock rgrp if required */ 2063 if (!rg_locked) 2064 gfs2_glock_dq_uninit(&rs->rs_rgd_gh); 2065 next_rgrp: 2066 /* Find the next rgrp, and continue looking */ 2067 if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin)) 2068 continue; 2069 if (skip) 2070 continue; 2071 2072 /* If we've scanned all the rgrps, but found no free blocks 2073 * then this checks for some less likely conditions before 2074 * trying again. 2075 */ 2076 loops++; 2077 /* Check that fs hasn't grown if writing to rindex */ 2078 if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) { 2079 error = gfs2_ri_update(ip); 2080 if (error) 2081 return error; 2082 } 2083 /* Flushing the log may release space */ 2084 if (loops == 2) 2085 gfs2_log_flush(sdp, NULL, NORMAL_FLUSH); 2086 } 2087 2088 return -ENOSPC; 2089 } 2090 2091 /** 2092 * gfs2_inplace_release - release an inplace reservation 2093 * @ip: the inode the reservation was taken out on 2094 * 2095 * Release a reservation made by gfs2_inplace_reserve(). 2096 */ 2097 2098 void gfs2_inplace_release(struct gfs2_inode *ip) 2099 { 2100 struct gfs2_blkreserv *rs = &ip->i_res; 2101 2102 if (rs->rs_rgd_gh.gh_gl) 2103 gfs2_glock_dq_uninit(&rs->rs_rgd_gh); 2104 } 2105 2106 /** 2107 * gfs2_get_block_type - Check a block in a RG is of given type 2108 * @rgd: the resource group holding the block 2109 * @block: the block number 2110 * 2111 * Returns: The block type (GFS2_BLKST_*) 2112 */ 2113 2114 static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block) 2115 { 2116 struct gfs2_rbm rbm = { .rgd = rgd, }; 2117 int ret; 2118 2119 ret = gfs2_rbm_from_block(&rbm, block); 2120 WARN_ON_ONCE(ret != 0); 2121 2122 return gfs2_testbit(&rbm); 2123 } 2124 2125 2126 /** 2127 * gfs2_alloc_extent - allocate an extent from a given bitmap 2128 * @rbm: the resource group information 2129 * @dinode: TRUE if the first block we allocate is for a dinode 2130 * @n: The extent length (value/result) 2131 * 2132 * Add the bitmap buffer to the transaction. 2133 * Set the found bits to @new_state to change block's allocation state. 2134 */ 2135 static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode, 2136 unsigned int *n) 2137 { 2138 struct gfs2_rbm pos = { .rgd = rbm->rgd, }; 2139 const unsigned int elen = *n; 2140 u64 block; 2141 int ret; 2142 2143 *n = 1; 2144 block = gfs2_rbm_to_block(rbm); 2145 gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh); 2146 gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED); 2147 block++; 2148 while (*n < elen) { 2149 ret = gfs2_rbm_from_block(&pos, block); 2150 if (ret || gfs2_testbit(&pos) != GFS2_BLKST_FREE) 2151 break; 2152 gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh); 2153 gfs2_setbit(&pos, true, GFS2_BLKST_USED); 2154 (*n)++; 2155 block++; 2156 } 2157 } 2158 2159 /** 2160 * rgblk_free - Change alloc state of given block(s) 2161 * @sdp: the filesystem 2162 * @bstart: the start of a run of blocks to free 2163 * @blen: the length of the block run (all must lie within ONE RG!) 2164 * @new_state: GFS2_BLKST_XXX the after-allocation block state 2165 * 2166 * Returns: Resource group containing the block(s) 2167 */ 2168 2169 static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart, 2170 u32 blen, unsigned char new_state) 2171 { 2172 struct gfs2_rbm rbm; 2173 struct gfs2_bitmap *bi, *bi_prev = NULL; 2174 2175 rbm.rgd = gfs2_blk2rgrpd(sdp, bstart, 1); 2176 if (!rbm.rgd) { 2177 if (gfs2_consist(sdp)) 2178 fs_err(sdp, "block = %llu\n", (unsigned long long)bstart); 2179 return NULL; 2180 } 2181 2182 gfs2_rbm_from_block(&rbm, bstart); 2183 while (blen--) { 2184 bi = rbm_bi(&rbm); 2185 if (bi != bi_prev) { 2186 if (!bi->bi_clone) { 2187 bi->bi_clone = kmalloc(bi->bi_bh->b_size, 2188 GFP_NOFS | __GFP_NOFAIL); 2189 memcpy(bi->bi_clone + bi->bi_offset, 2190 bi->bi_bh->b_data + bi->bi_offset, 2191 bi->bi_len); 2192 } 2193 gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh); 2194 bi_prev = bi; 2195 } 2196 gfs2_setbit(&rbm, false, new_state); 2197 gfs2_rbm_incr(&rbm); 2198 } 2199 2200 return rbm.rgd; 2201 } 2202 2203 /** 2204 * gfs2_rgrp_dump - print out an rgrp 2205 * @seq: The iterator 2206 * @gl: The glock in question 2207 * 2208 */ 2209 2210 void gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl) 2211 { 2212 struct gfs2_rgrpd *rgd = gl->gl_object; 2213 struct gfs2_blkreserv *trs; 2214 const struct rb_node *n; 2215 2216 if (rgd == NULL) 2217 return; 2218 gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u r:%u e:%u\n", 2219 (unsigned long long)rgd->rd_addr, rgd->rd_flags, 2220 rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes, 2221 rgd->rd_reserved, rgd->rd_extfail_pt); 2222 spin_lock(&rgd->rd_rsspin); 2223 for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) { 2224 trs = rb_entry(n, struct gfs2_blkreserv, rs_node); 2225 dump_rs(seq, trs); 2226 } 2227 spin_unlock(&rgd->rd_rsspin); 2228 } 2229 2230 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd) 2231 { 2232 struct gfs2_sbd *sdp = rgd->rd_sbd; 2233 fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n", 2234 (unsigned long long)rgd->rd_addr); 2235 fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n"); 2236 gfs2_rgrp_dump(NULL, rgd->rd_gl); 2237 rgd->rd_flags |= GFS2_RDF_ERROR; 2238 } 2239 2240 /** 2241 * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation 2242 * @ip: The inode we have just allocated blocks for 2243 * @rbm: The start of the allocated blocks 2244 * @len: The extent length 2245 * 2246 * Adjusts a reservation after an allocation has taken place. If the 2247 * reservation does not match the allocation, or if it is now empty 2248 * then it is removed. 2249 */ 2250 2251 static void gfs2_adjust_reservation(struct gfs2_inode *ip, 2252 const struct gfs2_rbm *rbm, unsigned len) 2253 { 2254 struct gfs2_blkreserv *rs = &ip->i_res; 2255 struct gfs2_rgrpd *rgd = rbm->rgd; 2256 unsigned rlen; 2257 u64 block; 2258 int ret; 2259 2260 spin_lock(&rgd->rd_rsspin); 2261 if (gfs2_rs_active(rs)) { 2262 if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) { 2263 block = gfs2_rbm_to_block(rbm); 2264 ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len); 2265 rlen = min(rs->rs_free, len); 2266 rs->rs_free -= rlen; 2267 rgd->rd_reserved -= rlen; 2268 trace_gfs2_rs(rs, TRACE_RS_CLAIM); 2269 if (rs->rs_free && !ret) 2270 goto out; 2271 /* We used up our block reservation, so we should 2272 reserve more blocks next time. */ 2273 atomic_add(RGRP_RSRV_ADDBLKS, &rs->rs_sizehint); 2274 } 2275 __rs_deltree(rs); 2276 } 2277 out: 2278 spin_unlock(&rgd->rd_rsspin); 2279 } 2280 2281 /** 2282 * gfs2_set_alloc_start - Set starting point for block allocation 2283 * @rbm: The rbm which will be set to the required location 2284 * @ip: The gfs2 inode 2285 * @dinode: Flag to say if allocation includes a new inode 2286 * 2287 * This sets the starting point from the reservation if one is active 2288 * otherwise it falls back to guessing a start point based on the 2289 * inode's goal block or the last allocation point in the rgrp. 2290 */ 2291 2292 static void gfs2_set_alloc_start(struct gfs2_rbm *rbm, 2293 const struct gfs2_inode *ip, bool dinode) 2294 { 2295 u64 goal; 2296 2297 if (gfs2_rs_active(&ip->i_res)) { 2298 *rbm = ip->i_res.rs_rbm; 2299 return; 2300 } 2301 2302 if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal)) 2303 goal = ip->i_goal; 2304 else 2305 goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0; 2306 2307 gfs2_rbm_from_block(rbm, goal); 2308 } 2309 2310 /** 2311 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode 2312 * @ip: the inode to allocate the block for 2313 * @bn: Used to return the starting block number 2314 * @nblocks: requested number of blocks/extent length (value/result) 2315 * @dinode: 1 if we're allocating a dinode block, else 0 2316 * @generation: the generation number of the inode 2317 * 2318 * Returns: 0 or error 2319 */ 2320 2321 int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks, 2322 bool dinode, u64 *generation) 2323 { 2324 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2325 struct buffer_head *dibh; 2326 struct gfs2_rbm rbm = { .rgd = ip->i_rgd, }; 2327 unsigned int ndata; 2328 u64 block; /* block, within the file system scope */ 2329 int error; 2330 2331 gfs2_set_alloc_start(&rbm, ip, dinode); 2332 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, ip, false, NULL); 2333 2334 if (error == -ENOSPC) { 2335 gfs2_set_alloc_start(&rbm, ip, dinode); 2336 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, NULL, false, 2337 NULL); 2338 } 2339 2340 /* Since all blocks are reserved in advance, this shouldn't happen */ 2341 if (error) { 2342 fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n", 2343 (unsigned long long)ip->i_no_addr, error, *nblocks, 2344 test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags), 2345 rbm.rgd->rd_extfail_pt); 2346 goto rgrp_error; 2347 } 2348 2349 gfs2_alloc_extent(&rbm, dinode, nblocks); 2350 block = gfs2_rbm_to_block(&rbm); 2351 rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0; 2352 if (gfs2_rs_active(&ip->i_res)) 2353 gfs2_adjust_reservation(ip, &rbm, *nblocks); 2354 ndata = *nblocks; 2355 if (dinode) 2356 ndata--; 2357 2358 if (!dinode) { 2359 ip->i_goal = block + ndata - 1; 2360 error = gfs2_meta_inode_buffer(ip, &dibh); 2361 if (error == 0) { 2362 struct gfs2_dinode *di = 2363 (struct gfs2_dinode *)dibh->b_data; 2364 gfs2_trans_add_meta(ip->i_gl, dibh); 2365 di->di_goal_meta = di->di_goal_data = 2366 cpu_to_be64(ip->i_goal); 2367 brelse(dibh); 2368 } 2369 } 2370 if (rbm.rgd->rd_free < *nblocks) { 2371 pr_warn("nblocks=%u\n", *nblocks); 2372 goto rgrp_error; 2373 } 2374 2375 rbm.rgd->rd_free -= *nblocks; 2376 if (dinode) { 2377 rbm.rgd->rd_dinodes++; 2378 *generation = rbm.rgd->rd_igeneration++; 2379 if (*generation == 0) 2380 *generation = rbm.rgd->rd_igeneration++; 2381 } 2382 2383 gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh); 2384 gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data); 2385 gfs2_rgrp_ondisk2lvb(rbm.rgd->rd_rgl, rbm.rgd->rd_bits[0].bi_bh->b_data); 2386 2387 gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0); 2388 if (dinode) 2389 gfs2_trans_add_unrevoke(sdp, block, *nblocks); 2390 2391 gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid); 2392 2393 rbm.rgd->rd_free_clone -= *nblocks; 2394 trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks, 2395 dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED); 2396 *bn = block; 2397 return 0; 2398 2399 rgrp_error: 2400 gfs2_rgrp_error(rbm.rgd); 2401 return -EIO; 2402 } 2403 2404 /** 2405 * __gfs2_free_blocks - free a contiguous run of block(s) 2406 * @ip: the inode these blocks are being freed from 2407 * @bstart: first block of a run of contiguous blocks 2408 * @blen: the length of the block run 2409 * @meta: 1 if the blocks represent metadata 2410 * 2411 */ 2412 2413 void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta) 2414 { 2415 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2416 struct gfs2_rgrpd *rgd; 2417 2418 rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE); 2419 if (!rgd) 2420 return; 2421 trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE); 2422 rgd->rd_free += blen; 2423 rgd->rd_flags &= ~GFS2_RGF_TRIMMED; 2424 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2425 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2426 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data); 2427 2428 /* Directories keep their data in the metadata address space */ 2429 if (meta || ip->i_depth) 2430 gfs2_meta_wipe(ip, bstart, blen); 2431 } 2432 2433 /** 2434 * gfs2_free_meta - free a contiguous run of data block(s) 2435 * @ip: the inode these blocks are being freed from 2436 * @bstart: first block of a run of contiguous blocks 2437 * @blen: the length of the block run 2438 * 2439 */ 2440 2441 void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen) 2442 { 2443 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2444 2445 __gfs2_free_blocks(ip, bstart, blen, 1); 2446 gfs2_statfs_change(sdp, 0, +blen, 0); 2447 gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid); 2448 } 2449 2450 void gfs2_unlink_di(struct inode *inode) 2451 { 2452 struct gfs2_inode *ip = GFS2_I(inode); 2453 struct gfs2_sbd *sdp = GFS2_SB(inode); 2454 struct gfs2_rgrpd *rgd; 2455 u64 blkno = ip->i_no_addr; 2456 2457 rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED); 2458 if (!rgd) 2459 return; 2460 trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED); 2461 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2462 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2463 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data); 2464 update_rgrp_lvb_unlinked(rgd, 1); 2465 } 2466 2467 static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno) 2468 { 2469 struct gfs2_sbd *sdp = rgd->rd_sbd; 2470 struct gfs2_rgrpd *tmp_rgd; 2471 2472 tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE); 2473 if (!tmp_rgd) 2474 return; 2475 gfs2_assert_withdraw(sdp, rgd == tmp_rgd); 2476 2477 if (!rgd->rd_dinodes) 2478 gfs2_consist_rgrpd(rgd); 2479 rgd->rd_dinodes--; 2480 rgd->rd_free++; 2481 2482 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2483 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2484 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data); 2485 update_rgrp_lvb_unlinked(rgd, -1); 2486 2487 gfs2_statfs_change(sdp, 0, +1, -1); 2488 } 2489 2490 2491 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip) 2492 { 2493 gfs2_free_uninit_di(rgd, ip->i_no_addr); 2494 trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE); 2495 gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid); 2496 gfs2_meta_wipe(ip, ip->i_no_addr, 1); 2497 } 2498 2499 /** 2500 * gfs2_check_blk_type - Check the type of a block 2501 * @sdp: The superblock 2502 * @no_addr: The block number to check 2503 * @type: The block type we are looking for 2504 * 2505 * Returns: 0 if the block type matches the expected type 2506 * -ESTALE if it doesn't match 2507 * or -ve errno if something went wrong while checking 2508 */ 2509 2510 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type) 2511 { 2512 struct gfs2_rgrpd *rgd; 2513 struct gfs2_holder rgd_gh; 2514 int error = -EINVAL; 2515 2516 rgd = gfs2_blk2rgrpd(sdp, no_addr, 1); 2517 if (!rgd) 2518 goto fail; 2519 2520 error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh); 2521 if (error) 2522 goto fail; 2523 2524 if (gfs2_get_block_type(rgd, no_addr) != type) 2525 error = -ESTALE; 2526 2527 gfs2_glock_dq_uninit(&rgd_gh); 2528 fail: 2529 return error; 2530 } 2531 2532 /** 2533 * gfs2_rlist_add - add a RG to a list of RGs 2534 * @ip: the inode 2535 * @rlist: the list of resource groups 2536 * @block: the block 2537 * 2538 * Figure out what RG a block belongs to and add that RG to the list 2539 * 2540 * FIXME: Don't use NOFAIL 2541 * 2542 */ 2543 2544 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist, 2545 u64 block) 2546 { 2547 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2548 struct gfs2_rgrpd *rgd; 2549 struct gfs2_rgrpd **tmp; 2550 unsigned int new_space; 2551 unsigned int x; 2552 2553 if (gfs2_assert_warn(sdp, !rlist->rl_ghs)) 2554 return; 2555 2556 if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block)) 2557 rgd = ip->i_rgd; 2558 else 2559 rgd = gfs2_blk2rgrpd(sdp, block, 1); 2560 if (!rgd) { 2561 fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block); 2562 return; 2563 } 2564 ip->i_rgd = rgd; 2565 2566 for (x = 0; x < rlist->rl_rgrps; x++) 2567 if (rlist->rl_rgd[x] == rgd) 2568 return; 2569 2570 if (rlist->rl_rgrps == rlist->rl_space) { 2571 new_space = rlist->rl_space + 10; 2572 2573 tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *), 2574 GFP_NOFS | __GFP_NOFAIL); 2575 2576 if (rlist->rl_rgd) { 2577 memcpy(tmp, rlist->rl_rgd, 2578 rlist->rl_space * sizeof(struct gfs2_rgrpd *)); 2579 kfree(rlist->rl_rgd); 2580 } 2581 2582 rlist->rl_space = new_space; 2583 rlist->rl_rgd = tmp; 2584 } 2585 2586 rlist->rl_rgd[rlist->rl_rgrps++] = rgd; 2587 } 2588 2589 /** 2590 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate 2591 * and initialize an array of glock holders for them 2592 * @rlist: the list of resource groups 2593 * @state: the lock state to acquire the RG lock in 2594 * 2595 * FIXME: Don't use NOFAIL 2596 * 2597 */ 2598 2599 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state) 2600 { 2601 unsigned int x; 2602 2603 rlist->rl_ghs = kcalloc(rlist->rl_rgrps, sizeof(struct gfs2_holder), 2604 GFP_NOFS | __GFP_NOFAIL); 2605 for (x = 0; x < rlist->rl_rgrps; x++) 2606 gfs2_holder_init(rlist->rl_rgd[x]->rd_gl, 2607 state, 0, 2608 &rlist->rl_ghs[x]); 2609 } 2610 2611 /** 2612 * gfs2_rlist_free - free a resource group list 2613 * @rlist: the list of resource groups 2614 * 2615 */ 2616 2617 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist) 2618 { 2619 unsigned int x; 2620 2621 kfree(rlist->rl_rgd); 2622 2623 if (rlist->rl_ghs) { 2624 for (x = 0; x < rlist->rl_rgrps; x++) 2625 gfs2_holder_uninit(&rlist->rl_ghs[x]); 2626 kfree(rlist->rl_ghs); 2627 rlist->rl_ghs = NULL; 2628 } 2629 } 2630 2631