1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 4 * Copyright 2004-2011 Red Hat, Inc. 5 */ 6 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 9 #include <linux/fs.h> 10 #include <linux/dlm.h> 11 #include <linux/slab.h> 12 #include <linux/types.h> 13 #include <linux/delay.h> 14 #include <linux/gfs2_ondisk.h> 15 #include <linux/sched/signal.h> 16 17 #include "incore.h" 18 #include "glock.h" 19 #include "glops.h" 20 #include "recovery.h" 21 #include "util.h" 22 #include "sys.h" 23 #include "trace_gfs2.h" 24 25 /** 26 * gfs2_update_stats - Update time based stats 27 * @s: The stats to update (local or global) 28 * @index: The index inside @s 29 * @sample: New data to include 30 */ 31 static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index, 32 s64 sample) 33 { 34 /* 35 * @delta is the difference between the current rtt sample and the 36 * running average srtt. We add 1/8 of that to the srtt in order to 37 * update the current srtt estimate. The variance estimate is a bit 38 * more complicated. We subtract the current variance estimate from 39 * the abs value of the @delta and add 1/4 of that to the running 40 * total. That's equivalent to 3/4 of the current variance 41 * estimate plus 1/4 of the abs of @delta. 42 * 43 * Note that the index points at the array entry containing the 44 * smoothed mean value, and the variance is always in the following 45 * entry 46 * 47 * Reference: TCP/IP Illustrated, vol 2, p. 831,832 48 * All times are in units of integer nanoseconds. Unlike the TCP/IP 49 * case, they are not scaled fixed point. 50 */ 51 52 s64 delta = sample - s->stats[index]; 53 s->stats[index] += (delta >> 3); 54 index++; 55 s->stats[index] += (s64)(abs(delta) - s->stats[index]) >> 2; 56 } 57 58 /** 59 * gfs2_update_reply_times - Update locking statistics 60 * @gl: The glock to update 61 * 62 * This assumes that gl->gl_dstamp has been set earlier. 63 * 64 * The rtt (lock round trip time) is an estimate of the time 65 * taken to perform a dlm lock request. We update it on each 66 * reply from the dlm. 67 * 68 * The blocking flag is set on the glock for all dlm requests 69 * which may potentially block due to lock requests from other nodes. 70 * DLM requests where the current lock state is exclusive, the 71 * requested state is null (or unlocked) or where the TRY or 72 * TRY_1CB flags are set are classified as non-blocking. All 73 * other DLM requests are counted as (potentially) blocking. 74 */ 75 static inline void gfs2_update_reply_times(struct gfs2_glock *gl) 76 { 77 struct gfs2_pcpu_lkstats *lks; 78 const unsigned gltype = gl->gl_name.ln_type; 79 unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ? 80 GFS2_LKS_SRTTB : GFS2_LKS_SRTT; 81 s64 rtt; 82 83 preempt_disable(); 84 rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp)); 85 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats); 86 gfs2_update_stats(&gl->gl_stats, index, rtt); /* Local */ 87 gfs2_update_stats(&lks->lkstats[gltype], index, rtt); /* Global */ 88 preempt_enable(); 89 90 trace_gfs2_glock_lock_time(gl, rtt); 91 } 92 93 /** 94 * gfs2_update_request_times - Update locking statistics 95 * @gl: The glock to update 96 * 97 * The irt (lock inter-request times) measures the average time 98 * between requests to the dlm. It is updated immediately before 99 * each dlm call. 100 */ 101 102 static inline void gfs2_update_request_times(struct gfs2_glock *gl) 103 { 104 struct gfs2_pcpu_lkstats *lks; 105 const unsigned gltype = gl->gl_name.ln_type; 106 ktime_t dstamp; 107 s64 irt; 108 109 preempt_disable(); 110 dstamp = gl->gl_dstamp; 111 gl->gl_dstamp = ktime_get_real(); 112 irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp)); 113 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats); 114 gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt); /* Local */ 115 gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt); /* Global */ 116 preempt_enable(); 117 } 118 119 static void gdlm_ast(void *arg) 120 { 121 struct gfs2_glock *gl = arg; 122 unsigned ret; 123 124 /* If the glock is dead, we only react to a dlm_unlock() reply. */ 125 if (__lockref_is_dead(&gl->gl_lockref) && 126 gl->gl_lksb.sb_status != -DLM_EUNLOCK) 127 return; 128 129 gfs2_update_reply_times(gl); 130 BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED); 131 132 if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr) 133 memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE); 134 135 switch (gl->gl_lksb.sb_status) { 136 case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */ 137 if (gl->gl_ops->go_unlocked) 138 gl->gl_ops->go_unlocked(gl); 139 gfs2_glock_free(gl); 140 return; 141 case -DLM_ECANCEL: /* Cancel while getting lock */ 142 ret = LM_OUT_CANCELED; 143 goto out; 144 case -EAGAIN: /* Try lock fails */ 145 ret = LM_OUT_TRY_AGAIN; 146 goto out; 147 case -EDEADLK: /* Deadlock detected */ 148 ret = LM_OUT_DEADLOCK; 149 goto out; 150 case -ETIMEDOUT: /* Canceled due to timeout */ 151 ret = LM_OUT_ERROR; 152 goto out; 153 case 0: /* Success */ 154 break; 155 default: /* Something unexpected */ 156 BUG(); 157 } 158 159 ret = gl->gl_req; 160 if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) { 161 if (gl->gl_req == LM_ST_SHARED) 162 ret = LM_ST_DEFERRED; 163 else if (gl->gl_req == LM_ST_DEFERRED) 164 ret = LM_ST_SHARED; 165 else 166 BUG(); 167 } 168 169 /* 170 * The GLF_INITIAL flag is initially set for new glocks. Upon the 171 * first successful new (non-conversion) request, we clear this flag to 172 * indicate that a DLM lock exists and that gl->gl_lksb.sb_lkid is the 173 * identifier to use for identifying it. 174 * 175 * Any failed initial requests do not create a DLM lock, so we ignore 176 * the gl->gl_lksb.sb_lkid values that come with such requests. 177 */ 178 179 clear_bit(GLF_INITIAL, &gl->gl_flags); 180 gfs2_glock_complete(gl, ret); 181 return; 182 out: 183 if (test_bit(GLF_INITIAL, &gl->gl_flags)) 184 gl->gl_lksb.sb_lkid = 0; 185 gfs2_glock_complete(gl, ret); 186 } 187 188 static void gdlm_bast(void *arg, int mode) 189 { 190 struct gfs2_glock *gl = arg; 191 192 if (__lockref_is_dead(&gl->gl_lockref)) 193 return; 194 195 switch (mode) { 196 case DLM_LOCK_EX: 197 gfs2_glock_cb(gl, LM_ST_UNLOCKED); 198 break; 199 case DLM_LOCK_CW: 200 gfs2_glock_cb(gl, LM_ST_DEFERRED); 201 break; 202 case DLM_LOCK_PR: 203 gfs2_glock_cb(gl, LM_ST_SHARED); 204 break; 205 default: 206 fs_err(gl->gl_name.ln_sbd, "unknown bast mode %d\n", mode); 207 BUG(); 208 } 209 } 210 211 /* convert gfs lock-state to dlm lock-mode */ 212 213 static int make_mode(struct gfs2_sbd *sdp, const unsigned int lmstate) 214 { 215 switch (lmstate) { 216 case LM_ST_UNLOCKED: 217 return DLM_LOCK_NL; 218 case LM_ST_EXCLUSIVE: 219 return DLM_LOCK_EX; 220 case LM_ST_DEFERRED: 221 return DLM_LOCK_CW; 222 case LM_ST_SHARED: 223 return DLM_LOCK_PR; 224 } 225 fs_err(sdp, "unknown LM state %d\n", lmstate); 226 BUG(); 227 return -1; 228 } 229 230 /* Taken from fs/dlm/lock.c. */ 231 232 static bool middle_conversion(int cur, int req) 233 { 234 return (cur == DLM_LOCK_PR && req == DLM_LOCK_CW) || 235 (cur == DLM_LOCK_CW && req == DLM_LOCK_PR); 236 } 237 238 static bool down_conversion(int cur, int req) 239 { 240 return !middle_conversion(cur, req) && req < cur; 241 } 242 243 static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags, 244 const int cur, const int req) 245 { 246 u32 lkf = 0; 247 248 if (gl->gl_lksb.sb_lvbptr) 249 lkf |= DLM_LKF_VALBLK; 250 251 if (gfs_flags & LM_FLAG_TRY) 252 lkf |= DLM_LKF_NOQUEUE; 253 254 if (gfs_flags & LM_FLAG_TRY_1CB) { 255 lkf |= DLM_LKF_NOQUEUE; 256 lkf |= DLM_LKF_NOQUEUEBAST; 257 } 258 259 if (gfs_flags & LM_FLAG_ANY) { 260 if (req == DLM_LOCK_PR) 261 lkf |= DLM_LKF_ALTCW; 262 else if (req == DLM_LOCK_CW) 263 lkf |= DLM_LKF_ALTPR; 264 else 265 BUG(); 266 } 267 268 if (!test_bit(GLF_INITIAL, &gl->gl_flags)) { 269 lkf |= DLM_LKF_CONVERT; 270 271 /* 272 * The DLM_LKF_QUECVT flag needs to be set for "first come, 273 * first served" semantics, but it must only be set for 274 * "upward" lock conversions or else DLM will reject the 275 * request as invalid. 276 */ 277 if (!down_conversion(cur, req)) 278 lkf |= DLM_LKF_QUECVT; 279 } 280 281 return lkf; 282 } 283 284 static void gfs2_reverse_hex(char *c, u64 value) 285 { 286 *c = '0'; 287 while (value) { 288 *c-- = hex_asc[value & 0x0f]; 289 value >>= 4; 290 } 291 } 292 293 static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state, 294 unsigned int flags) 295 { 296 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct; 297 int cur, req; 298 u32 lkf; 299 char strname[GDLM_STRNAME_BYTES] = ""; 300 int error; 301 302 cur = make_mode(gl->gl_name.ln_sbd, gl->gl_state); 303 req = make_mode(gl->gl_name.ln_sbd, req_state); 304 lkf = make_flags(gl, flags, cur, req); 305 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT); 306 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT); 307 if (test_bit(GLF_INITIAL, &gl->gl_flags)) { 308 memset(strname, ' ', GDLM_STRNAME_BYTES - 1); 309 strname[GDLM_STRNAME_BYTES - 1] = '\0'; 310 gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type); 311 gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number); 312 gl->gl_dstamp = ktime_get_real(); 313 } else { 314 gfs2_update_request_times(gl); 315 } 316 /* 317 * Submit the actual lock request. 318 */ 319 320 again: 321 error = dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname, 322 GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast); 323 if (error == -EBUSY) { 324 msleep(20); 325 goto again; 326 } 327 return error; 328 } 329 330 static void gdlm_put_lock(struct gfs2_glock *gl) 331 { 332 struct gfs2_sbd *sdp = gl->gl_name.ln_sbd; 333 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 334 uint32_t flags = 0; 335 int error; 336 337 BUG_ON(!__lockref_is_dead(&gl->gl_lockref)); 338 339 if (test_bit(GLF_INITIAL, &gl->gl_flags)) { 340 gfs2_glock_free(gl); 341 return; 342 } 343 344 clear_bit(GLF_BLOCKING, &gl->gl_flags); 345 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT); 346 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT); 347 gfs2_update_request_times(gl); 348 349 /* don't want to call dlm if we've unmounted the lock protocol */ 350 if (test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) { 351 gfs2_glock_free(gl); 352 return; 353 } 354 355 /* 356 * When the lockspace is released, all remaining glocks will be 357 * unlocked automatically. This is more efficient than unlocking them 358 * individually, but when the lock is held in DLM_LOCK_EX or 359 * DLM_LOCK_PW mode, the lock value block (LVB) would be lost. 360 */ 361 362 if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) && 363 (!gl->gl_lksb.sb_lvbptr || gl->gl_state != LM_ST_EXCLUSIVE)) { 364 gfs2_glock_free_later(gl); 365 return; 366 } 367 368 if (gl->gl_lksb.sb_lvbptr) 369 flags |= DLM_LKF_VALBLK; 370 371 again: 372 error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, flags, 373 NULL, gl); 374 if (error == -EBUSY) { 375 msleep(20); 376 goto again; 377 } 378 379 if (error) { 380 fs_err(sdp, "gdlm_unlock %x,%llx err=%d\n", 381 gl->gl_name.ln_type, 382 (unsigned long long)gl->gl_name.ln_number, error); 383 } 384 } 385 386 static void gdlm_cancel(struct gfs2_glock *gl) 387 { 388 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct; 389 dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl); 390 } 391 392 /* 393 * dlm/gfs2 recovery coordination using dlm_recover callbacks 394 * 395 * 0. gfs2 checks for another cluster node withdraw, needing journal replay 396 * 1. dlm_controld sees lockspace members change 397 * 2. dlm_controld blocks dlm-kernel locking activity 398 * 3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep) 399 * 4. dlm_controld starts and finishes its own user level recovery 400 * 5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery 401 * 6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot) 402 * 7. dlm_recoverd does its own lock recovery 403 * 8. dlm_recoverd unblocks dlm-kernel locking activity 404 * 9. dlm_recoverd notifies gfs2 when done (recover_done with new generation) 405 * 10. gfs2_control updates control_lock lvb with new generation and jid bits 406 * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none) 407 * 12. gfs2_recover dequeues and recovers journals of failed nodes 408 * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result) 409 * 14. gfs2_control updates control_lock lvb jid bits for recovered journals 410 * 15. gfs2_control unblocks normal locking when all journals are recovered 411 * 412 * - failures during recovery 413 * 414 * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control 415 * clears BLOCK_LOCKS (step 15), e.g. another node fails while still 416 * recovering for a prior failure. gfs2_control needs a way to detect 417 * this so it can leave BLOCK_LOCKS set in step 15. This is managed using 418 * the recover_block and recover_start values. 419 * 420 * recover_done() provides a new lockspace generation number each time it 421 * is called (step 9). This generation number is saved as recover_start. 422 * When recover_prep() is called, it sets BLOCK_LOCKS and sets 423 * recover_block = recover_start. So, while recover_block is equal to 424 * recover_start, BLOCK_LOCKS should remain set. (recover_spin must 425 * be held around the BLOCK_LOCKS/recover_block/recover_start logic.) 426 * 427 * - more specific gfs2 steps in sequence above 428 * 429 * 3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start 430 * 6. recover_slot records any failed jids (maybe none) 431 * 9. recover_done sets recover_start = new generation number 432 * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids 433 * 12. gfs2_recover does journal recoveries for failed jids identified above 434 * 14. gfs2_control clears control_lock lvb bits for recovered jids 435 * 15. gfs2_control checks if recover_block == recover_start (step 3 occured 436 * again) then do nothing, otherwise if recover_start > recover_block 437 * then clear BLOCK_LOCKS. 438 * 439 * - parallel recovery steps across all nodes 440 * 441 * All nodes attempt to update the control_lock lvb with the new generation 442 * number and jid bits, but only the first to get the control_lock EX will 443 * do so; others will see that it's already done (lvb already contains new 444 * generation number.) 445 * 446 * . All nodes get the same recover_prep/recover_slot/recover_done callbacks 447 * . All nodes attempt to set control_lock lvb gen + bits for the new gen 448 * . One node gets control_lock first and writes the lvb, others see it's done 449 * . All nodes attempt to recover jids for which they see control_lock bits set 450 * . One node succeeds for a jid, and that one clears the jid bit in the lvb 451 * . All nodes will eventually see all lvb bits clear and unblock locks 452 * 453 * - is there a problem with clearing an lvb bit that should be set 454 * and missing a journal recovery? 455 * 456 * 1. jid fails 457 * 2. lvb bit set for step 1 458 * 3. jid recovered for step 1 459 * 4. jid taken again (new mount) 460 * 5. jid fails (for step 4) 461 * 6. lvb bit set for step 5 (will already be set) 462 * 7. lvb bit cleared for step 3 463 * 464 * This is not a problem because the failure in step 5 does not 465 * require recovery, because the mount in step 4 could not have 466 * progressed far enough to unblock locks and access the fs. The 467 * control_mount() function waits for all recoveries to be complete 468 * for the latest lockspace generation before ever unblocking locks 469 * and returning. The mount in step 4 waits until the recovery in 470 * step 1 is done. 471 * 472 * - special case of first mounter: first node to mount the fs 473 * 474 * The first node to mount a gfs2 fs needs to check all the journals 475 * and recover any that need recovery before other nodes are allowed 476 * to mount the fs. (Others may begin mounting, but they must wait 477 * for the first mounter to be done before taking locks on the fs 478 * or accessing the fs.) This has two parts: 479 * 480 * 1. The mounted_lock tells a node it's the first to mount the fs. 481 * Each node holds the mounted_lock in PR while it's mounted. 482 * Each node tries to acquire the mounted_lock in EX when it mounts. 483 * If a node is granted the mounted_lock EX it means there are no 484 * other mounted nodes (no PR locks exist), and it is the first mounter. 485 * The mounted_lock is demoted to PR when first recovery is done, so 486 * others will fail to get an EX lock, but will get a PR lock. 487 * 488 * 2. The control_lock blocks others in control_mount() while the first 489 * mounter is doing first mount recovery of all journals. 490 * A mounting node needs to acquire control_lock in EX mode before 491 * it can proceed. The first mounter holds control_lock in EX while doing 492 * the first mount recovery, blocking mounts from other nodes, then demotes 493 * control_lock to NL when it's done (others_may_mount/first_done), 494 * allowing other nodes to continue mounting. 495 * 496 * first mounter: 497 * control_lock EX/NOQUEUE success 498 * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters) 499 * set first=1 500 * do first mounter recovery 501 * mounted_lock EX->PR 502 * control_lock EX->NL, write lvb generation 503 * 504 * other mounter: 505 * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry) 506 * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR) 507 * mounted_lock PR/NOQUEUE success 508 * read lvb generation 509 * control_lock EX->NL 510 * set first=0 511 * 512 * - mount during recovery 513 * 514 * If a node mounts while others are doing recovery (not first mounter), 515 * the mounting node will get its initial recover_done() callback without 516 * having seen any previous failures/callbacks. 517 * 518 * It must wait for all recoveries preceding its mount to be finished 519 * before it unblocks locks. It does this by repeating the "other mounter" 520 * steps above until the lvb generation number is >= its mount generation 521 * number (from initial recover_done) and all lvb bits are clear. 522 * 523 * - control_lock lvb format 524 * 525 * 4 bytes generation number: the latest dlm lockspace generation number 526 * from recover_done callback. Indicates the jid bitmap has been updated 527 * to reflect all slot failures through that generation. 528 * 4 bytes unused. 529 * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates 530 * that jid N needs recovery. 531 */ 532 533 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */ 534 535 static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen, 536 char *lvb_bits) 537 { 538 __le32 gen; 539 memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE); 540 memcpy(&gen, lvb_bits, sizeof(__le32)); 541 *lvb_gen = le32_to_cpu(gen); 542 } 543 544 static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen, 545 char *lvb_bits) 546 { 547 __le32 gen; 548 memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE); 549 gen = cpu_to_le32(lvb_gen); 550 memcpy(ls->ls_control_lvb, &gen, sizeof(__le32)); 551 } 552 553 static int all_jid_bits_clear(char *lvb) 554 { 555 return !memchr_inv(lvb + JID_BITMAP_OFFSET, 0, 556 GDLM_LVB_SIZE - JID_BITMAP_OFFSET); 557 } 558 559 static void sync_wait_cb(void *arg) 560 { 561 struct lm_lockstruct *ls = arg; 562 complete(&ls->ls_sync_wait); 563 } 564 565 static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name) 566 { 567 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 568 int error; 569 570 error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls); 571 if (error) { 572 fs_err(sdp, "%s lkid %x error %d\n", 573 name, lksb->sb_lkid, error); 574 return error; 575 } 576 577 wait_for_completion(&ls->ls_sync_wait); 578 579 if (lksb->sb_status != -DLM_EUNLOCK) { 580 fs_err(sdp, "%s lkid %x status %d\n", 581 name, lksb->sb_lkid, lksb->sb_status); 582 return -1; 583 } 584 return 0; 585 } 586 587 static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags, 588 unsigned int num, struct dlm_lksb *lksb, char *name) 589 { 590 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 591 char strname[GDLM_STRNAME_BYTES]; 592 int error, status; 593 594 memset(strname, 0, GDLM_STRNAME_BYTES); 595 snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num); 596 597 error = dlm_lock(ls->ls_dlm, mode, lksb, flags, 598 strname, GDLM_STRNAME_BYTES - 1, 599 0, sync_wait_cb, ls, NULL); 600 if (error) { 601 fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n", 602 name, lksb->sb_lkid, flags, mode, error); 603 return error; 604 } 605 606 wait_for_completion(&ls->ls_sync_wait); 607 608 status = lksb->sb_status; 609 610 if (status && status != -EAGAIN) { 611 fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n", 612 name, lksb->sb_lkid, flags, mode, status); 613 } 614 615 return status; 616 } 617 618 static int mounted_unlock(struct gfs2_sbd *sdp) 619 { 620 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 621 return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock"); 622 } 623 624 static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags) 625 { 626 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 627 return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK, 628 &ls->ls_mounted_lksb, "mounted_lock"); 629 } 630 631 static int control_unlock(struct gfs2_sbd *sdp) 632 { 633 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 634 return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock"); 635 } 636 637 static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags) 638 { 639 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 640 return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK, 641 &ls->ls_control_lksb, "control_lock"); 642 } 643 644 /** 645 * remote_withdraw - react to a node withdrawing from the file system 646 * @sdp: The superblock 647 */ 648 static void remote_withdraw(struct gfs2_sbd *sdp) 649 { 650 struct gfs2_jdesc *jd; 651 int ret = 0, count = 0; 652 653 list_for_each_entry(jd, &sdp->sd_jindex_list, jd_list) { 654 if (jd->jd_jid == sdp->sd_lockstruct.ls_jid) 655 continue; 656 ret = gfs2_recover_journal(jd, true); 657 if (ret) 658 break; 659 count++; 660 } 661 662 /* Now drop the additional reference we acquired */ 663 fs_err(sdp, "Journals checked: %d, ret = %d.\n", count, ret); 664 } 665 666 static void gfs2_control_func(struct work_struct *work) 667 { 668 struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work); 669 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 670 uint32_t block_gen, start_gen, lvb_gen, flags; 671 int recover_set = 0; 672 int write_lvb = 0; 673 int recover_size; 674 int i, error; 675 676 /* First check for other nodes that may have done a withdraw. */ 677 if (test_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags)) { 678 remote_withdraw(sdp); 679 clear_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags); 680 return; 681 } 682 683 spin_lock(&ls->ls_recover_spin); 684 /* 685 * No MOUNT_DONE means we're still mounting; control_mount() 686 * will set this flag, after which this thread will take over 687 * all further clearing of BLOCK_LOCKS. 688 * 689 * FIRST_MOUNT means this node is doing first mounter recovery, 690 * for which recovery control is handled by 691 * control_mount()/control_first_done(), not this thread. 692 */ 693 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || 694 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 695 spin_unlock(&ls->ls_recover_spin); 696 return; 697 } 698 block_gen = ls->ls_recover_block; 699 start_gen = ls->ls_recover_start; 700 spin_unlock(&ls->ls_recover_spin); 701 702 /* 703 * Equal block_gen and start_gen implies we are between 704 * recover_prep and recover_done callbacks, which means 705 * dlm recovery is in progress and dlm locking is blocked. 706 * There's no point trying to do any work until recover_done. 707 */ 708 709 if (block_gen == start_gen) 710 return; 711 712 /* 713 * Propagate recover_submit[] and recover_result[] to lvb: 714 * dlm_recoverd adds to recover_submit[] jids needing recovery 715 * gfs2_recover adds to recover_result[] journal recovery results 716 * 717 * set lvb bit for jids in recover_submit[] if the lvb has not 718 * yet been updated for the generation of the failure 719 * 720 * clear lvb bit for jids in recover_result[] if the result of 721 * the journal recovery is SUCCESS 722 */ 723 724 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK); 725 if (error) { 726 fs_err(sdp, "control lock EX error %d\n", error); 727 return; 728 } 729 730 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits); 731 732 spin_lock(&ls->ls_recover_spin); 733 if (block_gen != ls->ls_recover_block || 734 start_gen != ls->ls_recover_start) { 735 fs_info(sdp, "recover generation %u block1 %u %u\n", 736 start_gen, block_gen, ls->ls_recover_block); 737 spin_unlock(&ls->ls_recover_spin); 738 control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); 739 return; 740 } 741 742 recover_size = ls->ls_recover_size; 743 744 if (lvb_gen <= start_gen) { 745 /* 746 * Clear lvb bits for jids we've successfully recovered. 747 * Because all nodes attempt to recover failed journals, 748 * a journal can be recovered multiple times successfully 749 * in succession. Only the first will really do recovery, 750 * the others find it clean, but still report a successful 751 * recovery. So, another node may have already recovered 752 * the jid and cleared the lvb bit for it. 753 */ 754 for (i = 0; i < recover_size; i++) { 755 if (ls->ls_recover_result[i] != LM_RD_SUCCESS) 756 continue; 757 758 ls->ls_recover_result[i] = 0; 759 760 if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) 761 continue; 762 763 __clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET); 764 write_lvb = 1; 765 } 766 } 767 768 if (lvb_gen == start_gen) { 769 /* 770 * Failed slots before start_gen are already set in lvb. 771 */ 772 for (i = 0; i < recover_size; i++) { 773 if (!ls->ls_recover_submit[i]) 774 continue; 775 if (ls->ls_recover_submit[i] < lvb_gen) 776 ls->ls_recover_submit[i] = 0; 777 } 778 } else if (lvb_gen < start_gen) { 779 /* 780 * Failed slots before start_gen are not yet set in lvb. 781 */ 782 for (i = 0; i < recover_size; i++) { 783 if (!ls->ls_recover_submit[i]) 784 continue; 785 if (ls->ls_recover_submit[i] < start_gen) { 786 ls->ls_recover_submit[i] = 0; 787 __set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET); 788 } 789 } 790 /* even if there are no bits to set, we need to write the 791 latest generation to the lvb */ 792 write_lvb = 1; 793 } else { 794 /* 795 * we should be getting a recover_done() for lvb_gen soon 796 */ 797 } 798 spin_unlock(&ls->ls_recover_spin); 799 800 if (write_lvb) { 801 control_lvb_write(ls, start_gen, ls->ls_lvb_bits); 802 flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK; 803 } else { 804 flags = DLM_LKF_CONVERT; 805 } 806 807 error = control_lock(sdp, DLM_LOCK_NL, flags); 808 if (error) { 809 fs_err(sdp, "control lock NL error %d\n", error); 810 return; 811 } 812 813 /* 814 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(), 815 * and clear a jid bit in the lvb if the recovery is a success. 816 * Eventually all journals will be recovered, all jid bits will 817 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS. 818 */ 819 820 for (i = 0; i < recover_size; i++) { 821 if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) { 822 fs_info(sdp, "recover generation %u jid %d\n", 823 start_gen, i); 824 gfs2_recover_set(sdp, i); 825 recover_set++; 826 } 827 } 828 if (recover_set) 829 return; 830 831 /* 832 * No more jid bits set in lvb, all recovery is done, unblock locks 833 * (unless a new recover_prep callback has occured blocking locks 834 * again while working above) 835 */ 836 837 spin_lock(&ls->ls_recover_spin); 838 if (ls->ls_recover_block == block_gen && 839 ls->ls_recover_start == start_gen) { 840 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 841 spin_unlock(&ls->ls_recover_spin); 842 fs_info(sdp, "recover generation %u done\n", start_gen); 843 gfs2_glock_thaw(sdp); 844 } else { 845 fs_info(sdp, "recover generation %u block2 %u %u\n", 846 start_gen, block_gen, ls->ls_recover_block); 847 spin_unlock(&ls->ls_recover_spin); 848 } 849 } 850 851 static int control_mount(struct gfs2_sbd *sdp) 852 { 853 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 854 uint32_t start_gen, block_gen, mount_gen, lvb_gen; 855 int mounted_mode; 856 int retries = 0; 857 int error; 858 859 memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb)); 860 memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb)); 861 memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE); 862 ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb; 863 init_completion(&ls->ls_sync_wait); 864 865 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 866 867 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK); 868 if (error) { 869 fs_err(sdp, "control_mount control_lock NL error %d\n", error); 870 return error; 871 } 872 873 error = mounted_lock(sdp, DLM_LOCK_NL, 0); 874 if (error) { 875 fs_err(sdp, "control_mount mounted_lock NL error %d\n", error); 876 control_unlock(sdp); 877 return error; 878 } 879 mounted_mode = DLM_LOCK_NL; 880 881 restart: 882 if (retries++ && signal_pending(current)) { 883 error = -EINTR; 884 goto fail; 885 } 886 887 /* 888 * We always start with both locks in NL. control_lock is 889 * demoted to NL below so we don't need to do it here. 890 */ 891 892 if (mounted_mode != DLM_LOCK_NL) { 893 error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); 894 if (error) 895 goto fail; 896 mounted_mode = DLM_LOCK_NL; 897 } 898 899 /* 900 * Other nodes need to do some work in dlm recovery and gfs2_control 901 * before the recover_done and control_lock will be ready for us below. 902 * A delay here is not required but often avoids having to retry. 903 */ 904 905 msleep_interruptible(500); 906 907 /* 908 * Acquire control_lock in EX and mounted_lock in either EX or PR. 909 * control_lock lvb keeps track of any pending journal recoveries. 910 * mounted_lock indicates if any other nodes have the fs mounted. 911 */ 912 913 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK); 914 if (error == -EAGAIN) { 915 goto restart; 916 } else if (error) { 917 fs_err(sdp, "control_mount control_lock EX error %d\n", error); 918 goto fail; 919 } 920 921 /** 922 * If we're a spectator, we don't want to take the lock in EX because 923 * we cannot do the first-mount responsibility it implies: recovery. 924 */ 925 if (sdp->sd_args.ar_spectator) 926 goto locks_done; 927 928 error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE); 929 if (!error) { 930 mounted_mode = DLM_LOCK_EX; 931 goto locks_done; 932 } else if (error != -EAGAIN) { 933 fs_err(sdp, "control_mount mounted_lock EX error %d\n", error); 934 goto fail; 935 } 936 937 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE); 938 if (!error) { 939 mounted_mode = DLM_LOCK_PR; 940 goto locks_done; 941 } else { 942 /* not even -EAGAIN should happen here */ 943 fs_err(sdp, "control_mount mounted_lock PR error %d\n", error); 944 goto fail; 945 } 946 947 locks_done: 948 /* 949 * If we got both locks above in EX, then we're the first mounter. 950 * If not, then we need to wait for the control_lock lvb to be 951 * updated by other mounted nodes to reflect our mount generation. 952 * 953 * In simple first mounter cases, first mounter will see zero lvb_gen, 954 * but in cases where all existing nodes leave/fail before mounting 955 * nodes finish control_mount, then all nodes will be mounting and 956 * lvb_gen will be non-zero. 957 */ 958 959 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits); 960 961 if (lvb_gen == 0xFFFFFFFF) { 962 /* special value to force mount attempts to fail */ 963 fs_err(sdp, "control_mount control_lock disabled\n"); 964 error = -EINVAL; 965 goto fail; 966 } 967 968 if (mounted_mode == DLM_LOCK_EX) { 969 /* first mounter, keep both EX while doing first recovery */ 970 spin_lock(&ls->ls_recover_spin); 971 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 972 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags); 973 set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); 974 spin_unlock(&ls->ls_recover_spin); 975 fs_info(sdp, "first mounter control generation %u\n", lvb_gen); 976 return 0; 977 } 978 979 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); 980 if (error) 981 goto fail; 982 983 /* 984 * We are not first mounter, now we need to wait for the control_lock 985 * lvb generation to be >= the generation from our first recover_done 986 * and all lvb bits to be clear (no pending journal recoveries.) 987 */ 988 989 if (!all_jid_bits_clear(ls->ls_lvb_bits)) { 990 /* journals need recovery, wait until all are clear */ 991 fs_info(sdp, "control_mount wait for journal recovery\n"); 992 goto restart; 993 } 994 995 spin_lock(&ls->ls_recover_spin); 996 block_gen = ls->ls_recover_block; 997 start_gen = ls->ls_recover_start; 998 mount_gen = ls->ls_recover_mount; 999 1000 if (lvb_gen < mount_gen) { 1001 /* wait for mounted nodes to update control_lock lvb to our 1002 generation, which might include new recovery bits set */ 1003 if (sdp->sd_args.ar_spectator) { 1004 fs_info(sdp, "Recovery is required. Waiting for a " 1005 "non-spectator to mount.\n"); 1006 spin_unlock(&ls->ls_recover_spin); 1007 msleep_interruptible(1000); 1008 } else { 1009 fs_info(sdp, "control_mount wait1 block %u start %u " 1010 "mount %u lvb %u flags %lx\n", block_gen, 1011 start_gen, mount_gen, lvb_gen, 1012 ls->ls_recover_flags); 1013 spin_unlock(&ls->ls_recover_spin); 1014 } 1015 goto restart; 1016 } 1017 1018 if (lvb_gen != start_gen) { 1019 /* wait for mounted nodes to update control_lock lvb to the 1020 latest recovery generation */ 1021 fs_info(sdp, "control_mount wait2 block %u start %u mount %u " 1022 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen, 1023 lvb_gen, ls->ls_recover_flags); 1024 spin_unlock(&ls->ls_recover_spin); 1025 goto restart; 1026 } 1027 1028 if (block_gen == start_gen) { 1029 /* dlm recovery in progress, wait for it to finish */ 1030 fs_info(sdp, "control_mount wait3 block %u start %u mount %u " 1031 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen, 1032 lvb_gen, ls->ls_recover_flags); 1033 spin_unlock(&ls->ls_recover_spin); 1034 goto restart; 1035 } 1036 1037 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 1038 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags); 1039 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t)); 1040 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t)); 1041 spin_unlock(&ls->ls_recover_spin); 1042 return 0; 1043 1044 fail: 1045 mounted_unlock(sdp); 1046 control_unlock(sdp); 1047 return error; 1048 } 1049 1050 static int control_first_done(struct gfs2_sbd *sdp) 1051 { 1052 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1053 uint32_t start_gen, block_gen; 1054 int error; 1055 1056 restart: 1057 spin_lock(&ls->ls_recover_spin); 1058 start_gen = ls->ls_recover_start; 1059 block_gen = ls->ls_recover_block; 1060 1061 if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) || 1062 !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || 1063 !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 1064 /* sanity check, should not happen */ 1065 fs_err(sdp, "control_first_done start %u block %u flags %lx\n", 1066 start_gen, block_gen, ls->ls_recover_flags); 1067 spin_unlock(&ls->ls_recover_spin); 1068 control_unlock(sdp); 1069 return -1; 1070 } 1071 1072 if (start_gen == block_gen) { 1073 /* 1074 * Wait for the end of a dlm recovery cycle to switch from 1075 * first mounter recovery. We can ignore any recover_slot 1076 * callbacks between the recover_prep and next recover_done 1077 * because we are still the first mounter and any failed nodes 1078 * have not fully mounted, so they don't need recovery. 1079 */ 1080 spin_unlock(&ls->ls_recover_spin); 1081 fs_info(sdp, "control_first_done wait gen %u\n", start_gen); 1082 1083 wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY, 1084 TASK_UNINTERRUPTIBLE); 1085 goto restart; 1086 } 1087 1088 clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); 1089 set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags); 1090 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t)); 1091 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t)); 1092 spin_unlock(&ls->ls_recover_spin); 1093 1094 memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE); 1095 control_lvb_write(ls, start_gen, ls->ls_lvb_bits); 1096 1097 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT); 1098 if (error) 1099 fs_err(sdp, "control_first_done mounted PR error %d\n", error); 1100 1101 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK); 1102 if (error) 1103 fs_err(sdp, "control_first_done control NL error %d\n", error); 1104 1105 return error; 1106 } 1107 1108 /* 1109 * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC) 1110 * to accommodate the largest slot number. (NB dlm slot numbers start at 1, 1111 * gfs2 jids start at 0, so jid = slot - 1) 1112 */ 1113 1114 #define RECOVER_SIZE_INC 16 1115 1116 static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots, 1117 int num_slots) 1118 { 1119 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1120 uint32_t *submit = NULL; 1121 uint32_t *result = NULL; 1122 uint32_t old_size, new_size; 1123 int i, max_jid; 1124 1125 if (!ls->ls_lvb_bits) { 1126 ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS); 1127 if (!ls->ls_lvb_bits) 1128 return -ENOMEM; 1129 } 1130 1131 max_jid = 0; 1132 for (i = 0; i < num_slots; i++) { 1133 if (max_jid < slots[i].slot - 1) 1134 max_jid = slots[i].slot - 1; 1135 } 1136 1137 old_size = ls->ls_recover_size; 1138 new_size = old_size; 1139 while (new_size < max_jid + 1) 1140 new_size += RECOVER_SIZE_INC; 1141 if (new_size == old_size) 1142 return 0; 1143 1144 submit = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS); 1145 result = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS); 1146 if (!submit || !result) { 1147 kfree(submit); 1148 kfree(result); 1149 return -ENOMEM; 1150 } 1151 1152 spin_lock(&ls->ls_recover_spin); 1153 memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t)); 1154 memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t)); 1155 kfree(ls->ls_recover_submit); 1156 kfree(ls->ls_recover_result); 1157 ls->ls_recover_submit = submit; 1158 ls->ls_recover_result = result; 1159 ls->ls_recover_size = new_size; 1160 spin_unlock(&ls->ls_recover_spin); 1161 return 0; 1162 } 1163 1164 static void free_recover_size(struct lm_lockstruct *ls) 1165 { 1166 kfree(ls->ls_lvb_bits); 1167 kfree(ls->ls_recover_submit); 1168 kfree(ls->ls_recover_result); 1169 ls->ls_recover_submit = NULL; 1170 ls->ls_recover_result = NULL; 1171 ls->ls_recover_size = 0; 1172 ls->ls_lvb_bits = NULL; 1173 } 1174 1175 /* dlm calls before it does lock recovery */ 1176 1177 static void gdlm_recover_prep(void *arg) 1178 { 1179 struct gfs2_sbd *sdp = arg; 1180 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1181 1182 if (gfs2_withdrawing_or_withdrawn(sdp)) { 1183 fs_err(sdp, "recover_prep ignored due to withdraw.\n"); 1184 return; 1185 } 1186 spin_lock(&ls->ls_recover_spin); 1187 ls->ls_recover_block = ls->ls_recover_start; 1188 set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags); 1189 1190 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || 1191 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 1192 spin_unlock(&ls->ls_recover_spin); 1193 return; 1194 } 1195 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 1196 spin_unlock(&ls->ls_recover_spin); 1197 } 1198 1199 /* dlm calls after recover_prep has been completed on all lockspace members; 1200 identifies slot/jid of failed member */ 1201 1202 static void gdlm_recover_slot(void *arg, struct dlm_slot *slot) 1203 { 1204 struct gfs2_sbd *sdp = arg; 1205 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1206 int jid = slot->slot - 1; 1207 1208 if (gfs2_withdrawing_or_withdrawn(sdp)) { 1209 fs_err(sdp, "recover_slot jid %d ignored due to withdraw.\n", 1210 jid); 1211 return; 1212 } 1213 spin_lock(&ls->ls_recover_spin); 1214 if (ls->ls_recover_size < jid + 1) { 1215 fs_err(sdp, "recover_slot jid %d gen %u short size %d\n", 1216 jid, ls->ls_recover_block, ls->ls_recover_size); 1217 spin_unlock(&ls->ls_recover_spin); 1218 return; 1219 } 1220 1221 if (ls->ls_recover_submit[jid]) { 1222 fs_info(sdp, "recover_slot jid %d gen %u prev %u\n", 1223 jid, ls->ls_recover_block, ls->ls_recover_submit[jid]); 1224 } 1225 ls->ls_recover_submit[jid] = ls->ls_recover_block; 1226 spin_unlock(&ls->ls_recover_spin); 1227 } 1228 1229 /* dlm calls after recover_slot and after it completes lock recovery */ 1230 1231 static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots, 1232 int our_slot, uint32_t generation) 1233 { 1234 struct gfs2_sbd *sdp = arg; 1235 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1236 1237 if (gfs2_withdrawing_or_withdrawn(sdp)) { 1238 fs_err(sdp, "recover_done ignored due to withdraw.\n"); 1239 return; 1240 } 1241 /* ensure the ls jid arrays are large enough */ 1242 set_recover_size(sdp, slots, num_slots); 1243 1244 spin_lock(&ls->ls_recover_spin); 1245 ls->ls_recover_start = generation; 1246 1247 if (!ls->ls_recover_mount) { 1248 ls->ls_recover_mount = generation; 1249 ls->ls_jid = our_slot - 1; 1250 } 1251 1252 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) 1253 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0); 1254 1255 clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags); 1256 smp_mb__after_atomic(); 1257 wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY); 1258 spin_unlock(&ls->ls_recover_spin); 1259 } 1260 1261 /* gfs2_recover thread has a journal recovery result */ 1262 1263 static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid, 1264 unsigned int result) 1265 { 1266 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1267 1268 if (gfs2_withdrawing_or_withdrawn(sdp)) { 1269 fs_err(sdp, "recovery_result jid %d ignored due to withdraw.\n", 1270 jid); 1271 return; 1272 } 1273 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) 1274 return; 1275 1276 /* don't care about the recovery of own journal during mount */ 1277 if (jid == ls->ls_jid) 1278 return; 1279 1280 spin_lock(&ls->ls_recover_spin); 1281 if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 1282 spin_unlock(&ls->ls_recover_spin); 1283 return; 1284 } 1285 if (ls->ls_recover_size < jid + 1) { 1286 fs_err(sdp, "recovery_result jid %d short size %d\n", 1287 jid, ls->ls_recover_size); 1288 spin_unlock(&ls->ls_recover_spin); 1289 return; 1290 } 1291 1292 fs_info(sdp, "recover jid %d result %s\n", jid, 1293 result == LM_RD_GAVEUP ? "busy" : "success"); 1294 1295 ls->ls_recover_result[jid] = result; 1296 1297 /* GAVEUP means another node is recovering the journal; delay our 1298 next attempt to recover it, to give the other node a chance to 1299 finish before trying again */ 1300 1301 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) 1302 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 1303 result == LM_RD_GAVEUP ? HZ : 0); 1304 spin_unlock(&ls->ls_recover_spin); 1305 } 1306 1307 static const struct dlm_lockspace_ops gdlm_lockspace_ops = { 1308 .recover_prep = gdlm_recover_prep, 1309 .recover_slot = gdlm_recover_slot, 1310 .recover_done = gdlm_recover_done, 1311 }; 1312 1313 static int gdlm_mount(struct gfs2_sbd *sdp, const char *table) 1314 { 1315 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1316 char cluster[GFS2_LOCKNAME_LEN]; 1317 const char *fsname; 1318 uint32_t flags; 1319 int error, ops_result; 1320 1321 /* 1322 * initialize everything 1323 */ 1324 1325 INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func); 1326 spin_lock_init(&ls->ls_recover_spin); 1327 ls->ls_recover_flags = 0; 1328 ls->ls_recover_mount = 0; 1329 ls->ls_recover_start = 0; 1330 ls->ls_recover_block = 0; 1331 ls->ls_recover_size = 0; 1332 ls->ls_recover_submit = NULL; 1333 ls->ls_recover_result = NULL; 1334 ls->ls_lvb_bits = NULL; 1335 1336 error = set_recover_size(sdp, NULL, 0); 1337 if (error) 1338 goto fail; 1339 1340 /* 1341 * prepare dlm_new_lockspace args 1342 */ 1343 1344 fsname = strchr(table, ':'); 1345 if (!fsname) { 1346 fs_info(sdp, "no fsname found\n"); 1347 error = -EINVAL; 1348 goto fail_free; 1349 } 1350 memset(cluster, 0, sizeof(cluster)); 1351 memcpy(cluster, table, strlen(table) - strlen(fsname)); 1352 fsname++; 1353 1354 flags = DLM_LSFL_NEWEXCL; 1355 1356 /* 1357 * create/join lockspace 1358 */ 1359 1360 error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE, 1361 &gdlm_lockspace_ops, sdp, &ops_result, 1362 &ls->ls_dlm); 1363 if (error) { 1364 fs_err(sdp, "dlm_new_lockspace error %d\n", error); 1365 goto fail_free; 1366 } 1367 1368 if (ops_result < 0) { 1369 /* 1370 * dlm does not support ops callbacks, 1371 * old dlm_controld/gfs_controld are used, try without ops. 1372 */ 1373 fs_info(sdp, "dlm lockspace ops not used\n"); 1374 free_recover_size(ls); 1375 set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags); 1376 return 0; 1377 } 1378 1379 if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) { 1380 fs_err(sdp, "dlm lockspace ops disallow jid preset\n"); 1381 error = -EINVAL; 1382 goto fail_release; 1383 } 1384 1385 /* 1386 * control_mount() uses control_lock to determine first mounter, 1387 * and for later mounts, waits for any recoveries to be cleared. 1388 */ 1389 1390 error = control_mount(sdp); 1391 if (error) { 1392 fs_err(sdp, "mount control error %d\n", error); 1393 goto fail_release; 1394 } 1395 1396 ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); 1397 clear_bit(SDF_NOJOURNALID, &sdp->sd_flags); 1398 smp_mb__after_atomic(); 1399 wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID); 1400 return 0; 1401 1402 fail_release: 1403 dlm_release_lockspace(ls->ls_dlm, 2); 1404 fail_free: 1405 free_recover_size(ls); 1406 fail: 1407 return error; 1408 } 1409 1410 static void gdlm_first_done(struct gfs2_sbd *sdp) 1411 { 1412 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1413 int error; 1414 1415 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) 1416 return; 1417 1418 error = control_first_done(sdp); 1419 if (error) 1420 fs_err(sdp, "mount first_done error %d\n", error); 1421 } 1422 1423 static void gdlm_unmount(struct gfs2_sbd *sdp) 1424 { 1425 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1426 1427 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) 1428 goto release; 1429 1430 /* wait for gfs2_control_wq to be done with this mount */ 1431 1432 spin_lock(&ls->ls_recover_spin); 1433 set_bit(DFL_UNMOUNT, &ls->ls_recover_flags); 1434 spin_unlock(&ls->ls_recover_spin); 1435 flush_delayed_work(&sdp->sd_control_work); 1436 1437 /* mounted_lock and control_lock will be purged in dlm recovery */ 1438 release: 1439 if (ls->ls_dlm) { 1440 dlm_release_lockspace(ls->ls_dlm, 2); 1441 ls->ls_dlm = NULL; 1442 } 1443 1444 free_recover_size(ls); 1445 } 1446 1447 static const match_table_t dlm_tokens = { 1448 { Opt_jid, "jid=%d"}, 1449 { Opt_id, "id=%d"}, 1450 { Opt_first, "first=%d"}, 1451 { Opt_nodir, "nodir=%d"}, 1452 { Opt_err, NULL }, 1453 }; 1454 1455 const struct lm_lockops gfs2_dlm_ops = { 1456 .lm_proto_name = "lock_dlm", 1457 .lm_mount = gdlm_mount, 1458 .lm_first_done = gdlm_first_done, 1459 .lm_recovery_result = gdlm_recovery_result, 1460 .lm_unmount = gdlm_unmount, 1461 .lm_put_lock = gdlm_put_lock, 1462 .lm_lock = gdlm_lock, 1463 .lm_cancel = gdlm_cancel, 1464 .lm_tokens = &dlm_tokens, 1465 }; 1466 1467