xref: /linux/fs/gfs2/lock_dlm.c (revision c953efdbb1b4f6804a476329a2df8bdab3a76019)
1 /*
2  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
3  * Copyright 2004-2011 Red Hat, Inc.
4  *
5  * This copyrighted material is made available to anyone wishing to use,
6  * modify, copy, or redistribute it subject to the terms and conditions
7  * of the GNU General Public License version 2.
8  */
9 
10 #include <linux/fs.h>
11 #include <linux/dlm.h>
12 #include <linux/slab.h>
13 #include <linux/types.h>
14 #include <linux/delay.h>
15 #include <linux/gfs2_ondisk.h>
16 
17 #include "incore.h"
18 #include "glock.h"
19 #include "util.h"
20 #include "sys.h"
21 
22 extern struct workqueue_struct *gfs2_control_wq;
23 
24 static void gdlm_ast(void *arg)
25 {
26 	struct gfs2_glock *gl = arg;
27 	unsigned ret = gl->gl_state;
28 
29 	BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED);
30 
31 	if (gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID)
32 		memset(gl->gl_lvb, 0, GDLM_LVB_SIZE);
33 
34 	switch (gl->gl_lksb.sb_status) {
35 	case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */
36 		gfs2_glock_free(gl);
37 		return;
38 	case -DLM_ECANCEL: /* Cancel while getting lock */
39 		ret |= LM_OUT_CANCELED;
40 		goto out;
41 	case -EAGAIN: /* Try lock fails */
42 	case -EDEADLK: /* Deadlock detected */
43 		goto out;
44 	case -ETIMEDOUT: /* Canceled due to timeout */
45 		ret |= LM_OUT_ERROR;
46 		goto out;
47 	case 0: /* Success */
48 		break;
49 	default: /* Something unexpected */
50 		BUG();
51 	}
52 
53 	ret = gl->gl_req;
54 	if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) {
55 		if (gl->gl_req == LM_ST_SHARED)
56 			ret = LM_ST_DEFERRED;
57 		else if (gl->gl_req == LM_ST_DEFERRED)
58 			ret = LM_ST_SHARED;
59 		else
60 			BUG();
61 	}
62 
63 	set_bit(GLF_INITIAL, &gl->gl_flags);
64 	gfs2_glock_complete(gl, ret);
65 	return;
66 out:
67 	if (!test_bit(GLF_INITIAL, &gl->gl_flags))
68 		gl->gl_lksb.sb_lkid = 0;
69 	gfs2_glock_complete(gl, ret);
70 }
71 
72 static void gdlm_bast(void *arg, int mode)
73 {
74 	struct gfs2_glock *gl = arg;
75 
76 	switch (mode) {
77 	case DLM_LOCK_EX:
78 		gfs2_glock_cb(gl, LM_ST_UNLOCKED);
79 		break;
80 	case DLM_LOCK_CW:
81 		gfs2_glock_cb(gl, LM_ST_DEFERRED);
82 		break;
83 	case DLM_LOCK_PR:
84 		gfs2_glock_cb(gl, LM_ST_SHARED);
85 		break;
86 	default:
87 		printk(KERN_ERR "unknown bast mode %d", mode);
88 		BUG();
89 	}
90 }
91 
92 /* convert gfs lock-state to dlm lock-mode */
93 
94 static int make_mode(const unsigned int lmstate)
95 {
96 	switch (lmstate) {
97 	case LM_ST_UNLOCKED:
98 		return DLM_LOCK_NL;
99 	case LM_ST_EXCLUSIVE:
100 		return DLM_LOCK_EX;
101 	case LM_ST_DEFERRED:
102 		return DLM_LOCK_CW;
103 	case LM_ST_SHARED:
104 		return DLM_LOCK_PR;
105 	}
106 	printk(KERN_ERR "unknown LM state %d", lmstate);
107 	BUG();
108 	return -1;
109 }
110 
111 static u32 make_flags(const u32 lkid, const unsigned int gfs_flags,
112 		      const int req)
113 {
114 	u32 lkf = 0;
115 
116 	if (gfs_flags & LM_FLAG_TRY)
117 		lkf |= DLM_LKF_NOQUEUE;
118 
119 	if (gfs_flags & LM_FLAG_TRY_1CB) {
120 		lkf |= DLM_LKF_NOQUEUE;
121 		lkf |= DLM_LKF_NOQUEUEBAST;
122 	}
123 
124 	if (gfs_flags & LM_FLAG_PRIORITY) {
125 		lkf |= DLM_LKF_NOORDER;
126 		lkf |= DLM_LKF_HEADQUE;
127 	}
128 
129 	if (gfs_flags & LM_FLAG_ANY) {
130 		if (req == DLM_LOCK_PR)
131 			lkf |= DLM_LKF_ALTCW;
132 		else if (req == DLM_LOCK_CW)
133 			lkf |= DLM_LKF_ALTPR;
134 		else
135 			BUG();
136 	}
137 
138 	if (lkid != 0)
139 		lkf |= DLM_LKF_CONVERT;
140 
141 	lkf |= DLM_LKF_VALBLK;
142 
143 	return lkf;
144 }
145 
146 static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state,
147 		     unsigned int flags)
148 {
149 	struct lm_lockstruct *ls = &gl->gl_sbd->sd_lockstruct;
150 	int req;
151 	u32 lkf;
152 
153 	req = make_mode(req_state);
154 	lkf = make_flags(gl->gl_lksb.sb_lkid, flags, req);
155 
156 	/*
157 	 * Submit the actual lock request.
158 	 */
159 
160 	return dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, gl->gl_strname,
161 			GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast);
162 }
163 
164 static void gdlm_put_lock(struct gfs2_glock *gl)
165 {
166 	struct gfs2_sbd *sdp = gl->gl_sbd;
167 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
168 	int error;
169 
170 	if (gl->gl_lksb.sb_lkid == 0) {
171 		gfs2_glock_free(gl);
172 		return;
173 	}
174 
175 	error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK,
176 			   NULL, gl);
177 	if (error) {
178 		printk(KERN_ERR "gdlm_unlock %x,%llx err=%d\n",
179 		       gl->gl_name.ln_type,
180 		       (unsigned long long)gl->gl_name.ln_number, error);
181 		return;
182 	}
183 }
184 
185 static void gdlm_cancel(struct gfs2_glock *gl)
186 {
187 	struct lm_lockstruct *ls = &gl->gl_sbd->sd_lockstruct;
188 	dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl);
189 }
190 
191 /*
192  * dlm/gfs2 recovery coordination using dlm_recover callbacks
193  *
194  *  1. dlm_controld sees lockspace members change
195  *  2. dlm_controld blocks dlm-kernel locking activity
196  *  3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
197  *  4. dlm_controld starts and finishes its own user level recovery
198  *  5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
199  *  6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
200  *  7. dlm_recoverd does its own lock recovery
201  *  8. dlm_recoverd unblocks dlm-kernel locking activity
202  *  9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
203  * 10. gfs2_control updates control_lock lvb with new generation and jid bits
204  * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
205  * 12. gfs2_recover dequeues and recovers journals of failed nodes
206  * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
207  * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
208  * 15. gfs2_control unblocks normal locking when all journals are recovered
209  *
210  * - failures during recovery
211  *
212  * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
213  * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
214  * recovering for a prior failure.  gfs2_control needs a way to detect
215  * this so it can leave BLOCK_LOCKS set in step 15.  This is managed using
216  * the recover_block and recover_start values.
217  *
218  * recover_done() provides a new lockspace generation number each time it
219  * is called (step 9).  This generation number is saved as recover_start.
220  * When recover_prep() is called, it sets BLOCK_LOCKS and sets
221  * recover_block = recover_start.  So, while recover_block is equal to
222  * recover_start, BLOCK_LOCKS should remain set.  (recover_spin must
223  * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
224  *
225  * - more specific gfs2 steps in sequence above
226  *
227  *  3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
228  *  6. recover_slot records any failed jids (maybe none)
229  *  9. recover_done sets recover_start = new generation number
230  * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
231  * 12. gfs2_recover does journal recoveries for failed jids identified above
232  * 14. gfs2_control clears control_lock lvb bits for recovered jids
233  * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
234  *     again) then do nothing, otherwise if recover_start > recover_block
235  *     then clear BLOCK_LOCKS.
236  *
237  * - parallel recovery steps across all nodes
238  *
239  * All nodes attempt to update the control_lock lvb with the new generation
240  * number and jid bits, but only the first to get the control_lock EX will
241  * do so; others will see that it's already done (lvb already contains new
242  * generation number.)
243  *
244  * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
245  * . All nodes attempt to set control_lock lvb gen + bits for the new gen
246  * . One node gets control_lock first and writes the lvb, others see it's done
247  * . All nodes attempt to recover jids for which they see control_lock bits set
248  * . One node succeeds for a jid, and that one clears the jid bit in the lvb
249  * . All nodes will eventually see all lvb bits clear and unblock locks
250  *
251  * - is there a problem with clearing an lvb bit that should be set
252  *   and missing a journal recovery?
253  *
254  * 1. jid fails
255  * 2. lvb bit set for step 1
256  * 3. jid recovered for step 1
257  * 4. jid taken again (new mount)
258  * 5. jid fails (for step 4)
259  * 6. lvb bit set for step 5 (will already be set)
260  * 7. lvb bit cleared for step 3
261  *
262  * This is not a problem because the failure in step 5 does not
263  * require recovery, because the mount in step 4 could not have
264  * progressed far enough to unblock locks and access the fs.  The
265  * control_mount() function waits for all recoveries to be complete
266  * for the latest lockspace generation before ever unblocking locks
267  * and returning.  The mount in step 4 waits until the recovery in
268  * step 1 is done.
269  *
270  * - special case of first mounter: first node to mount the fs
271  *
272  * The first node to mount a gfs2 fs needs to check all the journals
273  * and recover any that need recovery before other nodes are allowed
274  * to mount the fs.  (Others may begin mounting, but they must wait
275  * for the first mounter to be done before taking locks on the fs
276  * or accessing the fs.)  This has two parts:
277  *
278  * 1. The mounted_lock tells a node it's the first to mount the fs.
279  * Each node holds the mounted_lock in PR while it's mounted.
280  * Each node tries to acquire the mounted_lock in EX when it mounts.
281  * If a node is granted the mounted_lock EX it means there are no
282  * other mounted nodes (no PR locks exist), and it is the first mounter.
283  * The mounted_lock is demoted to PR when first recovery is done, so
284  * others will fail to get an EX lock, but will get a PR lock.
285  *
286  * 2. The control_lock blocks others in control_mount() while the first
287  * mounter is doing first mount recovery of all journals.
288  * A mounting node needs to acquire control_lock in EX mode before
289  * it can proceed.  The first mounter holds control_lock in EX while doing
290  * the first mount recovery, blocking mounts from other nodes, then demotes
291  * control_lock to NL when it's done (others_may_mount/first_done),
292  * allowing other nodes to continue mounting.
293  *
294  * first mounter:
295  * control_lock EX/NOQUEUE success
296  * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
297  * set first=1
298  * do first mounter recovery
299  * mounted_lock EX->PR
300  * control_lock EX->NL, write lvb generation
301  *
302  * other mounter:
303  * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
304  * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
305  * mounted_lock PR/NOQUEUE success
306  * read lvb generation
307  * control_lock EX->NL
308  * set first=0
309  *
310  * - mount during recovery
311  *
312  * If a node mounts while others are doing recovery (not first mounter),
313  * the mounting node will get its initial recover_done() callback without
314  * having seen any previous failures/callbacks.
315  *
316  * It must wait for all recoveries preceding its mount to be finished
317  * before it unblocks locks.  It does this by repeating the "other mounter"
318  * steps above until the lvb generation number is >= its mount generation
319  * number (from initial recover_done) and all lvb bits are clear.
320  *
321  * - control_lock lvb format
322  *
323  * 4 bytes generation number: the latest dlm lockspace generation number
324  * from recover_done callback.  Indicates the jid bitmap has been updated
325  * to reflect all slot failures through that generation.
326  * 4 bytes unused.
327  * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
328  * that jid N needs recovery.
329  */
330 
331 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
332 
333 static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen,
334 			     char *lvb_bits)
335 {
336 	uint32_t gen;
337 	memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE);
338 	memcpy(&gen, lvb_bits, sizeof(uint32_t));
339 	*lvb_gen = le32_to_cpu(gen);
340 }
341 
342 static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen,
343 			      char *lvb_bits)
344 {
345 	uint32_t gen;
346 	memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE);
347 	gen = cpu_to_le32(lvb_gen);
348 	memcpy(ls->ls_control_lvb, &gen, sizeof(uint32_t));
349 }
350 
351 static int all_jid_bits_clear(char *lvb)
352 {
353 	int i;
354 	for (i = JID_BITMAP_OFFSET; i < GDLM_LVB_SIZE; i++) {
355 		if (lvb[i])
356 			return 0;
357 	}
358 	return 1;
359 }
360 
361 static void sync_wait_cb(void *arg)
362 {
363 	struct lm_lockstruct *ls = arg;
364 	complete(&ls->ls_sync_wait);
365 }
366 
367 static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name)
368 {
369 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
370 	int error;
371 
372 	error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls);
373 	if (error) {
374 		fs_err(sdp, "%s lkid %x error %d\n",
375 		       name, lksb->sb_lkid, error);
376 		return error;
377 	}
378 
379 	wait_for_completion(&ls->ls_sync_wait);
380 
381 	if (lksb->sb_status != -DLM_EUNLOCK) {
382 		fs_err(sdp, "%s lkid %x status %d\n",
383 		       name, lksb->sb_lkid, lksb->sb_status);
384 		return -1;
385 	}
386 	return 0;
387 }
388 
389 static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags,
390 		     unsigned int num, struct dlm_lksb *lksb, char *name)
391 {
392 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
393 	char strname[GDLM_STRNAME_BYTES];
394 	int error, status;
395 
396 	memset(strname, 0, GDLM_STRNAME_BYTES);
397 	snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num);
398 
399 	error = dlm_lock(ls->ls_dlm, mode, lksb, flags,
400 			 strname, GDLM_STRNAME_BYTES - 1,
401 			 0, sync_wait_cb, ls, NULL);
402 	if (error) {
403 		fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n",
404 		       name, lksb->sb_lkid, flags, mode, error);
405 		return error;
406 	}
407 
408 	wait_for_completion(&ls->ls_sync_wait);
409 
410 	status = lksb->sb_status;
411 
412 	if (status && status != -EAGAIN) {
413 		fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n",
414 		       name, lksb->sb_lkid, flags, mode, status);
415 	}
416 
417 	return status;
418 }
419 
420 static int mounted_unlock(struct gfs2_sbd *sdp)
421 {
422 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
423 	return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock");
424 }
425 
426 static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
427 {
428 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
429 	return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK,
430 			 &ls->ls_mounted_lksb, "mounted_lock");
431 }
432 
433 static int control_unlock(struct gfs2_sbd *sdp)
434 {
435 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
436 	return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock");
437 }
438 
439 static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
440 {
441 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
442 	return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK,
443 			 &ls->ls_control_lksb, "control_lock");
444 }
445 
446 static void gfs2_control_func(struct work_struct *work)
447 {
448 	struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work);
449 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
450 	char lvb_bits[GDLM_LVB_SIZE];
451 	uint32_t block_gen, start_gen, lvb_gen, flags;
452 	int recover_set = 0;
453 	int write_lvb = 0;
454 	int recover_size;
455 	int i, error;
456 
457 	spin_lock(&ls->ls_recover_spin);
458 	/*
459 	 * No MOUNT_DONE means we're still mounting; control_mount()
460 	 * will set this flag, after which this thread will take over
461 	 * all further clearing of BLOCK_LOCKS.
462 	 *
463 	 * FIRST_MOUNT means this node is doing first mounter recovery,
464 	 * for which recovery control is handled by
465 	 * control_mount()/control_first_done(), not this thread.
466 	 */
467 	if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
468 	     test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
469 		spin_unlock(&ls->ls_recover_spin);
470 		return;
471 	}
472 	block_gen = ls->ls_recover_block;
473 	start_gen = ls->ls_recover_start;
474 	spin_unlock(&ls->ls_recover_spin);
475 
476 	/*
477 	 * Equal block_gen and start_gen implies we are between
478 	 * recover_prep and recover_done callbacks, which means
479 	 * dlm recovery is in progress and dlm locking is blocked.
480 	 * There's no point trying to do any work until recover_done.
481 	 */
482 
483 	if (block_gen == start_gen)
484 		return;
485 
486 	/*
487 	 * Propagate recover_submit[] and recover_result[] to lvb:
488 	 * dlm_recoverd adds to recover_submit[] jids needing recovery
489 	 * gfs2_recover adds to recover_result[] journal recovery results
490 	 *
491 	 * set lvb bit for jids in recover_submit[] if the lvb has not
492 	 * yet been updated for the generation of the failure
493 	 *
494 	 * clear lvb bit for jids in recover_result[] if the result of
495 	 * the journal recovery is SUCCESS
496 	 */
497 
498 	error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
499 	if (error) {
500 		fs_err(sdp, "control lock EX error %d\n", error);
501 		return;
502 	}
503 
504 	control_lvb_read(ls, &lvb_gen, lvb_bits);
505 
506 	spin_lock(&ls->ls_recover_spin);
507 	if (block_gen != ls->ls_recover_block ||
508 	    start_gen != ls->ls_recover_start) {
509 		fs_info(sdp, "recover generation %u block1 %u %u\n",
510 			start_gen, block_gen, ls->ls_recover_block);
511 		spin_unlock(&ls->ls_recover_spin);
512 		control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
513 		return;
514 	}
515 
516 	recover_size = ls->ls_recover_size;
517 
518 	if (lvb_gen <= start_gen) {
519 		/*
520 		 * Clear lvb bits for jids we've successfully recovered.
521 		 * Because all nodes attempt to recover failed journals,
522 		 * a journal can be recovered multiple times successfully
523 		 * in succession.  Only the first will really do recovery,
524 		 * the others find it clean, but still report a successful
525 		 * recovery.  So, another node may have already recovered
526 		 * the jid and cleared the lvb bit for it.
527 		 */
528 		for (i = 0; i < recover_size; i++) {
529 			if (ls->ls_recover_result[i] != LM_RD_SUCCESS)
530 				continue;
531 
532 			ls->ls_recover_result[i] = 0;
533 
534 			if (!test_bit_le(i, lvb_bits + JID_BITMAP_OFFSET))
535 				continue;
536 
537 			__clear_bit_le(i, lvb_bits + JID_BITMAP_OFFSET);
538 			write_lvb = 1;
539 		}
540 	}
541 
542 	if (lvb_gen == start_gen) {
543 		/*
544 		 * Failed slots before start_gen are already set in lvb.
545 		 */
546 		for (i = 0; i < recover_size; i++) {
547 			if (!ls->ls_recover_submit[i])
548 				continue;
549 			if (ls->ls_recover_submit[i] < lvb_gen)
550 				ls->ls_recover_submit[i] = 0;
551 		}
552 	} else if (lvb_gen < start_gen) {
553 		/*
554 		 * Failed slots before start_gen are not yet set in lvb.
555 		 */
556 		for (i = 0; i < recover_size; i++) {
557 			if (!ls->ls_recover_submit[i])
558 				continue;
559 			if (ls->ls_recover_submit[i] < start_gen) {
560 				ls->ls_recover_submit[i] = 0;
561 				__set_bit_le(i, lvb_bits + JID_BITMAP_OFFSET);
562 			}
563 		}
564 		/* even if there are no bits to set, we need to write the
565 		   latest generation to the lvb */
566 		write_lvb = 1;
567 	} else {
568 		/*
569 		 * we should be getting a recover_done() for lvb_gen soon
570 		 */
571 	}
572 	spin_unlock(&ls->ls_recover_spin);
573 
574 	if (write_lvb) {
575 		control_lvb_write(ls, start_gen, lvb_bits);
576 		flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK;
577 	} else {
578 		flags = DLM_LKF_CONVERT;
579 	}
580 
581 	error = control_lock(sdp, DLM_LOCK_NL, flags);
582 	if (error) {
583 		fs_err(sdp, "control lock NL error %d\n", error);
584 		return;
585 	}
586 
587 	/*
588 	 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
589 	 * and clear a jid bit in the lvb if the recovery is a success.
590 	 * Eventually all journals will be recovered, all jid bits will
591 	 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
592 	 */
593 
594 	for (i = 0; i < recover_size; i++) {
595 		if (test_bit_le(i, lvb_bits + JID_BITMAP_OFFSET)) {
596 			fs_info(sdp, "recover generation %u jid %d\n",
597 				start_gen, i);
598 			gfs2_recover_set(sdp, i);
599 			recover_set++;
600 		}
601 	}
602 	if (recover_set)
603 		return;
604 
605 	/*
606 	 * No more jid bits set in lvb, all recovery is done, unblock locks
607 	 * (unless a new recover_prep callback has occured blocking locks
608 	 * again while working above)
609 	 */
610 
611 	spin_lock(&ls->ls_recover_spin);
612 	if (ls->ls_recover_block == block_gen &&
613 	    ls->ls_recover_start == start_gen) {
614 		clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
615 		spin_unlock(&ls->ls_recover_spin);
616 		fs_info(sdp, "recover generation %u done\n", start_gen);
617 		gfs2_glock_thaw(sdp);
618 	} else {
619 		fs_info(sdp, "recover generation %u block2 %u %u\n",
620 			start_gen, block_gen, ls->ls_recover_block);
621 		spin_unlock(&ls->ls_recover_spin);
622 	}
623 }
624 
625 static int control_mount(struct gfs2_sbd *sdp)
626 {
627 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
628 	char lvb_bits[GDLM_LVB_SIZE];
629 	uint32_t start_gen, block_gen, mount_gen, lvb_gen;
630 	int mounted_mode;
631 	int retries = 0;
632 	int error;
633 
634 	memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb));
635 	memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb));
636 	memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE);
637 	ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb;
638 	init_completion(&ls->ls_sync_wait);
639 
640 	set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
641 
642 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK);
643 	if (error) {
644 		fs_err(sdp, "control_mount control_lock NL error %d\n", error);
645 		return error;
646 	}
647 
648 	error = mounted_lock(sdp, DLM_LOCK_NL, 0);
649 	if (error) {
650 		fs_err(sdp, "control_mount mounted_lock NL error %d\n", error);
651 		control_unlock(sdp);
652 		return error;
653 	}
654 	mounted_mode = DLM_LOCK_NL;
655 
656 restart:
657 	if (retries++ && signal_pending(current)) {
658 		error = -EINTR;
659 		goto fail;
660 	}
661 
662 	/*
663 	 * We always start with both locks in NL. control_lock is
664 	 * demoted to NL below so we don't need to do it here.
665 	 */
666 
667 	if (mounted_mode != DLM_LOCK_NL) {
668 		error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
669 		if (error)
670 			goto fail;
671 		mounted_mode = DLM_LOCK_NL;
672 	}
673 
674 	/*
675 	 * Other nodes need to do some work in dlm recovery and gfs2_control
676 	 * before the recover_done and control_lock will be ready for us below.
677 	 * A delay here is not required but often avoids having to retry.
678 	 */
679 
680 	msleep_interruptible(500);
681 
682 	/*
683 	 * Acquire control_lock in EX and mounted_lock in either EX or PR.
684 	 * control_lock lvb keeps track of any pending journal recoveries.
685 	 * mounted_lock indicates if any other nodes have the fs mounted.
686 	 */
687 
688 	error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK);
689 	if (error == -EAGAIN) {
690 		goto restart;
691 	} else if (error) {
692 		fs_err(sdp, "control_mount control_lock EX error %d\n", error);
693 		goto fail;
694 	}
695 
696 	error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
697 	if (!error) {
698 		mounted_mode = DLM_LOCK_EX;
699 		goto locks_done;
700 	} else if (error != -EAGAIN) {
701 		fs_err(sdp, "control_mount mounted_lock EX error %d\n", error);
702 		goto fail;
703 	}
704 
705 	error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
706 	if (!error) {
707 		mounted_mode = DLM_LOCK_PR;
708 		goto locks_done;
709 	} else {
710 		/* not even -EAGAIN should happen here */
711 		fs_err(sdp, "control_mount mounted_lock PR error %d\n", error);
712 		goto fail;
713 	}
714 
715 locks_done:
716 	/*
717 	 * If we got both locks above in EX, then we're the first mounter.
718 	 * If not, then we need to wait for the control_lock lvb to be
719 	 * updated by other mounted nodes to reflect our mount generation.
720 	 *
721 	 * In simple first mounter cases, first mounter will see zero lvb_gen,
722 	 * but in cases where all existing nodes leave/fail before mounting
723 	 * nodes finish control_mount, then all nodes will be mounting and
724 	 * lvb_gen will be non-zero.
725 	 */
726 
727 	control_lvb_read(ls, &lvb_gen, lvb_bits);
728 
729 	if (lvb_gen == 0xFFFFFFFF) {
730 		/* special value to force mount attempts to fail */
731 		fs_err(sdp, "control_mount control_lock disabled\n");
732 		error = -EINVAL;
733 		goto fail;
734 	}
735 
736 	if (mounted_mode == DLM_LOCK_EX) {
737 		/* first mounter, keep both EX while doing first recovery */
738 		spin_lock(&ls->ls_recover_spin);
739 		clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
740 		set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
741 		set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
742 		spin_unlock(&ls->ls_recover_spin);
743 		fs_info(sdp, "first mounter control generation %u\n", lvb_gen);
744 		return 0;
745 	}
746 
747 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
748 	if (error)
749 		goto fail;
750 
751 	/*
752 	 * We are not first mounter, now we need to wait for the control_lock
753 	 * lvb generation to be >= the generation from our first recover_done
754 	 * and all lvb bits to be clear (no pending journal recoveries.)
755 	 */
756 
757 	if (!all_jid_bits_clear(lvb_bits)) {
758 		/* journals need recovery, wait until all are clear */
759 		fs_info(sdp, "control_mount wait for journal recovery\n");
760 		goto restart;
761 	}
762 
763 	spin_lock(&ls->ls_recover_spin);
764 	block_gen = ls->ls_recover_block;
765 	start_gen = ls->ls_recover_start;
766 	mount_gen = ls->ls_recover_mount;
767 
768 	if (lvb_gen < mount_gen) {
769 		/* wait for mounted nodes to update control_lock lvb to our
770 		   generation, which might include new recovery bits set */
771 		fs_info(sdp, "control_mount wait1 block %u start %u mount %u "
772 			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
773 			lvb_gen, ls->ls_recover_flags);
774 		spin_unlock(&ls->ls_recover_spin);
775 		goto restart;
776 	}
777 
778 	if (lvb_gen != start_gen) {
779 		/* wait for mounted nodes to update control_lock lvb to the
780 		   latest recovery generation */
781 		fs_info(sdp, "control_mount wait2 block %u start %u mount %u "
782 			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
783 			lvb_gen, ls->ls_recover_flags);
784 		spin_unlock(&ls->ls_recover_spin);
785 		goto restart;
786 	}
787 
788 	if (block_gen == start_gen) {
789 		/* dlm recovery in progress, wait for it to finish */
790 		fs_info(sdp, "control_mount wait3 block %u start %u mount %u "
791 			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
792 			lvb_gen, ls->ls_recover_flags);
793 		spin_unlock(&ls->ls_recover_spin);
794 		goto restart;
795 	}
796 
797 	clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
798 	set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
799 	memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
800 	memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
801 	spin_unlock(&ls->ls_recover_spin);
802 	return 0;
803 
804 fail:
805 	mounted_unlock(sdp);
806 	control_unlock(sdp);
807 	return error;
808 }
809 
810 static int dlm_recovery_wait(void *word)
811 {
812 	schedule();
813 	return 0;
814 }
815 
816 static int control_first_done(struct gfs2_sbd *sdp)
817 {
818 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
819 	char lvb_bits[GDLM_LVB_SIZE];
820 	uint32_t start_gen, block_gen;
821 	int error;
822 
823 restart:
824 	spin_lock(&ls->ls_recover_spin);
825 	start_gen = ls->ls_recover_start;
826 	block_gen = ls->ls_recover_block;
827 
828 	if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) ||
829 	    !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
830 	    !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
831 		/* sanity check, should not happen */
832 		fs_err(sdp, "control_first_done start %u block %u flags %lx\n",
833 		       start_gen, block_gen, ls->ls_recover_flags);
834 		spin_unlock(&ls->ls_recover_spin);
835 		control_unlock(sdp);
836 		return -1;
837 	}
838 
839 	if (start_gen == block_gen) {
840 		/*
841 		 * Wait for the end of a dlm recovery cycle to switch from
842 		 * first mounter recovery.  We can ignore any recover_slot
843 		 * callbacks between the recover_prep and next recover_done
844 		 * because we are still the first mounter and any failed nodes
845 		 * have not fully mounted, so they don't need recovery.
846 		 */
847 		spin_unlock(&ls->ls_recover_spin);
848 		fs_info(sdp, "control_first_done wait gen %u\n", start_gen);
849 
850 		wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY,
851 			    dlm_recovery_wait, TASK_UNINTERRUPTIBLE);
852 		goto restart;
853 	}
854 
855 	clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
856 	set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags);
857 	memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
858 	memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
859 	spin_unlock(&ls->ls_recover_spin);
860 
861 	memset(lvb_bits, 0, sizeof(lvb_bits));
862 	control_lvb_write(ls, start_gen, lvb_bits);
863 
864 	error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT);
865 	if (error)
866 		fs_err(sdp, "control_first_done mounted PR error %d\n", error);
867 
868 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
869 	if (error)
870 		fs_err(sdp, "control_first_done control NL error %d\n", error);
871 
872 	return error;
873 }
874 
875 /*
876  * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
877  * to accomodate the largest slot number.  (NB dlm slot numbers start at 1,
878  * gfs2 jids start at 0, so jid = slot - 1)
879  */
880 
881 #define RECOVER_SIZE_INC 16
882 
883 static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots,
884 			    int num_slots)
885 {
886 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
887 	uint32_t *submit = NULL;
888 	uint32_t *result = NULL;
889 	uint32_t old_size, new_size;
890 	int i, max_jid;
891 
892 	max_jid = 0;
893 	for (i = 0; i < num_slots; i++) {
894 		if (max_jid < slots[i].slot - 1)
895 			max_jid = slots[i].slot - 1;
896 	}
897 
898 	old_size = ls->ls_recover_size;
899 
900 	if (old_size >= max_jid + 1)
901 		return 0;
902 
903 	new_size = old_size + RECOVER_SIZE_INC;
904 
905 	submit = kzalloc(new_size * sizeof(uint32_t), GFP_NOFS);
906 	result = kzalloc(new_size * sizeof(uint32_t), GFP_NOFS);
907 	if (!submit || !result) {
908 		kfree(submit);
909 		kfree(result);
910 		return -ENOMEM;
911 	}
912 
913 	spin_lock(&ls->ls_recover_spin);
914 	memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t));
915 	memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t));
916 	kfree(ls->ls_recover_submit);
917 	kfree(ls->ls_recover_result);
918 	ls->ls_recover_submit = submit;
919 	ls->ls_recover_result = result;
920 	ls->ls_recover_size = new_size;
921 	spin_unlock(&ls->ls_recover_spin);
922 	return 0;
923 }
924 
925 static void free_recover_size(struct lm_lockstruct *ls)
926 {
927 	kfree(ls->ls_recover_submit);
928 	kfree(ls->ls_recover_result);
929 	ls->ls_recover_submit = NULL;
930 	ls->ls_recover_result = NULL;
931 	ls->ls_recover_size = 0;
932 }
933 
934 /* dlm calls before it does lock recovery */
935 
936 static void gdlm_recover_prep(void *arg)
937 {
938 	struct gfs2_sbd *sdp = arg;
939 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
940 
941 	spin_lock(&ls->ls_recover_spin);
942 	ls->ls_recover_block = ls->ls_recover_start;
943 	set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
944 
945 	if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
946 	     test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
947 		spin_unlock(&ls->ls_recover_spin);
948 		return;
949 	}
950 	set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
951 	spin_unlock(&ls->ls_recover_spin);
952 }
953 
954 /* dlm calls after recover_prep has been completed on all lockspace members;
955    identifies slot/jid of failed member */
956 
957 static void gdlm_recover_slot(void *arg, struct dlm_slot *slot)
958 {
959 	struct gfs2_sbd *sdp = arg;
960 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
961 	int jid = slot->slot - 1;
962 
963 	spin_lock(&ls->ls_recover_spin);
964 	if (ls->ls_recover_size < jid + 1) {
965 		fs_err(sdp, "recover_slot jid %d gen %u short size %d",
966 		       jid, ls->ls_recover_block, ls->ls_recover_size);
967 		spin_unlock(&ls->ls_recover_spin);
968 		return;
969 	}
970 
971 	if (ls->ls_recover_submit[jid]) {
972 		fs_info(sdp, "recover_slot jid %d gen %u prev %u",
973 			jid, ls->ls_recover_block, ls->ls_recover_submit[jid]);
974 	}
975 	ls->ls_recover_submit[jid] = ls->ls_recover_block;
976 	spin_unlock(&ls->ls_recover_spin);
977 }
978 
979 /* dlm calls after recover_slot and after it completes lock recovery */
980 
981 static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots,
982 			      int our_slot, uint32_t generation)
983 {
984 	struct gfs2_sbd *sdp = arg;
985 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
986 
987 	/* ensure the ls jid arrays are large enough */
988 	set_recover_size(sdp, slots, num_slots);
989 
990 	spin_lock(&ls->ls_recover_spin);
991 	ls->ls_recover_start = generation;
992 
993 	if (!ls->ls_recover_mount) {
994 		ls->ls_recover_mount = generation;
995 		ls->ls_jid = our_slot - 1;
996 	}
997 
998 	if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
999 		queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0);
1000 
1001 	clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1002 	smp_mb__after_clear_bit();
1003 	wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY);
1004 	spin_unlock(&ls->ls_recover_spin);
1005 }
1006 
1007 /* gfs2_recover thread has a journal recovery result */
1008 
1009 static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid,
1010 				 unsigned int result)
1011 {
1012 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1013 
1014 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1015 		return;
1016 
1017 	/* don't care about the recovery of own journal during mount */
1018 	if (jid == ls->ls_jid)
1019 		return;
1020 
1021 	spin_lock(&ls->ls_recover_spin);
1022 	if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1023 		spin_unlock(&ls->ls_recover_spin);
1024 		return;
1025 	}
1026 	if (ls->ls_recover_size < jid + 1) {
1027 		fs_err(sdp, "recovery_result jid %d short size %d",
1028 		       jid, ls->ls_recover_size);
1029 		spin_unlock(&ls->ls_recover_spin);
1030 		return;
1031 	}
1032 
1033 	fs_info(sdp, "recover jid %d result %s\n", jid,
1034 		result == LM_RD_GAVEUP ? "busy" : "success");
1035 
1036 	ls->ls_recover_result[jid] = result;
1037 
1038 	/* GAVEUP means another node is recovering the journal; delay our
1039 	   next attempt to recover it, to give the other node a chance to
1040 	   finish before trying again */
1041 
1042 	if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1043 		queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work,
1044 				   result == LM_RD_GAVEUP ? HZ : 0);
1045 	spin_unlock(&ls->ls_recover_spin);
1046 }
1047 
1048 const struct dlm_lockspace_ops gdlm_lockspace_ops = {
1049 	.recover_prep = gdlm_recover_prep,
1050 	.recover_slot = gdlm_recover_slot,
1051 	.recover_done = gdlm_recover_done,
1052 };
1053 
1054 static int gdlm_mount(struct gfs2_sbd *sdp, const char *table)
1055 {
1056 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1057 	char cluster[GFS2_LOCKNAME_LEN];
1058 	const char *fsname;
1059 	uint32_t flags;
1060 	int error, ops_result;
1061 
1062 	/*
1063 	 * initialize everything
1064 	 */
1065 
1066 	INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func);
1067 	spin_lock_init(&ls->ls_recover_spin);
1068 	ls->ls_recover_flags = 0;
1069 	ls->ls_recover_mount = 0;
1070 	ls->ls_recover_start = 0;
1071 	ls->ls_recover_block = 0;
1072 	ls->ls_recover_size = 0;
1073 	ls->ls_recover_submit = NULL;
1074 	ls->ls_recover_result = NULL;
1075 
1076 	error = set_recover_size(sdp, NULL, 0);
1077 	if (error)
1078 		goto fail;
1079 
1080 	/*
1081 	 * prepare dlm_new_lockspace args
1082 	 */
1083 
1084 	fsname = strchr(table, ':');
1085 	if (!fsname) {
1086 		fs_info(sdp, "no fsname found\n");
1087 		error = -EINVAL;
1088 		goto fail_free;
1089 	}
1090 	memset(cluster, 0, sizeof(cluster));
1091 	memcpy(cluster, table, strlen(table) - strlen(fsname));
1092 	fsname++;
1093 
1094 	flags = DLM_LSFL_FS | DLM_LSFL_NEWEXCL;
1095 	if (ls->ls_nodir)
1096 		flags |= DLM_LSFL_NODIR;
1097 
1098 	/*
1099 	 * create/join lockspace
1100 	 */
1101 
1102 	error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE,
1103 				  &gdlm_lockspace_ops, sdp, &ops_result,
1104 				  &ls->ls_dlm);
1105 	if (error) {
1106 		fs_err(sdp, "dlm_new_lockspace error %d\n", error);
1107 		goto fail_free;
1108 	}
1109 
1110 	if (ops_result < 0) {
1111 		/*
1112 		 * dlm does not support ops callbacks,
1113 		 * old dlm_controld/gfs_controld are used, try without ops.
1114 		 */
1115 		fs_info(sdp, "dlm lockspace ops not used\n");
1116 		free_recover_size(ls);
1117 		set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags);
1118 		return 0;
1119 	}
1120 
1121 	if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) {
1122 		fs_err(sdp, "dlm lockspace ops disallow jid preset\n");
1123 		error = -EINVAL;
1124 		goto fail_release;
1125 	}
1126 
1127 	/*
1128 	 * control_mount() uses control_lock to determine first mounter,
1129 	 * and for later mounts, waits for any recoveries to be cleared.
1130 	 */
1131 
1132 	error = control_mount(sdp);
1133 	if (error) {
1134 		fs_err(sdp, "mount control error %d\n", error);
1135 		goto fail_release;
1136 	}
1137 
1138 	ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1139 	clear_bit(SDF_NOJOURNALID, &sdp->sd_flags);
1140 	smp_mb__after_clear_bit();
1141 	wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID);
1142 	return 0;
1143 
1144 fail_release:
1145 	dlm_release_lockspace(ls->ls_dlm, 2);
1146 fail_free:
1147 	free_recover_size(ls);
1148 fail:
1149 	return error;
1150 }
1151 
1152 static void gdlm_first_done(struct gfs2_sbd *sdp)
1153 {
1154 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1155 	int error;
1156 
1157 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1158 		return;
1159 
1160 	error = control_first_done(sdp);
1161 	if (error)
1162 		fs_err(sdp, "mount first_done error %d\n", error);
1163 }
1164 
1165 static void gdlm_unmount(struct gfs2_sbd *sdp)
1166 {
1167 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1168 
1169 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1170 		goto release;
1171 
1172 	/* wait for gfs2_control_wq to be done with this mount */
1173 
1174 	spin_lock(&ls->ls_recover_spin);
1175 	set_bit(DFL_UNMOUNT, &ls->ls_recover_flags);
1176 	spin_unlock(&ls->ls_recover_spin);
1177 	flush_delayed_work_sync(&sdp->sd_control_work);
1178 
1179 	/* mounted_lock and control_lock will be purged in dlm recovery */
1180 release:
1181 	if (ls->ls_dlm) {
1182 		dlm_release_lockspace(ls->ls_dlm, 2);
1183 		ls->ls_dlm = NULL;
1184 	}
1185 
1186 	free_recover_size(ls);
1187 }
1188 
1189 static const match_table_t dlm_tokens = {
1190 	{ Opt_jid, "jid=%d"},
1191 	{ Opt_id, "id=%d"},
1192 	{ Opt_first, "first=%d"},
1193 	{ Opt_nodir, "nodir=%d"},
1194 	{ Opt_err, NULL },
1195 };
1196 
1197 const struct lm_lockops gfs2_dlm_ops = {
1198 	.lm_proto_name = "lock_dlm",
1199 	.lm_mount = gdlm_mount,
1200 	.lm_first_done = gdlm_first_done,
1201 	.lm_recovery_result = gdlm_recovery_result,
1202 	.lm_unmount = gdlm_unmount,
1203 	.lm_put_lock = gdlm_put_lock,
1204 	.lm_lock = gdlm_lock,
1205 	.lm_cancel = gdlm_cancel,
1206 	.lm_tokens = &dlm_tokens,
1207 };
1208 
1209