1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 4 * Copyright 2004-2011 Red Hat, Inc. 5 */ 6 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 9 #include <linux/fs.h> 10 #include <linux/dlm.h> 11 #include <linux/slab.h> 12 #include <linux/types.h> 13 #include <linux/delay.h> 14 #include <linux/gfs2_ondisk.h> 15 #include <linux/sched/signal.h> 16 17 #include "incore.h" 18 #include "glock.h" 19 #include "glops.h" 20 #include "recovery.h" 21 #include "util.h" 22 #include "sys.h" 23 #include "trace_gfs2.h" 24 25 /** 26 * gfs2_update_stats - Update time based stats 27 * @s: The stats to update (local or global) 28 * @index: The index inside @s 29 * @sample: New data to include 30 */ 31 static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index, 32 s64 sample) 33 { 34 /* 35 * @delta is the difference between the current rtt sample and the 36 * running average srtt. We add 1/8 of that to the srtt in order to 37 * update the current srtt estimate. The variance estimate is a bit 38 * more complicated. We subtract the current variance estimate from 39 * the abs value of the @delta and add 1/4 of that to the running 40 * total. That's equivalent to 3/4 of the current variance 41 * estimate plus 1/4 of the abs of @delta. 42 * 43 * Note that the index points at the array entry containing the 44 * smoothed mean value, and the variance is always in the following 45 * entry 46 * 47 * Reference: TCP/IP Illustrated, vol 2, p. 831,832 48 * All times are in units of integer nanoseconds. Unlike the TCP/IP 49 * case, they are not scaled fixed point. 50 */ 51 52 s64 delta = sample - s->stats[index]; 53 s->stats[index] += (delta >> 3); 54 index++; 55 s->stats[index] += (s64)(abs(delta) - s->stats[index]) >> 2; 56 } 57 58 /** 59 * gfs2_update_reply_times - Update locking statistics 60 * @gl: The glock to update 61 * 62 * This assumes that gl->gl_dstamp has been set earlier. 63 * 64 * The rtt (lock round trip time) is an estimate of the time 65 * taken to perform a dlm lock request. We update it on each 66 * reply from the dlm. 67 * 68 * The blocking flag is set on the glock for all dlm requests 69 * which may potentially block due to lock requests from other nodes. 70 * DLM requests where the current lock state is exclusive, the 71 * requested state is null (or unlocked) or where the TRY or 72 * TRY_1CB flags are set are classified as non-blocking. All 73 * other DLM requests are counted as (potentially) blocking. 74 */ 75 static inline void gfs2_update_reply_times(struct gfs2_glock *gl) 76 { 77 struct gfs2_pcpu_lkstats *lks; 78 const unsigned gltype = gl->gl_name.ln_type; 79 unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ? 80 GFS2_LKS_SRTTB : GFS2_LKS_SRTT; 81 s64 rtt; 82 83 preempt_disable(); 84 rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp)); 85 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats); 86 gfs2_update_stats(&gl->gl_stats, index, rtt); /* Local */ 87 gfs2_update_stats(&lks->lkstats[gltype], index, rtt); /* Global */ 88 preempt_enable(); 89 90 trace_gfs2_glock_lock_time(gl, rtt); 91 } 92 93 /** 94 * gfs2_update_request_times - Update locking statistics 95 * @gl: The glock to update 96 * 97 * The irt (lock inter-request times) measures the average time 98 * between requests to the dlm. It is updated immediately before 99 * each dlm call. 100 */ 101 102 static inline void gfs2_update_request_times(struct gfs2_glock *gl) 103 { 104 struct gfs2_pcpu_lkstats *lks; 105 const unsigned gltype = gl->gl_name.ln_type; 106 ktime_t dstamp; 107 s64 irt; 108 109 preempt_disable(); 110 dstamp = gl->gl_dstamp; 111 gl->gl_dstamp = ktime_get_real(); 112 irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp)); 113 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats); 114 gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt); /* Local */ 115 gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt); /* Global */ 116 preempt_enable(); 117 } 118 119 static void gdlm_ast(void *arg) 120 { 121 struct gfs2_glock *gl = arg; 122 unsigned ret = gl->gl_state; 123 124 /* If the glock is dead, we only react to a dlm_unlock() reply. */ 125 if (__lockref_is_dead(&gl->gl_lockref) && 126 gl->gl_lksb.sb_status != -DLM_EUNLOCK) 127 return; 128 129 gfs2_update_reply_times(gl); 130 BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED); 131 132 if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr) 133 memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE); 134 135 switch (gl->gl_lksb.sb_status) { 136 case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */ 137 if (gl->gl_ops->go_unlocked) 138 gl->gl_ops->go_unlocked(gl); 139 gfs2_glock_free(gl); 140 return; 141 case -DLM_ECANCEL: /* Cancel while getting lock */ 142 ret |= LM_OUT_CANCELED; 143 goto out; 144 case -EAGAIN: /* Try lock fails */ 145 case -EDEADLK: /* Deadlock detected */ 146 goto out; 147 case -ETIMEDOUT: /* Canceled due to timeout */ 148 ret |= LM_OUT_ERROR; 149 goto out; 150 case 0: /* Success */ 151 break; 152 default: /* Something unexpected */ 153 BUG(); 154 } 155 156 ret = gl->gl_req; 157 if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) { 158 if (gl->gl_req == LM_ST_SHARED) 159 ret = LM_ST_DEFERRED; 160 else if (gl->gl_req == LM_ST_DEFERRED) 161 ret = LM_ST_SHARED; 162 else 163 BUG(); 164 } 165 166 /* 167 * The GLF_INITIAL flag is initially set for new glocks. Upon the 168 * first successful new (non-conversion) request, we clear this flag to 169 * indicate that a DLM lock exists and that gl->gl_lksb.sb_lkid is the 170 * identifier to use for identifying it. 171 * 172 * Any failed initial requests do not create a DLM lock, so we ignore 173 * the gl->gl_lksb.sb_lkid values that come with such requests. 174 */ 175 176 clear_bit(GLF_INITIAL, &gl->gl_flags); 177 gfs2_glock_complete(gl, ret); 178 return; 179 out: 180 if (test_bit(GLF_INITIAL, &gl->gl_flags)) 181 gl->gl_lksb.sb_lkid = 0; 182 gfs2_glock_complete(gl, ret); 183 } 184 185 static void gdlm_bast(void *arg, int mode) 186 { 187 struct gfs2_glock *gl = arg; 188 189 if (__lockref_is_dead(&gl->gl_lockref)) 190 return; 191 192 switch (mode) { 193 case DLM_LOCK_EX: 194 gfs2_glock_cb(gl, LM_ST_UNLOCKED); 195 break; 196 case DLM_LOCK_CW: 197 gfs2_glock_cb(gl, LM_ST_DEFERRED); 198 break; 199 case DLM_LOCK_PR: 200 gfs2_glock_cb(gl, LM_ST_SHARED); 201 break; 202 default: 203 fs_err(gl->gl_name.ln_sbd, "unknown bast mode %d\n", mode); 204 BUG(); 205 } 206 } 207 208 /* convert gfs lock-state to dlm lock-mode */ 209 210 static int make_mode(struct gfs2_sbd *sdp, const unsigned int lmstate) 211 { 212 switch (lmstate) { 213 case LM_ST_UNLOCKED: 214 return DLM_LOCK_NL; 215 case LM_ST_EXCLUSIVE: 216 return DLM_LOCK_EX; 217 case LM_ST_DEFERRED: 218 return DLM_LOCK_CW; 219 case LM_ST_SHARED: 220 return DLM_LOCK_PR; 221 } 222 fs_err(sdp, "unknown LM state %d\n", lmstate); 223 BUG(); 224 return -1; 225 } 226 227 static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags, 228 const int req) 229 { 230 u32 lkf = 0; 231 232 if (gl->gl_lksb.sb_lvbptr) 233 lkf |= DLM_LKF_VALBLK; 234 235 if (gfs_flags & LM_FLAG_TRY) 236 lkf |= DLM_LKF_NOQUEUE; 237 238 if (gfs_flags & LM_FLAG_TRY_1CB) { 239 lkf |= DLM_LKF_NOQUEUE; 240 lkf |= DLM_LKF_NOQUEUEBAST; 241 } 242 243 if (gfs_flags & LM_FLAG_ANY) { 244 if (req == DLM_LOCK_PR) 245 lkf |= DLM_LKF_ALTCW; 246 else if (req == DLM_LOCK_CW) 247 lkf |= DLM_LKF_ALTPR; 248 else 249 BUG(); 250 } 251 252 if (!test_bit(GLF_INITIAL, &gl->gl_flags)) { 253 lkf |= DLM_LKF_CONVERT; 254 if (test_bit(GLF_BLOCKING, &gl->gl_flags)) 255 lkf |= DLM_LKF_QUECVT; 256 } 257 258 return lkf; 259 } 260 261 static void gfs2_reverse_hex(char *c, u64 value) 262 { 263 *c = '0'; 264 while (value) { 265 *c-- = hex_asc[value & 0x0f]; 266 value >>= 4; 267 } 268 } 269 270 static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state, 271 unsigned int flags) 272 { 273 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct; 274 int req; 275 u32 lkf; 276 char strname[GDLM_STRNAME_BYTES] = ""; 277 int error; 278 279 req = make_mode(gl->gl_name.ln_sbd, req_state); 280 lkf = make_flags(gl, flags, req); 281 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT); 282 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT); 283 if (test_bit(GLF_INITIAL, &gl->gl_flags)) { 284 memset(strname, ' ', GDLM_STRNAME_BYTES - 1); 285 strname[GDLM_STRNAME_BYTES - 1] = '\0'; 286 gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type); 287 gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number); 288 gl->gl_dstamp = ktime_get_real(); 289 } else { 290 gfs2_update_request_times(gl); 291 } 292 /* 293 * Submit the actual lock request. 294 */ 295 296 again: 297 error = dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname, 298 GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast); 299 if (error == -EBUSY) { 300 msleep(20); 301 goto again; 302 } 303 return error; 304 } 305 306 static void gdlm_put_lock(struct gfs2_glock *gl) 307 { 308 struct gfs2_sbd *sdp = gl->gl_name.ln_sbd; 309 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 310 int error; 311 312 BUG_ON(!__lockref_is_dead(&gl->gl_lockref)); 313 314 if (test_bit(GLF_INITIAL, &gl->gl_flags)) { 315 gfs2_glock_free(gl); 316 return; 317 } 318 319 clear_bit(GLF_BLOCKING, &gl->gl_flags); 320 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT); 321 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT); 322 gfs2_update_request_times(gl); 323 324 /* don't want to call dlm if we've unmounted the lock protocol */ 325 if (test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) { 326 gfs2_glock_free(gl); 327 return; 328 } 329 330 /* 331 * When the lockspace is released, all remaining glocks will be 332 * unlocked automatically. This is more efficient than unlocking them 333 * individually, but when the lock is held in DLM_LOCK_EX or 334 * DLM_LOCK_PW mode, the lock value block (LVB) will be lost. 335 */ 336 337 if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) && 338 (!gl->gl_lksb.sb_lvbptr || gl->gl_state != LM_ST_EXCLUSIVE)) { 339 gfs2_glock_free_later(gl); 340 return; 341 } 342 343 again: 344 error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK, 345 NULL, gl); 346 if (error == -EBUSY) { 347 msleep(20); 348 goto again; 349 } 350 351 if (error) { 352 fs_err(sdp, "gdlm_unlock %x,%llx err=%d\n", 353 gl->gl_name.ln_type, 354 (unsigned long long)gl->gl_name.ln_number, error); 355 } 356 } 357 358 static void gdlm_cancel(struct gfs2_glock *gl) 359 { 360 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct; 361 dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl); 362 } 363 364 /* 365 * dlm/gfs2 recovery coordination using dlm_recover callbacks 366 * 367 * 0. gfs2 checks for another cluster node withdraw, needing journal replay 368 * 1. dlm_controld sees lockspace members change 369 * 2. dlm_controld blocks dlm-kernel locking activity 370 * 3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep) 371 * 4. dlm_controld starts and finishes its own user level recovery 372 * 5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery 373 * 6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot) 374 * 7. dlm_recoverd does its own lock recovery 375 * 8. dlm_recoverd unblocks dlm-kernel locking activity 376 * 9. dlm_recoverd notifies gfs2 when done (recover_done with new generation) 377 * 10. gfs2_control updates control_lock lvb with new generation and jid bits 378 * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none) 379 * 12. gfs2_recover dequeues and recovers journals of failed nodes 380 * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result) 381 * 14. gfs2_control updates control_lock lvb jid bits for recovered journals 382 * 15. gfs2_control unblocks normal locking when all journals are recovered 383 * 384 * - failures during recovery 385 * 386 * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control 387 * clears BLOCK_LOCKS (step 15), e.g. another node fails while still 388 * recovering for a prior failure. gfs2_control needs a way to detect 389 * this so it can leave BLOCK_LOCKS set in step 15. This is managed using 390 * the recover_block and recover_start values. 391 * 392 * recover_done() provides a new lockspace generation number each time it 393 * is called (step 9). This generation number is saved as recover_start. 394 * When recover_prep() is called, it sets BLOCK_LOCKS and sets 395 * recover_block = recover_start. So, while recover_block is equal to 396 * recover_start, BLOCK_LOCKS should remain set. (recover_spin must 397 * be held around the BLOCK_LOCKS/recover_block/recover_start logic.) 398 * 399 * - more specific gfs2 steps in sequence above 400 * 401 * 3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start 402 * 6. recover_slot records any failed jids (maybe none) 403 * 9. recover_done sets recover_start = new generation number 404 * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids 405 * 12. gfs2_recover does journal recoveries for failed jids identified above 406 * 14. gfs2_control clears control_lock lvb bits for recovered jids 407 * 15. gfs2_control checks if recover_block == recover_start (step 3 occured 408 * again) then do nothing, otherwise if recover_start > recover_block 409 * then clear BLOCK_LOCKS. 410 * 411 * - parallel recovery steps across all nodes 412 * 413 * All nodes attempt to update the control_lock lvb with the new generation 414 * number and jid bits, but only the first to get the control_lock EX will 415 * do so; others will see that it's already done (lvb already contains new 416 * generation number.) 417 * 418 * . All nodes get the same recover_prep/recover_slot/recover_done callbacks 419 * . All nodes attempt to set control_lock lvb gen + bits for the new gen 420 * . One node gets control_lock first and writes the lvb, others see it's done 421 * . All nodes attempt to recover jids for which they see control_lock bits set 422 * . One node succeeds for a jid, and that one clears the jid bit in the lvb 423 * . All nodes will eventually see all lvb bits clear and unblock locks 424 * 425 * - is there a problem with clearing an lvb bit that should be set 426 * and missing a journal recovery? 427 * 428 * 1. jid fails 429 * 2. lvb bit set for step 1 430 * 3. jid recovered for step 1 431 * 4. jid taken again (new mount) 432 * 5. jid fails (for step 4) 433 * 6. lvb bit set for step 5 (will already be set) 434 * 7. lvb bit cleared for step 3 435 * 436 * This is not a problem because the failure in step 5 does not 437 * require recovery, because the mount in step 4 could not have 438 * progressed far enough to unblock locks and access the fs. The 439 * control_mount() function waits for all recoveries to be complete 440 * for the latest lockspace generation before ever unblocking locks 441 * and returning. The mount in step 4 waits until the recovery in 442 * step 1 is done. 443 * 444 * - special case of first mounter: first node to mount the fs 445 * 446 * The first node to mount a gfs2 fs needs to check all the journals 447 * and recover any that need recovery before other nodes are allowed 448 * to mount the fs. (Others may begin mounting, but they must wait 449 * for the first mounter to be done before taking locks on the fs 450 * or accessing the fs.) This has two parts: 451 * 452 * 1. The mounted_lock tells a node it's the first to mount the fs. 453 * Each node holds the mounted_lock in PR while it's mounted. 454 * Each node tries to acquire the mounted_lock in EX when it mounts. 455 * If a node is granted the mounted_lock EX it means there are no 456 * other mounted nodes (no PR locks exist), and it is the first mounter. 457 * The mounted_lock is demoted to PR when first recovery is done, so 458 * others will fail to get an EX lock, but will get a PR lock. 459 * 460 * 2. The control_lock blocks others in control_mount() while the first 461 * mounter is doing first mount recovery of all journals. 462 * A mounting node needs to acquire control_lock in EX mode before 463 * it can proceed. The first mounter holds control_lock in EX while doing 464 * the first mount recovery, blocking mounts from other nodes, then demotes 465 * control_lock to NL when it's done (others_may_mount/first_done), 466 * allowing other nodes to continue mounting. 467 * 468 * first mounter: 469 * control_lock EX/NOQUEUE success 470 * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters) 471 * set first=1 472 * do first mounter recovery 473 * mounted_lock EX->PR 474 * control_lock EX->NL, write lvb generation 475 * 476 * other mounter: 477 * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry) 478 * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR) 479 * mounted_lock PR/NOQUEUE success 480 * read lvb generation 481 * control_lock EX->NL 482 * set first=0 483 * 484 * - mount during recovery 485 * 486 * If a node mounts while others are doing recovery (not first mounter), 487 * the mounting node will get its initial recover_done() callback without 488 * having seen any previous failures/callbacks. 489 * 490 * It must wait for all recoveries preceding its mount to be finished 491 * before it unblocks locks. It does this by repeating the "other mounter" 492 * steps above until the lvb generation number is >= its mount generation 493 * number (from initial recover_done) and all lvb bits are clear. 494 * 495 * - control_lock lvb format 496 * 497 * 4 bytes generation number: the latest dlm lockspace generation number 498 * from recover_done callback. Indicates the jid bitmap has been updated 499 * to reflect all slot failures through that generation. 500 * 4 bytes unused. 501 * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates 502 * that jid N needs recovery. 503 */ 504 505 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */ 506 507 static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen, 508 char *lvb_bits) 509 { 510 __le32 gen; 511 memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE); 512 memcpy(&gen, lvb_bits, sizeof(__le32)); 513 *lvb_gen = le32_to_cpu(gen); 514 } 515 516 static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen, 517 char *lvb_bits) 518 { 519 __le32 gen; 520 memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE); 521 gen = cpu_to_le32(lvb_gen); 522 memcpy(ls->ls_control_lvb, &gen, sizeof(__le32)); 523 } 524 525 static int all_jid_bits_clear(char *lvb) 526 { 527 return !memchr_inv(lvb + JID_BITMAP_OFFSET, 0, 528 GDLM_LVB_SIZE - JID_BITMAP_OFFSET); 529 } 530 531 static void sync_wait_cb(void *arg) 532 { 533 struct lm_lockstruct *ls = arg; 534 complete(&ls->ls_sync_wait); 535 } 536 537 static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name) 538 { 539 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 540 int error; 541 542 error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls); 543 if (error) { 544 fs_err(sdp, "%s lkid %x error %d\n", 545 name, lksb->sb_lkid, error); 546 return error; 547 } 548 549 wait_for_completion(&ls->ls_sync_wait); 550 551 if (lksb->sb_status != -DLM_EUNLOCK) { 552 fs_err(sdp, "%s lkid %x status %d\n", 553 name, lksb->sb_lkid, lksb->sb_status); 554 return -1; 555 } 556 return 0; 557 } 558 559 static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags, 560 unsigned int num, struct dlm_lksb *lksb, char *name) 561 { 562 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 563 char strname[GDLM_STRNAME_BYTES]; 564 int error, status; 565 566 memset(strname, 0, GDLM_STRNAME_BYTES); 567 snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num); 568 569 error = dlm_lock(ls->ls_dlm, mode, lksb, flags, 570 strname, GDLM_STRNAME_BYTES - 1, 571 0, sync_wait_cb, ls, NULL); 572 if (error) { 573 fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n", 574 name, lksb->sb_lkid, flags, mode, error); 575 return error; 576 } 577 578 wait_for_completion(&ls->ls_sync_wait); 579 580 status = lksb->sb_status; 581 582 if (status && status != -EAGAIN) { 583 fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n", 584 name, lksb->sb_lkid, flags, mode, status); 585 } 586 587 return status; 588 } 589 590 static int mounted_unlock(struct gfs2_sbd *sdp) 591 { 592 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 593 return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock"); 594 } 595 596 static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags) 597 { 598 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 599 return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK, 600 &ls->ls_mounted_lksb, "mounted_lock"); 601 } 602 603 static int control_unlock(struct gfs2_sbd *sdp) 604 { 605 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 606 return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock"); 607 } 608 609 static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags) 610 { 611 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 612 return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK, 613 &ls->ls_control_lksb, "control_lock"); 614 } 615 616 /** 617 * remote_withdraw - react to a node withdrawing from the file system 618 * @sdp: The superblock 619 */ 620 static void remote_withdraw(struct gfs2_sbd *sdp) 621 { 622 struct gfs2_jdesc *jd; 623 int ret = 0, count = 0; 624 625 list_for_each_entry(jd, &sdp->sd_jindex_list, jd_list) { 626 if (jd->jd_jid == sdp->sd_lockstruct.ls_jid) 627 continue; 628 ret = gfs2_recover_journal(jd, true); 629 if (ret) 630 break; 631 count++; 632 } 633 634 /* Now drop the additional reference we acquired */ 635 fs_err(sdp, "Journals checked: %d, ret = %d.\n", count, ret); 636 } 637 638 static void gfs2_control_func(struct work_struct *work) 639 { 640 struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work); 641 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 642 uint32_t block_gen, start_gen, lvb_gen, flags; 643 int recover_set = 0; 644 int write_lvb = 0; 645 int recover_size; 646 int i, error; 647 648 /* First check for other nodes that may have done a withdraw. */ 649 if (test_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags)) { 650 remote_withdraw(sdp); 651 clear_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags); 652 return; 653 } 654 655 spin_lock(&ls->ls_recover_spin); 656 /* 657 * No MOUNT_DONE means we're still mounting; control_mount() 658 * will set this flag, after which this thread will take over 659 * all further clearing of BLOCK_LOCKS. 660 * 661 * FIRST_MOUNT means this node is doing first mounter recovery, 662 * for which recovery control is handled by 663 * control_mount()/control_first_done(), not this thread. 664 */ 665 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || 666 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 667 spin_unlock(&ls->ls_recover_spin); 668 return; 669 } 670 block_gen = ls->ls_recover_block; 671 start_gen = ls->ls_recover_start; 672 spin_unlock(&ls->ls_recover_spin); 673 674 /* 675 * Equal block_gen and start_gen implies we are between 676 * recover_prep and recover_done callbacks, which means 677 * dlm recovery is in progress and dlm locking is blocked. 678 * There's no point trying to do any work until recover_done. 679 */ 680 681 if (block_gen == start_gen) 682 return; 683 684 /* 685 * Propagate recover_submit[] and recover_result[] to lvb: 686 * dlm_recoverd adds to recover_submit[] jids needing recovery 687 * gfs2_recover adds to recover_result[] journal recovery results 688 * 689 * set lvb bit for jids in recover_submit[] if the lvb has not 690 * yet been updated for the generation of the failure 691 * 692 * clear lvb bit for jids in recover_result[] if the result of 693 * the journal recovery is SUCCESS 694 */ 695 696 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK); 697 if (error) { 698 fs_err(sdp, "control lock EX error %d\n", error); 699 return; 700 } 701 702 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits); 703 704 spin_lock(&ls->ls_recover_spin); 705 if (block_gen != ls->ls_recover_block || 706 start_gen != ls->ls_recover_start) { 707 fs_info(sdp, "recover generation %u block1 %u %u\n", 708 start_gen, block_gen, ls->ls_recover_block); 709 spin_unlock(&ls->ls_recover_spin); 710 control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); 711 return; 712 } 713 714 recover_size = ls->ls_recover_size; 715 716 if (lvb_gen <= start_gen) { 717 /* 718 * Clear lvb bits for jids we've successfully recovered. 719 * Because all nodes attempt to recover failed journals, 720 * a journal can be recovered multiple times successfully 721 * in succession. Only the first will really do recovery, 722 * the others find it clean, but still report a successful 723 * recovery. So, another node may have already recovered 724 * the jid and cleared the lvb bit for it. 725 */ 726 for (i = 0; i < recover_size; i++) { 727 if (ls->ls_recover_result[i] != LM_RD_SUCCESS) 728 continue; 729 730 ls->ls_recover_result[i] = 0; 731 732 if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) 733 continue; 734 735 __clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET); 736 write_lvb = 1; 737 } 738 } 739 740 if (lvb_gen == start_gen) { 741 /* 742 * Failed slots before start_gen are already set in lvb. 743 */ 744 for (i = 0; i < recover_size; i++) { 745 if (!ls->ls_recover_submit[i]) 746 continue; 747 if (ls->ls_recover_submit[i] < lvb_gen) 748 ls->ls_recover_submit[i] = 0; 749 } 750 } else if (lvb_gen < start_gen) { 751 /* 752 * Failed slots before start_gen are not yet set in lvb. 753 */ 754 for (i = 0; i < recover_size; i++) { 755 if (!ls->ls_recover_submit[i]) 756 continue; 757 if (ls->ls_recover_submit[i] < start_gen) { 758 ls->ls_recover_submit[i] = 0; 759 __set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET); 760 } 761 } 762 /* even if there are no bits to set, we need to write the 763 latest generation to the lvb */ 764 write_lvb = 1; 765 } else { 766 /* 767 * we should be getting a recover_done() for lvb_gen soon 768 */ 769 } 770 spin_unlock(&ls->ls_recover_spin); 771 772 if (write_lvb) { 773 control_lvb_write(ls, start_gen, ls->ls_lvb_bits); 774 flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK; 775 } else { 776 flags = DLM_LKF_CONVERT; 777 } 778 779 error = control_lock(sdp, DLM_LOCK_NL, flags); 780 if (error) { 781 fs_err(sdp, "control lock NL error %d\n", error); 782 return; 783 } 784 785 /* 786 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(), 787 * and clear a jid bit in the lvb if the recovery is a success. 788 * Eventually all journals will be recovered, all jid bits will 789 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS. 790 */ 791 792 for (i = 0; i < recover_size; i++) { 793 if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) { 794 fs_info(sdp, "recover generation %u jid %d\n", 795 start_gen, i); 796 gfs2_recover_set(sdp, i); 797 recover_set++; 798 } 799 } 800 if (recover_set) 801 return; 802 803 /* 804 * No more jid bits set in lvb, all recovery is done, unblock locks 805 * (unless a new recover_prep callback has occured blocking locks 806 * again while working above) 807 */ 808 809 spin_lock(&ls->ls_recover_spin); 810 if (ls->ls_recover_block == block_gen && 811 ls->ls_recover_start == start_gen) { 812 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 813 spin_unlock(&ls->ls_recover_spin); 814 fs_info(sdp, "recover generation %u done\n", start_gen); 815 gfs2_glock_thaw(sdp); 816 } else { 817 fs_info(sdp, "recover generation %u block2 %u %u\n", 818 start_gen, block_gen, ls->ls_recover_block); 819 spin_unlock(&ls->ls_recover_spin); 820 } 821 } 822 823 static int control_mount(struct gfs2_sbd *sdp) 824 { 825 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 826 uint32_t start_gen, block_gen, mount_gen, lvb_gen; 827 int mounted_mode; 828 int retries = 0; 829 int error; 830 831 memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb)); 832 memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb)); 833 memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE); 834 ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb; 835 init_completion(&ls->ls_sync_wait); 836 837 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 838 839 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK); 840 if (error) { 841 fs_err(sdp, "control_mount control_lock NL error %d\n", error); 842 return error; 843 } 844 845 error = mounted_lock(sdp, DLM_LOCK_NL, 0); 846 if (error) { 847 fs_err(sdp, "control_mount mounted_lock NL error %d\n", error); 848 control_unlock(sdp); 849 return error; 850 } 851 mounted_mode = DLM_LOCK_NL; 852 853 restart: 854 if (retries++ && signal_pending(current)) { 855 error = -EINTR; 856 goto fail; 857 } 858 859 /* 860 * We always start with both locks in NL. control_lock is 861 * demoted to NL below so we don't need to do it here. 862 */ 863 864 if (mounted_mode != DLM_LOCK_NL) { 865 error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); 866 if (error) 867 goto fail; 868 mounted_mode = DLM_LOCK_NL; 869 } 870 871 /* 872 * Other nodes need to do some work in dlm recovery and gfs2_control 873 * before the recover_done and control_lock will be ready for us below. 874 * A delay here is not required but often avoids having to retry. 875 */ 876 877 msleep_interruptible(500); 878 879 /* 880 * Acquire control_lock in EX and mounted_lock in either EX or PR. 881 * control_lock lvb keeps track of any pending journal recoveries. 882 * mounted_lock indicates if any other nodes have the fs mounted. 883 */ 884 885 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK); 886 if (error == -EAGAIN) { 887 goto restart; 888 } else if (error) { 889 fs_err(sdp, "control_mount control_lock EX error %d\n", error); 890 goto fail; 891 } 892 893 /** 894 * If we're a spectator, we don't want to take the lock in EX because 895 * we cannot do the first-mount responsibility it implies: recovery. 896 */ 897 if (sdp->sd_args.ar_spectator) 898 goto locks_done; 899 900 error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE); 901 if (!error) { 902 mounted_mode = DLM_LOCK_EX; 903 goto locks_done; 904 } else if (error != -EAGAIN) { 905 fs_err(sdp, "control_mount mounted_lock EX error %d\n", error); 906 goto fail; 907 } 908 909 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE); 910 if (!error) { 911 mounted_mode = DLM_LOCK_PR; 912 goto locks_done; 913 } else { 914 /* not even -EAGAIN should happen here */ 915 fs_err(sdp, "control_mount mounted_lock PR error %d\n", error); 916 goto fail; 917 } 918 919 locks_done: 920 /* 921 * If we got both locks above in EX, then we're the first mounter. 922 * If not, then we need to wait for the control_lock lvb to be 923 * updated by other mounted nodes to reflect our mount generation. 924 * 925 * In simple first mounter cases, first mounter will see zero lvb_gen, 926 * but in cases where all existing nodes leave/fail before mounting 927 * nodes finish control_mount, then all nodes will be mounting and 928 * lvb_gen will be non-zero. 929 */ 930 931 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits); 932 933 if (lvb_gen == 0xFFFFFFFF) { 934 /* special value to force mount attempts to fail */ 935 fs_err(sdp, "control_mount control_lock disabled\n"); 936 error = -EINVAL; 937 goto fail; 938 } 939 940 if (mounted_mode == DLM_LOCK_EX) { 941 /* first mounter, keep both EX while doing first recovery */ 942 spin_lock(&ls->ls_recover_spin); 943 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 944 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags); 945 set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); 946 spin_unlock(&ls->ls_recover_spin); 947 fs_info(sdp, "first mounter control generation %u\n", lvb_gen); 948 return 0; 949 } 950 951 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); 952 if (error) 953 goto fail; 954 955 /* 956 * We are not first mounter, now we need to wait for the control_lock 957 * lvb generation to be >= the generation from our first recover_done 958 * and all lvb bits to be clear (no pending journal recoveries.) 959 */ 960 961 if (!all_jid_bits_clear(ls->ls_lvb_bits)) { 962 /* journals need recovery, wait until all are clear */ 963 fs_info(sdp, "control_mount wait for journal recovery\n"); 964 goto restart; 965 } 966 967 spin_lock(&ls->ls_recover_spin); 968 block_gen = ls->ls_recover_block; 969 start_gen = ls->ls_recover_start; 970 mount_gen = ls->ls_recover_mount; 971 972 if (lvb_gen < mount_gen) { 973 /* wait for mounted nodes to update control_lock lvb to our 974 generation, which might include new recovery bits set */ 975 if (sdp->sd_args.ar_spectator) { 976 fs_info(sdp, "Recovery is required. Waiting for a " 977 "non-spectator to mount.\n"); 978 msleep_interruptible(1000); 979 } else { 980 fs_info(sdp, "control_mount wait1 block %u start %u " 981 "mount %u lvb %u flags %lx\n", block_gen, 982 start_gen, mount_gen, lvb_gen, 983 ls->ls_recover_flags); 984 } 985 spin_unlock(&ls->ls_recover_spin); 986 goto restart; 987 } 988 989 if (lvb_gen != start_gen) { 990 /* wait for mounted nodes to update control_lock lvb to the 991 latest recovery generation */ 992 fs_info(sdp, "control_mount wait2 block %u start %u mount %u " 993 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen, 994 lvb_gen, ls->ls_recover_flags); 995 spin_unlock(&ls->ls_recover_spin); 996 goto restart; 997 } 998 999 if (block_gen == start_gen) { 1000 /* dlm recovery in progress, wait for it to finish */ 1001 fs_info(sdp, "control_mount wait3 block %u start %u mount %u " 1002 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen, 1003 lvb_gen, ls->ls_recover_flags); 1004 spin_unlock(&ls->ls_recover_spin); 1005 goto restart; 1006 } 1007 1008 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 1009 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags); 1010 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t)); 1011 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t)); 1012 spin_unlock(&ls->ls_recover_spin); 1013 return 0; 1014 1015 fail: 1016 mounted_unlock(sdp); 1017 control_unlock(sdp); 1018 return error; 1019 } 1020 1021 static int control_first_done(struct gfs2_sbd *sdp) 1022 { 1023 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1024 uint32_t start_gen, block_gen; 1025 int error; 1026 1027 restart: 1028 spin_lock(&ls->ls_recover_spin); 1029 start_gen = ls->ls_recover_start; 1030 block_gen = ls->ls_recover_block; 1031 1032 if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) || 1033 !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || 1034 !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 1035 /* sanity check, should not happen */ 1036 fs_err(sdp, "control_first_done start %u block %u flags %lx\n", 1037 start_gen, block_gen, ls->ls_recover_flags); 1038 spin_unlock(&ls->ls_recover_spin); 1039 control_unlock(sdp); 1040 return -1; 1041 } 1042 1043 if (start_gen == block_gen) { 1044 /* 1045 * Wait for the end of a dlm recovery cycle to switch from 1046 * first mounter recovery. We can ignore any recover_slot 1047 * callbacks between the recover_prep and next recover_done 1048 * because we are still the first mounter and any failed nodes 1049 * have not fully mounted, so they don't need recovery. 1050 */ 1051 spin_unlock(&ls->ls_recover_spin); 1052 fs_info(sdp, "control_first_done wait gen %u\n", start_gen); 1053 1054 wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY, 1055 TASK_UNINTERRUPTIBLE); 1056 goto restart; 1057 } 1058 1059 clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); 1060 set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags); 1061 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t)); 1062 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t)); 1063 spin_unlock(&ls->ls_recover_spin); 1064 1065 memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE); 1066 control_lvb_write(ls, start_gen, ls->ls_lvb_bits); 1067 1068 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT); 1069 if (error) 1070 fs_err(sdp, "control_first_done mounted PR error %d\n", error); 1071 1072 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK); 1073 if (error) 1074 fs_err(sdp, "control_first_done control NL error %d\n", error); 1075 1076 return error; 1077 } 1078 1079 /* 1080 * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC) 1081 * to accommodate the largest slot number. (NB dlm slot numbers start at 1, 1082 * gfs2 jids start at 0, so jid = slot - 1) 1083 */ 1084 1085 #define RECOVER_SIZE_INC 16 1086 1087 static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots, 1088 int num_slots) 1089 { 1090 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1091 uint32_t *submit = NULL; 1092 uint32_t *result = NULL; 1093 uint32_t old_size, new_size; 1094 int i, max_jid; 1095 1096 if (!ls->ls_lvb_bits) { 1097 ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS); 1098 if (!ls->ls_lvb_bits) 1099 return -ENOMEM; 1100 } 1101 1102 max_jid = 0; 1103 for (i = 0; i < num_slots; i++) { 1104 if (max_jid < slots[i].slot - 1) 1105 max_jid = slots[i].slot - 1; 1106 } 1107 1108 old_size = ls->ls_recover_size; 1109 new_size = old_size; 1110 while (new_size < max_jid + 1) 1111 new_size += RECOVER_SIZE_INC; 1112 if (new_size == old_size) 1113 return 0; 1114 1115 submit = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS); 1116 result = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS); 1117 if (!submit || !result) { 1118 kfree(submit); 1119 kfree(result); 1120 return -ENOMEM; 1121 } 1122 1123 spin_lock(&ls->ls_recover_spin); 1124 memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t)); 1125 memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t)); 1126 kfree(ls->ls_recover_submit); 1127 kfree(ls->ls_recover_result); 1128 ls->ls_recover_submit = submit; 1129 ls->ls_recover_result = result; 1130 ls->ls_recover_size = new_size; 1131 spin_unlock(&ls->ls_recover_spin); 1132 return 0; 1133 } 1134 1135 static void free_recover_size(struct lm_lockstruct *ls) 1136 { 1137 kfree(ls->ls_lvb_bits); 1138 kfree(ls->ls_recover_submit); 1139 kfree(ls->ls_recover_result); 1140 ls->ls_recover_submit = NULL; 1141 ls->ls_recover_result = NULL; 1142 ls->ls_recover_size = 0; 1143 ls->ls_lvb_bits = NULL; 1144 } 1145 1146 /* dlm calls before it does lock recovery */ 1147 1148 static void gdlm_recover_prep(void *arg) 1149 { 1150 struct gfs2_sbd *sdp = arg; 1151 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1152 1153 if (gfs2_withdrawing_or_withdrawn(sdp)) { 1154 fs_err(sdp, "recover_prep ignored due to withdraw.\n"); 1155 return; 1156 } 1157 spin_lock(&ls->ls_recover_spin); 1158 ls->ls_recover_block = ls->ls_recover_start; 1159 set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags); 1160 1161 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || 1162 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 1163 spin_unlock(&ls->ls_recover_spin); 1164 return; 1165 } 1166 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 1167 spin_unlock(&ls->ls_recover_spin); 1168 } 1169 1170 /* dlm calls after recover_prep has been completed on all lockspace members; 1171 identifies slot/jid of failed member */ 1172 1173 static void gdlm_recover_slot(void *arg, struct dlm_slot *slot) 1174 { 1175 struct gfs2_sbd *sdp = arg; 1176 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1177 int jid = slot->slot - 1; 1178 1179 if (gfs2_withdrawing_or_withdrawn(sdp)) { 1180 fs_err(sdp, "recover_slot jid %d ignored due to withdraw.\n", 1181 jid); 1182 return; 1183 } 1184 spin_lock(&ls->ls_recover_spin); 1185 if (ls->ls_recover_size < jid + 1) { 1186 fs_err(sdp, "recover_slot jid %d gen %u short size %d\n", 1187 jid, ls->ls_recover_block, ls->ls_recover_size); 1188 spin_unlock(&ls->ls_recover_spin); 1189 return; 1190 } 1191 1192 if (ls->ls_recover_submit[jid]) { 1193 fs_info(sdp, "recover_slot jid %d gen %u prev %u\n", 1194 jid, ls->ls_recover_block, ls->ls_recover_submit[jid]); 1195 } 1196 ls->ls_recover_submit[jid] = ls->ls_recover_block; 1197 spin_unlock(&ls->ls_recover_spin); 1198 } 1199 1200 /* dlm calls after recover_slot and after it completes lock recovery */ 1201 1202 static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots, 1203 int our_slot, uint32_t generation) 1204 { 1205 struct gfs2_sbd *sdp = arg; 1206 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1207 1208 if (gfs2_withdrawing_or_withdrawn(sdp)) { 1209 fs_err(sdp, "recover_done ignored due to withdraw.\n"); 1210 return; 1211 } 1212 /* ensure the ls jid arrays are large enough */ 1213 set_recover_size(sdp, slots, num_slots); 1214 1215 spin_lock(&ls->ls_recover_spin); 1216 ls->ls_recover_start = generation; 1217 1218 if (!ls->ls_recover_mount) { 1219 ls->ls_recover_mount = generation; 1220 ls->ls_jid = our_slot - 1; 1221 } 1222 1223 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) 1224 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0); 1225 1226 clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags); 1227 smp_mb__after_atomic(); 1228 wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY); 1229 spin_unlock(&ls->ls_recover_spin); 1230 } 1231 1232 /* gfs2_recover thread has a journal recovery result */ 1233 1234 static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid, 1235 unsigned int result) 1236 { 1237 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1238 1239 if (gfs2_withdrawing_or_withdrawn(sdp)) { 1240 fs_err(sdp, "recovery_result jid %d ignored due to withdraw.\n", 1241 jid); 1242 return; 1243 } 1244 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) 1245 return; 1246 1247 /* don't care about the recovery of own journal during mount */ 1248 if (jid == ls->ls_jid) 1249 return; 1250 1251 spin_lock(&ls->ls_recover_spin); 1252 if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 1253 spin_unlock(&ls->ls_recover_spin); 1254 return; 1255 } 1256 if (ls->ls_recover_size < jid + 1) { 1257 fs_err(sdp, "recovery_result jid %d short size %d\n", 1258 jid, ls->ls_recover_size); 1259 spin_unlock(&ls->ls_recover_spin); 1260 return; 1261 } 1262 1263 fs_info(sdp, "recover jid %d result %s\n", jid, 1264 result == LM_RD_GAVEUP ? "busy" : "success"); 1265 1266 ls->ls_recover_result[jid] = result; 1267 1268 /* GAVEUP means another node is recovering the journal; delay our 1269 next attempt to recover it, to give the other node a chance to 1270 finish before trying again */ 1271 1272 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) 1273 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 1274 result == LM_RD_GAVEUP ? HZ : 0); 1275 spin_unlock(&ls->ls_recover_spin); 1276 } 1277 1278 static const struct dlm_lockspace_ops gdlm_lockspace_ops = { 1279 .recover_prep = gdlm_recover_prep, 1280 .recover_slot = gdlm_recover_slot, 1281 .recover_done = gdlm_recover_done, 1282 }; 1283 1284 static int gdlm_mount(struct gfs2_sbd *sdp, const char *table) 1285 { 1286 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1287 char cluster[GFS2_LOCKNAME_LEN]; 1288 const char *fsname; 1289 uint32_t flags; 1290 int error, ops_result; 1291 1292 /* 1293 * initialize everything 1294 */ 1295 1296 INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func); 1297 spin_lock_init(&ls->ls_recover_spin); 1298 ls->ls_recover_flags = 0; 1299 ls->ls_recover_mount = 0; 1300 ls->ls_recover_start = 0; 1301 ls->ls_recover_block = 0; 1302 ls->ls_recover_size = 0; 1303 ls->ls_recover_submit = NULL; 1304 ls->ls_recover_result = NULL; 1305 ls->ls_lvb_bits = NULL; 1306 1307 error = set_recover_size(sdp, NULL, 0); 1308 if (error) 1309 goto fail; 1310 1311 /* 1312 * prepare dlm_new_lockspace args 1313 */ 1314 1315 fsname = strchr(table, ':'); 1316 if (!fsname) { 1317 fs_info(sdp, "no fsname found\n"); 1318 error = -EINVAL; 1319 goto fail_free; 1320 } 1321 memset(cluster, 0, sizeof(cluster)); 1322 memcpy(cluster, table, strlen(table) - strlen(fsname)); 1323 fsname++; 1324 1325 flags = DLM_LSFL_NEWEXCL; 1326 1327 /* 1328 * create/join lockspace 1329 */ 1330 1331 error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE, 1332 &gdlm_lockspace_ops, sdp, &ops_result, 1333 &ls->ls_dlm); 1334 if (error) { 1335 fs_err(sdp, "dlm_new_lockspace error %d\n", error); 1336 goto fail_free; 1337 } 1338 1339 if (ops_result < 0) { 1340 /* 1341 * dlm does not support ops callbacks, 1342 * old dlm_controld/gfs_controld are used, try without ops. 1343 */ 1344 fs_info(sdp, "dlm lockspace ops not used\n"); 1345 free_recover_size(ls); 1346 set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags); 1347 return 0; 1348 } 1349 1350 if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) { 1351 fs_err(sdp, "dlm lockspace ops disallow jid preset\n"); 1352 error = -EINVAL; 1353 goto fail_release; 1354 } 1355 1356 /* 1357 * control_mount() uses control_lock to determine first mounter, 1358 * and for later mounts, waits for any recoveries to be cleared. 1359 */ 1360 1361 error = control_mount(sdp); 1362 if (error) { 1363 fs_err(sdp, "mount control error %d\n", error); 1364 goto fail_release; 1365 } 1366 1367 ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); 1368 clear_bit(SDF_NOJOURNALID, &sdp->sd_flags); 1369 smp_mb__after_atomic(); 1370 wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID); 1371 return 0; 1372 1373 fail_release: 1374 dlm_release_lockspace(ls->ls_dlm, 2); 1375 fail_free: 1376 free_recover_size(ls); 1377 fail: 1378 return error; 1379 } 1380 1381 static void gdlm_first_done(struct gfs2_sbd *sdp) 1382 { 1383 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1384 int error; 1385 1386 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) 1387 return; 1388 1389 error = control_first_done(sdp); 1390 if (error) 1391 fs_err(sdp, "mount first_done error %d\n", error); 1392 } 1393 1394 static void gdlm_unmount(struct gfs2_sbd *sdp) 1395 { 1396 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1397 1398 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) 1399 goto release; 1400 1401 /* wait for gfs2_control_wq to be done with this mount */ 1402 1403 spin_lock(&ls->ls_recover_spin); 1404 set_bit(DFL_UNMOUNT, &ls->ls_recover_flags); 1405 spin_unlock(&ls->ls_recover_spin); 1406 flush_delayed_work(&sdp->sd_control_work); 1407 1408 /* mounted_lock and control_lock will be purged in dlm recovery */ 1409 release: 1410 if (ls->ls_dlm) { 1411 dlm_release_lockspace(ls->ls_dlm, 2); 1412 ls->ls_dlm = NULL; 1413 } 1414 1415 free_recover_size(ls); 1416 } 1417 1418 static const match_table_t dlm_tokens = { 1419 { Opt_jid, "jid=%d"}, 1420 { Opt_id, "id=%d"}, 1421 { Opt_first, "first=%d"}, 1422 { Opt_nodir, "nodir=%d"}, 1423 { Opt_err, NULL }, 1424 }; 1425 1426 const struct lm_lockops gfs2_dlm_ops = { 1427 .lm_proto_name = "lock_dlm", 1428 .lm_mount = gdlm_mount, 1429 .lm_first_done = gdlm_first_done, 1430 .lm_recovery_result = gdlm_recovery_result, 1431 .lm_unmount = gdlm_unmount, 1432 .lm_put_lock = gdlm_put_lock, 1433 .lm_lock = gdlm_lock, 1434 .lm_cancel = gdlm_cancel, 1435 .lm_tokens = &dlm_tokens, 1436 }; 1437 1438