xref: /linux/fs/gfs2/lock_dlm.c (revision ea04ef19ebdcd22e8a21054a19c2c8fefae011ce)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
4  * Copyright 2004-2011 Red Hat, Inc.
5  */
6 
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 
9 #include <linux/fs.h>
10 #include <linux/dlm.h>
11 #include <linux/slab.h>
12 #include <linux/types.h>
13 #include <linux/delay.h>
14 #include <linux/gfs2_ondisk.h>
15 #include <linux/sched/signal.h>
16 
17 #include "incore.h"
18 #include "glock.h"
19 #include "glops.h"
20 #include "recovery.h"
21 #include "util.h"
22 #include "sys.h"
23 #include "trace_gfs2.h"
24 
25 /**
26  * gfs2_update_stats - Update time based stats
27  * @s: The stats to update (local or global)
28  * @index: The index inside @s
29  * @sample: New data to include
30  */
31 static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index,
32 				     s64 sample)
33 {
34 	/*
35 	 * @delta is the difference between the current rtt sample and the
36 	 * running average srtt. We add 1/8 of that to the srtt in order to
37 	 * update the current srtt estimate. The variance estimate is a bit
38 	 * more complicated. We subtract the current variance estimate from
39 	 * the abs value of the @delta and add 1/4 of that to the running
40 	 * total.  That's equivalent to 3/4 of the current variance
41 	 * estimate plus 1/4 of the abs of @delta.
42 	 *
43 	 * Note that the index points at the array entry containing the
44 	 * smoothed mean value, and the variance is always in the following
45 	 * entry
46 	 *
47 	 * Reference: TCP/IP Illustrated, vol 2, p. 831,832
48 	 * All times are in units of integer nanoseconds. Unlike the TCP/IP
49 	 * case, they are not scaled fixed point.
50 	 */
51 
52 	s64 delta = sample - s->stats[index];
53 	s->stats[index] += (delta >> 3);
54 	index++;
55 	s->stats[index] += (s64)(abs(delta) - s->stats[index]) >> 2;
56 }
57 
58 /**
59  * gfs2_update_reply_times - Update locking statistics
60  * @gl: The glock to update
61  *
62  * This assumes that gl->gl_dstamp has been set earlier.
63  *
64  * The rtt (lock round trip time) is an estimate of the time
65  * taken to perform a dlm lock request. We update it on each
66  * reply from the dlm.
67  *
68  * The blocking flag is set on the glock for all dlm requests
69  * which may potentially block due to lock requests from other nodes.
70  * DLM requests where the current lock state is exclusive, the
71  * requested state is null (or unlocked) or where the TRY or
72  * TRY_1CB flags are set are classified as non-blocking. All
73  * other DLM requests are counted as (potentially) blocking.
74  */
75 static inline void gfs2_update_reply_times(struct gfs2_glock *gl)
76 {
77 	struct gfs2_pcpu_lkstats *lks;
78 	const unsigned gltype = gl->gl_name.ln_type;
79 	unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ?
80 			 GFS2_LKS_SRTTB : GFS2_LKS_SRTT;
81 	s64 rtt;
82 
83 	preempt_disable();
84 	rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp));
85 	lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
86 	gfs2_update_stats(&gl->gl_stats, index, rtt);		/* Local */
87 	gfs2_update_stats(&lks->lkstats[gltype], index, rtt);	/* Global */
88 	preempt_enable();
89 
90 	trace_gfs2_glock_lock_time(gl, rtt);
91 }
92 
93 /**
94  * gfs2_update_request_times - Update locking statistics
95  * @gl: The glock to update
96  *
97  * The irt (lock inter-request times) measures the average time
98  * between requests to the dlm. It is updated immediately before
99  * each dlm call.
100  */
101 
102 static inline void gfs2_update_request_times(struct gfs2_glock *gl)
103 {
104 	struct gfs2_pcpu_lkstats *lks;
105 	const unsigned gltype = gl->gl_name.ln_type;
106 	ktime_t dstamp;
107 	s64 irt;
108 
109 	preempt_disable();
110 	dstamp = gl->gl_dstamp;
111 	gl->gl_dstamp = ktime_get_real();
112 	irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp));
113 	lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
114 	gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt);		/* Local */
115 	gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt);	/* Global */
116 	preempt_enable();
117 }
118 
119 static void gdlm_ast(void *arg)
120 {
121 	struct gfs2_glock *gl = arg;
122 	unsigned ret = gl->gl_state;
123 
124 	/* If the glock is dead, we only react to a dlm_unlock() reply. */
125 	if (__lockref_is_dead(&gl->gl_lockref) &&
126 	    gl->gl_lksb.sb_status != -DLM_EUNLOCK)
127 		return;
128 
129 	gfs2_update_reply_times(gl);
130 	BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED);
131 
132 	if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr)
133 		memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE);
134 
135 	switch (gl->gl_lksb.sb_status) {
136 	case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */
137 		if (gl->gl_ops->go_free)
138 			gl->gl_ops->go_free(gl);
139 		gfs2_glock_free(gl);
140 		return;
141 	case -DLM_ECANCEL: /* Cancel while getting lock */
142 		ret |= LM_OUT_CANCELED;
143 		goto out;
144 	case -EAGAIN: /* Try lock fails */
145 	case -EDEADLK: /* Deadlock detected */
146 		goto out;
147 	case -ETIMEDOUT: /* Canceled due to timeout */
148 		ret |= LM_OUT_ERROR;
149 		goto out;
150 	case 0: /* Success */
151 		break;
152 	default: /* Something unexpected */
153 		BUG();
154 	}
155 
156 	ret = gl->gl_req;
157 	if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) {
158 		if (gl->gl_req == LM_ST_SHARED)
159 			ret = LM_ST_DEFERRED;
160 		else if (gl->gl_req == LM_ST_DEFERRED)
161 			ret = LM_ST_SHARED;
162 		else
163 			BUG();
164 	}
165 
166 	set_bit(GLF_INITIAL, &gl->gl_flags);
167 	gfs2_glock_complete(gl, ret);
168 	return;
169 out:
170 	if (!test_bit(GLF_INITIAL, &gl->gl_flags))
171 		gl->gl_lksb.sb_lkid = 0;
172 	gfs2_glock_complete(gl, ret);
173 }
174 
175 static void gdlm_bast(void *arg, int mode)
176 {
177 	struct gfs2_glock *gl = arg;
178 
179 	if (__lockref_is_dead(&gl->gl_lockref))
180 		return;
181 
182 	switch (mode) {
183 	case DLM_LOCK_EX:
184 		gfs2_glock_cb(gl, LM_ST_UNLOCKED);
185 		break;
186 	case DLM_LOCK_CW:
187 		gfs2_glock_cb(gl, LM_ST_DEFERRED);
188 		break;
189 	case DLM_LOCK_PR:
190 		gfs2_glock_cb(gl, LM_ST_SHARED);
191 		break;
192 	default:
193 		fs_err(gl->gl_name.ln_sbd, "unknown bast mode %d\n", mode);
194 		BUG();
195 	}
196 }
197 
198 /* convert gfs lock-state to dlm lock-mode */
199 
200 static int make_mode(struct gfs2_sbd *sdp, const unsigned int lmstate)
201 {
202 	switch (lmstate) {
203 	case LM_ST_UNLOCKED:
204 		return DLM_LOCK_NL;
205 	case LM_ST_EXCLUSIVE:
206 		return DLM_LOCK_EX;
207 	case LM_ST_DEFERRED:
208 		return DLM_LOCK_CW;
209 	case LM_ST_SHARED:
210 		return DLM_LOCK_PR;
211 	}
212 	fs_err(sdp, "unknown LM state %d\n", lmstate);
213 	BUG();
214 	return -1;
215 }
216 
217 static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags,
218 		      const int req)
219 {
220 	u32 lkf = 0;
221 
222 	if (gl->gl_lksb.sb_lvbptr)
223 		lkf |= DLM_LKF_VALBLK;
224 
225 	if (gfs_flags & LM_FLAG_TRY)
226 		lkf |= DLM_LKF_NOQUEUE;
227 
228 	if (gfs_flags & LM_FLAG_TRY_1CB) {
229 		lkf |= DLM_LKF_NOQUEUE;
230 		lkf |= DLM_LKF_NOQUEUEBAST;
231 	}
232 
233 	if (gfs_flags & LM_FLAG_ANY) {
234 		if (req == DLM_LOCK_PR)
235 			lkf |= DLM_LKF_ALTCW;
236 		else if (req == DLM_LOCK_CW)
237 			lkf |= DLM_LKF_ALTPR;
238 		else
239 			BUG();
240 	}
241 
242 	if (gl->gl_lksb.sb_lkid != 0) {
243 		lkf |= DLM_LKF_CONVERT;
244 		if (test_bit(GLF_BLOCKING, &gl->gl_flags))
245 			lkf |= DLM_LKF_QUECVT;
246 	}
247 
248 	return lkf;
249 }
250 
251 static void gfs2_reverse_hex(char *c, u64 value)
252 {
253 	*c = '0';
254 	while (value) {
255 		*c-- = hex_asc[value & 0x0f];
256 		value >>= 4;
257 	}
258 }
259 
260 static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state,
261 		     unsigned int flags)
262 {
263 	struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
264 	int req;
265 	u32 lkf;
266 	char strname[GDLM_STRNAME_BYTES] = "";
267 	int error;
268 
269 	req = make_mode(gl->gl_name.ln_sbd, req_state);
270 	lkf = make_flags(gl, flags, req);
271 	gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
272 	gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
273 	if (gl->gl_lksb.sb_lkid) {
274 		gfs2_update_request_times(gl);
275 	} else {
276 		memset(strname, ' ', GDLM_STRNAME_BYTES - 1);
277 		strname[GDLM_STRNAME_BYTES - 1] = '\0';
278 		gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type);
279 		gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number);
280 		gl->gl_dstamp = ktime_get_real();
281 	}
282 	/*
283 	 * Submit the actual lock request.
284 	 */
285 
286 again:
287 	error = dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname,
288 			GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast);
289 	if (error == -EBUSY) {
290 		msleep(20);
291 		goto again;
292 	}
293 	return error;
294 }
295 
296 static void gdlm_put_lock(struct gfs2_glock *gl)
297 {
298 	struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
299 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
300 	int error;
301 
302 	BUG_ON(!__lockref_is_dead(&gl->gl_lockref));
303 
304 	if (gl->gl_lksb.sb_lkid == 0) {
305 		gfs2_glock_free(gl);
306 		return;
307 	}
308 
309 	clear_bit(GLF_BLOCKING, &gl->gl_flags);
310 	gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
311 	gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
312 	gfs2_update_request_times(gl);
313 
314 	/* don't want to call dlm if we've unmounted the lock protocol */
315 	if (test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) {
316 		gfs2_glock_free(gl);
317 		return;
318 	}
319 
320 	/*
321 	 * When the lockspace is released, all remaining glocks will be
322 	 * unlocked automatically.  This is more efficient than unlocking them
323 	 * individually, but when the lock is held in DLM_LOCK_EX or
324 	 * DLM_LOCK_PW mode, the lock value block (LVB) will be lost.
325 	 */
326 
327 	if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) &&
328 	    (!gl->gl_lksb.sb_lvbptr || gl->gl_state != LM_ST_EXCLUSIVE)) {
329 		gfs2_glock_free_later(gl);
330 		return;
331 	}
332 
333 again:
334 	error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK,
335 			   NULL, gl);
336 	if (error == -EBUSY) {
337 		msleep(20);
338 		goto again;
339 	}
340 
341 	if (error) {
342 		fs_err(sdp, "gdlm_unlock %x,%llx err=%d\n",
343 		       gl->gl_name.ln_type,
344 		       (unsigned long long)gl->gl_name.ln_number, error);
345 	}
346 }
347 
348 static void gdlm_cancel(struct gfs2_glock *gl)
349 {
350 	struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
351 	dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl);
352 }
353 
354 /*
355  * dlm/gfs2 recovery coordination using dlm_recover callbacks
356  *
357  *  0. gfs2 checks for another cluster node withdraw, needing journal replay
358  *  1. dlm_controld sees lockspace members change
359  *  2. dlm_controld blocks dlm-kernel locking activity
360  *  3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
361  *  4. dlm_controld starts and finishes its own user level recovery
362  *  5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
363  *  6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
364  *  7. dlm_recoverd does its own lock recovery
365  *  8. dlm_recoverd unblocks dlm-kernel locking activity
366  *  9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
367  * 10. gfs2_control updates control_lock lvb with new generation and jid bits
368  * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
369  * 12. gfs2_recover dequeues and recovers journals of failed nodes
370  * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
371  * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
372  * 15. gfs2_control unblocks normal locking when all journals are recovered
373  *
374  * - failures during recovery
375  *
376  * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
377  * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
378  * recovering for a prior failure.  gfs2_control needs a way to detect
379  * this so it can leave BLOCK_LOCKS set in step 15.  This is managed using
380  * the recover_block and recover_start values.
381  *
382  * recover_done() provides a new lockspace generation number each time it
383  * is called (step 9).  This generation number is saved as recover_start.
384  * When recover_prep() is called, it sets BLOCK_LOCKS and sets
385  * recover_block = recover_start.  So, while recover_block is equal to
386  * recover_start, BLOCK_LOCKS should remain set.  (recover_spin must
387  * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
388  *
389  * - more specific gfs2 steps in sequence above
390  *
391  *  3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
392  *  6. recover_slot records any failed jids (maybe none)
393  *  9. recover_done sets recover_start = new generation number
394  * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
395  * 12. gfs2_recover does journal recoveries for failed jids identified above
396  * 14. gfs2_control clears control_lock lvb bits for recovered jids
397  * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
398  *     again) then do nothing, otherwise if recover_start > recover_block
399  *     then clear BLOCK_LOCKS.
400  *
401  * - parallel recovery steps across all nodes
402  *
403  * All nodes attempt to update the control_lock lvb with the new generation
404  * number and jid bits, but only the first to get the control_lock EX will
405  * do so; others will see that it's already done (lvb already contains new
406  * generation number.)
407  *
408  * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
409  * . All nodes attempt to set control_lock lvb gen + bits for the new gen
410  * . One node gets control_lock first and writes the lvb, others see it's done
411  * . All nodes attempt to recover jids for which they see control_lock bits set
412  * . One node succeeds for a jid, and that one clears the jid bit in the lvb
413  * . All nodes will eventually see all lvb bits clear and unblock locks
414  *
415  * - is there a problem with clearing an lvb bit that should be set
416  *   and missing a journal recovery?
417  *
418  * 1. jid fails
419  * 2. lvb bit set for step 1
420  * 3. jid recovered for step 1
421  * 4. jid taken again (new mount)
422  * 5. jid fails (for step 4)
423  * 6. lvb bit set for step 5 (will already be set)
424  * 7. lvb bit cleared for step 3
425  *
426  * This is not a problem because the failure in step 5 does not
427  * require recovery, because the mount in step 4 could not have
428  * progressed far enough to unblock locks and access the fs.  The
429  * control_mount() function waits for all recoveries to be complete
430  * for the latest lockspace generation before ever unblocking locks
431  * and returning.  The mount in step 4 waits until the recovery in
432  * step 1 is done.
433  *
434  * - special case of first mounter: first node to mount the fs
435  *
436  * The first node to mount a gfs2 fs needs to check all the journals
437  * and recover any that need recovery before other nodes are allowed
438  * to mount the fs.  (Others may begin mounting, but they must wait
439  * for the first mounter to be done before taking locks on the fs
440  * or accessing the fs.)  This has two parts:
441  *
442  * 1. The mounted_lock tells a node it's the first to mount the fs.
443  * Each node holds the mounted_lock in PR while it's mounted.
444  * Each node tries to acquire the mounted_lock in EX when it mounts.
445  * If a node is granted the mounted_lock EX it means there are no
446  * other mounted nodes (no PR locks exist), and it is the first mounter.
447  * The mounted_lock is demoted to PR when first recovery is done, so
448  * others will fail to get an EX lock, but will get a PR lock.
449  *
450  * 2. The control_lock blocks others in control_mount() while the first
451  * mounter is doing first mount recovery of all journals.
452  * A mounting node needs to acquire control_lock in EX mode before
453  * it can proceed.  The first mounter holds control_lock in EX while doing
454  * the first mount recovery, blocking mounts from other nodes, then demotes
455  * control_lock to NL when it's done (others_may_mount/first_done),
456  * allowing other nodes to continue mounting.
457  *
458  * first mounter:
459  * control_lock EX/NOQUEUE success
460  * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
461  * set first=1
462  * do first mounter recovery
463  * mounted_lock EX->PR
464  * control_lock EX->NL, write lvb generation
465  *
466  * other mounter:
467  * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
468  * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
469  * mounted_lock PR/NOQUEUE success
470  * read lvb generation
471  * control_lock EX->NL
472  * set first=0
473  *
474  * - mount during recovery
475  *
476  * If a node mounts while others are doing recovery (not first mounter),
477  * the mounting node will get its initial recover_done() callback without
478  * having seen any previous failures/callbacks.
479  *
480  * It must wait for all recoveries preceding its mount to be finished
481  * before it unblocks locks.  It does this by repeating the "other mounter"
482  * steps above until the lvb generation number is >= its mount generation
483  * number (from initial recover_done) and all lvb bits are clear.
484  *
485  * - control_lock lvb format
486  *
487  * 4 bytes generation number: the latest dlm lockspace generation number
488  * from recover_done callback.  Indicates the jid bitmap has been updated
489  * to reflect all slot failures through that generation.
490  * 4 bytes unused.
491  * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
492  * that jid N needs recovery.
493  */
494 
495 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
496 
497 static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen,
498 			     char *lvb_bits)
499 {
500 	__le32 gen;
501 	memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE);
502 	memcpy(&gen, lvb_bits, sizeof(__le32));
503 	*lvb_gen = le32_to_cpu(gen);
504 }
505 
506 static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen,
507 			      char *lvb_bits)
508 {
509 	__le32 gen;
510 	memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE);
511 	gen = cpu_to_le32(lvb_gen);
512 	memcpy(ls->ls_control_lvb, &gen, sizeof(__le32));
513 }
514 
515 static int all_jid_bits_clear(char *lvb)
516 {
517 	return !memchr_inv(lvb + JID_BITMAP_OFFSET, 0,
518 			GDLM_LVB_SIZE - JID_BITMAP_OFFSET);
519 }
520 
521 static void sync_wait_cb(void *arg)
522 {
523 	struct lm_lockstruct *ls = arg;
524 	complete(&ls->ls_sync_wait);
525 }
526 
527 static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name)
528 {
529 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
530 	int error;
531 
532 	error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls);
533 	if (error) {
534 		fs_err(sdp, "%s lkid %x error %d\n",
535 		       name, lksb->sb_lkid, error);
536 		return error;
537 	}
538 
539 	wait_for_completion(&ls->ls_sync_wait);
540 
541 	if (lksb->sb_status != -DLM_EUNLOCK) {
542 		fs_err(sdp, "%s lkid %x status %d\n",
543 		       name, lksb->sb_lkid, lksb->sb_status);
544 		return -1;
545 	}
546 	return 0;
547 }
548 
549 static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags,
550 		     unsigned int num, struct dlm_lksb *lksb, char *name)
551 {
552 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
553 	char strname[GDLM_STRNAME_BYTES];
554 	int error, status;
555 
556 	memset(strname, 0, GDLM_STRNAME_BYTES);
557 	snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num);
558 
559 	error = dlm_lock(ls->ls_dlm, mode, lksb, flags,
560 			 strname, GDLM_STRNAME_BYTES - 1,
561 			 0, sync_wait_cb, ls, NULL);
562 	if (error) {
563 		fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n",
564 		       name, lksb->sb_lkid, flags, mode, error);
565 		return error;
566 	}
567 
568 	wait_for_completion(&ls->ls_sync_wait);
569 
570 	status = lksb->sb_status;
571 
572 	if (status && status != -EAGAIN) {
573 		fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n",
574 		       name, lksb->sb_lkid, flags, mode, status);
575 	}
576 
577 	return status;
578 }
579 
580 static int mounted_unlock(struct gfs2_sbd *sdp)
581 {
582 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
583 	return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock");
584 }
585 
586 static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
587 {
588 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
589 	return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK,
590 			 &ls->ls_mounted_lksb, "mounted_lock");
591 }
592 
593 static int control_unlock(struct gfs2_sbd *sdp)
594 {
595 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
596 	return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock");
597 }
598 
599 static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
600 {
601 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
602 	return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK,
603 			 &ls->ls_control_lksb, "control_lock");
604 }
605 
606 /**
607  * remote_withdraw - react to a node withdrawing from the file system
608  * @sdp: The superblock
609  */
610 static void remote_withdraw(struct gfs2_sbd *sdp)
611 {
612 	struct gfs2_jdesc *jd;
613 	int ret = 0, count = 0;
614 
615 	list_for_each_entry(jd, &sdp->sd_jindex_list, jd_list) {
616 		if (jd->jd_jid == sdp->sd_lockstruct.ls_jid)
617 			continue;
618 		ret = gfs2_recover_journal(jd, true);
619 		if (ret)
620 			break;
621 		count++;
622 	}
623 
624 	/* Now drop the additional reference we acquired */
625 	fs_err(sdp, "Journals checked: %d, ret = %d.\n", count, ret);
626 }
627 
628 static void gfs2_control_func(struct work_struct *work)
629 {
630 	struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work);
631 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
632 	uint32_t block_gen, start_gen, lvb_gen, flags;
633 	int recover_set = 0;
634 	int write_lvb = 0;
635 	int recover_size;
636 	int i, error;
637 
638 	/* First check for other nodes that may have done a withdraw. */
639 	if (test_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags)) {
640 		remote_withdraw(sdp);
641 		clear_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags);
642 		return;
643 	}
644 
645 	spin_lock(&ls->ls_recover_spin);
646 	/*
647 	 * No MOUNT_DONE means we're still mounting; control_mount()
648 	 * will set this flag, after which this thread will take over
649 	 * all further clearing of BLOCK_LOCKS.
650 	 *
651 	 * FIRST_MOUNT means this node is doing first mounter recovery,
652 	 * for which recovery control is handled by
653 	 * control_mount()/control_first_done(), not this thread.
654 	 */
655 	if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
656 	     test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
657 		spin_unlock(&ls->ls_recover_spin);
658 		return;
659 	}
660 	block_gen = ls->ls_recover_block;
661 	start_gen = ls->ls_recover_start;
662 	spin_unlock(&ls->ls_recover_spin);
663 
664 	/*
665 	 * Equal block_gen and start_gen implies we are between
666 	 * recover_prep and recover_done callbacks, which means
667 	 * dlm recovery is in progress and dlm locking is blocked.
668 	 * There's no point trying to do any work until recover_done.
669 	 */
670 
671 	if (block_gen == start_gen)
672 		return;
673 
674 	/*
675 	 * Propagate recover_submit[] and recover_result[] to lvb:
676 	 * dlm_recoverd adds to recover_submit[] jids needing recovery
677 	 * gfs2_recover adds to recover_result[] journal recovery results
678 	 *
679 	 * set lvb bit for jids in recover_submit[] if the lvb has not
680 	 * yet been updated for the generation of the failure
681 	 *
682 	 * clear lvb bit for jids in recover_result[] if the result of
683 	 * the journal recovery is SUCCESS
684 	 */
685 
686 	error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
687 	if (error) {
688 		fs_err(sdp, "control lock EX error %d\n", error);
689 		return;
690 	}
691 
692 	control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
693 
694 	spin_lock(&ls->ls_recover_spin);
695 	if (block_gen != ls->ls_recover_block ||
696 	    start_gen != ls->ls_recover_start) {
697 		fs_info(sdp, "recover generation %u block1 %u %u\n",
698 			start_gen, block_gen, ls->ls_recover_block);
699 		spin_unlock(&ls->ls_recover_spin);
700 		control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
701 		return;
702 	}
703 
704 	recover_size = ls->ls_recover_size;
705 
706 	if (lvb_gen <= start_gen) {
707 		/*
708 		 * Clear lvb bits for jids we've successfully recovered.
709 		 * Because all nodes attempt to recover failed journals,
710 		 * a journal can be recovered multiple times successfully
711 		 * in succession.  Only the first will really do recovery,
712 		 * the others find it clean, but still report a successful
713 		 * recovery.  So, another node may have already recovered
714 		 * the jid and cleared the lvb bit for it.
715 		 */
716 		for (i = 0; i < recover_size; i++) {
717 			if (ls->ls_recover_result[i] != LM_RD_SUCCESS)
718 				continue;
719 
720 			ls->ls_recover_result[i] = 0;
721 
722 			if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET))
723 				continue;
724 
725 			__clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
726 			write_lvb = 1;
727 		}
728 	}
729 
730 	if (lvb_gen == start_gen) {
731 		/*
732 		 * Failed slots before start_gen are already set in lvb.
733 		 */
734 		for (i = 0; i < recover_size; i++) {
735 			if (!ls->ls_recover_submit[i])
736 				continue;
737 			if (ls->ls_recover_submit[i] < lvb_gen)
738 				ls->ls_recover_submit[i] = 0;
739 		}
740 	} else if (lvb_gen < start_gen) {
741 		/*
742 		 * Failed slots before start_gen are not yet set in lvb.
743 		 */
744 		for (i = 0; i < recover_size; i++) {
745 			if (!ls->ls_recover_submit[i])
746 				continue;
747 			if (ls->ls_recover_submit[i] < start_gen) {
748 				ls->ls_recover_submit[i] = 0;
749 				__set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
750 			}
751 		}
752 		/* even if there are no bits to set, we need to write the
753 		   latest generation to the lvb */
754 		write_lvb = 1;
755 	} else {
756 		/*
757 		 * we should be getting a recover_done() for lvb_gen soon
758 		 */
759 	}
760 	spin_unlock(&ls->ls_recover_spin);
761 
762 	if (write_lvb) {
763 		control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
764 		flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK;
765 	} else {
766 		flags = DLM_LKF_CONVERT;
767 	}
768 
769 	error = control_lock(sdp, DLM_LOCK_NL, flags);
770 	if (error) {
771 		fs_err(sdp, "control lock NL error %d\n", error);
772 		return;
773 	}
774 
775 	/*
776 	 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
777 	 * and clear a jid bit in the lvb if the recovery is a success.
778 	 * Eventually all journals will be recovered, all jid bits will
779 	 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
780 	 */
781 
782 	for (i = 0; i < recover_size; i++) {
783 		if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) {
784 			fs_info(sdp, "recover generation %u jid %d\n",
785 				start_gen, i);
786 			gfs2_recover_set(sdp, i);
787 			recover_set++;
788 		}
789 	}
790 	if (recover_set)
791 		return;
792 
793 	/*
794 	 * No more jid bits set in lvb, all recovery is done, unblock locks
795 	 * (unless a new recover_prep callback has occured blocking locks
796 	 * again while working above)
797 	 */
798 
799 	spin_lock(&ls->ls_recover_spin);
800 	if (ls->ls_recover_block == block_gen &&
801 	    ls->ls_recover_start == start_gen) {
802 		clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
803 		spin_unlock(&ls->ls_recover_spin);
804 		fs_info(sdp, "recover generation %u done\n", start_gen);
805 		gfs2_glock_thaw(sdp);
806 	} else {
807 		fs_info(sdp, "recover generation %u block2 %u %u\n",
808 			start_gen, block_gen, ls->ls_recover_block);
809 		spin_unlock(&ls->ls_recover_spin);
810 	}
811 }
812 
813 static int control_mount(struct gfs2_sbd *sdp)
814 {
815 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
816 	uint32_t start_gen, block_gen, mount_gen, lvb_gen;
817 	int mounted_mode;
818 	int retries = 0;
819 	int error;
820 
821 	memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb));
822 	memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb));
823 	memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE);
824 	ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb;
825 	init_completion(&ls->ls_sync_wait);
826 
827 	set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
828 
829 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK);
830 	if (error) {
831 		fs_err(sdp, "control_mount control_lock NL error %d\n", error);
832 		return error;
833 	}
834 
835 	error = mounted_lock(sdp, DLM_LOCK_NL, 0);
836 	if (error) {
837 		fs_err(sdp, "control_mount mounted_lock NL error %d\n", error);
838 		control_unlock(sdp);
839 		return error;
840 	}
841 	mounted_mode = DLM_LOCK_NL;
842 
843 restart:
844 	if (retries++ && signal_pending(current)) {
845 		error = -EINTR;
846 		goto fail;
847 	}
848 
849 	/*
850 	 * We always start with both locks in NL. control_lock is
851 	 * demoted to NL below so we don't need to do it here.
852 	 */
853 
854 	if (mounted_mode != DLM_LOCK_NL) {
855 		error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
856 		if (error)
857 			goto fail;
858 		mounted_mode = DLM_LOCK_NL;
859 	}
860 
861 	/*
862 	 * Other nodes need to do some work in dlm recovery and gfs2_control
863 	 * before the recover_done and control_lock will be ready for us below.
864 	 * A delay here is not required but often avoids having to retry.
865 	 */
866 
867 	msleep_interruptible(500);
868 
869 	/*
870 	 * Acquire control_lock in EX and mounted_lock in either EX or PR.
871 	 * control_lock lvb keeps track of any pending journal recoveries.
872 	 * mounted_lock indicates if any other nodes have the fs mounted.
873 	 */
874 
875 	error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK);
876 	if (error == -EAGAIN) {
877 		goto restart;
878 	} else if (error) {
879 		fs_err(sdp, "control_mount control_lock EX error %d\n", error);
880 		goto fail;
881 	}
882 
883 	/**
884 	 * If we're a spectator, we don't want to take the lock in EX because
885 	 * we cannot do the first-mount responsibility it implies: recovery.
886 	 */
887 	if (sdp->sd_args.ar_spectator)
888 		goto locks_done;
889 
890 	error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
891 	if (!error) {
892 		mounted_mode = DLM_LOCK_EX;
893 		goto locks_done;
894 	} else if (error != -EAGAIN) {
895 		fs_err(sdp, "control_mount mounted_lock EX error %d\n", error);
896 		goto fail;
897 	}
898 
899 	error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
900 	if (!error) {
901 		mounted_mode = DLM_LOCK_PR;
902 		goto locks_done;
903 	} else {
904 		/* not even -EAGAIN should happen here */
905 		fs_err(sdp, "control_mount mounted_lock PR error %d\n", error);
906 		goto fail;
907 	}
908 
909 locks_done:
910 	/*
911 	 * If we got both locks above in EX, then we're the first mounter.
912 	 * If not, then we need to wait for the control_lock lvb to be
913 	 * updated by other mounted nodes to reflect our mount generation.
914 	 *
915 	 * In simple first mounter cases, first mounter will see zero lvb_gen,
916 	 * but in cases where all existing nodes leave/fail before mounting
917 	 * nodes finish control_mount, then all nodes will be mounting and
918 	 * lvb_gen will be non-zero.
919 	 */
920 
921 	control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
922 
923 	if (lvb_gen == 0xFFFFFFFF) {
924 		/* special value to force mount attempts to fail */
925 		fs_err(sdp, "control_mount control_lock disabled\n");
926 		error = -EINVAL;
927 		goto fail;
928 	}
929 
930 	if (mounted_mode == DLM_LOCK_EX) {
931 		/* first mounter, keep both EX while doing first recovery */
932 		spin_lock(&ls->ls_recover_spin);
933 		clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
934 		set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
935 		set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
936 		spin_unlock(&ls->ls_recover_spin);
937 		fs_info(sdp, "first mounter control generation %u\n", lvb_gen);
938 		return 0;
939 	}
940 
941 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
942 	if (error)
943 		goto fail;
944 
945 	/*
946 	 * We are not first mounter, now we need to wait for the control_lock
947 	 * lvb generation to be >= the generation from our first recover_done
948 	 * and all lvb bits to be clear (no pending journal recoveries.)
949 	 */
950 
951 	if (!all_jid_bits_clear(ls->ls_lvb_bits)) {
952 		/* journals need recovery, wait until all are clear */
953 		fs_info(sdp, "control_mount wait for journal recovery\n");
954 		goto restart;
955 	}
956 
957 	spin_lock(&ls->ls_recover_spin);
958 	block_gen = ls->ls_recover_block;
959 	start_gen = ls->ls_recover_start;
960 	mount_gen = ls->ls_recover_mount;
961 
962 	if (lvb_gen < mount_gen) {
963 		/* wait for mounted nodes to update control_lock lvb to our
964 		   generation, which might include new recovery bits set */
965 		if (sdp->sd_args.ar_spectator) {
966 			fs_info(sdp, "Recovery is required. Waiting for a "
967 				"non-spectator to mount.\n");
968 			msleep_interruptible(1000);
969 		} else {
970 			fs_info(sdp, "control_mount wait1 block %u start %u "
971 				"mount %u lvb %u flags %lx\n", block_gen,
972 				start_gen, mount_gen, lvb_gen,
973 				ls->ls_recover_flags);
974 		}
975 		spin_unlock(&ls->ls_recover_spin);
976 		goto restart;
977 	}
978 
979 	if (lvb_gen != start_gen) {
980 		/* wait for mounted nodes to update control_lock lvb to the
981 		   latest recovery generation */
982 		fs_info(sdp, "control_mount wait2 block %u start %u mount %u "
983 			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
984 			lvb_gen, ls->ls_recover_flags);
985 		spin_unlock(&ls->ls_recover_spin);
986 		goto restart;
987 	}
988 
989 	if (block_gen == start_gen) {
990 		/* dlm recovery in progress, wait for it to finish */
991 		fs_info(sdp, "control_mount wait3 block %u start %u mount %u "
992 			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
993 			lvb_gen, ls->ls_recover_flags);
994 		spin_unlock(&ls->ls_recover_spin);
995 		goto restart;
996 	}
997 
998 	clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
999 	set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
1000 	memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
1001 	memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
1002 	spin_unlock(&ls->ls_recover_spin);
1003 	return 0;
1004 
1005 fail:
1006 	mounted_unlock(sdp);
1007 	control_unlock(sdp);
1008 	return error;
1009 }
1010 
1011 static int control_first_done(struct gfs2_sbd *sdp)
1012 {
1013 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1014 	uint32_t start_gen, block_gen;
1015 	int error;
1016 
1017 restart:
1018 	spin_lock(&ls->ls_recover_spin);
1019 	start_gen = ls->ls_recover_start;
1020 	block_gen = ls->ls_recover_block;
1021 
1022 	if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) ||
1023 	    !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1024 	    !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1025 		/* sanity check, should not happen */
1026 		fs_err(sdp, "control_first_done start %u block %u flags %lx\n",
1027 		       start_gen, block_gen, ls->ls_recover_flags);
1028 		spin_unlock(&ls->ls_recover_spin);
1029 		control_unlock(sdp);
1030 		return -1;
1031 	}
1032 
1033 	if (start_gen == block_gen) {
1034 		/*
1035 		 * Wait for the end of a dlm recovery cycle to switch from
1036 		 * first mounter recovery.  We can ignore any recover_slot
1037 		 * callbacks between the recover_prep and next recover_done
1038 		 * because we are still the first mounter and any failed nodes
1039 		 * have not fully mounted, so they don't need recovery.
1040 		 */
1041 		spin_unlock(&ls->ls_recover_spin);
1042 		fs_info(sdp, "control_first_done wait gen %u\n", start_gen);
1043 
1044 		wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY,
1045 			    TASK_UNINTERRUPTIBLE);
1046 		goto restart;
1047 	}
1048 
1049 	clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1050 	set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags);
1051 	memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
1052 	memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
1053 	spin_unlock(&ls->ls_recover_spin);
1054 
1055 	memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE);
1056 	control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
1057 
1058 	error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT);
1059 	if (error)
1060 		fs_err(sdp, "control_first_done mounted PR error %d\n", error);
1061 
1062 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
1063 	if (error)
1064 		fs_err(sdp, "control_first_done control NL error %d\n", error);
1065 
1066 	return error;
1067 }
1068 
1069 /*
1070  * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
1071  * to accommodate the largest slot number.  (NB dlm slot numbers start at 1,
1072  * gfs2 jids start at 0, so jid = slot - 1)
1073  */
1074 
1075 #define RECOVER_SIZE_INC 16
1076 
1077 static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots,
1078 			    int num_slots)
1079 {
1080 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1081 	uint32_t *submit = NULL;
1082 	uint32_t *result = NULL;
1083 	uint32_t old_size, new_size;
1084 	int i, max_jid;
1085 
1086 	if (!ls->ls_lvb_bits) {
1087 		ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS);
1088 		if (!ls->ls_lvb_bits)
1089 			return -ENOMEM;
1090 	}
1091 
1092 	max_jid = 0;
1093 	for (i = 0; i < num_slots; i++) {
1094 		if (max_jid < slots[i].slot - 1)
1095 			max_jid = slots[i].slot - 1;
1096 	}
1097 
1098 	old_size = ls->ls_recover_size;
1099 	new_size = old_size;
1100 	while (new_size < max_jid + 1)
1101 		new_size += RECOVER_SIZE_INC;
1102 	if (new_size == old_size)
1103 		return 0;
1104 
1105 	submit = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1106 	result = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1107 	if (!submit || !result) {
1108 		kfree(submit);
1109 		kfree(result);
1110 		return -ENOMEM;
1111 	}
1112 
1113 	spin_lock(&ls->ls_recover_spin);
1114 	memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t));
1115 	memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t));
1116 	kfree(ls->ls_recover_submit);
1117 	kfree(ls->ls_recover_result);
1118 	ls->ls_recover_submit = submit;
1119 	ls->ls_recover_result = result;
1120 	ls->ls_recover_size = new_size;
1121 	spin_unlock(&ls->ls_recover_spin);
1122 	return 0;
1123 }
1124 
1125 static void free_recover_size(struct lm_lockstruct *ls)
1126 {
1127 	kfree(ls->ls_lvb_bits);
1128 	kfree(ls->ls_recover_submit);
1129 	kfree(ls->ls_recover_result);
1130 	ls->ls_recover_submit = NULL;
1131 	ls->ls_recover_result = NULL;
1132 	ls->ls_recover_size = 0;
1133 	ls->ls_lvb_bits = NULL;
1134 }
1135 
1136 /* dlm calls before it does lock recovery */
1137 
1138 static void gdlm_recover_prep(void *arg)
1139 {
1140 	struct gfs2_sbd *sdp = arg;
1141 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1142 
1143 	if (gfs2_withdrawing_or_withdrawn(sdp)) {
1144 		fs_err(sdp, "recover_prep ignored due to withdraw.\n");
1145 		return;
1146 	}
1147 	spin_lock(&ls->ls_recover_spin);
1148 	ls->ls_recover_block = ls->ls_recover_start;
1149 	set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1150 
1151 	if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1152 	     test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1153 		spin_unlock(&ls->ls_recover_spin);
1154 		return;
1155 	}
1156 	set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
1157 	spin_unlock(&ls->ls_recover_spin);
1158 }
1159 
1160 /* dlm calls after recover_prep has been completed on all lockspace members;
1161    identifies slot/jid of failed member */
1162 
1163 static void gdlm_recover_slot(void *arg, struct dlm_slot *slot)
1164 {
1165 	struct gfs2_sbd *sdp = arg;
1166 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1167 	int jid = slot->slot - 1;
1168 
1169 	if (gfs2_withdrawing_or_withdrawn(sdp)) {
1170 		fs_err(sdp, "recover_slot jid %d ignored due to withdraw.\n",
1171 		       jid);
1172 		return;
1173 	}
1174 	spin_lock(&ls->ls_recover_spin);
1175 	if (ls->ls_recover_size < jid + 1) {
1176 		fs_err(sdp, "recover_slot jid %d gen %u short size %d\n",
1177 		       jid, ls->ls_recover_block, ls->ls_recover_size);
1178 		spin_unlock(&ls->ls_recover_spin);
1179 		return;
1180 	}
1181 
1182 	if (ls->ls_recover_submit[jid]) {
1183 		fs_info(sdp, "recover_slot jid %d gen %u prev %u\n",
1184 			jid, ls->ls_recover_block, ls->ls_recover_submit[jid]);
1185 	}
1186 	ls->ls_recover_submit[jid] = ls->ls_recover_block;
1187 	spin_unlock(&ls->ls_recover_spin);
1188 }
1189 
1190 /* dlm calls after recover_slot and after it completes lock recovery */
1191 
1192 static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots,
1193 			      int our_slot, uint32_t generation)
1194 {
1195 	struct gfs2_sbd *sdp = arg;
1196 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1197 
1198 	if (gfs2_withdrawing_or_withdrawn(sdp)) {
1199 		fs_err(sdp, "recover_done ignored due to withdraw.\n");
1200 		return;
1201 	}
1202 	/* ensure the ls jid arrays are large enough */
1203 	set_recover_size(sdp, slots, num_slots);
1204 
1205 	spin_lock(&ls->ls_recover_spin);
1206 	ls->ls_recover_start = generation;
1207 
1208 	if (!ls->ls_recover_mount) {
1209 		ls->ls_recover_mount = generation;
1210 		ls->ls_jid = our_slot - 1;
1211 	}
1212 
1213 	if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1214 		queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0);
1215 
1216 	clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1217 	smp_mb__after_atomic();
1218 	wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY);
1219 	spin_unlock(&ls->ls_recover_spin);
1220 }
1221 
1222 /* gfs2_recover thread has a journal recovery result */
1223 
1224 static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid,
1225 				 unsigned int result)
1226 {
1227 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1228 
1229 	if (gfs2_withdrawing_or_withdrawn(sdp)) {
1230 		fs_err(sdp, "recovery_result jid %d ignored due to withdraw.\n",
1231 		       jid);
1232 		return;
1233 	}
1234 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1235 		return;
1236 
1237 	/* don't care about the recovery of own journal during mount */
1238 	if (jid == ls->ls_jid)
1239 		return;
1240 
1241 	spin_lock(&ls->ls_recover_spin);
1242 	if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1243 		spin_unlock(&ls->ls_recover_spin);
1244 		return;
1245 	}
1246 	if (ls->ls_recover_size < jid + 1) {
1247 		fs_err(sdp, "recovery_result jid %d short size %d\n",
1248 		       jid, ls->ls_recover_size);
1249 		spin_unlock(&ls->ls_recover_spin);
1250 		return;
1251 	}
1252 
1253 	fs_info(sdp, "recover jid %d result %s\n", jid,
1254 		result == LM_RD_GAVEUP ? "busy" : "success");
1255 
1256 	ls->ls_recover_result[jid] = result;
1257 
1258 	/* GAVEUP means another node is recovering the journal; delay our
1259 	   next attempt to recover it, to give the other node a chance to
1260 	   finish before trying again */
1261 
1262 	if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1263 		queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work,
1264 				   result == LM_RD_GAVEUP ? HZ : 0);
1265 	spin_unlock(&ls->ls_recover_spin);
1266 }
1267 
1268 static const struct dlm_lockspace_ops gdlm_lockspace_ops = {
1269 	.recover_prep = gdlm_recover_prep,
1270 	.recover_slot = gdlm_recover_slot,
1271 	.recover_done = gdlm_recover_done,
1272 };
1273 
1274 static int gdlm_mount(struct gfs2_sbd *sdp, const char *table)
1275 {
1276 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1277 	char cluster[GFS2_LOCKNAME_LEN];
1278 	const char *fsname;
1279 	uint32_t flags;
1280 	int error, ops_result;
1281 
1282 	/*
1283 	 * initialize everything
1284 	 */
1285 
1286 	INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func);
1287 	spin_lock_init(&ls->ls_recover_spin);
1288 	ls->ls_recover_flags = 0;
1289 	ls->ls_recover_mount = 0;
1290 	ls->ls_recover_start = 0;
1291 	ls->ls_recover_block = 0;
1292 	ls->ls_recover_size = 0;
1293 	ls->ls_recover_submit = NULL;
1294 	ls->ls_recover_result = NULL;
1295 	ls->ls_lvb_bits = NULL;
1296 
1297 	error = set_recover_size(sdp, NULL, 0);
1298 	if (error)
1299 		goto fail;
1300 
1301 	/*
1302 	 * prepare dlm_new_lockspace args
1303 	 */
1304 
1305 	fsname = strchr(table, ':');
1306 	if (!fsname) {
1307 		fs_info(sdp, "no fsname found\n");
1308 		error = -EINVAL;
1309 		goto fail_free;
1310 	}
1311 	memset(cluster, 0, sizeof(cluster));
1312 	memcpy(cluster, table, strlen(table) - strlen(fsname));
1313 	fsname++;
1314 
1315 	flags = DLM_LSFL_NEWEXCL;
1316 
1317 	/*
1318 	 * create/join lockspace
1319 	 */
1320 
1321 	error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE,
1322 				  &gdlm_lockspace_ops, sdp, &ops_result,
1323 				  &ls->ls_dlm);
1324 	if (error) {
1325 		fs_err(sdp, "dlm_new_lockspace error %d\n", error);
1326 		goto fail_free;
1327 	}
1328 
1329 	if (ops_result < 0) {
1330 		/*
1331 		 * dlm does not support ops callbacks,
1332 		 * old dlm_controld/gfs_controld are used, try without ops.
1333 		 */
1334 		fs_info(sdp, "dlm lockspace ops not used\n");
1335 		free_recover_size(ls);
1336 		set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags);
1337 		return 0;
1338 	}
1339 
1340 	if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) {
1341 		fs_err(sdp, "dlm lockspace ops disallow jid preset\n");
1342 		error = -EINVAL;
1343 		goto fail_release;
1344 	}
1345 
1346 	/*
1347 	 * control_mount() uses control_lock to determine first mounter,
1348 	 * and for later mounts, waits for any recoveries to be cleared.
1349 	 */
1350 
1351 	error = control_mount(sdp);
1352 	if (error) {
1353 		fs_err(sdp, "mount control error %d\n", error);
1354 		goto fail_release;
1355 	}
1356 
1357 	ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1358 	clear_bit(SDF_NOJOURNALID, &sdp->sd_flags);
1359 	smp_mb__after_atomic();
1360 	wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID);
1361 	return 0;
1362 
1363 fail_release:
1364 	dlm_release_lockspace(ls->ls_dlm, 2);
1365 fail_free:
1366 	free_recover_size(ls);
1367 fail:
1368 	return error;
1369 }
1370 
1371 static void gdlm_first_done(struct gfs2_sbd *sdp)
1372 {
1373 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1374 	int error;
1375 
1376 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1377 		return;
1378 
1379 	error = control_first_done(sdp);
1380 	if (error)
1381 		fs_err(sdp, "mount first_done error %d\n", error);
1382 }
1383 
1384 static void gdlm_unmount(struct gfs2_sbd *sdp)
1385 {
1386 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1387 
1388 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1389 		goto release;
1390 
1391 	/* wait for gfs2_control_wq to be done with this mount */
1392 
1393 	spin_lock(&ls->ls_recover_spin);
1394 	set_bit(DFL_UNMOUNT, &ls->ls_recover_flags);
1395 	spin_unlock(&ls->ls_recover_spin);
1396 	flush_delayed_work(&sdp->sd_control_work);
1397 
1398 	/* mounted_lock and control_lock will be purged in dlm recovery */
1399 release:
1400 	if (ls->ls_dlm) {
1401 		dlm_release_lockspace(ls->ls_dlm, 2);
1402 		ls->ls_dlm = NULL;
1403 	}
1404 
1405 	free_recover_size(ls);
1406 }
1407 
1408 static const match_table_t dlm_tokens = {
1409 	{ Opt_jid, "jid=%d"},
1410 	{ Opt_id, "id=%d"},
1411 	{ Opt_first, "first=%d"},
1412 	{ Opt_nodir, "nodir=%d"},
1413 	{ Opt_err, NULL },
1414 };
1415 
1416 const struct lm_lockops gfs2_dlm_ops = {
1417 	.lm_proto_name = "lock_dlm",
1418 	.lm_mount = gdlm_mount,
1419 	.lm_first_done = gdlm_first_done,
1420 	.lm_recovery_result = gdlm_recovery_result,
1421 	.lm_unmount = gdlm_unmount,
1422 	.lm_put_lock = gdlm_put_lock,
1423 	.lm_lock = gdlm_lock,
1424 	.lm_cancel = gdlm_cancel,
1425 	.lm_tokens = &dlm_tokens,
1426 };
1427 
1428