xref: /linux/fs/gfs2/rgrp.c (revision 0526b56cbc3c489642bd6a5fe4b718dea7ef0ee8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
4  * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
5  */
6 
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 
9 #include <linux/slab.h>
10 #include <linux/spinlock.h>
11 #include <linux/completion.h>
12 #include <linux/buffer_head.h>
13 #include <linux/fs.h>
14 #include <linux/gfs2_ondisk.h>
15 #include <linux/prefetch.h>
16 #include <linux/blkdev.h>
17 #include <linux/rbtree.h>
18 #include <linux/random.h>
19 
20 #include "gfs2.h"
21 #include "incore.h"
22 #include "glock.h"
23 #include "glops.h"
24 #include "lops.h"
25 #include "meta_io.h"
26 #include "quota.h"
27 #include "rgrp.h"
28 #include "super.h"
29 #include "trans.h"
30 #include "util.h"
31 #include "log.h"
32 #include "inode.h"
33 #include "trace_gfs2.h"
34 #include "dir.h"
35 
36 #define BFITNOENT ((u32)~0)
37 #define NO_BLOCK ((u64)~0)
38 
39 struct gfs2_rbm {
40 	struct gfs2_rgrpd *rgd;
41 	u32 offset;		/* The offset is bitmap relative */
42 	int bii;		/* Bitmap index */
43 };
44 
45 static inline struct gfs2_bitmap *rbm_bi(const struct gfs2_rbm *rbm)
46 {
47 	return rbm->rgd->rd_bits + rbm->bii;
48 }
49 
50 static inline u64 gfs2_rbm_to_block(const struct gfs2_rbm *rbm)
51 {
52 	BUG_ON(rbm->offset >= rbm->rgd->rd_data);
53 	return rbm->rgd->rd_data0 + (rbm_bi(rbm)->bi_start * GFS2_NBBY) +
54 		rbm->offset;
55 }
56 
57 /*
58  * These routines are used by the resource group routines (rgrp.c)
59  * to keep track of block allocation.  Each block is represented by two
60  * bits.  So, each byte represents GFS2_NBBY (i.e. 4) blocks.
61  *
62  * 0 = Free
63  * 1 = Used (not metadata)
64  * 2 = Unlinked (still in use) inode
65  * 3 = Used (metadata)
66  */
67 
68 struct gfs2_extent {
69 	struct gfs2_rbm rbm;
70 	u32 len;
71 };
72 
73 static const char valid_change[16] = {
74 	        /* current */
75 	/* n */ 0, 1, 1, 1,
76 	/* e */ 1, 0, 0, 0,
77 	/* w */ 0, 0, 0, 1,
78 	        1, 0, 0, 0
79 };
80 
81 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
82 			 struct gfs2_blkreserv *rs, bool nowrap);
83 
84 
85 /**
86  * gfs2_setbit - Set a bit in the bitmaps
87  * @rbm: The position of the bit to set
88  * @do_clone: Also set the clone bitmap, if it exists
89  * @new_state: the new state of the block
90  *
91  */
92 
93 static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone,
94 			       unsigned char new_state)
95 {
96 	unsigned char *byte1, *byte2, *end, cur_state;
97 	struct gfs2_bitmap *bi = rbm_bi(rbm);
98 	unsigned int buflen = bi->bi_bytes;
99 	const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
100 
101 	byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY);
102 	end = bi->bi_bh->b_data + bi->bi_offset + buflen;
103 
104 	BUG_ON(byte1 >= end);
105 
106 	cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
107 
108 	if (unlikely(!valid_change[new_state * 4 + cur_state])) {
109 		struct gfs2_sbd *sdp = rbm->rgd->rd_sbd;
110 
111 		fs_warn(sdp, "buf_blk = 0x%x old_state=%d, new_state=%d\n",
112 			rbm->offset, cur_state, new_state);
113 		fs_warn(sdp, "rgrp=0x%llx bi_start=0x%x biblk: 0x%llx\n",
114 			(unsigned long long)rbm->rgd->rd_addr, bi->bi_start,
115 			(unsigned long long)bi->bi_bh->b_blocknr);
116 		fs_warn(sdp, "bi_offset=0x%x bi_bytes=0x%x block=0x%llx\n",
117 			bi->bi_offset, bi->bi_bytes,
118 			(unsigned long long)gfs2_rbm_to_block(rbm));
119 		dump_stack();
120 		gfs2_consist_rgrpd(rbm->rgd);
121 		return;
122 	}
123 	*byte1 ^= (cur_state ^ new_state) << bit;
124 
125 	if (do_clone && bi->bi_clone) {
126 		byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY);
127 		cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
128 		*byte2 ^= (cur_state ^ new_state) << bit;
129 	}
130 }
131 
132 /**
133  * gfs2_testbit - test a bit in the bitmaps
134  * @rbm: The bit to test
135  * @use_clone: If true, test the clone bitmap, not the official bitmap.
136  *
137  * Some callers like gfs2_unaligned_extlen need to test the clone bitmaps,
138  * not the "real" bitmaps, to avoid allocating recently freed blocks.
139  *
140  * Returns: The two bit block state of the requested bit
141  */
142 
143 static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm, bool use_clone)
144 {
145 	struct gfs2_bitmap *bi = rbm_bi(rbm);
146 	const u8 *buffer;
147 	const u8 *byte;
148 	unsigned int bit;
149 
150 	if (use_clone && bi->bi_clone)
151 		buffer = bi->bi_clone;
152 	else
153 		buffer = bi->bi_bh->b_data;
154 	buffer += bi->bi_offset;
155 	byte = buffer + (rbm->offset / GFS2_NBBY);
156 	bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
157 
158 	return (*byte >> bit) & GFS2_BIT_MASK;
159 }
160 
161 /**
162  * gfs2_bit_search
163  * @ptr: Pointer to bitmap data
164  * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
165  * @state: The state we are searching for
166  *
167  * We xor the bitmap data with a patter which is the bitwise opposite
168  * of what we are looking for, this gives rise to a pattern of ones
169  * wherever there is a match. Since we have two bits per entry, we
170  * take this pattern, shift it down by one place and then and it with
171  * the original. All the even bit positions (0,2,4, etc) then represent
172  * successful matches, so we mask with 0x55555..... to remove the unwanted
173  * odd bit positions.
174  *
175  * This allows searching of a whole u64 at once (32 blocks) with a
176  * single test (on 64 bit arches).
177  */
178 
179 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
180 {
181 	u64 tmp;
182 	static const u64 search[] = {
183 		[0] = 0xffffffffffffffffULL,
184 		[1] = 0xaaaaaaaaaaaaaaaaULL,
185 		[2] = 0x5555555555555555ULL,
186 		[3] = 0x0000000000000000ULL,
187 	};
188 	tmp = le64_to_cpu(*ptr) ^ search[state];
189 	tmp &= (tmp >> 1);
190 	tmp &= mask;
191 	return tmp;
192 }
193 
194 /**
195  * rs_cmp - multi-block reservation range compare
196  * @start: start of the new reservation
197  * @len: number of blocks in the new reservation
198  * @rs: existing reservation to compare against
199  *
200  * returns: 1 if the block range is beyond the reach of the reservation
201  *         -1 if the block range is before the start of the reservation
202  *          0 if the block range overlaps with the reservation
203  */
204 static inline int rs_cmp(u64 start, u32 len, struct gfs2_blkreserv *rs)
205 {
206 	if (start >= rs->rs_start + rs->rs_requested)
207 		return 1;
208 	if (rs->rs_start >= start + len)
209 		return -1;
210 	return 0;
211 }
212 
213 /**
214  * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
215  *       a block in a given allocation state.
216  * @buf: the buffer that holds the bitmaps
217  * @len: the length (in bytes) of the buffer
218  * @goal: start search at this block's bit-pair (within @buffer)
219  * @state: GFS2_BLKST_XXX the state of the block we're looking for.
220  *
221  * Scope of @goal and returned block number is only within this bitmap buffer,
222  * not entire rgrp or filesystem.  @buffer will be offset from the actual
223  * beginning of a bitmap block buffer, skipping any header structures, but
224  * headers are always a multiple of 64 bits long so that the buffer is
225  * always aligned to a 64 bit boundary.
226  *
227  * The size of the buffer is in bytes, but is it assumed that it is
228  * always ok to read a complete multiple of 64 bits at the end
229  * of the block in case the end is no aligned to a natural boundary.
230  *
231  * Return: the block number (bitmap buffer scope) that was found
232  */
233 
234 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
235 		       u32 goal, u8 state)
236 {
237 	u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
238 	const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
239 	const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
240 	u64 tmp;
241 	u64 mask = 0x5555555555555555ULL;
242 	u32 bit;
243 
244 	/* Mask off bits we don't care about at the start of the search */
245 	mask <<= spoint;
246 	tmp = gfs2_bit_search(ptr, mask, state);
247 	ptr++;
248 	while(tmp == 0 && ptr < end) {
249 		tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
250 		ptr++;
251 	}
252 	/* Mask off any bits which are more than len bytes from the start */
253 	if (ptr == end && (len & (sizeof(u64) - 1)))
254 		tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
255 	/* Didn't find anything, so return */
256 	if (tmp == 0)
257 		return BFITNOENT;
258 	ptr--;
259 	bit = __ffs64(tmp);
260 	bit /= 2;	/* two bits per entry in the bitmap */
261 	return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
262 }
263 
264 /**
265  * gfs2_rbm_from_block - Set the rbm based upon rgd and block number
266  * @rbm: The rbm with rgd already set correctly
267  * @block: The block number (filesystem relative)
268  *
269  * This sets the bi and offset members of an rbm based on a
270  * resource group and a filesystem relative block number. The
271  * resource group must be set in the rbm on entry, the bi and
272  * offset members will be set by this function.
273  *
274  * Returns: 0 on success, or an error code
275  */
276 
277 static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block)
278 {
279 	if (!rgrp_contains_block(rbm->rgd, block))
280 		return -E2BIG;
281 	rbm->bii = 0;
282 	rbm->offset = block - rbm->rgd->rd_data0;
283 	/* Check if the block is within the first block */
284 	if (rbm->offset < rbm_bi(rbm)->bi_blocks)
285 		return 0;
286 
287 	/* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */
288 	rbm->offset += (sizeof(struct gfs2_rgrp) -
289 			sizeof(struct gfs2_meta_header)) * GFS2_NBBY;
290 	rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
291 	rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
292 	return 0;
293 }
294 
295 /**
296  * gfs2_rbm_add - add a number of blocks to an rbm
297  * @rbm: The rbm with rgd already set correctly
298  * @blocks: The number of blocks to add to rpm
299  *
300  * This function takes an existing rbm structure and adds a number of blocks to
301  * it.
302  *
303  * Returns: True if the new rbm would point past the end of the rgrp.
304  */
305 
306 static bool gfs2_rbm_add(struct gfs2_rbm *rbm, u32 blocks)
307 {
308 	struct gfs2_rgrpd *rgd = rbm->rgd;
309 	struct gfs2_bitmap *bi = rgd->rd_bits + rbm->bii;
310 
311 	if (rbm->offset + blocks < bi->bi_blocks) {
312 		rbm->offset += blocks;
313 		return false;
314 	}
315 	blocks -= bi->bi_blocks - rbm->offset;
316 
317 	for(;;) {
318 		bi++;
319 		if (bi == rgd->rd_bits + rgd->rd_length)
320 			return true;
321 		if (blocks < bi->bi_blocks) {
322 			rbm->offset = blocks;
323 			rbm->bii = bi - rgd->rd_bits;
324 			return false;
325 		}
326 		blocks -= bi->bi_blocks;
327 	}
328 }
329 
330 /**
331  * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned
332  * @rbm: Position to search (value/result)
333  * @n_unaligned: Number of unaligned blocks to check
334  * @len: Decremented for each block found (terminate on zero)
335  *
336  * Returns: true if a non-free block is encountered or the end of the resource
337  *	    group is reached.
338  */
339 
340 static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len)
341 {
342 	u32 n;
343 	u8 res;
344 
345 	for (n = 0; n < n_unaligned; n++) {
346 		res = gfs2_testbit(rbm, true);
347 		if (res != GFS2_BLKST_FREE)
348 			return true;
349 		(*len)--;
350 		if (*len == 0)
351 			return true;
352 		if (gfs2_rbm_add(rbm, 1))
353 			return true;
354 	}
355 
356 	return false;
357 }
358 
359 /**
360  * gfs2_free_extlen - Return extent length of free blocks
361  * @rrbm: Starting position
362  * @len: Max length to check
363  *
364  * Starting at the block specified by the rbm, see how many free blocks
365  * there are, not reading more than len blocks ahead. This can be done
366  * using memchr_inv when the blocks are byte aligned, but has to be done
367  * on a block by block basis in case of unaligned blocks. Also this
368  * function can cope with bitmap boundaries (although it must stop on
369  * a resource group boundary)
370  *
371  * Returns: Number of free blocks in the extent
372  */
373 
374 static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len)
375 {
376 	struct gfs2_rbm rbm = *rrbm;
377 	u32 n_unaligned = rbm.offset & 3;
378 	u32 size = len;
379 	u32 bytes;
380 	u32 chunk_size;
381 	u8 *ptr, *start, *end;
382 	u64 block;
383 	struct gfs2_bitmap *bi;
384 
385 	if (n_unaligned &&
386 	    gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len))
387 		goto out;
388 
389 	n_unaligned = len & 3;
390 	/* Start is now byte aligned */
391 	while (len > 3) {
392 		bi = rbm_bi(&rbm);
393 		start = bi->bi_bh->b_data;
394 		if (bi->bi_clone)
395 			start = bi->bi_clone;
396 		start += bi->bi_offset;
397 		end = start + bi->bi_bytes;
398 		BUG_ON(rbm.offset & 3);
399 		start += (rbm.offset / GFS2_NBBY);
400 		bytes = min_t(u32, len / GFS2_NBBY, (end - start));
401 		ptr = memchr_inv(start, 0, bytes);
402 		chunk_size = ((ptr == NULL) ? bytes : (ptr - start));
403 		chunk_size *= GFS2_NBBY;
404 		BUG_ON(len < chunk_size);
405 		len -= chunk_size;
406 		block = gfs2_rbm_to_block(&rbm);
407 		if (gfs2_rbm_from_block(&rbm, block + chunk_size)) {
408 			n_unaligned = 0;
409 			break;
410 		}
411 		if (ptr) {
412 			n_unaligned = 3;
413 			break;
414 		}
415 		n_unaligned = len & 3;
416 	}
417 
418 	/* Deal with any bits left over at the end */
419 	if (n_unaligned)
420 		gfs2_unaligned_extlen(&rbm, n_unaligned, &len);
421 out:
422 	return size - len;
423 }
424 
425 /**
426  * gfs2_bitcount - count the number of bits in a certain state
427  * @rgd: the resource group descriptor
428  * @buffer: the buffer that holds the bitmaps
429  * @buflen: the length (in bytes) of the buffer
430  * @state: the state of the block we're looking for
431  *
432  * Returns: The number of bits
433  */
434 
435 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
436 			 unsigned int buflen, u8 state)
437 {
438 	const u8 *byte = buffer;
439 	const u8 *end = buffer + buflen;
440 	const u8 state1 = state << 2;
441 	const u8 state2 = state << 4;
442 	const u8 state3 = state << 6;
443 	u32 count = 0;
444 
445 	for (; byte < end; byte++) {
446 		if (((*byte) & 0x03) == state)
447 			count++;
448 		if (((*byte) & 0x0C) == state1)
449 			count++;
450 		if (((*byte) & 0x30) == state2)
451 			count++;
452 		if (((*byte) & 0xC0) == state3)
453 			count++;
454 	}
455 
456 	return count;
457 }
458 
459 /**
460  * gfs2_rgrp_verify - Verify that a resource group is consistent
461  * @rgd: the rgrp
462  *
463  */
464 
465 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
466 {
467 	struct gfs2_sbd *sdp = rgd->rd_sbd;
468 	struct gfs2_bitmap *bi = NULL;
469 	u32 length = rgd->rd_length;
470 	u32 count[4], tmp;
471 	int buf, x;
472 
473 	memset(count, 0, 4 * sizeof(u32));
474 
475 	/* Count # blocks in each of 4 possible allocation states */
476 	for (buf = 0; buf < length; buf++) {
477 		bi = rgd->rd_bits + buf;
478 		for (x = 0; x < 4; x++)
479 			count[x] += gfs2_bitcount(rgd,
480 						  bi->bi_bh->b_data +
481 						  bi->bi_offset,
482 						  bi->bi_bytes, x);
483 	}
484 
485 	if (count[0] != rgd->rd_free) {
486 		gfs2_lm(sdp, "free data mismatch:  %u != %u\n",
487 			count[0], rgd->rd_free);
488 		gfs2_consist_rgrpd(rgd);
489 		return;
490 	}
491 
492 	tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
493 	if (count[1] != tmp) {
494 		gfs2_lm(sdp, "used data mismatch:  %u != %u\n",
495 			count[1], tmp);
496 		gfs2_consist_rgrpd(rgd);
497 		return;
498 	}
499 
500 	if (count[2] + count[3] != rgd->rd_dinodes) {
501 		gfs2_lm(sdp, "used metadata mismatch:  %u != %u\n",
502 			count[2] + count[3], rgd->rd_dinodes);
503 		gfs2_consist_rgrpd(rgd);
504 		return;
505 	}
506 }
507 
508 /**
509  * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
510  * @sdp: The GFS2 superblock
511  * @blk: The data block number
512  * @exact: True if this needs to be an exact match
513  *
514  * The @exact argument should be set to true by most callers. The exception
515  * is when we need to match blocks which are not represented by the rgrp
516  * bitmap, but which are part of the rgrp (i.e. padding blocks) which are
517  * there for alignment purposes. Another way of looking at it is that @exact
518  * matches only valid data/metadata blocks, but with @exact false, it will
519  * match any block within the extent of the rgrp.
520  *
521  * Returns: The resource group, or NULL if not found
522  */
523 
524 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
525 {
526 	struct rb_node *n, *next;
527 	struct gfs2_rgrpd *cur;
528 
529 	spin_lock(&sdp->sd_rindex_spin);
530 	n = sdp->sd_rindex_tree.rb_node;
531 	while (n) {
532 		cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
533 		next = NULL;
534 		if (blk < cur->rd_addr)
535 			next = n->rb_left;
536 		else if (blk >= cur->rd_data0 + cur->rd_data)
537 			next = n->rb_right;
538 		if (next == NULL) {
539 			spin_unlock(&sdp->sd_rindex_spin);
540 			if (exact) {
541 				if (blk < cur->rd_addr)
542 					return NULL;
543 				if (blk >= cur->rd_data0 + cur->rd_data)
544 					return NULL;
545 			}
546 			return cur;
547 		}
548 		n = next;
549 	}
550 	spin_unlock(&sdp->sd_rindex_spin);
551 
552 	return NULL;
553 }
554 
555 /**
556  * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
557  * @sdp: The GFS2 superblock
558  *
559  * Returns: The first rgrp in the filesystem
560  */
561 
562 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
563 {
564 	const struct rb_node *n;
565 	struct gfs2_rgrpd *rgd;
566 
567 	spin_lock(&sdp->sd_rindex_spin);
568 	n = rb_first(&sdp->sd_rindex_tree);
569 	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
570 	spin_unlock(&sdp->sd_rindex_spin);
571 
572 	return rgd;
573 }
574 
575 /**
576  * gfs2_rgrpd_get_next - get the next RG
577  * @rgd: the resource group descriptor
578  *
579  * Returns: The next rgrp
580  */
581 
582 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
583 {
584 	struct gfs2_sbd *sdp = rgd->rd_sbd;
585 	const struct rb_node *n;
586 
587 	spin_lock(&sdp->sd_rindex_spin);
588 	n = rb_next(&rgd->rd_node);
589 	if (n == NULL)
590 		n = rb_first(&sdp->sd_rindex_tree);
591 
592 	if (unlikely(&rgd->rd_node == n)) {
593 		spin_unlock(&sdp->sd_rindex_spin);
594 		return NULL;
595 	}
596 	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
597 	spin_unlock(&sdp->sd_rindex_spin);
598 	return rgd;
599 }
600 
601 void check_and_update_goal(struct gfs2_inode *ip)
602 {
603 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
604 	if (!ip->i_goal || gfs2_blk2rgrpd(sdp, ip->i_goal, 1) == NULL)
605 		ip->i_goal = ip->i_no_addr;
606 }
607 
608 void gfs2_free_clones(struct gfs2_rgrpd *rgd)
609 {
610 	int x;
611 
612 	for (x = 0; x < rgd->rd_length; x++) {
613 		struct gfs2_bitmap *bi = rgd->rd_bits + x;
614 		kfree(bi->bi_clone);
615 		bi->bi_clone = NULL;
616 	}
617 }
618 
619 static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs,
620 		    const char *fs_id_buf)
621 {
622 	struct gfs2_inode *ip = container_of(rs, struct gfs2_inode, i_res);
623 
624 	gfs2_print_dbg(seq, "%s  B: n:%llu s:%llu f:%u\n",
625 		       fs_id_buf,
626 		       (unsigned long long)ip->i_no_addr,
627 		       (unsigned long long)rs->rs_start,
628 		       rs->rs_requested);
629 }
630 
631 /**
632  * __rs_deltree - remove a multi-block reservation from the rgd tree
633  * @rs: The reservation to remove
634  *
635  */
636 static void __rs_deltree(struct gfs2_blkreserv *rs)
637 {
638 	struct gfs2_rgrpd *rgd;
639 
640 	if (!gfs2_rs_active(rs))
641 		return;
642 
643 	rgd = rs->rs_rgd;
644 	trace_gfs2_rs(rs, TRACE_RS_TREEDEL);
645 	rb_erase(&rs->rs_node, &rgd->rd_rstree);
646 	RB_CLEAR_NODE(&rs->rs_node);
647 
648 	if (rs->rs_requested) {
649 		/* return requested blocks to the rgrp */
650 		BUG_ON(rs->rs_rgd->rd_requested < rs->rs_requested);
651 		rs->rs_rgd->rd_requested -= rs->rs_requested;
652 
653 		/* The rgrp extent failure point is likely not to increase;
654 		   it will only do so if the freed blocks are somehow
655 		   contiguous with a span of free blocks that follows. Still,
656 		   it will force the number to be recalculated later. */
657 		rgd->rd_extfail_pt += rs->rs_requested;
658 		rs->rs_requested = 0;
659 	}
660 }
661 
662 /**
663  * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
664  * @rs: The reservation to remove
665  *
666  */
667 void gfs2_rs_deltree(struct gfs2_blkreserv *rs)
668 {
669 	struct gfs2_rgrpd *rgd;
670 
671 	rgd = rs->rs_rgd;
672 	if (rgd) {
673 		spin_lock(&rgd->rd_rsspin);
674 		__rs_deltree(rs);
675 		BUG_ON(rs->rs_requested);
676 		spin_unlock(&rgd->rd_rsspin);
677 	}
678 }
679 
680 /**
681  * gfs2_rs_delete - delete a multi-block reservation
682  * @ip: The inode for this reservation
683  *
684  */
685 void gfs2_rs_delete(struct gfs2_inode *ip)
686 {
687 	struct inode *inode = &ip->i_inode;
688 
689 	down_write(&ip->i_rw_mutex);
690 	if (atomic_read(&inode->i_writecount) <= 1)
691 		gfs2_rs_deltree(&ip->i_res);
692 	up_write(&ip->i_rw_mutex);
693 }
694 
695 /**
696  * return_all_reservations - return all reserved blocks back to the rgrp.
697  * @rgd: the rgrp that needs its space back
698  *
699  * We previously reserved a bunch of blocks for allocation. Now we need to
700  * give them back. This leave the reservation structures in tact, but removes
701  * all of their corresponding "no-fly zones".
702  */
703 static void return_all_reservations(struct gfs2_rgrpd *rgd)
704 {
705 	struct rb_node *n;
706 	struct gfs2_blkreserv *rs;
707 
708 	spin_lock(&rgd->rd_rsspin);
709 	while ((n = rb_first(&rgd->rd_rstree))) {
710 		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
711 		__rs_deltree(rs);
712 	}
713 	spin_unlock(&rgd->rd_rsspin);
714 }
715 
716 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
717 {
718 	struct rb_node *n;
719 	struct gfs2_rgrpd *rgd;
720 	struct gfs2_glock *gl;
721 
722 	while ((n = rb_first(&sdp->sd_rindex_tree))) {
723 		rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
724 		gl = rgd->rd_gl;
725 
726 		rb_erase(n, &sdp->sd_rindex_tree);
727 
728 		if (gl) {
729 			if (gl->gl_state != LM_ST_UNLOCKED) {
730 				gfs2_glock_cb(gl, LM_ST_UNLOCKED);
731 				flush_delayed_work(&gl->gl_work);
732 			}
733 			gfs2_rgrp_brelse(rgd);
734 			glock_clear_object(gl, rgd);
735 			gfs2_glock_put(gl);
736 		}
737 
738 		gfs2_free_clones(rgd);
739 		return_all_reservations(rgd);
740 		kfree(rgd->rd_bits);
741 		rgd->rd_bits = NULL;
742 		kmem_cache_free(gfs2_rgrpd_cachep, rgd);
743 	}
744 }
745 
746 /**
747  * compute_bitstructs - Compute the bitmap sizes
748  * @rgd: The resource group descriptor
749  *
750  * Calculates bitmap descriptors, one for each block that contains bitmap data
751  *
752  * Returns: errno
753  */
754 
755 static int compute_bitstructs(struct gfs2_rgrpd *rgd)
756 {
757 	struct gfs2_sbd *sdp = rgd->rd_sbd;
758 	struct gfs2_bitmap *bi;
759 	u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
760 	u32 bytes_left, bytes;
761 	int x;
762 
763 	if (!length)
764 		return -EINVAL;
765 
766 	rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
767 	if (!rgd->rd_bits)
768 		return -ENOMEM;
769 
770 	bytes_left = rgd->rd_bitbytes;
771 
772 	for (x = 0; x < length; x++) {
773 		bi = rgd->rd_bits + x;
774 
775 		bi->bi_flags = 0;
776 		/* small rgrp; bitmap stored completely in header block */
777 		if (length == 1) {
778 			bytes = bytes_left;
779 			bi->bi_offset = sizeof(struct gfs2_rgrp);
780 			bi->bi_start = 0;
781 			bi->bi_bytes = bytes;
782 			bi->bi_blocks = bytes * GFS2_NBBY;
783 		/* header block */
784 		} else if (x == 0) {
785 			bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
786 			bi->bi_offset = sizeof(struct gfs2_rgrp);
787 			bi->bi_start = 0;
788 			bi->bi_bytes = bytes;
789 			bi->bi_blocks = bytes * GFS2_NBBY;
790 		/* last block */
791 		} else if (x + 1 == length) {
792 			bytes = bytes_left;
793 			bi->bi_offset = sizeof(struct gfs2_meta_header);
794 			bi->bi_start = rgd->rd_bitbytes - bytes_left;
795 			bi->bi_bytes = bytes;
796 			bi->bi_blocks = bytes * GFS2_NBBY;
797 		/* other blocks */
798 		} else {
799 			bytes = sdp->sd_sb.sb_bsize -
800 				sizeof(struct gfs2_meta_header);
801 			bi->bi_offset = sizeof(struct gfs2_meta_header);
802 			bi->bi_start = rgd->rd_bitbytes - bytes_left;
803 			bi->bi_bytes = bytes;
804 			bi->bi_blocks = bytes * GFS2_NBBY;
805 		}
806 
807 		bytes_left -= bytes;
808 	}
809 
810 	if (bytes_left) {
811 		gfs2_consist_rgrpd(rgd);
812 		return -EIO;
813 	}
814 	bi = rgd->rd_bits + (length - 1);
815 	if ((bi->bi_start + bi->bi_bytes) * GFS2_NBBY != rgd->rd_data) {
816 		gfs2_lm(sdp,
817 			"ri_addr = %llu\n"
818 			"ri_length = %u\n"
819 			"ri_data0 = %llu\n"
820 			"ri_data = %u\n"
821 			"ri_bitbytes = %u\n"
822 			"start=%u len=%u offset=%u\n",
823 			(unsigned long long)rgd->rd_addr,
824 			rgd->rd_length,
825 			(unsigned long long)rgd->rd_data0,
826 			rgd->rd_data,
827 			rgd->rd_bitbytes,
828 			bi->bi_start, bi->bi_bytes, bi->bi_offset);
829 		gfs2_consist_rgrpd(rgd);
830 		return -EIO;
831 	}
832 
833 	return 0;
834 }
835 
836 /**
837  * gfs2_ri_total - Total up the file system space, according to the rindex.
838  * @sdp: the filesystem
839  *
840  */
841 u64 gfs2_ri_total(struct gfs2_sbd *sdp)
842 {
843 	u64 total_data = 0;
844 	struct inode *inode = sdp->sd_rindex;
845 	struct gfs2_inode *ip = GFS2_I(inode);
846 	char buf[sizeof(struct gfs2_rindex)];
847 	int error, rgrps;
848 
849 	for (rgrps = 0;; rgrps++) {
850 		loff_t pos = rgrps * sizeof(struct gfs2_rindex);
851 
852 		if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
853 			break;
854 		error = gfs2_internal_read(ip, buf, &pos,
855 					   sizeof(struct gfs2_rindex));
856 		if (error != sizeof(struct gfs2_rindex))
857 			break;
858 		total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
859 	}
860 	return total_data;
861 }
862 
863 static int rgd_insert(struct gfs2_rgrpd *rgd)
864 {
865 	struct gfs2_sbd *sdp = rgd->rd_sbd;
866 	struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
867 
868 	/* Figure out where to put new node */
869 	while (*newn) {
870 		struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
871 						  rd_node);
872 
873 		parent = *newn;
874 		if (rgd->rd_addr < cur->rd_addr)
875 			newn = &((*newn)->rb_left);
876 		else if (rgd->rd_addr > cur->rd_addr)
877 			newn = &((*newn)->rb_right);
878 		else
879 			return -EEXIST;
880 	}
881 
882 	rb_link_node(&rgd->rd_node, parent, newn);
883 	rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
884 	sdp->sd_rgrps++;
885 	return 0;
886 }
887 
888 /**
889  * read_rindex_entry - Pull in a new resource index entry from the disk
890  * @ip: Pointer to the rindex inode
891  *
892  * Returns: 0 on success, > 0 on EOF, error code otherwise
893  */
894 
895 static int read_rindex_entry(struct gfs2_inode *ip)
896 {
897 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
898 	loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
899 	struct gfs2_rindex buf;
900 	int error;
901 	struct gfs2_rgrpd *rgd;
902 
903 	if (pos >= i_size_read(&ip->i_inode))
904 		return 1;
905 
906 	error = gfs2_internal_read(ip, (char *)&buf, &pos,
907 				   sizeof(struct gfs2_rindex));
908 
909 	if (error != sizeof(struct gfs2_rindex))
910 		return (error == 0) ? 1 : error;
911 
912 	rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
913 	error = -ENOMEM;
914 	if (!rgd)
915 		return error;
916 
917 	rgd->rd_sbd = sdp;
918 	rgd->rd_addr = be64_to_cpu(buf.ri_addr);
919 	rgd->rd_length = be32_to_cpu(buf.ri_length);
920 	rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
921 	rgd->rd_data = be32_to_cpu(buf.ri_data);
922 	rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
923 	spin_lock_init(&rgd->rd_rsspin);
924 	mutex_init(&rgd->rd_mutex);
925 
926 	error = gfs2_glock_get(sdp, rgd->rd_addr,
927 			       &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
928 	if (error)
929 		goto fail;
930 
931 	error = compute_bitstructs(rgd);
932 	if (error)
933 		goto fail_glock;
934 
935 	rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr;
936 	rgd->rd_flags &= ~GFS2_RDF_PREFERRED;
937 	if (rgd->rd_data > sdp->sd_max_rg_data)
938 		sdp->sd_max_rg_data = rgd->rd_data;
939 	spin_lock(&sdp->sd_rindex_spin);
940 	error = rgd_insert(rgd);
941 	spin_unlock(&sdp->sd_rindex_spin);
942 	if (!error) {
943 		glock_set_object(rgd->rd_gl, rgd);
944 		return 0;
945 	}
946 
947 	error = 0; /* someone else read in the rgrp; free it and ignore it */
948 fail_glock:
949 	gfs2_glock_put(rgd->rd_gl);
950 
951 fail:
952 	kfree(rgd->rd_bits);
953 	rgd->rd_bits = NULL;
954 	kmem_cache_free(gfs2_rgrpd_cachep, rgd);
955 	return error;
956 }
957 
958 /**
959  * set_rgrp_preferences - Run all the rgrps, selecting some we prefer to use
960  * @sdp: the GFS2 superblock
961  *
962  * The purpose of this function is to select a subset of the resource groups
963  * and mark them as PREFERRED. We do it in such a way that each node prefers
964  * to use a unique set of rgrps to minimize glock contention.
965  */
966 static void set_rgrp_preferences(struct gfs2_sbd *sdp)
967 {
968 	struct gfs2_rgrpd *rgd, *first;
969 	int i;
970 
971 	/* Skip an initial number of rgrps, based on this node's journal ID.
972 	   That should start each node out on its own set. */
973 	rgd = gfs2_rgrpd_get_first(sdp);
974 	for (i = 0; i < sdp->sd_lockstruct.ls_jid; i++)
975 		rgd = gfs2_rgrpd_get_next(rgd);
976 	first = rgd;
977 
978 	do {
979 		rgd->rd_flags |= GFS2_RDF_PREFERRED;
980 		for (i = 0; i < sdp->sd_journals; i++) {
981 			rgd = gfs2_rgrpd_get_next(rgd);
982 			if (!rgd || rgd == first)
983 				break;
984 		}
985 	} while (rgd && rgd != first);
986 }
987 
988 /**
989  * gfs2_ri_update - Pull in a new resource index from the disk
990  * @ip: pointer to the rindex inode
991  *
992  * Returns: 0 on successful update, error code otherwise
993  */
994 
995 static int gfs2_ri_update(struct gfs2_inode *ip)
996 {
997 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
998 	int error;
999 
1000 	do {
1001 		error = read_rindex_entry(ip);
1002 	} while (error == 0);
1003 
1004 	if (error < 0)
1005 		return error;
1006 
1007 	if (RB_EMPTY_ROOT(&sdp->sd_rindex_tree)) {
1008 		fs_err(sdp, "no resource groups found in the file system.\n");
1009 		return -ENOENT;
1010 	}
1011 	set_rgrp_preferences(sdp);
1012 
1013 	sdp->sd_rindex_uptodate = 1;
1014 	return 0;
1015 }
1016 
1017 /**
1018  * gfs2_rindex_update - Update the rindex if required
1019  * @sdp: The GFS2 superblock
1020  *
1021  * We grab a lock on the rindex inode to make sure that it doesn't
1022  * change whilst we are performing an operation. We keep this lock
1023  * for quite long periods of time compared to other locks. This
1024  * doesn't matter, since it is shared and it is very, very rarely
1025  * accessed in the exclusive mode (i.e. only when expanding the filesystem).
1026  *
1027  * This makes sure that we're using the latest copy of the resource index
1028  * special file, which might have been updated if someone expanded the
1029  * filesystem (via gfs2_grow utility), which adds new resource groups.
1030  *
1031  * Returns: 0 on succeess, error code otherwise
1032  */
1033 
1034 int gfs2_rindex_update(struct gfs2_sbd *sdp)
1035 {
1036 	struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
1037 	struct gfs2_glock *gl = ip->i_gl;
1038 	struct gfs2_holder ri_gh;
1039 	int error = 0;
1040 	int unlock_required = 0;
1041 
1042 	/* Read new copy from disk if we don't have the latest */
1043 	if (!sdp->sd_rindex_uptodate) {
1044 		if (!gfs2_glock_is_locked_by_me(gl)) {
1045 			error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
1046 			if (error)
1047 				return error;
1048 			unlock_required = 1;
1049 		}
1050 		if (!sdp->sd_rindex_uptodate)
1051 			error = gfs2_ri_update(ip);
1052 		if (unlock_required)
1053 			gfs2_glock_dq_uninit(&ri_gh);
1054 	}
1055 
1056 	return error;
1057 }
1058 
1059 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
1060 {
1061 	const struct gfs2_rgrp *str = buf;
1062 	u32 rg_flags;
1063 
1064 	rg_flags = be32_to_cpu(str->rg_flags);
1065 	rg_flags &= ~GFS2_RDF_MASK;
1066 	rgd->rd_flags &= GFS2_RDF_MASK;
1067 	rgd->rd_flags |= rg_flags;
1068 	rgd->rd_free = be32_to_cpu(str->rg_free);
1069 	rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
1070 	rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
1071 	/* rd_data0, rd_data and rd_bitbytes already set from rindex */
1072 }
1073 
1074 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf)
1075 {
1076 	const struct gfs2_rgrp *str = buf;
1077 
1078 	rgl->rl_magic = cpu_to_be32(GFS2_MAGIC);
1079 	rgl->rl_flags = str->rg_flags;
1080 	rgl->rl_free = str->rg_free;
1081 	rgl->rl_dinodes = str->rg_dinodes;
1082 	rgl->rl_igeneration = str->rg_igeneration;
1083 	rgl->__pad = 0UL;
1084 }
1085 
1086 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
1087 {
1088 	struct gfs2_rgrpd *next = gfs2_rgrpd_get_next(rgd);
1089 	struct gfs2_rgrp *str = buf;
1090 	u32 crc;
1091 
1092 	str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
1093 	str->rg_free = cpu_to_be32(rgd->rd_free);
1094 	str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
1095 	if (next == NULL)
1096 		str->rg_skip = 0;
1097 	else if (next->rd_addr > rgd->rd_addr)
1098 		str->rg_skip = cpu_to_be32(next->rd_addr - rgd->rd_addr);
1099 	str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
1100 	str->rg_data0 = cpu_to_be64(rgd->rd_data0);
1101 	str->rg_data = cpu_to_be32(rgd->rd_data);
1102 	str->rg_bitbytes = cpu_to_be32(rgd->rd_bitbytes);
1103 	str->rg_crc = 0;
1104 	crc = gfs2_disk_hash(buf, sizeof(struct gfs2_rgrp));
1105 	str->rg_crc = cpu_to_be32(crc);
1106 
1107 	memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
1108 	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, buf);
1109 }
1110 
1111 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd)
1112 {
1113 	struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1114 	struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data;
1115 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1116 	int valid = 1;
1117 
1118 	if (rgl->rl_flags != str->rg_flags) {
1119 		fs_warn(sdp, "GFS2: rgd: %llu lvb flag mismatch %u/%u",
1120 			(unsigned long long)rgd->rd_addr,
1121 		       be32_to_cpu(rgl->rl_flags), be32_to_cpu(str->rg_flags));
1122 		valid = 0;
1123 	}
1124 	if (rgl->rl_free != str->rg_free) {
1125 		fs_warn(sdp, "GFS2: rgd: %llu lvb free mismatch %u/%u",
1126 			(unsigned long long)rgd->rd_addr,
1127 			be32_to_cpu(rgl->rl_free), be32_to_cpu(str->rg_free));
1128 		valid = 0;
1129 	}
1130 	if (rgl->rl_dinodes != str->rg_dinodes) {
1131 		fs_warn(sdp, "GFS2: rgd: %llu lvb dinode mismatch %u/%u",
1132 			(unsigned long long)rgd->rd_addr,
1133 			be32_to_cpu(rgl->rl_dinodes),
1134 			be32_to_cpu(str->rg_dinodes));
1135 		valid = 0;
1136 	}
1137 	if (rgl->rl_igeneration != str->rg_igeneration) {
1138 		fs_warn(sdp, "GFS2: rgd: %llu lvb igen mismatch %llu/%llu",
1139 			(unsigned long long)rgd->rd_addr,
1140 			(unsigned long long)be64_to_cpu(rgl->rl_igeneration),
1141 			(unsigned long long)be64_to_cpu(str->rg_igeneration));
1142 		valid = 0;
1143 	}
1144 	return valid;
1145 }
1146 
1147 static u32 count_unlinked(struct gfs2_rgrpd *rgd)
1148 {
1149 	struct gfs2_bitmap *bi;
1150 	const u32 length = rgd->rd_length;
1151 	const u8 *buffer = NULL;
1152 	u32 i, goal, count = 0;
1153 
1154 	for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) {
1155 		goal = 0;
1156 		buffer = bi->bi_bh->b_data + bi->bi_offset;
1157 		WARN_ON(!buffer_uptodate(bi->bi_bh));
1158 		while (goal < bi->bi_blocks) {
1159 			goal = gfs2_bitfit(buffer, bi->bi_bytes, goal,
1160 					   GFS2_BLKST_UNLINKED);
1161 			if (goal == BFITNOENT)
1162 				break;
1163 			count++;
1164 			goal++;
1165 		}
1166 	}
1167 
1168 	return count;
1169 }
1170 
1171 static void rgrp_set_bitmap_flags(struct gfs2_rgrpd *rgd)
1172 {
1173 	struct gfs2_bitmap *bi;
1174 	int x;
1175 
1176 	if (rgd->rd_free) {
1177 		for (x = 0; x < rgd->rd_length; x++) {
1178 			bi = rgd->rd_bits + x;
1179 			clear_bit(GBF_FULL, &bi->bi_flags);
1180 		}
1181 	} else {
1182 		for (x = 0; x < rgd->rd_length; x++) {
1183 			bi = rgd->rd_bits + x;
1184 			set_bit(GBF_FULL, &bi->bi_flags);
1185 		}
1186 	}
1187 }
1188 
1189 /**
1190  * gfs2_rgrp_go_instantiate - Read in a RG's header and bitmaps
1191  * @gh: the glock holder representing the rgrpd to read in
1192  *
1193  * Read in all of a Resource Group's header and bitmap blocks.
1194  * Caller must eventually call gfs2_rgrp_brelse() to free the bitmaps.
1195  *
1196  * Returns: errno
1197  */
1198 
1199 int gfs2_rgrp_go_instantiate(struct gfs2_glock *gl)
1200 {
1201 	struct gfs2_rgrpd *rgd = gl->gl_object;
1202 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1203 	unsigned int length = rgd->rd_length;
1204 	struct gfs2_bitmap *bi;
1205 	unsigned int x, y;
1206 	int error;
1207 
1208 	if (rgd->rd_bits[0].bi_bh != NULL)
1209 		return 0;
1210 
1211 	for (x = 0; x < length; x++) {
1212 		bi = rgd->rd_bits + x;
1213 		error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, 0, &bi->bi_bh);
1214 		if (error)
1215 			goto fail;
1216 	}
1217 
1218 	for (y = length; y--;) {
1219 		bi = rgd->rd_bits + y;
1220 		error = gfs2_meta_wait(sdp, bi->bi_bh);
1221 		if (error)
1222 			goto fail;
1223 		if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
1224 					      GFS2_METATYPE_RG)) {
1225 			error = -EIO;
1226 			goto fail;
1227 		}
1228 	}
1229 
1230 	gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
1231 	rgrp_set_bitmap_flags(rgd);
1232 	rgd->rd_flags |= GFS2_RDF_CHECK;
1233 	rgd->rd_free_clone = rgd->rd_free;
1234 	GLOCK_BUG_ON(rgd->rd_gl, rgd->rd_reserved);
1235 	/* max out the rgrp allocation failure point */
1236 	rgd->rd_extfail_pt = rgd->rd_free;
1237 	if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) {
1238 		rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd));
1239 		gfs2_rgrp_ondisk2lvb(rgd->rd_rgl,
1240 				     rgd->rd_bits[0].bi_bh->b_data);
1241 	} else if (sdp->sd_args.ar_rgrplvb) {
1242 		if (!gfs2_rgrp_lvb_valid(rgd)){
1243 			gfs2_consist_rgrpd(rgd);
1244 			error = -EIO;
1245 			goto fail;
1246 		}
1247 		if (rgd->rd_rgl->rl_unlinked == 0)
1248 			rgd->rd_flags &= ~GFS2_RDF_CHECK;
1249 	}
1250 	return 0;
1251 
1252 fail:
1253 	while (x--) {
1254 		bi = rgd->rd_bits + x;
1255 		brelse(bi->bi_bh);
1256 		bi->bi_bh = NULL;
1257 		gfs2_assert_warn(sdp, !bi->bi_clone);
1258 	}
1259 	return error;
1260 }
1261 
1262 static int update_rgrp_lvb(struct gfs2_rgrpd *rgd, struct gfs2_holder *gh)
1263 {
1264 	u32 rl_flags;
1265 
1266 	if (!test_bit(GLF_INSTANTIATE_NEEDED, &gh->gh_gl->gl_flags))
1267 		return 0;
1268 
1269 	if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic)
1270 		return gfs2_instantiate(gh);
1271 
1272 	rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags);
1273 	rl_flags &= ~GFS2_RDF_MASK;
1274 	rgd->rd_flags &= GFS2_RDF_MASK;
1275 	rgd->rd_flags |= (rl_flags | GFS2_RDF_CHECK);
1276 	if (rgd->rd_rgl->rl_unlinked == 0)
1277 		rgd->rd_flags &= ~GFS2_RDF_CHECK;
1278 	rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free);
1279 	rgrp_set_bitmap_flags(rgd);
1280 	rgd->rd_free_clone = rgd->rd_free;
1281 	GLOCK_BUG_ON(rgd->rd_gl, rgd->rd_reserved);
1282 	/* max out the rgrp allocation failure point */
1283 	rgd->rd_extfail_pt = rgd->rd_free;
1284 	rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes);
1285 	rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration);
1286 	return 0;
1287 }
1288 
1289 /**
1290  * gfs2_rgrp_brelse - Release RG bitmaps read in with gfs2_rgrp_bh_get()
1291  * @rgd: The resource group
1292  *
1293  */
1294 
1295 void gfs2_rgrp_brelse(struct gfs2_rgrpd *rgd)
1296 {
1297 	int x, length = rgd->rd_length;
1298 
1299 	for (x = 0; x < length; x++) {
1300 		struct gfs2_bitmap *bi = rgd->rd_bits + x;
1301 		if (bi->bi_bh) {
1302 			brelse(bi->bi_bh);
1303 			bi->bi_bh = NULL;
1304 		}
1305 	}
1306 	set_bit(GLF_INSTANTIATE_NEEDED, &rgd->rd_gl->gl_flags);
1307 }
1308 
1309 int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
1310 			     struct buffer_head *bh,
1311 			     const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
1312 {
1313 	struct super_block *sb = sdp->sd_vfs;
1314 	u64 blk;
1315 	sector_t start = 0;
1316 	sector_t nr_blks = 0;
1317 	int rv = -EIO;
1318 	unsigned int x;
1319 	u32 trimmed = 0;
1320 	u8 diff;
1321 
1322 	for (x = 0; x < bi->bi_bytes; x++) {
1323 		const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
1324 		clone += bi->bi_offset;
1325 		clone += x;
1326 		if (bh) {
1327 			const u8 *orig = bh->b_data + bi->bi_offset + x;
1328 			diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
1329 		} else {
1330 			diff = ~(*clone | (*clone >> 1));
1331 		}
1332 		diff &= 0x55;
1333 		if (diff == 0)
1334 			continue;
1335 		blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
1336 		while(diff) {
1337 			if (diff & 1) {
1338 				if (nr_blks == 0)
1339 					goto start_new_extent;
1340 				if ((start + nr_blks) != blk) {
1341 					if (nr_blks >= minlen) {
1342 						rv = sb_issue_discard(sb,
1343 							start, nr_blks,
1344 							GFP_NOFS, 0);
1345 						if (rv)
1346 							goto fail;
1347 						trimmed += nr_blks;
1348 					}
1349 					nr_blks = 0;
1350 start_new_extent:
1351 					start = blk;
1352 				}
1353 				nr_blks++;
1354 			}
1355 			diff >>= 2;
1356 			blk++;
1357 		}
1358 	}
1359 	if (nr_blks >= minlen) {
1360 		rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0);
1361 		if (rv)
1362 			goto fail;
1363 		trimmed += nr_blks;
1364 	}
1365 	if (ptrimmed)
1366 		*ptrimmed = trimmed;
1367 	return 0;
1368 
1369 fail:
1370 	if (sdp->sd_args.ar_discard)
1371 		fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem\n", rv);
1372 	sdp->sd_args.ar_discard = 0;
1373 	return rv;
1374 }
1375 
1376 /**
1377  * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
1378  * @filp: Any file on the filesystem
1379  * @argp: Pointer to the arguments (also used to pass result)
1380  *
1381  * Returns: 0 on success, otherwise error code
1382  */
1383 
1384 int gfs2_fitrim(struct file *filp, void __user *argp)
1385 {
1386 	struct inode *inode = file_inode(filp);
1387 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1388 	struct block_device *bdev = sdp->sd_vfs->s_bdev;
1389 	struct buffer_head *bh;
1390 	struct gfs2_rgrpd *rgd;
1391 	struct gfs2_rgrpd *rgd_end;
1392 	struct gfs2_holder gh;
1393 	struct fstrim_range r;
1394 	int ret = 0;
1395 	u64 amt;
1396 	u64 trimmed = 0;
1397 	u64 start, end, minlen;
1398 	unsigned int x;
1399 	unsigned bs_shift = sdp->sd_sb.sb_bsize_shift;
1400 
1401 	if (!capable(CAP_SYS_ADMIN))
1402 		return -EPERM;
1403 
1404 	if (!test_bit(SDF_JOURNAL_LIVE, &sdp->sd_flags))
1405 		return -EROFS;
1406 
1407 	if (!bdev_max_discard_sectors(bdev))
1408 		return -EOPNOTSUPP;
1409 
1410 	if (copy_from_user(&r, argp, sizeof(r)))
1411 		return -EFAULT;
1412 
1413 	ret = gfs2_rindex_update(sdp);
1414 	if (ret)
1415 		return ret;
1416 
1417 	start = r.start >> bs_shift;
1418 	end = start + (r.len >> bs_shift);
1419 	minlen = max_t(u64, r.minlen, sdp->sd_sb.sb_bsize);
1420 	minlen = max_t(u64, minlen, bdev_discard_granularity(bdev)) >> bs_shift;
1421 
1422 	if (end <= start || minlen > sdp->sd_max_rg_data)
1423 		return -EINVAL;
1424 
1425 	rgd = gfs2_blk2rgrpd(sdp, start, 0);
1426 	rgd_end = gfs2_blk2rgrpd(sdp, end, 0);
1427 
1428 	if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end))
1429 	    && (start > rgd_end->rd_data0 + rgd_end->rd_data))
1430 		return -EINVAL; /* start is beyond the end of the fs */
1431 
1432 	while (1) {
1433 
1434 		ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE,
1435 					 LM_FLAG_NODE_SCOPE, &gh);
1436 		if (ret)
1437 			goto out;
1438 
1439 		if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
1440 			/* Trim each bitmap in the rgrp */
1441 			for (x = 0; x < rgd->rd_length; x++) {
1442 				struct gfs2_bitmap *bi = rgd->rd_bits + x;
1443 				rgrp_lock_local(rgd);
1444 				ret = gfs2_rgrp_send_discards(sdp,
1445 						rgd->rd_data0, NULL, bi, minlen,
1446 						&amt);
1447 				rgrp_unlock_local(rgd);
1448 				if (ret) {
1449 					gfs2_glock_dq_uninit(&gh);
1450 					goto out;
1451 				}
1452 				trimmed += amt;
1453 			}
1454 
1455 			/* Mark rgrp as having been trimmed */
1456 			ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
1457 			if (ret == 0) {
1458 				bh = rgd->rd_bits[0].bi_bh;
1459 				rgrp_lock_local(rgd);
1460 				rgd->rd_flags |= GFS2_RGF_TRIMMED;
1461 				gfs2_trans_add_meta(rgd->rd_gl, bh);
1462 				gfs2_rgrp_out(rgd, bh->b_data);
1463 				rgrp_unlock_local(rgd);
1464 				gfs2_trans_end(sdp);
1465 			}
1466 		}
1467 		gfs2_glock_dq_uninit(&gh);
1468 
1469 		if (rgd == rgd_end)
1470 			break;
1471 
1472 		rgd = gfs2_rgrpd_get_next(rgd);
1473 	}
1474 
1475 out:
1476 	r.len = trimmed << bs_shift;
1477 	if (copy_to_user(argp, &r, sizeof(r)))
1478 		return -EFAULT;
1479 
1480 	return ret;
1481 }
1482 
1483 /**
1484  * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
1485  * @ip: the inode structure
1486  *
1487  */
1488 static void rs_insert(struct gfs2_inode *ip)
1489 {
1490 	struct rb_node **newn, *parent = NULL;
1491 	int rc;
1492 	struct gfs2_blkreserv *rs = &ip->i_res;
1493 	struct gfs2_rgrpd *rgd = rs->rs_rgd;
1494 
1495 	BUG_ON(gfs2_rs_active(rs));
1496 
1497 	spin_lock(&rgd->rd_rsspin);
1498 	newn = &rgd->rd_rstree.rb_node;
1499 	while (*newn) {
1500 		struct gfs2_blkreserv *cur =
1501 			rb_entry(*newn, struct gfs2_blkreserv, rs_node);
1502 
1503 		parent = *newn;
1504 		rc = rs_cmp(rs->rs_start, rs->rs_requested, cur);
1505 		if (rc > 0)
1506 			newn = &((*newn)->rb_right);
1507 		else if (rc < 0)
1508 			newn = &((*newn)->rb_left);
1509 		else {
1510 			spin_unlock(&rgd->rd_rsspin);
1511 			WARN_ON(1);
1512 			return;
1513 		}
1514 	}
1515 
1516 	rb_link_node(&rs->rs_node, parent, newn);
1517 	rb_insert_color(&rs->rs_node, &rgd->rd_rstree);
1518 
1519 	/* Do our rgrp accounting for the reservation */
1520 	rgd->rd_requested += rs->rs_requested; /* blocks requested */
1521 	spin_unlock(&rgd->rd_rsspin);
1522 	trace_gfs2_rs(rs, TRACE_RS_INSERT);
1523 }
1524 
1525 /**
1526  * rgd_free - return the number of free blocks we can allocate
1527  * @rgd: the resource group
1528  * @rs: The reservation to free
1529  *
1530  * This function returns the number of free blocks for an rgrp.
1531  * That's the clone-free blocks (blocks that are free, not including those
1532  * still being used for unlinked files that haven't been deleted.)
1533  *
1534  * It also subtracts any blocks reserved by someone else, but does not
1535  * include free blocks that are still part of our current reservation,
1536  * because obviously we can (and will) allocate them.
1537  */
1538 static inline u32 rgd_free(struct gfs2_rgrpd *rgd, struct gfs2_blkreserv *rs)
1539 {
1540 	u32 tot_reserved, tot_free;
1541 
1542 	if (WARN_ON_ONCE(rgd->rd_requested < rs->rs_requested))
1543 		return 0;
1544 	tot_reserved = rgd->rd_requested - rs->rs_requested;
1545 
1546 	if (rgd->rd_free_clone < tot_reserved)
1547 		tot_reserved = 0;
1548 
1549 	tot_free = rgd->rd_free_clone - tot_reserved;
1550 
1551 	return tot_free;
1552 }
1553 
1554 /**
1555  * rg_mblk_search - find a group of multiple free blocks to form a reservation
1556  * @rgd: the resource group descriptor
1557  * @ip: pointer to the inode for which we're reserving blocks
1558  * @ap: the allocation parameters
1559  *
1560  */
1561 
1562 static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip,
1563 			   const struct gfs2_alloc_parms *ap)
1564 {
1565 	struct gfs2_rbm rbm = { .rgd = rgd, };
1566 	u64 goal;
1567 	struct gfs2_blkreserv *rs = &ip->i_res;
1568 	u32 extlen;
1569 	u32 free_blocks, blocks_available;
1570 	int ret;
1571 	struct inode *inode = &ip->i_inode;
1572 
1573 	spin_lock(&rgd->rd_rsspin);
1574 	free_blocks = rgd_free(rgd, rs);
1575 	if (rgd->rd_free_clone < rgd->rd_requested)
1576 		free_blocks = 0;
1577 	blocks_available = rgd->rd_free_clone - rgd->rd_reserved;
1578 	if (rgd == rs->rs_rgd)
1579 		blocks_available += rs->rs_reserved;
1580 	spin_unlock(&rgd->rd_rsspin);
1581 
1582 	if (S_ISDIR(inode->i_mode))
1583 		extlen = 1;
1584 	else {
1585 		extlen = max_t(u32, atomic_read(&ip->i_sizehint), ap->target);
1586 		extlen = clamp(extlen, (u32)RGRP_RSRV_MINBLKS, free_blocks);
1587 	}
1588 	if (free_blocks < extlen || blocks_available < extlen)
1589 		return;
1590 
1591 	/* Find bitmap block that contains bits for goal block */
1592 	if (rgrp_contains_block(rgd, ip->i_goal))
1593 		goal = ip->i_goal;
1594 	else
1595 		goal = rgd->rd_last_alloc + rgd->rd_data0;
1596 
1597 	if (WARN_ON(gfs2_rbm_from_block(&rbm, goal)))
1598 		return;
1599 
1600 	ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, &ip->i_res, true);
1601 	if (ret == 0) {
1602 		rs->rs_start = gfs2_rbm_to_block(&rbm);
1603 		rs->rs_requested = extlen;
1604 		rs_insert(ip);
1605 	} else {
1606 		if (goal == rgd->rd_last_alloc + rgd->rd_data0)
1607 			rgd->rd_last_alloc = 0;
1608 	}
1609 }
1610 
1611 /**
1612  * gfs2_next_unreserved_block - Return next block that is not reserved
1613  * @rgd: The resource group
1614  * @block: The starting block
1615  * @length: The required length
1616  * @ignore_rs: Reservation to ignore
1617  *
1618  * If the block does not appear in any reservation, then return the
1619  * block number unchanged. If it does appear in the reservation, then
1620  * keep looking through the tree of reservations in order to find the
1621  * first block number which is not reserved.
1622  */
1623 
1624 static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block,
1625 				      u32 length,
1626 				      struct gfs2_blkreserv *ignore_rs)
1627 {
1628 	struct gfs2_blkreserv *rs;
1629 	struct rb_node *n;
1630 	int rc;
1631 
1632 	spin_lock(&rgd->rd_rsspin);
1633 	n = rgd->rd_rstree.rb_node;
1634 	while (n) {
1635 		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1636 		rc = rs_cmp(block, length, rs);
1637 		if (rc < 0)
1638 			n = n->rb_left;
1639 		else if (rc > 0)
1640 			n = n->rb_right;
1641 		else
1642 			break;
1643 	}
1644 
1645 	if (n) {
1646 		while (rs_cmp(block, length, rs) == 0 && rs != ignore_rs) {
1647 			block = rs->rs_start + rs->rs_requested;
1648 			n = n->rb_right;
1649 			if (n == NULL)
1650 				break;
1651 			rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1652 		}
1653 	}
1654 
1655 	spin_unlock(&rgd->rd_rsspin);
1656 	return block;
1657 }
1658 
1659 /**
1660  * gfs2_reservation_check_and_update - Check for reservations during block alloc
1661  * @rbm: The current position in the resource group
1662  * @rs: Our own reservation
1663  * @minext: The minimum extent length
1664  * @maxext: A pointer to the maximum extent structure
1665  *
1666  * This checks the current position in the rgrp to see whether there is
1667  * a reservation covering this block. If not then this function is a
1668  * no-op. If there is, then the position is moved to the end of the
1669  * contiguous reservation(s) so that we are pointing at the first
1670  * non-reserved block.
1671  *
1672  * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error
1673  */
1674 
1675 static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm,
1676 					     struct gfs2_blkreserv *rs,
1677 					     u32 minext,
1678 					     struct gfs2_extent *maxext)
1679 {
1680 	u64 block = gfs2_rbm_to_block(rbm);
1681 	u32 extlen = 1;
1682 	u64 nblock;
1683 
1684 	/*
1685 	 * If we have a minimum extent length, then skip over any extent
1686 	 * which is less than the min extent length in size.
1687 	 */
1688 	if (minext > 1) {
1689 		extlen = gfs2_free_extlen(rbm, minext);
1690 		if (extlen <= maxext->len)
1691 			goto fail;
1692 	}
1693 
1694 	/*
1695 	 * Check the extent which has been found against the reservations
1696 	 * and skip if parts of it are already reserved
1697 	 */
1698 	nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, rs);
1699 	if (nblock == block) {
1700 		if (!minext || extlen >= minext)
1701 			return 0;
1702 
1703 		if (extlen > maxext->len) {
1704 			maxext->len = extlen;
1705 			maxext->rbm = *rbm;
1706 		}
1707 	} else {
1708 		u64 len = nblock - block;
1709 		if (len >= (u64)1 << 32)
1710 			return -E2BIG;
1711 		extlen = len;
1712 	}
1713 fail:
1714 	if (gfs2_rbm_add(rbm, extlen))
1715 		return -E2BIG;
1716 	return 1;
1717 }
1718 
1719 /**
1720  * gfs2_rbm_find - Look for blocks of a particular state
1721  * @rbm: Value/result starting position and final position
1722  * @state: The state which we want to find
1723  * @minext: Pointer to the requested extent length
1724  *          This is updated to be the actual reservation size.
1725  * @rs: Our own reservation (NULL to skip checking for reservations)
1726  * @nowrap: Stop looking at the end of the rgrp, rather than wrapping
1727  *          around until we've reached the starting point.
1728  *
1729  * Side effects:
1730  * - If looking for free blocks, we set GBF_FULL on each bitmap which
1731  *   has no free blocks in it.
1732  * - If looking for free blocks, we set rd_extfail_pt on each rgrp which
1733  *   has come up short on a free block search.
1734  *
1735  * Returns: 0 on success, -ENOSPC if there is no block of the requested state
1736  */
1737 
1738 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
1739 			 struct gfs2_blkreserv *rs, bool nowrap)
1740 {
1741 	bool scan_from_start = rbm->bii == 0 && rbm->offset == 0;
1742 	struct buffer_head *bh;
1743 	int last_bii;
1744 	u32 offset;
1745 	u8 *buffer;
1746 	bool wrapped = false;
1747 	int ret;
1748 	struct gfs2_bitmap *bi;
1749 	struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, };
1750 
1751 	/*
1752 	 * Determine the last bitmap to search.  If we're not starting at the
1753 	 * beginning of a bitmap, we need to search that bitmap twice to scan
1754 	 * the entire resource group.
1755 	 */
1756 	last_bii = rbm->bii - (rbm->offset == 0);
1757 
1758 	while(1) {
1759 		bi = rbm_bi(rbm);
1760 		if (test_bit(GBF_FULL, &bi->bi_flags) &&
1761 		    (state == GFS2_BLKST_FREE))
1762 			goto next_bitmap;
1763 
1764 		bh = bi->bi_bh;
1765 		buffer = bh->b_data + bi->bi_offset;
1766 		WARN_ON(!buffer_uptodate(bh));
1767 		if (state != GFS2_BLKST_UNLINKED && bi->bi_clone)
1768 			buffer = bi->bi_clone + bi->bi_offset;
1769 		offset = gfs2_bitfit(buffer, bi->bi_bytes, rbm->offset, state);
1770 		if (offset == BFITNOENT) {
1771 			if (state == GFS2_BLKST_FREE && rbm->offset == 0)
1772 				set_bit(GBF_FULL, &bi->bi_flags);
1773 			goto next_bitmap;
1774 		}
1775 		rbm->offset = offset;
1776 		if (!rs || !minext)
1777 			return 0;
1778 
1779 		ret = gfs2_reservation_check_and_update(rbm, rs, *minext,
1780 							&maxext);
1781 		if (ret == 0)
1782 			return 0;
1783 		if (ret > 0)
1784 			goto next_iter;
1785 		if (ret == -E2BIG) {
1786 			rbm->bii = 0;
1787 			rbm->offset = 0;
1788 			goto res_covered_end_of_rgrp;
1789 		}
1790 		return ret;
1791 
1792 next_bitmap:	/* Find next bitmap in the rgrp */
1793 		rbm->offset = 0;
1794 		rbm->bii++;
1795 		if (rbm->bii == rbm->rgd->rd_length)
1796 			rbm->bii = 0;
1797 res_covered_end_of_rgrp:
1798 		if (rbm->bii == 0) {
1799 			if (wrapped)
1800 				break;
1801 			wrapped = true;
1802 			if (nowrap)
1803 				break;
1804 		}
1805 next_iter:
1806 		/* Have we scanned the entire resource group? */
1807 		if (wrapped && rbm->bii > last_bii)
1808 			break;
1809 	}
1810 
1811 	if (state != GFS2_BLKST_FREE)
1812 		return -ENOSPC;
1813 
1814 	/* If the extent was too small, and it's smaller than the smallest
1815 	   to have failed before, remember for future reference that it's
1816 	   useless to search this rgrp again for this amount or more. */
1817 	if (wrapped && (scan_from_start || rbm->bii > last_bii) &&
1818 	    *minext < rbm->rgd->rd_extfail_pt)
1819 		rbm->rgd->rd_extfail_pt = *minext - 1;
1820 
1821 	/* If the maximum extent we found is big enough to fulfill the
1822 	   minimum requirements, use it anyway. */
1823 	if (maxext.len) {
1824 		*rbm = maxext.rbm;
1825 		*minext = maxext.len;
1826 		return 0;
1827 	}
1828 
1829 	return -ENOSPC;
1830 }
1831 
1832 /**
1833  * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1834  * @rgd: The rgrp
1835  * @last_unlinked: block address of the last dinode we unlinked
1836  * @skip: block address we should explicitly not unlink
1837  *
1838  * Returns: 0 if no error
1839  *          The inode, if one has been found, in inode.
1840  */
1841 
1842 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
1843 {
1844 	u64 block;
1845 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1846 	struct gfs2_glock *gl;
1847 	struct gfs2_inode *ip;
1848 	int error;
1849 	int found = 0;
1850 	struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 };
1851 
1852 	while (1) {
1853 		error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL,
1854 				      true);
1855 		if (error == -ENOSPC)
1856 			break;
1857 		if (WARN_ON_ONCE(error))
1858 			break;
1859 
1860 		block = gfs2_rbm_to_block(&rbm);
1861 		if (gfs2_rbm_from_block(&rbm, block + 1))
1862 			break;
1863 		if (*last_unlinked != NO_BLOCK && block <= *last_unlinked)
1864 			continue;
1865 		if (block == skip)
1866 			continue;
1867 		*last_unlinked = block;
1868 
1869 		error = gfs2_glock_get(sdp, block, &gfs2_iopen_glops, CREATE, &gl);
1870 		if (error)
1871 			continue;
1872 
1873 		/* If the inode is already in cache, we can ignore it here
1874 		 * because the existing inode disposal code will deal with
1875 		 * it when all refs have gone away. Accessing gl_object like
1876 		 * this is not safe in general. Here it is ok because we do
1877 		 * not dereference the pointer, and we only need an approx
1878 		 * answer to whether it is NULL or not.
1879 		 */
1880 		ip = gl->gl_object;
1881 
1882 		if (ip || !gfs2_queue_try_to_evict(gl))
1883 			gfs2_glock_put(gl);
1884 		else
1885 			found++;
1886 
1887 		/* Limit reclaim to sensible number of tasks */
1888 		if (found > NR_CPUS)
1889 			return;
1890 	}
1891 
1892 	rgd->rd_flags &= ~GFS2_RDF_CHECK;
1893 	return;
1894 }
1895 
1896 /**
1897  * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested
1898  * @rgd: The rgrp in question
1899  * @loops: An indication of how picky we can be (0=very, 1=less so)
1900  *
1901  * This function uses the recently added glock statistics in order to
1902  * figure out whether a parciular resource group is suffering from
1903  * contention from multiple nodes. This is done purely on the basis
1904  * of timings, since this is the only data we have to work with and
1905  * our aim here is to reject a resource group which is highly contended
1906  * but (very important) not to do this too often in order to ensure that
1907  * we do not land up introducing fragmentation by changing resource
1908  * groups when not actually required.
1909  *
1910  * The calculation is fairly simple, we want to know whether the SRTTB
1911  * (i.e. smoothed round trip time for blocking operations) to acquire
1912  * the lock for this rgrp's glock is significantly greater than the
1913  * time taken for resource groups on average. We introduce a margin in
1914  * the form of the variable @var which is computed as the sum of the two
1915  * respective variences, and multiplied by a factor depending on @loops
1916  * and whether we have a lot of data to base the decision on. This is
1917  * then tested against the square difference of the means in order to
1918  * decide whether the result is statistically significant or not.
1919  *
1920  * Returns: A boolean verdict on the congestion status
1921  */
1922 
1923 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops)
1924 {
1925 	const struct gfs2_glock *gl = rgd->rd_gl;
1926 	const struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
1927 	struct gfs2_lkstats *st;
1928 	u64 r_dcount, l_dcount;
1929 	u64 l_srttb, a_srttb = 0;
1930 	s64 srttb_diff;
1931 	u64 sqr_diff;
1932 	u64 var;
1933 	int cpu, nonzero = 0;
1934 
1935 	preempt_disable();
1936 	for_each_present_cpu(cpu) {
1937 		st = &per_cpu_ptr(sdp->sd_lkstats, cpu)->lkstats[LM_TYPE_RGRP];
1938 		if (st->stats[GFS2_LKS_SRTTB]) {
1939 			a_srttb += st->stats[GFS2_LKS_SRTTB];
1940 			nonzero++;
1941 		}
1942 	}
1943 	st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP];
1944 	if (nonzero)
1945 		do_div(a_srttb, nonzero);
1946 	r_dcount = st->stats[GFS2_LKS_DCOUNT];
1947 	var = st->stats[GFS2_LKS_SRTTVARB] +
1948 	      gl->gl_stats.stats[GFS2_LKS_SRTTVARB];
1949 	preempt_enable();
1950 
1951 	l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB];
1952 	l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT];
1953 
1954 	if ((l_dcount < 1) || (r_dcount < 1) || (a_srttb == 0))
1955 		return false;
1956 
1957 	srttb_diff = a_srttb - l_srttb;
1958 	sqr_diff = srttb_diff * srttb_diff;
1959 
1960 	var *= 2;
1961 	if (l_dcount < 8 || r_dcount < 8)
1962 		var *= 2;
1963 	if (loops == 1)
1964 		var *= 2;
1965 
1966 	return ((srttb_diff < 0) && (sqr_diff > var));
1967 }
1968 
1969 /**
1970  * gfs2_rgrp_used_recently
1971  * @rs: The block reservation with the rgrp to test
1972  * @msecs: The time limit in milliseconds
1973  *
1974  * Returns: True if the rgrp glock has been used within the time limit
1975  */
1976 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs,
1977 				    u64 msecs)
1978 {
1979 	u64 tdiff;
1980 
1981 	tdiff = ktime_to_ns(ktime_sub(ktime_get_real(),
1982                             rs->rs_rgd->rd_gl->gl_dstamp));
1983 
1984 	return tdiff > (msecs * 1000 * 1000);
1985 }
1986 
1987 static u32 gfs2_orlov_skip(const struct gfs2_inode *ip)
1988 {
1989 	const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1990 	u32 skip;
1991 
1992 	get_random_bytes(&skip, sizeof(skip));
1993 	return skip % sdp->sd_rgrps;
1994 }
1995 
1996 static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin)
1997 {
1998 	struct gfs2_rgrpd *rgd = *pos;
1999 	struct gfs2_sbd *sdp = rgd->rd_sbd;
2000 
2001 	rgd = gfs2_rgrpd_get_next(rgd);
2002 	if (rgd == NULL)
2003 		rgd = gfs2_rgrpd_get_first(sdp);
2004 	*pos = rgd;
2005 	if (rgd != begin) /* If we didn't wrap */
2006 		return true;
2007 	return false;
2008 }
2009 
2010 /**
2011  * fast_to_acquire - determine if a resource group will be fast to acquire
2012  * @rgd: The rgrp
2013  *
2014  * If this is one of our preferred rgrps, it should be quicker to acquire,
2015  * because we tried to set ourselves up as dlm lock master.
2016  */
2017 static inline int fast_to_acquire(struct gfs2_rgrpd *rgd)
2018 {
2019 	struct gfs2_glock *gl = rgd->rd_gl;
2020 
2021 	if (gl->gl_state != LM_ST_UNLOCKED && list_empty(&gl->gl_holders) &&
2022 	    !test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags) &&
2023 	    !test_bit(GLF_DEMOTE, &gl->gl_flags))
2024 		return 1;
2025 	if (rgd->rd_flags & GFS2_RDF_PREFERRED)
2026 		return 1;
2027 	return 0;
2028 }
2029 
2030 /**
2031  * gfs2_inplace_reserve - Reserve space in the filesystem
2032  * @ip: the inode to reserve space for
2033  * @ap: the allocation parameters
2034  *
2035  * We try our best to find an rgrp that has at least ap->target blocks
2036  * available. After a couple of passes (loops == 2), the prospects of finding
2037  * such an rgrp diminish. At this stage, we return the first rgrp that has
2038  * at least ap->min_target blocks available.
2039  *
2040  * Returns: 0 on success,
2041  *          -ENOMEM if a suitable rgrp can't be found
2042  *          errno otherwise
2043  */
2044 
2045 int gfs2_inplace_reserve(struct gfs2_inode *ip, struct gfs2_alloc_parms *ap)
2046 {
2047 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2048 	struct gfs2_rgrpd *begin = NULL;
2049 	struct gfs2_blkreserv *rs = &ip->i_res;
2050 	int error = 0, flags = LM_FLAG_NODE_SCOPE;
2051 	bool rg_locked;
2052 	u64 last_unlinked = NO_BLOCK;
2053 	u32 target = ap->target;
2054 	int loops = 0;
2055 	u32 free_blocks, blocks_available, skip = 0;
2056 
2057 	BUG_ON(rs->rs_reserved);
2058 
2059 	if (sdp->sd_args.ar_rgrplvb)
2060 		flags |= GL_SKIP;
2061 	if (gfs2_assert_warn(sdp, target))
2062 		return -EINVAL;
2063 	if (gfs2_rs_active(rs)) {
2064 		begin = rs->rs_rgd;
2065 	} else if (rs->rs_rgd &&
2066 		   rgrp_contains_block(rs->rs_rgd, ip->i_goal)) {
2067 		begin = rs->rs_rgd;
2068 	} else {
2069 		check_and_update_goal(ip);
2070 		rs->rs_rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
2071 	}
2072 	if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV))
2073 		skip = gfs2_orlov_skip(ip);
2074 	if (rs->rs_rgd == NULL)
2075 		return -EBADSLT;
2076 
2077 	while (loops < 3) {
2078 		struct gfs2_rgrpd *rgd;
2079 
2080 		rg_locked = gfs2_glock_is_locked_by_me(rs->rs_rgd->rd_gl);
2081 		if (rg_locked) {
2082 			rgrp_lock_local(rs->rs_rgd);
2083 		} else {
2084 			if (skip && skip--)
2085 				goto next_rgrp;
2086 			if (!gfs2_rs_active(rs)) {
2087 				if (loops == 0 &&
2088 				    !fast_to_acquire(rs->rs_rgd))
2089 					goto next_rgrp;
2090 				if ((loops < 2) &&
2091 				    gfs2_rgrp_used_recently(rs, 1000) &&
2092 				    gfs2_rgrp_congested(rs->rs_rgd, loops))
2093 					goto next_rgrp;
2094 			}
2095 			error = gfs2_glock_nq_init(rs->rs_rgd->rd_gl,
2096 						   LM_ST_EXCLUSIVE, flags,
2097 						   &ip->i_rgd_gh);
2098 			if (unlikely(error))
2099 				return error;
2100 			rgrp_lock_local(rs->rs_rgd);
2101 			if (!gfs2_rs_active(rs) && (loops < 2) &&
2102 			    gfs2_rgrp_congested(rs->rs_rgd, loops))
2103 				goto skip_rgrp;
2104 			if (sdp->sd_args.ar_rgrplvb) {
2105 				error = update_rgrp_lvb(rs->rs_rgd,
2106 							&ip->i_rgd_gh);
2107 				if (unlikely(error)) {
2108 					rgrp_unlock_local(rs->rs_rgd);
2109 					gfs2_glock_dq_uninit(&ip->i_rgd_gh);
2110 					return error;
2111 				}
2112 			}
2113 		}
2114 
2115 		/* Skip unusable resource groups */
2116 		if ((rs->rs_rgd->rd_flags & (GFS2_RGF_NOALLOC |
2117 						 GFS2_RDF_ERROR)) ||
2118 		    (loops == 0 && target > rs->rs_rgd->rd_extfail_pt))
2119 			goto skip_rgrp;
2120 
2121 		if (sdp->sd_args.ar_rgrplvb) {
2122 			error = gfs2_instantiate(&ip->i_rgd_gh);
2123 			if (error)
2124 				goto skip_rgrp;
2125 		}
2126 
2127 		/* Get a reservation if we don't already have one */
2128 		if (!gfs2_rs_active(rs))
2129 			rg_mblk_search(rs->rs_rgd, ip, ap);
2130 
2131 		/* Skip rgrps when we can't get a reservation on first pass */
2132 		if (!gfs2_rs_active(rs) && (loops < 1))
2133 			goto check_rgrp;
2134 
2135 		/* If rgrp has enough free space, use it */
2136 		rgd = rs->rs_rgd;
2137 		spin_lock(&rgd->rd_rsspin);
2138 		free_blocks = rgd_free(rgd, rs);
2139 		blocks_available = rgd->rd_free_clone - rgd->rd_reserved;
2140 		if (free_blocks < target || blocks_available < target) {
2141 			spin_unlock(&rgd->rd_rsspin);
2142 			goto check_rgrp;
2143 		}
2144 		rs->rs_reserved = ap->target;
2145 		if (rs->rs_reserved > blocks_available)
2146 			rs->rs_reserved = blocks_available;
2147 		rgd->rd_reserved += rs->rs_reserved;
2148 		spin_unlock(&rgd->rd_rsspin);
2149 		rgrp_unlock_local(rs->rs_rgd);
2150 		return 0;
2151 check_rgrp:
2152 		/* Check for unlinked inodes which can be reclaimed */
2153 		if (rs->rs_rgd->rd_flags & GFS2_RDF_CHECK)
2154 			try_rgrp_unlink(rs->rs_rgd, &last_unlinked,
2155 					ip->i_no_addr);
2156 skip_rgrp:
2157 		rgrp_unlock_local(rs->rs_rgd);
2158 
2159 		/* Drop reservation, if we couldn't use reserved rgrp */
2160 		if (gfs2_rs_active(rs))
2161 			gfs2_rs_deltree(rs);
2162 
2163 		/* Unlock rgrp if required */
2164 		if (!rg_locked)
2165 			gfs2_glock_dq_uninit(&ip->i_rgd_gh);
2166 next_rgrp:
2167 		/* Find the next rgrp, and continue looking */
2168 		if (gfs2_select_rgrp(&rs->rs_rgd, begin))
2169 			continue;
2170 		if (skip)
2171 			continue;
2172 
2173 		/* If we've scanned all the rgrps, but found no free blocks
2174 		 * then this checks for some less likely conditions before
2175 		 * trying again.
2176 		 */
2177 		loops++;
2178 		/* Check that fs hasn't grown if writing to rindex */
2179 		if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
2180 			error = gfs2_ri_update(ip);
2181 			if (error)
2182 				return error;
2183 		}
2184 		/* Flushing the log may release space */
2185 		if (loops == 2) {
2186 			if (ap->min_target)
2187 				target = ap->min_target;
2188 			gfs2_log_flush(sdp, NULL, GFS2_LOG_HEAD_FLUSH_NORMAL |
2189 				       GFS2_LFC_INPLACE_RESERVE);
2190 		}
2191 	}
2192 
2193 	return -ENOSPC;
2194 }
2195 
2196 /**
2197  * gfs2_inplace_release - release an inplace reservation
2198  * @ip: the inode the reservation was taken out on
2199  *
2200  * Release a reservation made by gfs2_inplace_reserve().
2201  */
2202 
2203 void gfs2_inplace_release(struct gfs2_inode *ip)
2204 {
2205 	struct gfs2_blkreserv *rs = &ip->i_res;
2206 
2207 	if (rs->rs_reserved) {
2208 		struct gfs2_rgrpd *rgd = rs->rs_rgd;
2209 
2210 		spin_lock(&rgd->rd_rsspin);
2211 		GLOCK_BUG_ON(rgd->rd_gl, rgd->rd_reserved < rs->rs_reserved);
2212 		rgd->rd_reserved -= rs->rs_reserved;
2213 		spin_unlock(&rgd->rd_rsspin);
2214 		rs->rs_reserved = 0;
2215 	}
2216 	if (gfs2_holder_initialized(&ip->i_rgd_gh))
2217 		gfs2_glock_dq_uninit(&ip->i_rgd_gh);
2218 }
2219 
2220 /**
2221  * gfs2_alloc_extent - allocate an extent from a given bitmap
2222  * @rbm: the resource group information
2223  * @dinode: TRUE if the first block we allocate is for a dinode
2224  * @n: The extent length (value/result)
2225  *
2226  * Add the bitmap buffer to the transaction.
2227  * Set the found bits to @new_state to change block's allocation state.
2228  */
2229 static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode,
2230 			     unsigned int *n)
2231 {
2232 	struct gfs2_rbm pos = { .rgd = rbm->rgd, };
2233 	const unsigned int elen = *n;
2234 	u64 block;
2235 	int ret;
2236 
2237 	*n = 1;
2238 	block = gfs2_rbm_to_block(rbm);
2239 	gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh);
2240 	gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2241 	block++;
2242 	while (*n < elen) {
2243 		ret = gfs2_rbm_from_block(&pos, block);
2244 		if (ret || gfs2_testbit(&pos, true) != GFS2_BLKST_FREE)
2245 			break;
2246 		gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh);
2247 		gfs2_setbit(&pos, true, GFS2_BLKST_USED);
2248 		(*n)++;
2249 		block++;
2250 	}
2251 }
2252 
2253 /**
2254  * rgblk_free - Change alloc state of given block(s)
2255  * @sdp: the filesystem
2256  * @rgd: the resource group the blocks are in
2257  * @bstart: the start of a run of blocks to free
2258  * @blen: the length of the block run (all must lie within ONE RG!)
2259  * @new_state: GFS2_BLKST_XXX the after-allocation block state
2260  */
2261 
2262 static void rgblk_free(struct gfs2_sbd *sdp, struct gfs2_rgrpd *rgd,
2263 		       u64 bstart, u32 blen, unsigned char new_state)
2264 {
2265 	struct gfs2_rbm rbm;
2266 	struct gfs2_bitmap *bi, *bi_prev = NULL;
2267 
2268 	rbm.rgd = rgd;
2269 	if (WARN_ON_ONCE(gfs2_rbm_from_block(&rbm, bstart)))
2270 		return;
2271 	while (blen--) {
2272 		bi = rbm_bi(&rbm);
2273 		if (bi != bi_prev) {
2274 			if (!bi->bi_clone) {
2275 				bi->bi_clone = kmalloc(bi->bi_bh->b_size,
2276 						      GFP_NOFS | __GFP_NOFAIL);
2277 				memcpy(bi->bi_clone + bi->bi_offset,
2278 				       bi->bi_bh->b_data + bi->bi_offset,
2279 				       bi->bi_bytes);
2280 			}
2281 			gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh);
2282 			bi_prev = bi;
2283 		}
2284 		gfs2_setbit(&rbm, false, new_state);
2285 		gfs2_rbm_add(&rbm, 1);
2286 	}
2287 }
2288 
2289 /**
2290  * gfs2_rgrp_dump - print out an rgrp
2291  * @seq: The iterator
2292  * @rgd: The rgrp in question
2293  * @fs_id_buf: pointer to file system id (if requested)
2294  *
2295  */
2296 
2297 void gfs2_rgrp_dump(struct seq_file *seq, struct gfs2_rgrpd *rgd,
2298 		    const char *fs_id_buf)
2299 {
2300 	struct gfs2_blkreserv *trs;
2301 	const struct rb_node *n;
2302 
2303 	spin_lock(&rgd->rd_rsspin);
2304 	gfs2_print_dbg(seq, "%s R: n:%llu f:%02x b:%u/%u i:%u q:%u r:%u e:%u\n",
2305 		       fs_id_buf,
2306 		       (unsigned long long)rgd->rd_addr, rgd->rd_flags,
2307 		       rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes,
2308 		       rgd->rd_requested, rgd->rd_reserved, rgd->rd_extfail_pt);
2309 	if (rgd->rd_sbd->sd_args.ar_rgrplvb) {
2310 		struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
2311 
2312 		gfs2_print_dbg(seq, "%s  L: f:%02x b:%u i:%u\n", fs_id_buf,
2313 			       be32_to_cpu(rgl->rl_flags),
2314 			       be32_to_cpu(rgl->rl_free),
2315 			       be32_to_cpu(rgl->rl_dinodes));
2316 	}
2317 	for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) {
2318 		trs = rb_entry(n, struct gfs2_blkreserv, rs_node);
2319 		dump_rs(seq, trs, fs_id_buf);
2320 	}
2321 	spin_unlock(&rgd->rd_rsspin);
2322 }
2323 
2324 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
2325 {
2326 	struct gfs2_sbd *sdp = rgd->rd_sbd;
2327 	char fs_id_buf[sizeof(sdp->sd_fsname) + 7];
2328 
2329 	fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
2330 		(unsigned long long)rgd->rd_addr);
2331 	fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
2332 	sprintf(fs_id_buf, "fsid=%s: ", sdp->sd_fsname);
2333 	gfs2_rgrp_dump(NULL, rgd, fs_id_buf);
2334 	rgd->rd_flags |= GFS2_RDF_ERROR;
2335 }
2336 
2337 /**
2338  * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation
2339  * @ip: The inode we have just allocated blocks for
2340  * @rbm: The start of the allocated blocks
2341  * @len: The extent length
2342  *
2343  * Adjusts a reservation after an allocation has taken place. If the
2344  * reservation does not match the allocation, or if it is now empty
2345  * then it is removed.
2346  */
2347 
2348 static void gfs2_adjust_reservation(struct gfs2_inode *ip,
2349 				    const struct gfs2_rbm *rbm, unsigned len)
2350 {
2351 	struct gfs2_blkreserv *rs = &ip->i_res;
2352 	struct gfs2_rgrpd *rgd = rbm->rgd;
2353 
2354 	BUG_ON(rs->rs_reserved < len);
2355 	rs->rs_reserved -= len;
2356 	if (gfs2_rs_active(rs)) {
2357 		u64 start = gfs2_rbm_to_block(rbm);
2358 
2359 		if (rs->rs_start == start) {
2360 			unsigned int rlen;
2361 
2362 			rs->rs_start += len;
2363 			rlen = min(rs->rs_requested, len);
2364 			rs->rs_requested -= rlen;
2365 			rgd->rd_requested -= rlen;
2366 			trace_gfs2_rs(rs, TRACE_RS_CLAIM);
2367 			if (rs->rs_start < rgd->rd_data0 + rgd->rd_data &&
2368 			    rs->rs_requested)
2369 				return;
2370 			/* We used up our block reservation, so we should
2371 			   reserve more blocks next time. */
2372 			atomic_add(RGRP_RSRV_ADDBLKS, &ip->i_sizehint);
2373 		}
2374 		__rs_deltree(rs);
2375 	}
2376 }
2377 
2378 /**
2379  * gfs2_set_alloc_start - Set starting point for block allocation
2380  * @rbm: The rbm which will be set to the required location
2381  * @ip: The gfs2 inode
2382  * @dinode: Flag to say if allocation includes a new inode
2383  *
2384  * This sets the starting point from the reservation if one is active
2385  * otherwise it falls back to guessing a start point based on the
2386  * inode's goal block or the last allocation point in the rgrp.
2387  */
2388 
2389 static void gfs2_set_alloc_start(struct gfs2_rbm *rbm,
2390 				 const struct gfs2_inode *ip, bool dinode)
2391 {
2392 	u64 goal;
2393 
2394 	if (gfs2_rs_active(&ip->i_res)) {
2395 		goal = ip->i_res.rs_start;
2396 	} else {
2397 		if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal))
2398 			goal = ip->i_goal;
2399 		else
2400 			goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0;
2401 	}
2402 	if (WARN_ON_ONCE(gfs2_rbm_from_block(rbm, goal))) {
2403 		rbm->bii = 0;
2404 		rbm->offset = 0;
2405 	}
2406 }
2407 
2408 /**
2409  * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
2410  * @ip: the inode to allocate the block for
2411  * @bn: Used to return the starting block number
2412  * @nblocks: requested number of blocks/extent length (value/result)
2413  * @dinode: 1 if we're allocating a dinode block, else 0
2414  * @generation: the generation number of the inode
2415  *
2416  * Returns: 0 or error
2417  */
2418 
2419 int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
2420 		      bool dinode, u64 *generation)
2421 {
2422 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2423 	struct buffer_head *dibh;
2424 	struct gfs2_rbm rbm = { .rgd = ip->i_res.rs_rgd, };
2425 	u64 block; /* block, within the file system scope */
2426 	u32 minext = 1;
2427 	int error = -ENOSPC;
2428 
2429 	BUG_ON(ip->i_res.rs_reserved < *nblocks);
2430 
2431 	rgrp_lock_local(rbm.rgd);
2432 	if (gfs2_rs_active(&ip->i_res)) {
2433 		gfs2_set_alloc_start(&rbm, ip, dinode);
2434 		error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &minext, &ip->i_res, false);
2435 	}
2436 	if (error == -ENOSPC) {
2437 		gfs2_set_alloc_start(&rbm, ip, dinode);
2438 		error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &minext, NULL, false);
2439 	}
2440 
2441 	/* Since all blocks are reserved in advance, this shouldn't happen */
2442 	if (error) {
2443 		fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n",
2444 			(unsigned long long)ip->i_no_addr, error, *nblocks,
2445 			test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags),
2446 			rbm.rgd->rd_extfail_pt);
2447 		goto rgrp_error;
2448 	}
2449 
2450 	gfs2_alloc_extent(&rbm, dinode, nblocks);
2451 	block = gfs2_rbm_to_block(&rbm);
2452 	rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0;
2453 	if (!dinode) {
2454 		ip->i_goal = block + *nblocks - 1;
2455 		error = gfs2_meta_inode_buffer(ip, &dibh);
2456 		if (error == 0) {
2457 			struct gfs2_dinode *di =
2458 				(struct gfs2_dinode *)dibh->b_data;
2459 			gfs2_trans_add_meta(ip->i_gl, dibh);
2460 			di->di_goal_meta = di->di_goal_data =
2461 				cpu_to_be64(ip->i_goal);
2462 			brelse(dibh);
2463 		}
2464 	}
2465 	spin_lock(&rbm.rgd->rd_rsspin);
2466 	gfs2_adjust_reservation(ip, &rbm, *nblocks);
2467 	if (rbm.rgd->rd_free < *nblocks || rbm.rgd->rd_reserved < *nblocks) {
2468 		fs_warn(sdp, "nblocks=%u\n", *nblocks);
2469 		spin_unlock(&rbm.rgd->rd_rsspin);
2470 		goto rgrp_error;
2471 	}
2472 	GLOCK_BUG_ON(rbm.rgd->rd_gl, rbm.rgd->rd_reserved < *nblocks);
2473 	GLOCK_BUG_ON(rbm.rgd->rd_gl, rbm.rgd->rd_free_clone < *nblocks);
2474 	GLOCK_BUG_ON(rbm.rgd->rd_gl, rbm.rgd->rd_free < *nblocks);
2475 	rbm.rgd->rd_reserved -= *nblocks;
2476 	rbm.rgd->rd_free_clone -= *nblocks;
2477 	rbm.rgd->rd_free -= *nblocks;
2478 	spin_unlock(&rbm.rgd->rd_rsspin);
2479 	if (dinode) {
2480 		rbm.rgd->rd_dinodes++;
2481 		*generation = rbm.rgd->rd_igeneration++;
2482 		if (*generation == 0)
2483 			*generation = rbm.rgd->rd_igeneration++;
2484 	}
2485 
2486 	gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh);
2487 	gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data);
2488 	rgrp_unlock_local(rbm.rgd);
2489 
2490 	gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
2491 	if (dinode)
2492 		gfs2_trans_remove_revoke(sdp, block, *nblocks);
2493 
2494 	gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid);
2495 
2496 	trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks,
2497 			       dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2498 	*bn = block;
2499 	return 0;
2500 
2501 rgrp_error:
2502 	rgrp_unlock_local(rbm.rgd);
2503 	gfs2_rgrp_error(rbm.rgd);
2504 	return -EIO;
2505 }
2506 
2507 /**
2508  * __gfs2_free_blocks - free a contiguous run of block(s)
2509  * @ip: the inode these blocks are being freed from
2510  * @rgd: the resource group the blocks are in
2511  * @bstart: first block of a run of contiguous blocks
2512  * @blen: the length of the block run
2513  * @meta: 1 if the blocks represent metadata
2514  *
2515  */
2516 
2517 void __gfs2_free_blocks(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd,
2518 			u64 bstart, u32 blen, int meta)
2519 {
2520 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2521 
2522 	rgrp_lock_local(rgd);
2523 	rgblk_free(sdp, rgd, bstart, blen, GFS2_BLKST_FREE);
2524 	trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
2525 	rgd->rd_free += blen;
2526 	rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
2527 	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2528 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2529 	rgrp_unlock_local(rgd);
2530 
2531 	/* Directories keep their data in the metadata address space */
2532 	if (meta || ip->i_depth || gfs2_is_jdata(ip))
2533 		gfs2_journal_wipe(ip, bstart, blen);
2534 }
2535 
2536 /**
2537  * gfs2_free_meta - free a contiguous run of data block(s)
2538  * @ip: the inode these blocks are being freed from
2539  * @rgd: the resource group the blocks are in
2540  * @bstart: first block of a run of contiguous blocks
2541  * @blen: the length of the block run
2542  *
2543  */
2544 
2545 void gfs2_free_meta(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd,
2546 		    u64 bstart, u32 blen)
2547 {
2548 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2549 
2550 	__gfs2_free_blocks(ip, rgd, bstart, blen, 1);
2551 	gfs2_statfs_change(sdp, 0, +blen, 0);
2552 	gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
2553 }
2554 
2555 void gfs2_unlink_di(struct inode *inode)
2556 {
2557 	struct gfs2_inode *ip = GFS2_I(inode);
2558 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2559 	struct gfs2_rgrpd *rgd;
2560 	u64 blkno = ip->i_no_addr;
2561 
2562 	rgd = gfs2_blk2rgrpd(sdp, blkno, true);
2563 	if (!rgd)
2564 		return;
2565 	rgrp_lock_local(rgd);
2566 	rgblk_free(sdp, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2567 	trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2568 	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2569 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2570 	be32_add_cpu(&rgd->rd_rgl->rl_unlinked, 1);
2571 	rgrp_unlock_local(rgd);
2572 }
2573 
2574 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
2575 {
2576 	struct gfs2_sbd *sdp = rgd->rd_sbd;
2577 
2578 	rgrp_lock_local(rgd);
2579 	rgblk_free(sdp, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2580 	if (!rgd->rd_dinodes)
2581 		gfs2_consist_rgrpd(rgd);
2582 	rgd->rd_dinodes--;
2583 	rgd->rd_free++;
2584 
2585 	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2586 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2587 	rgrp_unlock_local(rgd);
2588 	be32_add_cpu(&rgd->rd_rgl->rl_unlinked, -1);
2589 
2590 	gfs2_statfs_change(sdp, 0, +1, -1);
2591 	trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2592 	gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
2593 	gfs2_journal_wipe(ip, ip->i_no_addr, 1);
2594 }
2595 
2596 /**
2597  * gfs2_check_blk_type - Check the type of a block
2598  * @sdp: The superblock
2599  * @no_addr: The block number to check
2600  * @type: The block type we are looking for
2601  *
2602  * The inode glock of @no_addr must be held.  The @type to check for is either
2603  * GFS2_BLKST_DINODE or GFS2_BLKST_UNLINKED; checking for type GFS2_BLKST_FREE
2604  * or GFS2_BLKST_USED would make no sense.
2605  *
2606  * Returns: 0 if the block type matches the expected type
2607  *          -ESTALE if it doesn't match
2608  *          or -ve errno if something went wrong while checking
2609  */
2610 
2611 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
2612 {
2613 	struct gfs2_rgrpd *rgd;
2614 	struct gfs2_holder rgd_gh;
2615 	struct gfs2_rbm rbm;
2616 	int error = -EINVAL;
2617 
2618 	rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
2619 	if (!rgd)
2620 		goto fail;
2621 
2622 	error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
2623 	if (error)
2624 		goto fail;
2625 
2626 	rbm.rgd = rgd;
2627 	error = gfs2_rbm_from_block(&rbm, no_addr);
2628 	if (!WARN_ON_ONCE(error)) {
2629 		/*
2630 		 * No need to take the local resource group lock here; the
2631 		 * inode glock of @no_addr provides the necessary
2632 		 * synchronization in case the block is an inode.  (In case
2633 		 * the block is not an inode, the block type will not match
2634 		 * the @type we are looking for.)
2635 		 */
2636 		if (gfs2_testbit(&rbm, false) != type)
2637 			error = -ESTALE;
2638 	}
2639 
2640 	gfs2_glock_dq_uninit(&rgd_gh);
2641 
2642 fail:
2643 	return error;
2644 }
2645 
2646 /**
2647  * gfs2_rlist_add - add a RG to a list of RGs
2648  * @ip: the inode
2649  * @rlist: the list of resource groups
2650  * @block: the block
2651  *
2652  * Figure out what RG a block belongs to and add that RG to the list
2653  *
2654  * FIXME: Don't use NOFAIL
2655  *
2656  */
2657 
2658 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
2659 		    u64 block)
2660 {
2661 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2662 	struct gfs2_rgrpd *rgd;
2663 	struct gfs2_rgrpd **tmp;
2664 	unsigned int new_space;
2665 	unsigned int x;
2666 
2667 	if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
2668 		return;
2669 
2670 	/*
2671 	 * The resource group last accessed is kept in the last position.
2672 	 */
2673 
2674 	if (rlist->rl_rgrps) {
2675 		rgd = rlist->rl_rgd[rlist->rl_rgrps - 1];
2676 		if (rgrp_contains_block(rgd, block))
2677 			return;
2678 		rgd = gfs2_blk2rgrpd(sdp, block, 1);
2679 	} else {
2680 		rgd = ip->i_res.rs_rgd;
2681 		if (!rgd || !rgrp_contains_block(rgd, block))
2682 			rgd = gfs2_blk2rgrpd(sdp, block, 1);
2683 	}
2684 
2685 	if (!rgd) {
2686 		fs_err(sdp, "rlist_add: no rgrp for block %llu\n",
2687 		       (unsigned long long)block);
2688 		return;
2689 	}
2690 
2691 	for (x = 0; x < rlist->rl_rgrps; x++) {
2692 		if (rlist->rl_rgd[x] == rgd) {
2693 			swap(rlist->rl_rgd[x],
2694 			     rlist->rl_rgd[rlist->rl_rgrps - 1]);
2695 			return;
2696 		}
2697 	}
2698 
2699 	if (rlist->rl_rgrps == rlist->rl_space) {
2700 		new_space = rlist->rl_space + 10;
2701 
2702 		tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
2703 			      GFP_NOFS | __GFP_NOFAIL);
2704 
2705 		if (rlist->rl_rgd) {
2706 			memcpy(tmp, rlist->rl_rgd,
2707 			       rlist->rl_space * sizeof(struct gfs2_rgrpd *));
2708 			kfree(rlist->rl_rgd);
2709 		}
2710 
2711 		rlist->rl_space = new_space;
2712 		rlist->rl_rgd = tmp;
2713 	}
2714 
2715 	rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
2716 }
2717 
2718 /**
2719  * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
2720  *      and initialize an array of glock holders for them
2721  * @rlist: the list of resource groups
2722  * @state: the state we're requesting
2723  * @flags: the modifier flags
2724  *
2725  * FIXME: Don't use NOFAIL
2726  *
2727  */
2728 
2729 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist,
2730 		      unsigned int state, u16 flags)
2731 {
2732 	unsigned int x;
2733 
2734 	rlist->rl_ghs = kmalloc_array(rlist->rl_rgrps,
2735 				      sizeof(struct gfs2_holder),
2736 				      GFP_NOFS | __GFP_NOFAIL);
2737 	for (x = 0; x < rlist->rl_rgrps; x++)
2738 		gfs2_holder_init(rlist->rl_rgd[x]->rd_gl, state, flags,
2739 				 &rlist->rl_ghs[x]);
2740 }
2741 
2742 /**
2743  * gfs2_rlist_free - free a resource group list
2744  * @rlist: the list of resource groups
2745  *
2746  */
2747 
2748 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
2749 {
2750 	unsigned int x;
2751 
2752 	kfree(rlist->rl_rgd);
2753 
2754 	if (rlist->rl_ghs) {
2755 		for (x = 0; x < rlist->rl_rgrps; x++)
2756 			gfs2_holder_uninit(&rlist->rl_ghs[x]);
2757 		kfree(rlist->rl_ghs);
2758 		rlist->rl_ghs = NULL;
2759 	}
2760 }
2761 
2762 void rgrp_lock_local(struct gfs2_rgrpd *rgd)
2763 {
2764 	mutex_lock(&rgd->rd_mutex);
2765 }
2766 
2767 void rgrp_unlock_local(struct gfs2_rgrpd *rgd)
2768 {
2769 	mutex_unlock(&rgd->rd_mutex);
2770 }
2771