xref: /linux/fs/gfs2/rgrp.c (revision 0d456bad36d42d16022be045c8a53ddbb59ee478)
1 /*
2  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
3  * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
4  *
5  * This copyrighted material is made available to anyone wishing to use,
6  * modify, copy, or redistribute it subject to the terms and conditions
7  * of the GNU General Public License version 2.
8  */
9 
10 #include <linux/slab.h>
11 #include <linux/spinlock.h>
12 #include <linux/completion.h>
13 #include <linux/buffer_head.h>
14 #include <linux/fs.h>
15 #include <linux/gfs2_ondisk.h>
16 #include <linux/prefetch.h>
17 #include <linux/blkdev.h>
18 #include <linux/rbtree.h>
19 #include <linux/random.h>
20 
21 #include "gfs2.h"
22 #include "incore.h"
23 #include "glock.h"
24 #include "glops.h"
25 #include "lops.h"
26 #include "meta_io.h"
27 #include "quota.h"
28 #include "rgrp.h"
29 #include "super.h"
30 #include "trans.h"
31 #include "util.h"
32 #include "log.h"
33 #include "inode.h"
34 #include "trace_gfs2.h"
35 
36 #define BFITNOENT ((u32)~0)
37 #define NO_BLOCK ((u64)~0)
38 
39 #if BITS_PER_LONG == 32
40 #define LBITMASK   (0x55555555UL)
41 #define LBITSKIP55 (0x55555555UL)
42 #define LBITSKIP00 (0x00000000UL)
43 #else
44 #define LBITMASK   (0x5555555555555555UL)
45 #define LBITSKIP55 (0x5555555555555555UL)
46 #define LBITSKIP00 (0x0000000000000000UL)
47 #endif
48 
49 /*
50  * These routines are used by the resource group routines (rgrp.c)
51  * to keep track of block allocation.  Each block is represented by two
52  * bits.  So, each byte represents GFS2_NBBY (i.e. 4) blocks.
53  *
54  * 0 = Free
55  * 1 = Used (not metadata)
56  * 2 = Unlinked (still in use) inode
57  * 3 = Used (metadata)
58  */
59 
60 static const char valid_change[16] = {
61 	        /* current */
62 	/* n */ 0, 1, 1, 1,
63 	/* e */ 1, 0, 0, 0,
64 	/* w */ 0, 0, 0, 1,
65 	        1, 0, 0, 0
66 };
67 
68 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 minext,
69                          const struct gfs2_inode *ip, bool nowrap);
70 
71 
72 /**
73  * gfs2_setbit - Set a bit in the bitmaps
74  * @rbm: The position of the bit to set
75  * @do_clone: Also set the clone bitmap, if it exists
76  * @new_state: the new state of the block
77  *
78  */
79 
80 static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone,
81 			       unsigned char new_state)
82 {
83 	unsigned char *byte1, *byte2, *end, cur_state;
84 	unsigned int buflen = rbm->bi->bi_len;
85 	const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
86 
87 	byte1 = rbm->bi->bi_bh->b_data + rbm->bi->bi_offset + (rbm->offset / GFS2_NBBY);
88 	end = rbm->bi->bi_bh->b_data + rbm->bi->bi_offset + buflen;
89 
90 	BUG_ON(byte1 >= end);
91 
92 	cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
93 
94 	if (unlikely(!valid_change[new_state * 4 + cur_state])) {
95 		printk(KERN_WARNING "GFS2: buf_blk = 0x%x old_state=%d, "
96 		       "new_state=%d\n", rbm->offset, cur_state, new_state);
97 		printk(KERN_WARNING "GFS2: rgrp=0x%llx bi_start=0x%x\n",
98 		       (unsigned long long)rbm->rgd->rd_addr,
99 		       rbm->bi->bi_start);
100 		printk(KERN_WARNING "GFS2: bi_offset=0x%x bi_len=0x%x\n",
101 		       rbm->bi->bi_offset, rbm->bi->bi_len);
102 		dump_stack();
103 		gfs2_consist_rgrpd(rbm->rgd);
104 		return;
105 	}
106 	*byte1 ^= (cur_state ^ new_state) << bit;
107 
108 	if (do_clone && rbm->bi->bi_clone) {
109 		byte2 = rbm->bi->bi_clone + rbm->bi->bi_offset + (rbm->offset / GFS2_NBBY);
110 		cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
111 		*byte2 ^= (cur_state ^ new_state) << bit;
112 	}
113 }
114 
115 /**
116  * gfs2_testbit - test a bit in the bitmaps
117  * @rbm: The bit to test
118  *
119  * Returns: The two bit block state of the requested bit
120  */
121 
122 static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm)
123 {
124 	const u8 *buffer = rbm->bi->bi_bh->b_data + rbm->bi->bi_offset;
125 	const u8 *byte;
126 	unsigned int bit;
127 
128 	byte = buffer + (rbm->offset / GFS2_NBBY);
129 	bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
130 
131 	return (*byte >> bit) & GFS2_BIT_MASK;
132 }
133 
134 /**
135  * gfs2_bit_search
136  * @ptr: Pointer to bitmap data
137  * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
138  * @state: The state we are searching for
139  *
140  * We xor the bitmap data with a patter which is the bitwise opposite
141  * of what we are looking for, this gives rise to a pattern of ones
142  * wherever there is a match. Since we have two bits per entry, we
143  * take this pattern, shift it down by one place and then and it with
144  * the original. All the even bit positions (0,2,4, etc) then represent
145  * successful matches, so we mask with 0x55555..... to remove the unwanted
146  * odd bit positions.
147  *
148  * This allows searching of a whole u64 at once (32 blocks) with a
149  * single test (on 64 bit arches).
150  */
151 
152 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
153 {
154 	u64 tmp;
155 	static const u64 search[] = {
156 		[0] = 0xffffffffffffffffULL,
157 		[1] = 0xaaaaaaaaaaaaaaaaULL,
158 		[2] = 0x5555555555555555ULL,
159 		[3] = 0x0000000000000000ULL,
160 	};
161 	tmp = le64_to_cpu(*ptr) ^ search[state];
162 	tmp &= (tmp >> 1);
163 	tmp &= mask;
164 	return tmp;
165 }
166 
167 /**
168  * rs_cmp - multi-block reservation range compare
169  * @blk: absolute file system block number of the new reservation
170  * @len: number of blocks in the new reservation
171  * @rs: existing reservation to compare against
172  *
173  * returns: 1 if the block range is beyond the reach of the reservation
174  *         -1 if the block range is before the start of the reservation
175  *          0 if the block range overlaps with the reservation
176  */
177 static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs)
178 {
179 	u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm);
180 
181 	if (blk >= startblk + rs->rs_free)
182 		return 1;
183 	if (blk + len - 1 < startblk)
184 		return -1;
185 	return 0;
186 }
187 
188 /**
189  * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
190  *       a block in a given allocation state.
191  * @buf: the buffer that holds the bitmaps
192  * @len: the length (in bytes) of the buffer
193  * @goal: start search at this block's bit-pair (within @buffer)
194  * @state: GFS2_BLKST_XXX the state of the block we're looking for.
195  *
196  * Scope of @goal and returned block number is only within this bitmap buffer,
197  * not entire rgrp or filesystem.  @buffer will be offset from the actual
198  * beginning of a bitmap block buffer, skipping any header structures, but
199  * headers are always a multiple of 64 bits long so that the buffer is
200  * always aligned to a 64 bit boundary.
201  *
202  * The size of the buffer is in bytes, but is it assumed that it is
203  * always ok to read a complete multiple of 64 bits at the end
204  * of the block in case the end is no aligned to a natural boundary.
205  *
206  * Return: the block number (bitmap buffer scope) that was found
207  */
208 
209 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
210 		       u32 goal, u8 state)
211 {
212 	u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
213 	const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
214 	const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
215 	u64 tmp;
216 	u64 mask = 0x5555555555555555ULL;
217 	u32 bit;
218 
219 	/* Mask off bits we don't care about at the start of the search */
220 	mask <<= spoint;
221 	tmp = gfs2_bit_search(ptr, mask, state);
222 	ptr++;
223 	while(tmp == 0 && ptr < end) {
224 		tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
225 		ptr++;
226 	}
227 	/* Mask off any bits which are more than len bytes from the start */
228 	if (ptr == end && (len & (sizeof(u64) - 1)))
229 		tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
230 	/* Didn't find anything, so return */
231 	if (tmp == 0)
232 		return BFITNOENT;
233 	ptr--;
234 	bit = __ffs64(tmp);
235 	bit /= 2;	/* two bits per entry in the bitmap */
236 	return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
237 }
238 
239 /**
240  * gfs2_rbm_from_block - Set the rbm based upon rgd and block number
241  * @rbm: The rbm with rgd already set correctly
242  * @block: The block number (filesystem relative)
243  *
244  * This sets the bi and offset members of an rbm based on a
245  * resource group and a filesystem relative block number. The
246  * resource group must be set in the rbm on entry, the bi and
247  * offset members will be set by this function.
248  *
249  * Returns: 0 on success, or an error code
250  */
251 
252 static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block)
253 {
254 	u64 rblock = block - rbm->rgd->rd_data0;
255 	u32 x;
256 
257 	if (WARN_ON_ONCE(rblock > UINT_MAX))
258 		return -EINVAL;
259 	if (block >= rbm->rgd->rd_data0 + rbm->rgd->rd_data)
260 		return -E2BIG;
261 
262 	rbm->bi = rbm->rgd->rd_bits;
263 	rbm->offset = (u32)(rblock);
264 	/* Check if the block is within the first block */
265 	if (rbm->offset < (rbm->bi->bi_start + rbm->bi->bi_len) * GFS2_NBBY)
266 		return 0;
267 
268 	/* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */
269 	rbm->offset += (sizeof(struct gfs2_rgrp) -
270 			sizeof(struct gfs2_meta_header)) * GFS2_NBBY;
271 	x = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
272 	rbm->offset -= x * rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
273 	rbm->bi += x;
274 	return 0;
275 }
276 
277 /**
278  * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned
279  * @rbm: Position to search (value/result)
280  * @n_unaligned: Number of unaligned blocks to check
281  * @len: Decremented for each block found (terminate on zero)
282  *
283  * Returns: true if a non-free block is encountered
284  */
285 
286 static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len)
287 {
288 	u64 block;
289 	u32 n;
290 	u8 res;
291 
292 	for (n = 0; n < n_unaligned; n++) {
293 		res = gfs2_testbit(rbm);
294 		if (res != GFS2_BLKST_FREE)
295 			return true;
296 		(*len)--;
297 		if (*len == 0)
298 			return true;
299 		block = gfs2_rbm_to_block(rbm);
300 		if (gfs2_rbm_from_block(rbm, block + 1))
301 			return true;
302 	}
303 
304 	return false;
305 }
306 
307 /**
308  * gfs2_free_extlen - Return extent length of free blocks
309  * @rbm: Starting position
310  * @len: Max length to check
311  *
312  * Starting at the block specified by the rbm, see how many free blocks
313  * there are, not reading more than len blocks ahead. This can be done
314  * using memchr_inv when the blocks are byte aligned, but has to be done
315  * on a block by block basis in case of unaligned blocks. Also this
316  * function can cope with bitmap boundaries (although it must stop on
317  * a resource group boundary)
318  *
319  * Returns: Number of free blocks in the extent
320  */
321 
322 static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len)
323 {
324 	struct gfs2_rbm rbm = *rrbm;
325 	u32 n_unaligned = rbm.offset & 3;
326 	u32 size = len;
327 	u32 bytes;
328 	u32 chunk_size;
329 	u8 *ptr, *start, *end;
330 	u64 block;
331 
332 	if (n_unaligned &&
333 	    gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len))
334 		goto out;
335 
336 	n_unaligned = len & 3;
337 	/* Start is now byte aligned */
338 	while (len > 3) {
339 		start = rbm.bi->bi_bh->b_data;
340 		if (rbm.bi->bi_clone)
341 			start = rbm.bi->bi_clone;
342 		end = start + rbm.bi->bi_bh->b_size;
343 		start += rbm.bi->bi_offset;
344 		BUG_ON(rbm.offset & 3);
345 		start += (rbm.offset / GFS2_NBBY);
346 		bytes = min_t(u32, len / GFS2_NBBY, (end - start));
347 		ptr = memchr_inv(start, 0, bytes);
348 		chunk_size = ((ptr == NULL) ? bytes : (ptr - start));
349 		chunk_size *= GFS2_NBBY;
350 		BUG_ON(len < chunk_size);
351 		len -= chunk_size;
352 		block = gfs2_rbm_to_block(&rbm);
353 		gfs2_rbm_from_block(&rbm, block + chunk_size);
354 		n_unaligned = 3;
355 		if (ptr)
356 			break;
357 		n_unaligned = len & 3;
358 	}
359 
360 	/* Deal with any bits left over at the end */
361 	if (n_unaligned)
362 		gfs2_unaligned_extlen(&rbm, n_unaligned, &len);
363 out:
364 	return size - len;
365 }
366 
367 /**
368  * gfs2_bitcount - count the number of bits in a certain state
369  * @rgd: the resource group descriptor
370  * @buffer: the buffer that holds the bitmaps
371  * @buflen: the length (in bytes) of the buffer
372  * @state: the state of the block we're looking for
373  *
374  * Returns: The number of bits
375  */
376 
377 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
378 			 unsigned int buflen, u8 state)
379 {
380 	const u8 *byte = buffer;
381 	const u8 *end = buffer + buflen;
382 	const u8 state1 = state << 2;
383 	const u8 state2 = state << 4;
384 	const u8 state3 = state << 6;
385 	u32 count = 0;
386 
387 	for (; byte < end; byte++) {
388 		if (((*byte) & 0x03) == state)
389 			count++;
390 		if (((*byte) & 0x0C) == state1)
391 			count++;
392 		if (((*byte) & 0x30) == state2)
393 			count++;
394 		if (((*byte) & 0xC0) == state3)
395 			count++;
396 	}
397 
398 	return count;
399 }
400 
401 /**
402  * gfs2_rgrp_verify - Verify that a resource group is consistent
403  * @rgd: the rgrp
404  *
405  */
406 
407 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
408 {
409 	struct gfs2_sbd *sdp = rgd->rd_sbd;
410 	struct gfs2_bitmap *bi = NULL;
411 	u32 length = rgd->rd_length;
412 	u32 count[4], tmp;
413 	int buf, x;
414 
415 	memset(count, 0, 4 * sizeof(u32));
416 
417 	/* Count # blocks in each of 4 possible allocation states */
418 	for (buf = 0; buf < length; buf++) {
419 		bi = rgd->rd_bits + buf;
420 		for (x = 0; x < 4; x++)
421 			count[x] += gfs2_bitcount(rgd,
422 						  bi->bi_bh->b_data +
423 						  bi->bi_offset,
424 						  bi->bi_len, x);
425 	}
426 
427 	if (count[0] != rgd->rd_free) {
428 		if (gfs2_consist_rgrpd(rgd))
429 			fs_err(sdp, "free data mismatch:  %u != %u\n",
430 			       count[0], rgd->rd_free);
431 		return;
432 	}
433 
434 	tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
435 	if (count[1] != tmp) {
436 		if (gfs2_consist_rgrpd(rgd))
437 			fs_err(sdp, "used data mismatch:  %u != %u\n",
438 			       count[1], tmp);
439 		return;
440 	}
441 
442 	if (count[2] + count[3] != rgd->rd_dinodes) {
443 		if (gfs2_consist_rgrpd(rgd))
444 			fs_err(sdp, "used metadata mismatch:  %u != %u\n",
445 			       count[2] + count[3], rgd->rd_dinodes);
446 		return;
447 	}
448 }
449 
450 static inline int rgrp_contains_block(struct gfs2_rgrpd *rgd, u64 block)
451 {
452 	u64 first = rgd->rd_data0;
453 	u64 last = first + rgd->rd_data;
454 	return first <= block && block < last;
455 }
456 
457 /**
458  * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
459  * @sdp: The GFS2 superblock
460  * @blk: The data block number
461  * @exact: True if this needs to be an exact match
462  *
463  * Returns: The resource group, or NULL if not found
464  */
465 
466 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
467 {
468 	struct rb_node *n, *next;
469 	struct gfs2_rgrpd *cur;
470 
471 	spin_lock(&sdp->sd_rindex_spin);
472 	n = sdp->sd_rindex_tree.rb_node;
473 	while (n) {
474 		cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
475 		next = NULL;
476 		if (blk < cur->rd_addr)
477 			next = n->rb_left;
478 		else if (blk >= cur->rd_data0 + cur->rd_data)
479 			next = n->rb_right;
480 		if (next == NULL) {
481 			spin_unlock(&sdp->sd_rindex_spin);
482 			if (exact) {
483 				if (blk < cur->rd_addr)
484 					return NULL;
485 				if (blk >= cur->rd_data0 + cur->rd_data)
486 					return NULL;
487 			}
488 			return cur;
489 		}
490 		n = next;
491 	}
492 	spin_unlock(&sdp->sd_rindex_spin);
493 
494 	return NULL;
495 }
496 
497 /**
498  * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
499  * @sdp: The GFS2 superblock
500  *
501  * Returns: The first rgrp in the filesystem
502  */
503 
504 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
505 {
506 	const struct rb_node *n;
507 	struct gfs2_rgrpd *rgd;
508 
509 	spin_lock(&sdp->sd_rindex_spin);
510 	n = rb_first(&sdp->sd_rindex_tree);
511 	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
512 	spin_unlock(&sdp->sd_rindex_spin);
513 
514 	return rgd;
515 }
516 
517 /**
518  * gfs2_rgrpd_get_next - get the next RG
519  * @rgd: the resource group descriptor
520  *
521  * Returns: The next rgrp
522  */
523 
524 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
525 {
526 	struct gfs2_sbd *sdp = rgd->rd_sbd;
527 	const struct rb_node *n;
528 
529 	spin_lock(&sdp->sd_rindex_spin);
530 	n = rb_next(&rgd->rd_node);
531 	if (n == NULL)
532 		n = rb_first(&sdp->sd_rindex_tree);
533 
534 	if (unlikely(&rgd->rd_node == n)) {
535 		spin_unlock(&sdp->sd_rindex_spin);
536 		return NULL;
537 	}
538 	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
539 	spin_unlock(&sdp->sd_rindex_spin);
540 	return rgd;
541 }
542 
543 void gfs2_free_clones(struct gfs2_rgrpd *rgd)
544 {
545 	int x;
546 
547 	for (x = 0; x < rgd->rd_length; x++) {
548 		struct gfs2_bitmap *bi = rgd->rd_bits + x;
549 		kfree(bi->bi_clone);
550 		bi->bi_clone = NULL;
551 	}
552 }
553 
554 /**
555  * gfs2_rs_alloc - make sure we have a reservation assigned to the inode
556  * @ip: the inode for this reservation
557  */
558 int gfs2_rs_alloc(struct gfs2_inode *ip)
559 {
560 	struct gfs2_blkreserv *res;
561 
562 	if (ip->i_res)
563 		return 0;
564 
565 	res = kmem_cache_zalloc(gfs2_rsrv_cachep, GFP_NOFS);
566 	if (!res)
567 		return -ENOMEM;
568 
569 	RB_CLEAR_NODE(&res->rs_node);
570 
571 	down_write(&ip->i_rw_mutex);
572 	if (ip->i_res)
573 		kmem_cache_free(gfs2_rsrv_cachep, res);
574 	else
575 		ip->i_res = res;
576 	up_write(&ip->i_rw_mutex);
577 	return 0;
578 }
579 
580 static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs)
581 {
582 	gfs2_print_dbg(seq, "  B: n:%llu s:%llu b:%u f:%u\n",
583 		       (unsigned long long)rs->rs_inum,
584 		       (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm),
585 		       rs->rs_rbm.offset, rs->rs_free);
586 }
587 
588 /**
589  * __rs_deltree - remove a multi-block reservation from the rgd tree
590  * @rs: The reservation to remove
591  *
592  */
593 static void __rs_deltree(struct gfs2_inode *ip, struct gfs2_blkreserv *rs)
594 {
595 	struct gfs2_rgrpd *rgd;
596 
597 	if (!gfs2_rs_active(rs))
598 		return;
599 
600 	rgd = rs->rs_rbm.rgd;
601 	trace_gfs2_rs(rs, TRACE_RS_TREEDEL);
602 	rb_erase(&rs->rs_node, &rgd->rd_rstree);
603 	RB_CLEAR_NODE(&rs->rs_node);
604 
605 	if (rs->rs_free) {
606 		/* return reserved blocks to the rgrp and the ip */
607 		BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free);
608 		rs->rs_rbm.rgd->rd_reserved -= rs->rs_free;
609 		rs->rs_free = 0;
610 		clear_bit(GBF_FULL, &rs->rs_rbm.bi->bi_flags);
611 		smp_mb__after_clear_bit();
612 	}
613 }
614 
615 /**
616  * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
617  * @rs: The reservation to remove
618  *
619  */
620 void gfs2_rs_deltree(struct gfs2_inode *ip, struct gfs2_blkreserv *rs)
621 {
622 	struct gfs2_rgrpd *rgd;
623 
624 	rgd = rs->rs_rbm.rgd;
625 	if (rgd) {
626 		spin_lock(&rgd->rd_rsspin);
627 		__rs_deltree(ip, rs);
628 		spin_unlock(&rgd->rd_rsspin);
629 	}
630 }
631 
632 /**
633  * gfs2_rs_delete - delete a multi-block reservation
634  * @ip: The inode for this reservation
635  *
636  */
637 void gfs2_rs_delete(struct gfs2_inode *ip)
638 {
639 	down_write(&ip->i_rw_mutex);
640 	if (ip->i_res) {
641 		gfs2_rs_deltree(ip, ip->i_res);
642 		BUG_ON(ip->i_res->rs_free);
643 		kmem_cache_free(gfs2_rsrv_cachep, ip->i_res);
644 		ip->i_res = NULL;
645 	}
646 	up_write(&ip->i_rw_mutex);
647 }
648 
649 /**
650  * return_all_reservations - return all reserved blocks back to the rgrp.
651  * @rgd: the rgrp that needs its space back
652  *
653  * We previously reserved a bunch of blocks for allocation. Now we need to
654  * give them back. This leave the reservation structures in tact, but removes
655  * all of their corresponding "no-fly zones".
656  */
657 static void return_all_reservations(struct gfs2_rgrpd *rgd)
658 {
659 	struct rb_node *n;
660 	struct gfs2_blkreserv *rs;
661 
662 	spin_lock(&rgd->rd_rsspin);
663 	while ((n = rb_first(&rgd->rd_rstree))) {
664 		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
665 		__rs_deltree(NULL, rs);
666 	}
667 	spin_unlock(&rgd->rd_rsspin);
668 }
669 
670 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
671 {
672 	struct rb_node *n;
673 	struct gfs2_rgrpd *rgd;
674 	struct gfs2_glock *gl;
675 
676 	while ((n = rb_first(&sdp->sd_rindex_tree))) {
677 		rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
678 		gl = rgd->rd_gl;
679 
680 		rb_erase(n, &sdp->sd_rindex_tree);
681 
682 		if (gl) {
683 			spin_lock(&gl->gl_spin);
684 			gl->gl_object = NULL;
685 			spin_unlock(&gl->gl_spin);
686 			gfs2_glock_add_to_lru(gl);
687 			gfs2_glock_put(gl);
688 		}
689 
690 		gfs2_free_clones(rgd);
691 		kfree(rgd->rd_bits);
692 		return_all_reservations(rgd);
693 		kmem_cache_free(gfs2_rgrpd_cachep, rgd);
694 	}
695 }
696 
697 static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd)
698 {
699 	printk(KERN_INFO "  ri_addr = %llu\n", (unsigned long long)rgd->rd_addr);
700 	printk(KERN_INFO "  ri_length = %u\n", rgd->rd_length);
701 	printk(KERN_INFO "  ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0);
702 	printk(KERN_INFO "  ri_data = %u\n", rgd->rd_data);
703 	printk(KERN_INFO "  ri_bitbytes = %u\n", rgd->rd_bitbytes);
704 }
705 
706 /**
707  * gfs2_compute_bitstructs - Compute the bitmap sizes
708  * @rgd: The resource group descriptor
709  *
710  * Calculates bitmap descriptors, one for each block that contains bitmap data
711  *
712  * Returns: errno
713  */
714 
715 static int compute_bitstructs(struct gfs2_rgrpd *rgd)
716 {
717 	struct gfs2_sbd *sdp = rgd->rd_sbd;
718 	struct gfs2_bitmap *bi;
719 	u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
720 	u32 bytes_left, bytes;
721 	int x;
722 
723 	if (!length)
724 		return -EINVAL;
725 
726 	rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
727 	if (!rgd->rd_bits)
728 		return -ENOMEM;
729 
730 	bytes_left = rgd->rd_bitbytes;
731 
732 	for (x = 0; x < length; x++) {
733 		bi = rgd->rd_bits + x;
734 
735 		bi->bi_flags = 0;
736 		/* small rgrp; bitmap stored completely in header block */
737 		if (length == 1) {
738 			bytes = bytes_left;
739 			bi->bi_offset = sizeof(struct gfs2_rgrp);
740 			bi->bi_start = 0;
741 			bi->bi_len = bytes;
742 		/* header block */
743 		} else if (x == 0) {
744 			bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
745 			bi->bi_offset = sizeof(struct gfs2_rgrp);
746 			bi->bi_start = 0;
747 			bi->bi_len = bytes;
748 		/* last block */
749 		} else if (x + 1 == length) {
750 			bytes = bytes_left;
751 			bi->bi_offset = sizeof(struct gfs2_meta_header);
752 			bi->bi_start = rgd->rd_bitbytes - bytes_left;
753 			bi->bi_len = bytes;
754 		/* other blocks */
755 		} else {
756 			bytes = sdp->sd_sb.sb_bsize -
757 				sizeof(struct gfs2_meta_header);
758 			bi->bi_offset = sizeof(struct gfs2_meta_header);
759 			bi->bi_start = rgd->rd_bitbytes - bytes_left;
760 			bi->bi_len = bytes;
761 		}
762 
763 		bytes_left -= bytes;
764 	}
765 
766 	if (bytes_left) {
767 		gfs2_consist_rgrpd(rgd);
768 		return -EIO;
769 	}
770 	bi = rgd->rd_bits + (length - 1);
771 	if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) {
772 		if (gfs2_consist_rgrpd(rgd)) {
773 			gfs2_rindex_print(rgd);
774 			fs_err(sdp, "start=%u len=%u offset=%u\n",
775 			       bi->bi_start, bi->bi_len, bi->bi_offset);
776 		}
777 		return -EIO;
778 	}
779 
780 	return 0;
781 }
782 
783 /**
784  * gfs2_ri_total - Total up the file system space, according to the rindex.
785  * @sdp: the filesystem
786  *
787  */
788 u64 gfs2_ri_total(struct gfs2_sbd *sdp)
789 {
790 	u64 total_data = 0;
791 	struct inode *inode = sdp->sd_rindex;
792 	struct gfs2_inode *ip = GFS2_I(inode);
793 	char buf[sizeof(struct gfs2_rindex)];
794 	int error, rgrps;
795 
796 	for (rgrps = 0;; rgrps++) {
797 		loff_t pos = rgrps * sizeof(struct gfs2_rindex);
798 
799 		if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
800 			break;
801 		error = gfs2_internal_read(ip, buf, &pos,
802 					   sizeof(struct gfs2_rindex));
803 		if (error != sizeof(struct gfs2_rindex))
804 			break;
805 		total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
806 	}
807 	return total_data;
808 }
809 
810 static int rgd_insert(struct gfs2_rgrpd *rgd)
811 {
812 	struct gfs2_sbd *sdp = rgd->rd_sbd;
813 	struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
814 
815 	/* Figure out where to put new node */
816 	while (*newn) {
817 		struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
818 						  rd_node);
819 
820 		parent = *newn;
821 		if (rgd->rd_addr < cur->rd_addr)
822 			newn = &((*newn)->rb_left);
823 		else if (rgd->rd_addr > cur->rd_addr)
824 			newn = &((*newn)->rb_right);
825 		else
826 			return -EEXIST;
827 	}
828 
829 	rb_link_node(&rgd->rd_node, parent, newn);
830 	rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
831 	sdp->sd_rgrps++;
832 	return 0;
833 }
834 
835 /**
836  * read_rindex_entry - Pull in a new resource index entry from the disk
837  * @ip: Pointer to the rindex inode
838  *
839  * Returns: 0 on success, > 0 on EOF, error code otherwise
840  */
841 
842 static int read_rindex_entry(struct gfs2_inode *ip)
843 {
844 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
845 	loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
846 	struct gfs2_rindex buf;
847 	int error;
848 	struct gfs2_rgrpd *rgd;
849 
850 	if (pos >= i_size_read(&ip->i_inode))
851 		return 1;
852 
853 	error = gfs2_internal_read(ip, (char *)&buf, &pos,
854 				   sizeof(struct gfs2_rindex));
855 
856 	if (error != sizeof(struct gfs2_rindex))
857 		return (error == 0) ? 1 : error;
858 
859 	rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
860 	error = -ENOMEM;
861 	if (!rgd)
862 		return error;
863 
864 	rgd->rd_sbd = sdp;
865 	rgd->rd_addr = be64_to_cpu(buf.ri_addr);
866 	rgd->rd_length = be32_to_cpu(buf.ri_length);
867 	rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
868 	rgd->rd_data = be32_to_cpu(buf.ri_data);
869 	rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
870 	spin_lock_init(&rgd->rd_rsspin);
871 
872 	error = compute_bitstructs(rgd);
873 	if (error)
874 		goto fail;
875 
876 	error = gfs2_glock_get(sdp, rgd->rd_addr,
877 			       &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
878 	if (error)
879 		goto fail;
880 
881 	rgd->rd_gl->gl_object = rgd;
882 	rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr;
883 	rgd->rd_flags &= ~GFS2_RDF_UPTODATE;
884 	if (rgd->rd_data > sdp->sd_max_rg_data)
885 		sdp->sd_max_rg_data = rgd->rd_data;
886 	spin_lock(&sdp->sd_rindex_spin);
887 	error = rgd_insert(rgd);
888 	spin_unlock(&sdp->sd_rindex_spin);
889 	if (!error)
890 		return 0;
891 
892 	error = 0; /* someone else read in the rgrp; free it and ignore it */
893 	gfs2_glock_put(rgd->rd_gl);
894 
895 fail:
896 	kfree(rgd->rd_bits);
897 	kmem_cache_free(gfs2_rgrpd_cachep, rgd);
898 	return error;
899 }
900 
901 /**
902  * gfs2_ri_update - Pull in a new resource index from the disk
903  * @ip: pointer to the rindex inode
904  *
905  * Returns: 0 on successful update, error code otherwise
906  */
907 
908 static int gfs2_ri_update(struct gfs2_inode *ip)
909 {
910 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
911 	int error;
912 
913 	do {
914 		error = read_rindex_entry(ip);
915 	} while (error == 0);
916 
917 	if (error < 0)
918 		return error;
919 
920 	sdp->sd_rindex_uptodate = 1;
921 	return 0;
922 }
923 
924 /**
925  * gfs2_rindex_update - Update the rindex if required
926  * @sdp: The GFS2 superblock
927  *
928  * We grab a lock on the rindex inode to make sure that it doesn't
929  * change whilst we are performing an operation. We keep this lock
930  * for quite long periods of time compared to other locks. This
931  * doesn't matter, since it is shared and it is very, very rarely
932  * accessed in the exclusive mode (i.e. only when expanding the filesystem).
933  *
934  * This makes sure that we're using the latest copy of the resource index
935  * special file, which might have been updated if someone expanded the
936  * filesystem (via gfs2_grow utility), which adds new resource groups.
937  *
938  * Returns: 0 on succeess, error code otherwise
939  */
940 
941 int gfs2_rindex_update(struct gfs2_sbd *sdp)
942 {
943 	struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
944 	struct gfs2_glock *gl = ip->i_gl;
945 	struct gfs2_holder ri_gh;
946 	int error = 0;
947 	int unlock_required = 0;
948 
949 	/* Read new copy from disk if we don't have the latest */
950 	if (!sdp->sd_rindex_uptodate) {
951 		if (!gfs2_glock_is_locked_by_me(gl)) {
952 			error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
953 			if (error)
954 				return error;
955 			unlock_required = 1;
956 		}
957 		if (!sdp->sd_rindex_uptodate)
958 			error = gfs2_ri_update(ip);
959 		if (unlock_required)
960 			gfs2_glock_dq_uninit(&ri_gh);
961 	}
962 
963 	return error;
964 }
965 
966 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
967 {
968 	const struct gfs2_rgrp *str = buf;
969 	u32 rg_flags;
970 
971 	rg_flags = be32_to_cpu(str->rg_flags);
972 	rg_flags &= ~GFS2_RDF_MASK;
973 	rgd->rd_flags &= GFS2_RDF_MASK;
974 	rgd->rd_flags |= rg_flags;
975 	rgd->rd_free = be32_to_cpu(str->rg_free);
976 	rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
977 	rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
978 }
979 
980 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
981 {
982 	struct gfs2_rgrp *str = buf;
983 
984 	str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
985 	str->rg_free = cpu_to_be32(rgd->rd_free);
986 	str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
987 	str->__pad = cpu_to_be32(0);
988 	str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
989 	memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
990 }
991 
992 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd)
993 {
994 	struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
995 	struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data;
996 
997 	if (rgl->rl_flags != str->rg_flags || rgl->rl_free != str->rg_free ||
998 	    rgl->rl_dinodes != str->rg_dinodes ||
999 	    rgl->rl_igeneration != str->rg_igeneration)
1000 		return 0;
1001 	return 1;
1002 }
1003 
1004 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf)
1005 {
1006 	const struct gfs2_rgrp *str = buf;
1007 
1008 	rgl->rl_magic = cpu_to_be32(GFS2_MAGIC);
1009 	rgl->rl_flags = str->rg_flags;
1010 	rgl->rl_free = str->rg_free;
1011 	rgl->rl_dinodes = str->rg_dinodes;
1012 	rgl->rl_igeneration = str->rg_igeneration;
1013 	rgl->__pad = 0UL;
1014 }
1015 
1016 static void update_rgrp_lvb_unlinked(struct gfs2_rgrpd *rgd, u32 change)
1017 {
1018 	struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1019 	u32 unlinked = be32_to_cpu(rgl->rl_unlinked) + change;
1020 	rgl->rl_unlinked = cpu_to_be32(unlinked);
1021 }
1022 
1023 static u32 count_unlinked(struct gfs2_rgrpd *rgd)
1024 {
1025 	struct gfs2_bitmap *bi;
1026 	const u32 length = rgd->rd_length;
1027 	const u8 *buffer = NULL;
1028 	u32 i, goal, count = 0;
1029 
1030 	for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) {
1031 		goal = 0;
1032 		buffer = bi->bi_bh->b_data + bi->bi_offset;
1033 		WARN_ON(!buffer_uptodate(bi->bi_bh));
1034 		while (goal < bi->bi_len * GFS2_NBBY) {
1035 			goal = gfs2_bitfit(buffer, bi->bi_len, goal,
1036 					   GFS2_BLKST_UNLINKED);
1037 			if (goal == BFITNOENT)
1038 				break;
1039 			count++;
1040 			goal++;
1041 		}
1042 	}
1043 
1044 	return count;
1045 }
1046 
1047 
1048 /**
1049  * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps
1050  * @rgd: the struct gfs2_rgrpd describing the RG to read in
1051  *
1052  * Read in all of a Resource Group's header and bitmap blocks.
1053  * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps.
1054  *
1055  * Returns: errno
1056  */
1057 
1058 int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd)
1059 {
1060 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1061 	struct gfs2_glock *gl = rgd->rd_gl;
1062 	unsigned int length = rgd->rd_length;
1063 	struct gfs2_bitmap *bi;
1064 	unsigned int x, y;
1065 	int error;
1066 
1067 	if (rgd->rd_bits[0].bi_bh != NULL)
1068 		return 0;
1069 
1070 	for (x = 0; x < length; x++) {
1071 		bi = rgd->rd_bits + x;
1072 		error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, &bi->bi_bh);
1073 		if (error)
1074 			goto fail;
1075 	}
1076 
1077 	for (y = length; y--;) {
1078 		bi = rgd->rd_bits + y;
1079 		error = gfs2_meta_wait(sdp, bi->bi_bh);
1080 		if (error)
1081 			goto fail;
1082 		if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
1083 					      GFS2_METATYPE_RG)) {
1084 			error = -EIO;
1085 			goto fail;
1086 		}
1087 	}
1088 
1089 	if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
1090 		for (x = 0; x < length; x++)
1091 			clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags);
1092 		gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
1093 		rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1094 		rgd->rd_free_clone = rgd->rd_free;
1095 	}
1096 	if (be32_to_cpu(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) {
1097 		rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd));
1098 		gfs2_rgrp_ondisk2lvb(rgd->rd_rgl,
1099 				     rgd->rd_bits[0].bi_bh->b_data);
1100 	}
1101 	else if (sdp->sd_args.ar_rgrplvb) {
1102 		if (!gfs2_rgrp_lvb_valid(rgd)){
1103 			gfs2_consist_rgrpd(rgd);
1104 			error = -EIO;
1105 			goto fail;
1106 		}
1107 		if (rgd->rd_rgl->rl_unlinked == 0)
1108 			rgd->rd_flags &= ~GFS2_RDF_CHECK;
1109 	}
1110 	return 0;
1111 
1112 fail:
1113 	while (x--) {
1114 		bi = rgd->rd_bits + x;
1115 		brelse(bi->bi_bh);
1116 		bi->bi_bh = NULL;
1117 		gfs2_assert_warn(sdp, !bi->bi_clone);
1118 	}
1119 
1120 	return error;
1121 }
1122 
1123 int update_rgrp_lvb(struct gfs2_rgrpd *rgd)
1124 {
1125 	u32 rl_flags;
1126 
1127 	if (rgd->rd_flags & GFS2_RDF_UPTODATE)
1128 		return 0;
1129 
1130 	if (be32_to_cpu(GFS2_MAGIC) != rgd->rd_rgl->rl_magic)
1131 		return gfs2_rgrp_bh_get(rgd);
1132 
1133 	rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags);
1134 	rl_flags &= ~GFS2_RDF_MASK;
1135 	rgd->rd_flags &= GFS2_RDF_MASK;
1136 	rgd->rd_flags |= (rl_flags | GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1137 	if (rgd->rd_rgl->rl_unlinked == 0)
1138 		rgd->rd_flags &= ~GFS2_RDF_CHECK;
1139 	rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free);
1140 	rgd->rd_free_clone = rgd->rd_free;
1141 	rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes);
1142 	rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration);
1143 	return 0;
1144 }
1145 
1146 int gfs2_rgrp_go_lock(struct gfs2_holder *gh)
1147 {
1148 	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1149 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1150 
1151 	if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb)
1152 		return 0;
1153 	return gfs2_rgrp_bh_get((struct gfs2_rgrpd *)gh->gh_gl->gl_object);
1154 }
1155 
1156 /**
1157  * gfs2_rgrp_go_unlock - Release RG bitmaps read in with gfs2_rgrp_bh_get()
1158  * @gh: The glock holder for the resource group
1159  *
1160  */
1161 
1162 void gfs2_rgrp_go_unlock(struct gfs2_holder *gh)
1163 {
1164 	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1165 	int x, length = rgd->rd_length;
1166 
1167 	for (x = 0; x < length; x++) {
1168 		struct gfs2_bitmap *bi = rgd->rd_bits + x;
1169 		if (bi->bi_bh) {
1170 			brelse(bi->bi_bh);
1171 			bi->bi_bh = NULL;
1172 		}
1173 	}
1174 
1175 }
1176 
1177 int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
1178 			     struct buffer_head *bh,
1179 			     const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
1180 {
1181 	struct super_block *sb = sdp->sd_vfs;
1182 	struct block_device *bdev = sb->s_bdev;
1183 	const unsigned int sects_per_blk = sdp->sd_sb.sb_bsize /
1184 					   bdev_logical_block_size(sb->s_bdev);
1185 	u64 blk;
1186 	sector_t start = 0;
1187 	sector_t nr_sects = 0;
1188 	int rv;
1189 	unsigned int x;
1190 	u32 trimmed = 0;
1191 	u8 diff;
1192 
1193 	for (x = 0; x < bi->bi_len; x++) {
1194 		const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
1195 		clone += bi->bi_offset;
1196 		clone += x;
1197 		if (bh) {
1198 			const u8 *orig = bh->b_data + bi->bi_offset + x;
1199 			diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
1200 		} else {
1201 			diff = ~(*clone | (*clone >> 1));
1202 		}
1203 		diff &= 0x55;
1204 		if (diff == 0)
1205 			continue;
1206 		blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
1207 		blk *= sects_per_blk; /* convert to sectors */
1208 		while(diff) {
1209 			if (diff & 1) {
1210 				if (nr_sects == 0)
1211 					goto start_new_extent;
1212 				if ((start + nr_sects) != blk) {
1213 					if (nr_sects >= minlen) {
1214 						rv = blkdev_issue_discard(bdev,
1215 							start, nr_sects,
1216 							GFP_NOFS, 0);
1217 						if (rv)
1218 							goto fail;
1219 						trimmed += nr_sects;
1220 					}
1221 					nr_sects = 0;
1222 start_new_extent:
1223 					start = blk;
1224 				}
1225 				nr_sects += sects_per_blk;
1226 			}
1227 			diff >>= 2;
1228 			blk += sects_per_blk;
1229 		}
1230 	}
1231 	if (nr_sects >= minlen) {
1232 		rv = blkdev_issue_discard(bdev, start, nr_sects, GFP_NOFS, 0);
1233 		if (rv)
1234 			goto fail;
1235 		trimmed += nr_sects;
1236 	}
1237 	if (ptrimmed)
1238 		*ptrimmed = trimmed;
1239 	return 0;
1240 
1241 fail:
1242 	if (sdp->sd_args.ar_discard)
1243 		fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv);
1244 	sdp->sd_args.ar_discard = 0;
1245 	return -EIO;
1246 }
1247 
1248 /**
1249  * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
1250  * @filp: Any file on the filesystem
1251  * @argp: Pointer to the arguments (also used to pass result)
1252  *
1253  * Returns: 0 on success, otherwise error code
1254  */
1255 
1256 int gfs2_fitrim(struct file *filp, void __user *argp)
1257 {
1258 	struct inode *inode = filp->f_dentry->d_inode;
1259 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1260 	struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev);
1261 	struct buffer_head *bh;
1262 	struct gfs2_rgrpd *rgd;
1263 	struct gfs2_rgrpd *rgd_end;
1264 	struct gfs2_holder gh;
1265 	struct fstrim_range r;
1266 	int ret = 0;
1267 	u64 amt;
1268 	u64 trimmed = 0;
1269 	u64 start, end, minlen;
1270 	unsigned int x;
1271 	unsigned bs_shift = sdp->sd_sb.sb_bsize_shift;
1272 
1273 	if (!capable(CAP_SYS_ADMIN))
1274 		return -EPERM;
1275 
1276 	if (!blk_queue_discard(q))
1277 		return -EOPNOTSUPP;
1278 
1279 	if (copy_from_user(&r, argp, sizeof(r)))
1280 		return -EFAULT;
1281 
1282 	ret = gfs2_rindex_update(sdp);
1283 	if (ret)
1284 		return ret;
1285 
1286 	start = r.start >> bs_shift;
1287 	end = start + (r.len >> bs_shift);
1288 	minlen = max_t(u64, r.minlen,
1289 		       q->limits.discard_granularity) >> bs_shift;
1290 
1291 	rgd = gfs2_blk2rgrpd(sdp, start, 0);
1292 	rgd_end = gfs2_blk2rgrpd(sdp, end - 1, 0);
1293 
1294 	if (end <= start ||
1295 	    minlen > sdp->sd_max_rg_data ||
1296 	    start > rgd_end->rd_data0 + rgd_end->rd_data)
1297 		return -EINVAL;
1298 
1299 	while (1) {
1300 
1301 		ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh);
1302 		if (ret)
1303 			goto out;
1304 
1305 		if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
1306 			/* Trim each bitmap in the rgrp */
1307 			for (x = 0; x < rgd->rd_length; x++) {
1308 				struct gfs2_bitmap *bi = rgd->rd_bits + x;
1309 				ret = gfs2_rgrp_send_discards(sdp,
1310 						rgd->rd_data0, NULL, bi, minlen,
1311 						&amt);
1312 				if (ret) {
1313 					gfs2_glock_dq_uninit(&gh);
1314 					goto out;
1315 				}
1316 				trimmed += amt;
1317 			}
1318 
1319 			/* Mark rgrp as having been trimmed */
1320 			ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
1321 			if (ret == 0) {
1322 				bh = rgd->rd_bits[0].bi_bh;
1323 				rgd->rd_flags |= GFS2_RGF_TRIMMED;
1324 				gfs2_trans_add_bh(rgd->rd_gl, bh, 1);
1325 				gfs2_rgrp_out(rgd, bh->b_data);
1326 				gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, bh->b_data);
1327 				gfs2_trans_end(sdp);
1328 			}
1329 		}
1330 		gfs2_glock_dq_uninit(&gh);
1331 
1332 		if (rgd == rgd_end)
1333 			break;
1334 
1335 		rgd = gfs2_rgrpd_get_next(rgd);
1336 	}
1337 
1338 out:
1339 	r.len = trimmed << 9;
1340 	if (copy_to_user(argp, &r, sizeof(r)))
1341 		return -EFAULT;
1342 
1343 	return ret;
1344 }
1345 
1346 /**
1347  * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
1348  * @ip: the inode structure
1349  *
1350  */
1351 static void rs_insert(struct gfs2_inode *ip)
1352 {
1353 	struct rb_node **newn, *parent = NULL;
1354 	int rc;
1355 	struct gfs2_blkreserv *rs = ip->i_res;
1356 	struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd;
1357 	u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm);
1358 
1359 	BUG_ON(gfs2_rs_active(rs));
1360 
1361 	spin_lock(&rgd->rd_rsspin);
1362 	newn = &rgd->rd_rstree.rb_node;
1363 	while (*newn) {
1364 		struct gfs2_blkreserv *cur =
1365 			rb_entry(*newn, struct gfs2_blkreserv, rs_node);
1366 
1367 		parent = *newn;
1368 		rc = rs_cmp(fsblock, rs->rs_free, cur);
1369 		if (rc > 0)
1370 			newn = &((*newn)->rb_right);
1371 		else if (rc < 0)
1372 			newn = &((*newn)->rb_left);
1373 		else {
1374 			spin_unlock(&rgd->rd_rsspin);
1375 			WARN_ON(1);
1376 			return;
1377 		}
1378 	}
1379 
1380 	rb_link_node(&rs->rs_node, parent, newn);
1381 	rb_insert_color(&rs->rs_node, &rgd->rd_rstree);
1382 
1383 	/* Do our rgrp accounting for the reservation */
1384 	rgd->rd_reserved += rs->rs_free; /* blocks reserved */
1385 	spin_unlock(&rgd->rd_rsspin);
1386 	trace_gfs2_rs(rs, TRACE_RS_INSERT);
1387 }
1388 
1389 /**
1390  * rg_mblk_search - find a group of multiple free blocks to form a reservation
1391  * @rgd: the resource group descriptor
1392  * @ip: pointer to the inode for which we're reserving blocks
1393  * @requested: number of blocks required for this allocation
1394  *
1395  */
1396 
1397 static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip,
1398 			   unsigned requested)
1399 {
1400 	struct gfs2_rbm rbm = { .rgd = rgd, };
1401 	u64 goal;
1402 	struct gfs2_blkreserv *rs = ip->i_res;
1403 	u32 extlen;
1404 	u32 free_blocks = rgd->rd_free_clone - rgd->rd_reserved;
1405 	int ret;
1406 
1407 	extlen = max_t(u32, atomic_read(&rs->rs_sizehint), requested);
1408 	extlen = clamp(extlen, RGRP_RSRV_MINBLKS, free_blocks);
1409 	if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen))
1410 		return;
1411 
1412 	/* Find bitmap block that contains bits for goal block */
1413 	if (rgrp_contains_block(rgd, ip->i_goal))
1414 		goal = ip->i_goal;
1415 	else
1416 		goal = rgd->rd_last_alloc + rgd->rd_data0;
1417 
1418 	if (WARN_ON(gfs2_rbm_from_block(&rbm, goal)))
1419 		return;
1420 
1421 	ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, extlen, ip, true);
1422 	if (ret == 0) {
1423 		rs->rs_rbm = rbm;
1424 		rs->rs_free = extlen;
1425 		rs->rs_inum = ip->i_no_addr;
1426 		rs_insert(ip);
1427 	}
1428 }
1429 
1430 /**
1431  * gfs2_next_unreserved_block - Return next block that is not reserved
1432  * @rgd: The resource group
1433  * @block: The starting block
1434  * @length: The required length
1435  * @ip: Ignore any reservations for this inode
1436  *
1437  * If the block does not appear in any reservation, then return the
1438  * block number unchanged. If it does appear in the reservation, then
1439  * keep looking through the tree of reservations in order to find the
1440  * first block number which is not reserved.
1441  */
1442 
1443 static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block,
1444 				      u32 length,
1445 				      const struct gfs2_inode *ip)
1446 {
1447 	struct gfs2_blkreserv *rs;
1448 	struct rb_node *n;
1449 	int rc;
1450 
1451 	spin_lock(&rgd->rd_rsspin);
1452 	n = rgd->rd_rstree.rb_node;
1453 	while (n) {
1454 		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1455 		rc = rs_cmp(block, length, rs);
1456 		if (rc < 0)
1457 			n = n->rb_left;
1458 		else if (rc > 0)
1459 			n = n->rb_right;
1460 		else
1461 			break;
1462 	}
1463 
1464 	if (n) {
1465 		while ((rs_cmp(block, length, rs) == 0) && (ip->i_res != rs)) {
1466 			block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free;
1467 			n = n->rb_right;
1468 			if (n == NULL)
1469 				break;
1470 			rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1471 		}
1472 	}
1473 
1474 	spin_unlock(&rgd->rd_rsspin);
1475 	return block;
1476 }
1477 
1478 /**
1479  * gfs2_reservation_check_and_update - Check for reservations during block alloc
1480  * @rbm: The current position in the resource group
1481  * @ip: The inode for which we are searching for blocks
1482  * @minext: The minimum extent length
1483  *
1484  * This checks the current position in the rgrp to see whether there is
1485  * a reservation covering this block. If not then this function is a
1486  * no-op. If there is, then the position is moved to the end of the
1487  * contiguous reservation(s) so that we are pointing at the first
1488  * non-reserved block.
1489  *
1490  * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error
1491  */
1492 
1493 static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm,
1494 					     const struct gfs2_inode *ip,
1495 					     u32 minext)
1496 {
1497 	u64 block = gfs2_rbm_to_block(rbm);
1498 	u32 extlen = 1;
1499 	u64 nblock;
1500 	int ret;
1501 
1502 	/*
1503 	 * If we have a minimum extent length, then skip over any extent
1504 	 * which is less than the min extent length in size.
1505 	 */
1506 	if (minext) {
1507 		extlen = gfs2_free_extlen(rbm, minext);
1508 		nblock = block + extlen;
1509 		if (extlen < minext)
1510 			goto fail;
1511 	}
1512 
1513 	/*
1514 	 * Check the extent which has been found against the reservations
1515 	 * and skip if parts of it are already reserved
1516 	 */
1517 	nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip);
1518 	if (nblock == block)
1519 		return 0;
1520 fail:
1521 	ret = gfs2_rbm_from_block(rbm, nblock);
1522 	if (ret < 0)
1523 		return ret;
1524 	return 1;
1525 }
1526 
1527 /**
1528  * gfs2_rbm_find - Look for blocks of a particular state
1529  * @rbm: Value/result starting position and final position
1530  * @state: The state which we want to find
1531  * @minext: The requested extent length (0 for a single block)
1532  * @ip: If set, check for reservations
1533  * @nowrap: Stop looking at the end of the rgrp, rather than wrapping
1534  *          around until we've reached the starting point.
1535  *
1536  * Side effects:
1537  * - If looking for free blocks, we set GBF_FULL on each bitmap which
1538  *   has no free blocks in it.
1539  *
1540  * Returns: 0 on success, -ENOSPC if there is no block of the requested state
1541  */
1542 
1543 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 minext,
1544 			 const struct gfs2_inode *ip, bool nowrap)
1545 {
1546 	struct buffer_head *bh;
1547 	struct gfs2_bitmap *initial_bi;
1548 	u32 initial_offset;
1549 	u32 offset;
1550 	u8 *buffer;
1551 	int index;
1552 	int n = 0;
1553 	int iters = rbm->rgd->rd_length;
1554 	int ret;
1555 
1556 	/* If we are not starting at the beginning of a bitmap, then we
1557 	 * need to add one to the bitmap count to ensure that we search
1558 	 * the starting bitmap twice.
1559 	 */
1560 	if (rbm->offset != 0)
1561 		iters++;
1562 
1563 	while(1) {
1564 		if (test_bit(GBF_FULL, &rbm->bi->bi_flags) &&
1565 		    (state == GFS2_BLKST_FREE))
1566 			goto next_bitmap;
1567 
1568 		bh = rbm->bi->bi_bh;
1569 		buffer = bh->b_data + rbm->bi->bi_offset;
1570 		WARN_ON(!buffer_uptodate(bh));
1571 		if (state != GFS2_BLKST_UNLINKED && rbm->bi->bi_clone)
1572 			buffer = rbm->bi->bi_clone + rbm->bi->bi_offset;
1573 		initial_offset = rbm->offset;
1574 		offset = gfs2_bitfit(buffer, rbm->bi->bi_len, rbm->offset, state);
1575 		if (offset == BFITNOENT)
1576 			goto bitmap_full;
1577 		rbm->offset = offset;
1578 		if (ip == NULL)
1579 			return 0;
1580 
1581 		initial_bi = rbm->bi;
1582 		ret = gfs2_reservation_check_and_update(rbm, ip, minext);
1583 		if (ret == 0)
1584 			return 0;
1585 		if (ret > 0) {
1586 			n += (rbm->bi - initial_bi);
1587 			goto next_iter;
1588 		}
1589 		if (ret == -E2BIG) {
1590 			index = 0;
1591 			rbm->offset = 0;
1592 			n += (rbm->bi - initial_bi);
1593 			goto res_covered_end_of_rgrp;
1594 		}
1595 		return ret;
1596 
1597 bitmap_full:	/* Mark bitmap as full and fall through */
1598 		if ((state == GFS2_BLKST_FREE) && initial_offset == 0)
1599 			set_bit(GBF_FULL, &rbm->bi->bi_flags);
1600 
1601 next_bitmap:	/* Find next bitmap in the rgrp */
1602 		rbm->offset = 0;
1603 		index = rbm->bi - rbm->rgd->rd_bits;
1604 		index++;
1605 		if (index == rbm->rgd->rd_length)
1606 			index = 0;
1607 res_covered_end_of_rgrp:
1608 		rbm->bi = &rbm->rgd->rd_bits[index];
1609 		if ((index == 0) && nowrap)
1610 			break;
1611 		n++;
1612 next_iter:
1613 		if (n >= iters)
1614 			break;
1615 	}
1616 
1617 	return -ENOSPC;
1618 }
1619 
1620 /**
1621  * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1622  * @rgd: The rgrp
1623  * @last_unlinked: block address of the last dinode we unlinked
1624  * @skip: block address we should explicitly not unlink
1625  *
1626  * Returns: 0 if no error
1627  *          The inode, if one has been found, in inode.
1628  */
1629 
1630 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
1631 {
1632 	u64 block;
1633 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1634 	struct gfs2_glock *gl;
1635 	struct gfs2_inode *ip;
1636 	int error;
1637 	int found = 0;
1638 	struct gfs2_rbm rbm = { .rgd = rgd, .bi = rgd->rd_bits, .offset = 0 };
1639 
1640 	while (1) {
1641 		down_write(&sdp->sd_log_flush_lock);
1642 		error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, 0, NULL, true);
1643 		up_write(&sdp->sd_log_flush_lock);
1644 		if (error == -ENOSPC)
1645 			break;
1646 		if (WARN_ON_ONCE(error))
1647 			break;
1648 
1649 		block = gfs2_rbm_to_block(&rbm);
1650 		if (gfs2_rbm_from_block(&rbm, block + 1))
1651 			break;
1652 		if (*last_unlinked != NO_BLOCK && block <= *last_unlinked)
1653 			continue;
1654 		if (block == skip)
1655 			continue;
1656 		*last_unlinked = block;
1657 
1658 		error = gfs2_glock_get(sdp, block, &gfs2_inode_glops, CREATE, &gl);
1659 		if (error)
1660 			continue;
1661 
1662 		/* If the inode is already in cache, we can ignore it here
1663 		 * because the existing inode disposal code will deal with
1664 		 * it when all refs have gone away. Accessing gl_object like
1665 		 * this is not safe in general. Here it is ok because we do
1666 		 * not dereference the pointer, and we only need an approx
1667 		 * answer to whether it is NULL or not.
1668 		 */
1669 		ip = gl->gl_object;
1670 
1671 		if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0)
1672 			gfs2_glock_put(gl);
1673 		else
1674 			found++;
1675 
1676 		/* Limit reclaim to sensible number of tasks */
1677 		if (found > NR_CPUS)
1678 			return;
1679 	}
1680 
1681 	rgd->rd_flags &= ~GFS2_RDF_CHECK;
1682 	return;
1683 }
1684 
1685 /**
1686  * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested
1687  * @rgd: The rgrp in question
1688  * @loops: An indication of how picky we can be (0=very, 1=less so)
1689  *
1690  * This function uses the recently added glock statistics in order to
1691  * figure out whether a parciular resource group is suffering from
1692  * contention from multiple nodes. This is done purely on the basis
1693  * of timings, since this is the only data we have to work with and
1694  * our aim here is to reject a resource group which is highly contended
1695  * but (very important) not to do this too often in order to ensure that
1696  * we do not land up introducing fragmentation by changing resource
1697  * groups when not actually required.
1698  *
1699  * The calculation is fairly simple, we want to know whether the SRTTB
1700  * (i.e. smoothed round trip time for blocking operations) to acquire
1701  * the lock for this rgrp's glock is significantly greater than the
1702  * time taken for resource groups on average. We introduce a margin in
1703  * the form of the variable @var which is computed as the sum of the two
1704  * respective variences, and multiplied by a factor depending on @loops
1705  * and whether we have a lot of data to base the decision on. This is
1706  * then tested against the square difference of the means in order to
1707  * decide whether the result is statistically significant or not.
1708  *
1709  * Returns: A boolean verdict on the congestion status
1710  */
1711 
1712 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops)
1713 {
1714 	const struct gfs2_glock *gl = rgd->rd_gl;
1715 	const struct gfs2_sbd *sdp = gl->gl_sbd;
1716 	struct gfs2_lkstats *st;
1717 	s64 r_dcount, l_dcount;
1718 	s64 r_srttb, l_srttb;
1719 	s64 srttb_diff;
1720 	s64 sqr_diff;
1721 	s64 var;
1722 
1723 	preempt_disable();
1724 	st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP];
1725 	r_srttb = st->stats[GFS2_LKS_SRTTB];
1726 	r_dcount = st->stats[GFS2_LKS_DCOUNT];
1727 	var = st->stats[GFS2_LKS_SRTTVARB] +
1728 	      gl->gl_stats.stats[GFS2_LKS_SRTTVARB];
1729 	preempt_enable();
1730 
1731 	l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB];
1732 	l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT];
1733 
1734 	if ((l_dcount < 1) || (r_dcount < 1) || (r_srttb == 0))
1735 		return false;
1736 
1737 	srttb_diff = r_srttb - l_srttb;
1738 	sqr_diff = srttb_diff * srttb_diff;
1739 
1740 	var *= 2;
1741 	if (l_dcount < 8 || r_dcount < 8)
1742 		var *= 2;
1743 	if (loops == 1)
1744 		var *= 2;
1745 
1746 	return ((srttb_diff < 0) && (sqr_diff > var));
1747 }
1748 
1749 /**
1750  * gfs2_rgrp_used_recently
1751  * @rs: The block reservation with the rgrp to test
1752  * @msecs: The time limit in milliseconds
1753  *
1754  * Returns: True if the rgrp glock has been used within the time limit
1755  */
1756 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs,
1757 				    u64 msecs)
1758 {
1759 	u64 tdiff;
1760 
1761 	tdiff = ktime_to_ns(ktime_sub(ktime_get_real(),
1762                             rs->rs_rbm.rgd->rd_gl->gl_dstamp));
1763 
1764 	return tdiff > (msecs * 1000 * 1000);
1765 }
1766 
1767 static u32 gfs2_orlov_skip(const struct gfs2_inode *ip)
1768 {
1769 	const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1770 	u32 skip;
1771 
1772 	get_random_bytes(&skip, sizeof(skip));
1773 	return skip % sdp->sd_rgrps;
1774 }
1775 
1776 static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin)
1777 {
1778 	struct gfs2_rgrpd *rgd = *pos;
1779 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1780 
1781 	rgd = gfs2_rgrpd_get_next(rgd);
1782 	if (rgd == NULL)
1783 		rgd = gfs2_rgrpd_get_first(sdp);
1784 	*pos = rgd;
1785 	if (rgd != begin) /* If we didn't wrap */
1786 		return true;
1787 	return false;
1788 }
1789 
1790 /**
1791  * gfs2_inplace_reserve - Reserve space in the filesystem
1792  * @ip: the inode to reserve space for
1793  * @requested: the number of blocks to be reserved
1794  *
1795  * Returns: errno
1796  */
1797 
1798 int gfs2_inplace_reserve(struct gfs2_inode *ip, u32 requested, u32 aflags)
1799 {
1800 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1801 	struct gfs2_rgrpd *begin = NULL;
1802 	struct gfs2_blkreserv *rs = ip->i_res;
1803 	int error = 0, rg_locked, flags = 0;
1804 	u64 last_unlinked = NO_BLOCK;
1805 	int loops = 0;
1806 	u32 skip = 0;
1807 
1808 	if (sdp->sd_args.ar_rgrplvb)
1809 		flags |= GL_SKIP;
1810 	if (gfs2_assert_warn(sdp, requested))
1811 		return -EINVAL;
1812 	if (gfs2_rs_active(rs)) {
1813 		begin = rs->rs_rbm.rgd;
1814 		flags = 0; /* Yoda: Do or do not. There is no try */
1815 	} else if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal)) {
1816 		rs->rs_rbm.rgd = begin = ip->i_rgd;
1817 	} else {
1818 		rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
1819 	}
1820 	if (S_ISDIR(ip->i_inode.i_mode) && (aflags & GFS2_AF_ORLOV))
1821 		skip = gfs2_orlov_skip(ip);
1822 	if (rs->rs_rbm.rgd == NULL)
1823 		return -EBADSLT;
1824 
1825 	while (loops < 3) {
1826 		rg_locked = 1;
1827 
1828 		if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) {
1829 			rg_locked = 0;
1830 			if (skip && skip--)
1831 				goto next_rgrp;
1832 			if (!gfs2_rs_active(rs) && (loops < 2) &&
1833 			     gfs2_rgrp_used_recently(rs, 1000) &&
1834 			     gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
1835 				goto next_rgrp;
1836 			error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl,
1837 						   LM_ST_EXCLUSIVE, flags,
1838 						   &rs->rs_rgd_gh);
1839 			if (unlikely(error))
1840 				return error;
1841 			if (!gfs2_rs_active(rs) && (loops < 2) &&
1842 			    gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
1843 				goto skip_rgrp;
1844 			if (sdp->sd_args.ar_rgrplvb) {
1845 				error = update_rgrp_lvb(rs->rs_rbm.rgd);
1846 				if (unlikely(error)) {
1847 					gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1848 					return error;
1849 				}
1850 			}
1851 		}
1852 
1853 		/* Skip unuseable resource groups */
1854 		if (rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC | GFS2_RDF_ERROR))
1855 			goto skip_rgrp;
1856 
1857 		if (sdp->sd_args.ar_rgrplvb)
1858 			gfs2_rgrp_bh_get(rs->rs_rbm.rgd);
1859 
1860 		/* Get a reservation if we don't already have one */
1861 		if (!gfs2_rs_active(rs))
1862 			rg_mblk_search(rs->rs_rbm.rgd, ip, requested);
1863 
1864 		/* Skip rgrps when we can't get a reservation on first pass */
1865 		if (!gfs2_rs_active(rs) && (loops < 1))
1866 			goto check_rgrp;
1867 
1868 		/* If rgrp has enough free space, use it */
1869 		if (rs->rs_rbm.rgd->rd_free_clone >= requested) {
1870 			ip->i_rgd = rs->rs_rbm.rgd;
1871 			return 0;
1872 		}
1873 
1874 		/* Drop reservation, if we couldn't use reserved rgrp */
1875 		if (gfs2_rs_active(rs))
1876 			gfs2_rs_deltree(ip, rs);
1877 check_rgrp:
1878 		/* Check for unlinked inodes which can be reclaimed */
1879 		if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK)
1880 			try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked,
1881 					ip->i_no_addr);
1882 skip_rgrp:
1883 		/* Unlock rgrp if required */
1884 		if (!rg_locked)
1885 			gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1886 next_rgrp:
1887 		/* Find the next rgrp, and continue looking */
1888 		if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin))
1889 			continue;
1890 		if (skip)
1891 			continue;
1892 
1893 		/* If we've scanned all the rgrps, but found no free blocks
1894 		 * then this checks for some less likely conditions before
1895 		 * trying again.
1896 		 */
1897 		loops++;
1898 		/* Check that fs hasn't grown if writing to rindex */
1899 		if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
1900 			error = gfs2_ri_update(ip);
1901 			if (error)
1902 				return error;
1903 		}
1904 		/* Flushing the log may release space */
1905 		if (loops == 2)
1906 			gfs2_log_flush(sdp, NULL);
1907 	}
1908 
1909 	return -ENOSPC;
1910 }
1911 
1912 /**
1913  * gfs2_inplace_release - release an inplace reservation
1914  * @ip: the inode the reservation was taken out on
1915  *
1916  * Release a reservation made by gfs2_inplace_reserve().
1917  */
1918 
1919 void gfs2_inplace_release(struct gfs2_inode *ip)
1920 {
1921 	struct gfs2_blkreserv *rs = ip->i_res;
1922 
1923 	if (rs->rs_rgd_gh.gh_gl)
1924 		gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1925 }
1926 
1927 /**
1928  * gfs2_get_block_type - Check a block in a RG is of given type
1929  * @rgd: the resource group holding the block
1930  * @block: the block number
1931  *
1932  * Returns: The block type (GFS2_BLKST_*)
1933  */
1934 
1935 static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block)
1936 {
1937 	struct gfs2_rbm rbm = { .rgd = rgd, };
1938 	int ret;
1939 
1940 	ret = gfs2_rbm_from_block(&rbm, block);
1941 	WARN_ON_ONCE(ret != 0);
1942 
1943 	return gfs2_testbit(&rbm);
1944 }
1945 
1946 
1947 /**
1948  * gfs2_alloc_extent - allocate an extent from a given bitmap
1949  * @rbm: the resource group information
1950  * @dinode: TRUE if the first block we allocate is for a dinode
1951  * @n: The extent length (value/result)
1952  *
1953  * Add the bitmap buffer to the transaction.
1954  * Set the found bits to @new_state to change block's allocation state.
1955  */
1956 static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode,
1957 			     unsigned int *n)
1958 {
1959 	struct gfs2_rbm pos = { .rgd = rbm->rgd, };
1960 	const unsigned int elen = *n;
1961 	u64 block;
1962 	int ret;
1963 
1964 	*n = 1;
1965 	block = gfs2_rbm_to_block(rbm);
1966 	gfs2_trans_add_bh(rbm->rgd->rd_gl, rbm->bi->bi_bh, 1);
1967 	gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
1968 	block++;
1969 	while (*n < elen) {
1970 		ret = gfs2_rbm_from_block(&pos, block);
1971 		if (ret || gfs2_testbit(&pos) != GFS2_BLKST_FREE)
1972 			break;
1973 		gfs2_trans_add_bh(pos.rgd->rd_gl, pos.bi->bi_bh, 1);
1974 		gfs2_setbit(&pos, true, GFS2_BLKST_USED);
1975 		(*n)++;
1976 		block++;
1977 	}
1978 }
1979 
1980 /**
1981  * rgblk_free - Change alloc state of given block(s)
1982  * @sdp: the filesystem
1983  * @bstart: the start of a run of blocks to free
1984  * @blen: the length of the block run (all must lie within ONE RG!)
1985  * @new_state: GFS2_BLKST_XXX the after-allocation block state
1986  *
1987  * Returns:  Resource group containing the block(s)
1988  */
1989 
1990 static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart,
1991 				     u32 blen, unsigned char new_state)
1992 {
1993 	struct gfs2_rbm rbm;
1994 
1995 	rbm.rgd = gfs2_blk2rgrpd(sdp, bstart, 1);
1996 	if (!rbm.rgd) {
1997 		if (gfs2_consist(sdp))
1998 			fs_err(sdp, "block = %llu\n", (unsigned long long)bstart);
1999 		return NULL;
2000 	}
2001 
2002 	while (blen--) {
2003 		gfs2_rbm_from_block(&rbm, bstart);
2004 		bstart++;
2005 		if (!rbm.bi->bi_clone) {
2006 			rbm.bi->bi_clone = kmalloc(rbm.bi->bi_bh->b_size,
2007 						   GFP_NOFS | __GFP_NOFAIL);
2008 			memcpy(rbm.bi->bi_clone + rbm.bi->bi_offset,
2009 			       rbm.bi->bi_bh->b_data + rbm.bi->bi_offset,
2010 			       rbm.bi->bi_len);
2011 		}
2012 		gfs2_trans_add_bh(rbm.rgd->rd_gl, rbm.bi->bi_bh, 1);
2013 		gfs2_setbit(&rbm, false, new_state);
2014 	}
2015 
2016 	return rbm.rgd;
2017 }
2018 
2019 /**
2020  * gfs2_rgrp_dump - print out an rgrp
2021  * @seq: The iterator
2022  * @gl: The glock in question
2023  *
2024  */
2025 
2026 int gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl)
2027 {
2028 	struct gfs2_rgrpd *rgd = gl->gl_object;
2029 	struct gfs2_blkreserv *trs;
2030 	const struct rb_node *n;
2031 
2032 	if (rgd == NULL)
2033 		return 0;
2034 	gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u r:%u\n",
2035 		       (unsigned long long)rgd->rd_addr, rgd->rd_flags,
2036 		       rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes,
2037 		       rgd->rd_reserved);
2038 	spin_lock(&rgd->rd_rsspin);
2039 	for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) {
2040 		trs = rb_entry(n, struct gfs2_blkreserv, rs_node);
2041 		dump_rs(seq, trs);
2042 	}
2043 	spin_unlock(&rgd->rd_rsspin);
2044 	return 0;
2045 }
2046 
2047 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
2048 {
2049 	struct gfs2_sbd *sdp = rgd->rd_sbd;
2050 	fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
2051 		(unsigned long long)rgd->rd_addr);
2052 	fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
2053 	gfs2_rgrp_dump(NULL, rgd->rd_gl);
2054 	rgd->rd_flags |= GFS2_RDF_ERROR;
2055 }
2056 
2057 /**
2058  * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation
2059  * @ip: The inode we have just allocated blocks for
2060  * @rbm: The start of the allocated blocks
2061  * @len: The extent length
2062  *
2063  * Adjusts a reservation after an allocation has taken place. If the
2064  * reservation does not match the allocation, or if it is now empty
2065  * then it is removed.
2066  */
2067 
2068 static void gfs2_adjust_reservation(struct gfs2_inode *ip,
2069 				    const struct gfs2_rbm *rbm, unsigned len)
2070 {
2071 	struct gfs2_blkreserv *rs = ip->i_res;
2072 	struct gfs2_rgrpd *rgd = rbm->rgd;
2073 	unsigned rlen;
2074 	u64 block;
2075 	int ret;
2076 
2077 	spin_lock(&rgd->rd_rsspin);
2078 	if (gfs2_rs_active(rs)) {
2079 		if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) {
2080 			block = gfs2_rbm_to_block(rbm);
2081 			ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len);
2082 			rlen = min(rs->rs_free, len);
2083 			rs->rs_free -= rlen;
2084 			rgd->rd_reserved -= rlen;
2085 			trace_gfs2_rs(rs, TRACE_RS_CLAIM);
2086 			if (rs->rs_free && !ret)
2087 				goto out;
2088 		}
2089 		__rs_deltree(ip, rs);
2090 	}
2091 out:
2092 	spin_unlock(&rgd->rd_rsspin);
2093 }
2094 
2095 /**
2096  * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
2097  * @ip: the inode to allocate the block for
2098  * @bn: Used to return the starting block number
2099  * @nblocks: requested number of blocks/extent length (value/result)
2100  * @dinode: 1 if we're allocating a dinode block, else 0
2101  * @generation: the generation number of the inode
2102  *
2103  * Returns: 0 or error
2104  */
2105 
2106 int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
2107 		      bool dinode, u64 *generation)
2108 {
2109 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2110 	struct buffer_head *dibh;
2111 	struct gfs2_rbm rbm = { .rgd = ip->i_rgd, };
2112 	unsigned int ndata;
2113 	u64 goal;
2114 	u64 block; /* block, within the file system scope */
2115 	int error;
2116 
2117 	if (gfs2_rs_active(ip->i_res))
2118 		goal = gfs2_rbm_to_block(&ip->i_res->rs_rbm);
2119 	else if (!dinode && rgrp_contains_block(rbm.rgd, ip->i_goal))
2120 		goal = ip->i_goal;
2121 	else
2122 		goal = rbm.rgd->rd_last_alloc + rbm.rgd->rd_data0;
2123 
2124 	gfs2_rbm_from_block(&rbm, goal);
2125 	error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, 0, ip, false);
2126 
2127 	if (error == -ENOSPC) {
2128 		gfs2_rbm_from_block(&rbm, goal);
2129 		error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, 0, NULL, false);
2130 	}
2131 
2132 	/* Since all blocks are reserved in advance, this shouldn't happen */
2133 	if (error) {
2134 		fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d\n",
2135 			(unsigned long long)ip->i_no_addr, error, *nblocks,
2136 			test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags));
2137 		goto rgrp_error;
2138 	}
2139 
2140 	gfs2_alloc_extent(&rbm, dinode, nblocks);
2141 	block = gfs2_rbm_to_block(&rbm);
2142 	rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0;
2143 	if (gfs2_rs_active(ip->i_res))
2144 		gfs2_adjust_reservation(ip, &rbm, *nblocks);
2145 	ndata = *nblocks;
2146 	if (dinode)
2147 		ndata--;
2148 
2149 	if (!dinode) {
2150 		ip->i_goal = block + ndata - 1;
2151 		error = gfs2_meta_inode_buffer(ip, &dibh);
2152 		if (error == 0) {
2153 			struct gfs2_dinode *di =
2154 				(struct gfs2_dinode *)dibh->b_data;
2155 			gfs2_trans_add_bh(ip->i_gl, dibh, 1);
2156 			di->di_goal_meta = di->di_goal_data =
2157 				cpu_to_be64(ip->i_goal);
2158 			brelse(dibh);
2159 		}
2160 	}
2161 	if (rbm.rgd->rd_free < *nblocks) {
2162 		printk(KERN_WARNING "nblocks=%u\n", *nblocks);
2163 		goto rgrp_error;
2164 	}
2165 
2166 	rbm.rgd->rd_free -= *nblocks;
2167 	if (dinode) {
2168 		rbm.rgd->rd_dinodes++;
2169 		*generation = rbm.rgd->rd_igeneration++;
2170 		if (*generation == 0)
2171 			*generation = rbm.rgd->rd_igeneration++;
2172 	}
2173 
2174 	gfs2_trans_add_bh(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh, 1);
2175 	gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data);
2176 	gfs2_rgrp_ondisk2lvb(rbm.rgd->rd_rgl, rbm.rgd->rd_bits[0].bi_bh->b_data);
2177 
2178 	gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
2179 	if (dinode)
2180 		gfs2_trans_add_unrevoke(sdp, block, 1);
2181 
2182 	/*
2183 	 * This needs reviewing to see why we cannot do the quota change
2184 	 * at this point in the dinode case.
2185 	 */
2186 	if (ndata)
2187 		gfs2_quota_change(ip, ndata, ip->i_inode.i_uid,
2188 				  ip->i_inode.i_gid);
2189 
2190 	rbm.rgd->rd_free_clone -= *nblocks;
2191 	trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks,
2192 			       dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2193 	*bn = block;
2194 	return 0;
2195 
2196 rgrp_error:
2197 	gfs2_rgrp_error(rbm.rgd);
2198 	return -EIO;
2199 }
2200 
2201 /**
2202  * __gfs2_free_blocks - free a contiguous run of block(s)
2203  * @ip: the inode these blocks are being freed from
2204  * @bstart: first block of a run of contiguous blocks
2205  * @blen: the length of the block run
2206  * @meta: 1 if the blocks represent metadata
2207  *
2208  */
2209 
2210 void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta)
2211 {
2212 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2213 	struct gfs2_rgrpd *rgd;
2214 
2215 	rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE);
2216 	if (!rgd)
2217 		return;
2218 	trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
2219 	rgd->rd_free += blen;
2220 	rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
2221 	gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
2222 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2223 	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2224 
2225 	/* Directories keep their data in the metadata address space */
2226 	if (meta || ip->i_depth)
2227 		gfs2_meta_wipe(ip, bstart, blen);
2228 }
2229 
2230 /**
2231  * gfs2_free_meta - free a contiguous run of data block(s)
2232  * @ip: the inode these blocks are being freed from
2233  * @bstart: first block of a run of contiguous blocks
2234  * @blen: the length of the block run
2235  *
2236  */
2237 
2238 void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen)
2239 {
2240 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2241 
2242 	__gfs2_free_blocks(ip, bstart, blen, 1);
2243 	gfs2_statfs_change(sdp, 0, +blen, 0);
2244 	gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
2245 }
2246 
2247 void gfs2_unlink_di(struct inode *inode)
2248 {
2249 	struct gfs2_inode *ip = GFS2_I(inode);
2250 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2251 	struct gfs2_rgrpd *rgd;
2252 	u64 blkno = ip->i_no_addr;
2253 
2254 	rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED);
2255 	if (!rgd)
2256 		return;
2257 	trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2258 	gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
2259 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2260 	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2261 	update_rgrp_lvb_unlinked(rgd, 1);
2262 }
2263 
2264 static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno)
2265 {
2266 	struct gfs2_sbd *sdp = rgd->rd_sbd;
2267 	struct gfs2_rgrpd *tmp_rgd;
2268 
2269 	tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE);
2270 	if (!tmp_rgd)
2271 		return;
2272 	gfs2_assert_withdraw(sdp, rgd == tmp_rgd);
2273 
2274 	if (!rgd->rd_dinodes)
2275 		gfs2_consist_rgrpd(rgd);
2276 	rgd->rd_dinodes--;
2277 	rgd->rd_free++;
2278 
2279 	gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
2280 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2281 	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2282 	update_rgrp_lvb_unlinked(rgd, -1);
2283 
2284 	gfs2_statfs_change(sdp, 0, +1, -1);
2285 }
2286 
2287 
2288 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
2289 {
2290 	gfs2_free_uninit_di(rgd, ip->i_no_addr);
2291 	trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2292 	gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
2293 	gfs2_meta_wipe(ip, ip->i_no_addr, 1);
2294 }
2295 
2296 /**
2297  * gfs2_check_blk_type - Check the type of a block
2298  * @sdp: The superblock
2299  * @no_addr: The block number to check
2300  * @type: The block type we are looking for
2301  *
2302  * Returns: 0 if the block type matches the expected type
2303  *          -ESTALE if it doesn't match
2304  *          or -ve errno if something went wrong while checking
2305  */
2306 
2307 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
2308 {
2309 	struct gfs2_rgrpd *rgd;
2310 	struct gfs2_holder rgd_gh;
2311 	int error = -EINVAL;
2312 
2313 	rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
2314 	if (!rgd)
2315 		goto fail;
2316 
2317 	error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
2318 	if (error)
2319 		goto fail;
2320 
2321 	if (gfs2_get_block_type(rgd, no_addr) != type)
2322 		error = -ESTALE;
2323 
2324 	gfs2_glock_dq_uninit(&rgd_gh);
2325 fail:
2326 	return error;
2327 }
2328 
2329 /**
2330  * gfs2_rlist_add - add a RG to a list of RGs
2331  * @ip: the inode
2332  * @rlist: the list of resource groups
2333  * @block: the block
2334  *
2335  * Figure out what RG a block belongs to and add that RG to the list
2336  *
2337  * FIXME: Don't use NOFAIL
2338  *
2339  */
2340 
2341 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
2342 		    u64 block)
2343 {
2344 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2345 	struct gfs2_rgrpd *rgd;
2346 	struct gfs2_rgrpd **tmp;
2347 	unsigned int new_space;
2348 	unsigned int x;
2349 
2350 	if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
2351 		return;
2352 
2353 	if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block))
2354 		rgd = ip->i_rgd;
2355 	else
2356 		rgd = gfs2_blk2rgrpd(sdp, block, 1);
2357 	if (!rgd) {
2358 		fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block);
2359 		return;
2360 	}
2361 	ip->i_rgd = rgd;
2362 
2363 	for (x = 0; x < rlist->rl_rgrps; x++)
2364 		if (rlist->rl_rgd[x] == rgd)
2365 			return;
2366 
2367 	if (rlist->rl_rgrps == rlist->rl_space) {
2368 		new_space = rlist->rl_space + 10;
2369 
2370 		tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
2371 			      GFP_NOFS | __GFP_NOFAIL);
2372 
2373 		if (rlist->rl_rgd) {
2374 			memcpy(tmp, rlist->rl_rgd,
2375 			       rlist->rl_space * sizeof(struct gfs2_rgrpd *));
2376 			kfree(rlist->rl_rgd);
2377 		}
2378 
2379 		rlist->rl_space = new_space;
2380 		rlist->rl_rgd = tmp;
2381 	}
2382 
2383 	rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
2384 }
2385 
2386 /**
2387  * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
2388  *      and initialize an array of glock holders for them
2389  * @rlist: the list of resource groups
2390  * @state: the lock state to acquire the RG lock in
2391  *
2392  * FIXME: Don't use NOFAIL
2393  *
2394  */
2395 
2396 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state)
2397 {
2398 	unsigned int x;
2399 
2400 	rlist->rl_ghs = kcalloc(rlist->rl_rgrps, sizeof(struct gfs2_holder),
2401 				GFP_NOFS | __GFP_NOFAIL);
2402 	for (x = 0; x < rlist->rl_rgrps; x++)
2403 		gfs2_holder_init(rlist->rl_rgd[x]->rd_gl,
2404 				state, 0,
2405 				&rlist->rl_ghs[x]);
2406 }
2407 
2408 /**
2409  * gfs2_rlist_free - free a resource group list
2410  * @list: the list of resource groups
2411  *
2412  */
2413 
2414 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
2415 {
2416 	unsigned int x;
2417 
2418 	kfree(rlist->rl_rgd);
2419 
2420 	if (rlist->rl_ghs) {
2421 		for (x = 0; x < rlist->rl_rgrps; x++)
2422 			gfs2_holder_uninit(&rlist->rl_ghs[x]);
2423 		kfree(rlist->rl_ghs);
2424 		rlist->rl_ghs = NULL;
2425 	}
2426 }
2427 
2428