xref: /linux/fs/gfs2/lock_dlm.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
4  * Copyright 2004-2011 Red Hat, Inc.
5  */
6 
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 
9 #include <linux/fs.h>
10 #include <linux/dlm.h>
11 #include <linux/slab.h>
12 #include <linux/types.h>
13 #include <linux/delay.h>
14 #include <linux/gfs2_ondisk.h>
15 #include <linux/sched/signal.h>
16 
17 #include "incore.h"
18 #include "glock.h"
19 #include "glops.h"
20 #include "recovery.h"
21 #include "util.h"
22 #include "sys.h"
23 #include "trace_gfs2.h"
24 
25 /**
26  * gfs2_update_stats - Update time based stats
27  * @s: The stats to update (local or global)
28  * @index: The index inside @s
29  * @sample: New data to include
30  */
31 static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index,
32 				     s64 sample)
33 {
34 	/*
35 	 * @delta is the difference between the current rtt sample and the
36 	 * running average srtt. We add 1/8 of that to the srtt in order to
37 	 * update the current srtt estimate. The variance estimate is a bit
38 	 * more complicated. We subtract the current variance estimate from
39 	 * the abs value of the @delta and add 1/4 of that to the running
40 	 * total.  That's equivalent to 3/4 of the current variance
41 	 * estimate plus 1/4 of the abs of @delta.
42 	 *
43 	 * Note that the index points at the array entry containing the
44 	 * smoothed mean value, and the variance is always in the following
45 	 * entry
46 	 *
47 	 * Reference: TCP/IP Illustrated, vol 2, p. 831,832
48 	 * All times are in units of integer nanoseconds. Unlike the TCP/IP
49 	 * case, they are not scaled fixed point.
50 	 */
51 
52 	s64 delta = sample - s->stats[index];
53 	s->stats[index] += (delta >> 3);
54 	index++;
55 	s->stats[index] += (s64)(abs(delta) - s->stats[index]) >> 2;
56 }
57 
58 /**
59  * gfs2_update_reply_times - Update locking statistics
60  * @gl: The glock to update
61  *
62  * This assumes that gl->gl_dstamp has been set earlier.
63  *
64  * The rtt (lock round trip time) is an estimate of the time
65  * taken to perform a dlm lock request. We update it on each
66  * reply from the dlm.
67  *
68  * The blocking flag is set on the glock for all dlm requests
69  * which may potentially block due to lock requests from other nodes.
70  * DLM requests where the current lock state is exclusive, the
71  * requested state is null (or unlocked) or where the TRY or
72  * TRY_1CB flags are set are classified as non-blocking. All
73  * other DLM requests are counted as (potentially) blocking.
74  */
75 static inline void gfs2_update_reply_times(struct gfs2_glock *gl)
76 {
77 	struct gfs2_pcpu_lkstats *lks;
78 	const unsigned gltype = gl->gl_name.ln_type;
79 	unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ?
80 			 GFS2_LKS_SRTTB : GFS2_LKS_SRTT;
81 	s64 rtt;
82 
83 	preempt_disable();
84 	rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp));
85 	lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
86 	gfs2_update_stats(&gl->gl_stats, index, rtt);		/* Local */
87 	gfs2_update_stats(&lks->lkstats[gltype], index, rtt);	/* Global */
88 	preempt_enable();
89 
90 	trace_gfs2_glock_lock_time(gl, rtt);
91 }
92 
93 /**
94  * gfs2_update_request_times - Update locking statistics
95  * @gl: The glock to update
96  *
97  * The irt (lock inter-request times) measures the average time
98  * between requests to the dlm. It is updated immediately before
99  * each dlm call.
100  */
101 
102 static inline void gfs2_update_request_times(struct gfs2_glock *gl)
103 {
104 	struct gfs2_pcpu_lkstats *lks;
105 	const unsigned gltype = gl->gl_name.ln_type;
106 	ktime_t dstamp;
107 	s64 irt;
108 
109 	preempt_disable();
110 	dstamp = gl->gl_dstamp;
111 	gl->gl_dstamp = ktime_get_real();
112 	irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp));
113 	lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
114 	gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt);		/* Local */
115 	gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt);	/* Global */
116 	preempt_enable();
117 }
118 
119 static void gdlm_ast(void *arg)
120 {
121 	struct gfs2_glock *gl = arg;
122 	unsigned ret = gl->gl_state;
123 
124 	/* If the glock is dead, we only react to a dlm_unlock() reply. */
125 	if (__lockref_is_dead(&gl->gl_lockref) &&
126 	    gl->gl_lksb.sb_status != -DLM_EUNLOCK)
127 		return;
128 
129 	gfs2_update_reply_times(gl);
130 	BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED);
131 
132 	if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr)
133 		memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE);
134 
135 	switch (gl->gl_lksb.sb_status) {
136 	case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */
137 		if (gl->gl_ops->go_unlocked)
138 			gl->gl_ops->go_unlocked(gl);
139 		gfs2_glock_free(gl);
140 		return;
141 	case -DLM_ECANCEL: /* Cancel while getting lock */
142 		ret |= LM_OUT_CANCELED;
143 		goto out;
144 	case -EAGAIN: /* Try lock fails */
145 	case -EDEADLK: /* Deadlock detected */
146 		goto out;
147 	case -ETIMEDOUT: /* Canceled due to timeout */
148 		ret |= LM_OUT_ERROR;
149 		goto out;
150 	case 0: /* Success */
151 		break;
152 	default: /* Something unexpected */
153 		BUG();
154 	}
155 
156 	ret = gl->gl_req;
157 	if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) {
158 		if (gl->gl_req == LM_ST_SHARED)
159 			ret = LM_ST_DEFERRED;
160 		else if (gl->gl_req == LM_ST_DEFERRED)
161 			ret = LM_ST_SHARED;
162 		else
163 			BUG();
164 	}
165 
166 	/*
167 	 * The GLF_INITIAL flag is initially set for new glocks.  Upon the
168 	 * first successful new (non-conversion) request, we clear this flag to
169 	 * indicate that a DLM lock exists and that gl->gl_lksb.sb_lkid is the
170 	 * identifier to use for identifying it.
171 	 *
172 	 * Any failed initial requests do not create a DLM lock, so we ignore
173 	 * the gl->gl_lksb.sb_lkid values that come with such requests.
174 	 */
175 
176 	clear_bit(GLF_INITIAL, &gl->gl_flags);
177 	gfs2_glock_complete(gl, ret);
178 	return;
179 out:
180 	if (test_bit(GLF_INITIAL, &gl->gl_flags))
181 		gl->gl_lksb.sb_lkid = 0;
182 	gfs2_glock_complete(gl, ret);
183 }
184 
185 static void gdlm_bast(void *arg, int mode)
186 {
187 	struct gfs2_glock *gl = arg;
188 
189 	if (__lockref_is_dead(&gl->gl_lockref))
190 		return;
191 
192 	switch (mode) {
193 	case DLM_LOCK_EX:
194 		gfs2_glock_cb(gl, LM_ST_UNLOCKED);
195 		break;
196 	case DLM_LOCK_CW:
197 		gfs2_glock_cb(gl, LM_ST_DEFERRED);
198 		break;
199 	case DLM_LOCK_PR:
200 		gfs2_glock_cb(gl, LM_ST_SHARED);
201 		break;
202 	default:
203 		fs_err(gl->gl_name.ln_sbd, "unknown bast mode %d\n", mode);
204 		BUG();
205 	}
206 }
207 
208 /* convert gfs lock-state to dlm lock-mode */
209 
210 static int make_mode(struct gfs2_sbd *sdp, const unsigned int lmstate)
211 {
212 	switch (lmstate) {
213 	case LM_ST_UNLOCKED:
214 		return DLM_LOCK_NL;
215 	case LM_ST_EXCLUSIVE:
216 		return DLM_LOCK_EX;
217 	case LM_ST_DEFERRED:
218 		return DLM_LOCK_CW;
219 	case LM_ST_SHARED:
220 		return DLM_LOCK_PR;
221 	}
222 	fs_err(sdp, "unknown LM state %d\n", lmstate);
223 	BUG();
224 	return -1;
225 }
226 
227 /* Taken from fs/dlm/lock.c. */
228 
229 static bool middle_conversion(int cur, int req)
230 {
231 	return (cur == DLM_LOCK_PR && req == DLM_LOCK_CW) ||
232 	       (cur == DLM_LOCK_CW && req == DLM_LOCK_PR);
233 }
234 
235 static bool down_conversion(int cur, int req)
236 {
237 	return !middle_conversion(cur, req) && req < cur;
238 }
239 
240 static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags,
241 		      const int cur, const int req)
242 {
243 	u32 lkf = 0;
244 
245 	if (gl->gl_lksb.sb_lvbptr)
246 		lkf |= DLM_LKF_VALBLK;
247 
248 	if (gfs_flags & LM_FLAG_TRY)
249 		lkf |= DLM_LKF_NOQUEUE;
250 
251 	if (gfs_flags & LM_FLAG_TRY_1CB) {
252 		lkf |= DLM_LKF_NOQUEUE;
253 		lkf |= DLM_LKF_NOQUEUEBAST;
254 	}
255 
256 	if (gfs_flags & LM_FLAG_ANY) {
257 		if (req == DLM_LOCK_PR)
258 			lkf |= DLM_LKF_ALTCW;
259 		else if (req == DLM_LOCK_CW)
260 			lkf |= DLM_LKF_ALTPR;
261 		else
262 			BUG();
263 	}
264 
265 	if (!test_bit(GLF_INITIAL, &gl->gl_flags)) {
266 		lkf |= DLM_LKF_CONVERT;
267 
268 		/*
269 		 * The DLM_LKF_QUECVT flag needs to be set for "first come,
270 		 * first served" semantics, but it must only be set for
271 		 * "upward" lock conversions or else DLM will reject the
272 		 * request as invalid.
273 		 */
274 		if (!down_conversion(cur, req))
275 			lkf |= DLM_LKF_QUECVT;
276 	}
277 
278 	return lkf;
279 }
280 
281 static void gfs2_reverse_hex(char *c, u64 value)
282 {
283 	*c = '0';
284 	while (value) {
285 		*c-- = hex_asc[value & 0x0f];
286 		value >>= 4;
287 	}
288 }
289 
290 static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state,
291 		     unsigned int flags)
292 {
293 	struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
294 	int cur, req;
295 	u32 lkf;
296 	char strname[GDLM_STRNAME_BYTES] = "";
297 	int error;
298 
299 	cur = make_mode(gl->gl_name.ln_sbd, gl->gl_state);
300 	req = make_mode(gl->gl_name.ln_sbd, req_state);
301 	lkf = make_flags(gl, flags, cur, req);
302 	gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
303 	gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
304 	if (test_bit(GLF_INITIAL, &gl->gl_flags)) {
305 		memset(strname, ' ', GDLM_STRNAME_BYTES - 1);
306 		strname[GDLM_STRNAME_BYTES - 1] = '\0';
307 		gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type);
308 		gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number);
309 		gl->gl_dstamp = ktime_get_real();
310 	} else {
311 		gfs2_update_request_times(gl);
312 	}
313 	/*
314 	 * Submit the actual lock request.
315 	 */
316 
317 again:
318 	error = dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname,
319 			GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast);
320 	if (error == -EBUSY) {
321 		msleep(20);
322 		goto again;
323 	}
324 	return error;
325 }
326 
327 static void gdlm_put_lock(struct gfs2_glock *gl)
328 {
329 	struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
330 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
331 	int error;
332 
333 	BUG_ON(!__lockref_is_dead(&gl->gl_lockref));
334 
335 	if (test_bit(GLF_INITIAL, &gl->gl_flags)) {
336 		gfs2_glock_free(gl);
337 		return;
338 	}
339 
340 	clear_bit(GLF_BLOCKING, &gl->gl_flags);
341 	gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
342 	gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
343 	gfs2_update_request_times(gl);
344 
345 	/* don't want to call dlm if we've unmounted the lock protocol */
346 	if (test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) {
347 		gfs2_glock_free(gl);
348 		return;
349 	}
350 
351 	/*
352 	 * When the lockspace is released, all remaining glocks will be
353 	 * unlocked automatically.  This is more efficient than unlocking them
354 	 * individually, but when the lock is held in DLM_LOCK_EX or
355 	 * DLM_LOCK_PW mode, the lock value block (LVB) will be lost.
356 	 */
357 
358 	if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) &&
359 	    (!gl->gl_lksb.sb_lvbptr || gl->gl_state != LM_ST_EXCLUSIVE)) {
360 		gfs2_glock_free_later(gl);
361 		return;
362 	}
363 
364 again:
365 	error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK,
366 			   NULL, gl);
367 	if (error == -EBUSY) {
368 		msleep(20);
369 		goto again;
370 	}
371 
372 	if (error) {
373 		fs_err(sdp, "gdlm_unlock %x,%llx err=%d\n",
374 		       gl->gl_name.ln_type,
375 		       (unsigned long long)gl->gl_name.ln_number, error);
376 	}
377 }
378 
379 static void gdlm_cancel(struct gfs2_glock *gl)
380 {
381 	struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
382 	dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl);
383 }
384 
385 /*
386  * dlm/gfs2 recovery coordination using dlm_recover callbacks
387  *
388  *  0. gfs2 checks for another cluster node withdraw, needing journal replay
389  *  1. dlm_controld sees lockspace members change
390  *  2. dlm_controld blocks dlm-kernel locking activity
391  *  3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
392  *  4. dlm_controld starts and finishes its own user level recovery
393  *  5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
394  *  6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
395  *  7. dlm_recoverd does its own lock recovery
396  *  8. dlm_recoverd unblocks dlm-kernel locking activity
397  *  9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
398  * 10. gfs2_control updates control_lock lvb with new generation and jid bits
399  * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
400  * 12. gfs2_recover dequeues and recovers journals of failed nodes
401  * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
402  * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
403  * 15. gfs2_control unblocks normal locking when all journals are recovered
404  *
405  * - failures during recovery
406  *
407  * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
408  * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
409  * recovering for a prior failure.  gfs2_control needs a way to detect
410  * this so it can leave BLOCK_LOCKS set in step 15.  This is managed using
411  * the recover_block and recover_start values.
412  *
413  * recover_done() provides a new lockspace generation number each time it
414  * is called (step 9).  This generation number is saved as recover_start.
415  * When recover_prep() is called, it sets BLOCK_LOCKS and sets
416  * recover_block = recover_start.  So, while recover_block is equal to
417  * recover_start, BLOCK_LOCKS should remain set.  (recover_spin must
418  * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
419  *
420  * - more specific gfs2 steps in sequence above
421  *
422  *  3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
423  *  6. recover_slot records any failed jids (maybe none)
424  *  9. recover_done sets recover_start = new generation number
425  * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
426  * 12. gfs2_recover does journal recoveries for failed jids identified above
427  * 14. gfs2_control clears control_lock lvb bits for recovered jids
428  * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
429  *     again) then do nothing, otherwise if recover_start > recover_block
430  *     then clear BLOCK_LOCKS.
431  *
432  * - parallel recovery steps across all nodes
433  *
434  * All nodes attempt to update the control_lock lvb with the new generation
435  * number and jid bits, but only the first to get the control_lock EX will
436  * do so; others will see that it's already done (lvb already contains new
437  * generation number.)
438  *
439  * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
440  * . All nodes attempt to set control_lock lvb gen + bits for the new gen
441  * . One node gets control_lock first and writes the lvb, others see it's done
442  * . All nodes attempt to recover jids for which they see control_lock bits set
443  * . One node succeeds for a jid, and that one clears the jid bit in the lvb
444  * . All nodes will eventually see all lvb bits clear and unblock locks
445  *
446  * - is there a problem with clearing an lvb bit that should be set
447  *   and missing a journal recovery?
448  *
449  * 1. jid fails
450  * 2. lvb bit set for step 1
451  * 3. jid recovered for step 1
452  * 4. jid taken again (new mount)
453  * 5. jid fails (for step 4)
454  * 6. lvb bit set for step 5 (will already be set)
455  * 7. lvb bit cleared for step 3
456  *
457  * This is not a problem because the failure in step 5 does not
458  * require recovery, because the mount in step 4 could not have
459  * progressed far enough to unblock locks and access the fs.  The
460  * control_mount() function waits for all recoveries to be complete
461  * for the latest lockspace generation before ever unblocking locks
462  * and returning.  The mount in step 4 waits until the recovery in
463  * step 1 is done.
464  *
465  * - special case of first mounter: first node to mount the fs
466  *
467  * The first node to mount a gfs2 fs needs to check all the journals
468  * and recover any that need recovery before other nodes are allowed
469  * to mount the fs.  (Others may begin mounting, but they must wait
470  * for the first mounter to be done before taking locks on the fs
471  * or accessing the fs.)  This has two parts:
472  *
473  * 1. The mounted_lock tells a node it's the first to mount the fs.
474  * Each node holds the mounted_lock in PR while it's mounted.
475  * Each node tries to acquire the mounted_lock in EX when it mounts.
476  * If a node is granted the mounted_lock EX it means there are no
477  * other mounted nodes (no PR locks exist), and it is the first mounter.
478  * The mounted_lock is demoted to PR when first recovery is done, so
479  * others will fail to get an EX lock, but will get a PR lock.
480  *
481  * 2. The control_lock blocks others in control_mount() while the first
482  * mounter is doing first mount recovery of all journals.
483  * A mounting node needs to acquire control_lock in EX mode before
484  * it can proceed.  The first mounter holds control_lock in EX while doing
485  * the first mount recovery, blocking mounts from other nodes, then demotes
486  * control_lock to NL when it's done (others_may_mount/first_done),
487  * allowing other nodes to continue mounting.
488  *
489  * first mounter:
490  * control_lock EX/NOQUEUE success
491  * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
492  * set first=1
493  * do first mounter recovery
494  * mounted_lock EX->PR
495  * control_lock EX->NL, write lvb generation
496  *
497  * other mounter:
498  * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
499  * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
500  * mounted_lock PR/NOQUEUE success
501  * read lvb generation
502  * control_lock EX->NL
503  * set first=0
504  *
505  * - mount during recovery
506  *
507  * If a node mounts while others are doing recovery (not first mounter),
508  * the mounting node will get its initial recover_done() callback without
509  * having seen any previous failures/callbacks.
510  *
511  * It must wait for all recoveries preceding its mount to be finished
512  * before it unblocks locks.  It does this by repeating the "other mounter"
513  * steps above until the lvb generation number is >= its mount generation
514  * number (from initial recover_done) and all lvb bits are clear.
515  *
516  * - control_lock lvb format
517  *
518  * 4 bytes generation number: the latest dlm lockspace generation number
519  * from recover_done callback.  Indicates the jid bitmap has been updated
520  * to reflect all slot failures through that generation.
521  * 4 bytes unused.
522  * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
523  * that jid N needs recovery.
524  */
525 
526 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
527 
528 static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen,
529 			     char *lvb_bits)
530 {
531 	__le32 gen;
532 	memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE);
533 	memcpy(&gen, lvb_bits, sizeof(__le32));
534 	*lvb_gen = le32_to_cpu(gen);
535 }
536 
537 static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen,
538 			      char *lvb_bits)
539 {
540 	__le32 gen;
541 	memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE);
542 	gen = cpu_to_le32(lvb_gen);
543 	memcpy(ls->ls_control_lvb, &gen, sizeof(__le32));
544 }
545 
546 static int all_jid_bits_clear(char *lvb)
547 {
548 	return !memchr_inv(lvb + JID_BITMAP_OFFSET, 0,
549 			GDLM_LVB_SIZE - JID_BITMAP_OFFSET);
550 }
551 
552 static void sync_wait_cb(void *arg)
553 {
554 	struct lm_lockstruct *ls = arg;
555 	complete(&ls->ls_sync_wait);
556 }
557 
558 static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name)
559 {
560 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
561 	int error;
562 
563 	error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls);
564 	if (error) {
565 		fs_err(sdp, "%s lkid %x error %d\n",
566 		       name, lksb->sb_lkid, error);
567 		return error;
568 	}
569 
570 	wait_for_completion(&ls->ls_sync_wait);
571 
572 	if (lksb->sb_status != -DLM_EUNLOCK) {
573 		fs_err(sdp, "%s lkid %x status %d\n",
574 		       name, lksb->sb_lkid, lksb->sb_status);
575 		return -1;
576 	}
577 	return 0;
578 }
579 
580 static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags,
581 		     unsigned int num, struct dlm_lksb *lksb, char *name)
582 {
583 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
584 	char strname[GDLM_STRNAME_BYTES];
585 	int error, status;
586 
587 	memset(strname, 0, GDLM_STRNAME_BYTES);
588 	snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num);
589 
590 	error = dlm_lock(ls->ls_dlm, mode, lksb, flags,
591 			 strname, GDLM_STRNAME_BYTES - 1,
592 			 0, sync_wait_cb, ls, NULL);
593 	if (error) {
594 		fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n",
595 		       name, lksb->sb_lkid, flags, mode, error);
596 		return error;
597 	}
598 
599 	wait_for_completion(&ls->ls_sync_wait);
600 
601 	status = lksb->sb_status;
602 
603 	if (status && status != -EAGAIN) {
604 		fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n",
605 		       name, lksb->sb_lkid, flags, mode, status);
606 	}
607 
608 	return status;
609 }
610 
611 static int mounted_unlock(struct gfs2_sbd *sdp)
612 {
613 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
614 	return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock");
615 }
616 
617 static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
618 {
619 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
620 	return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK,
621 			 &ls->ls_mounted_lksb, "mounted_lock");
622 }
623 
624 static int control_unlock(struct gfs2_sbd *sdp)
625 {
626 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
627 	return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock");
628 }
629 
630 static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
631 {
632 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
633 	return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK,
634 			 &ls->ls_control_lksb, "control_lock");
635 }
636 
637 /**
638  * remote_withdraw - react to a node withdrawing from the file system
639  * @sdp: The superblock
640  */
641 static void remote_withdraw(struct gfs2_sbd *sdp)
642 {
643 	struct gfs2_jdesc *jd;
644 	int ret = 0, count = 0;
645 
646 	list_for_each_entry(jd, &sdp->sd_jindex_list, jd_list) {
647 		if (jd->jd_jid == sdp->sd_lockstruct.ls_jid)
648 			continue;
649 		ret = gfs2_recover_journal(jd, true);
650 		if (ret)
651 			break;
652 		count++;
653 	}
654 
655 	/* Now drop the additional reference we acquired */
656 	fs_err(sdp, "Journals checked: %d, ret = %d.\n", count, ret);
657 }
658 
659 static void gfs2_control_func(struct work_struct *work)
660 {
661 	struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work);
662 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
663 	uint32_t block_gen, start_gen, lvb_gen, flags;
664 	int recover_set = 0;
665 	int write_lvb = 0;
666 	int recover_size;
667 	int i, error;
668 
669 	/* First check for other nodes that may have done a withdraw. */
670 	if (test_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags)) {
671 		remote_withdraw(sdp);
672 		clear_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags);
673 		return;
674 	}
675 
676 	spin_lock(&ls->ls_recover_spin);
677 	/*
678 	 * No MOUNT_DONE means we're still mounting; control_mount()
679 	 * will set this flag, after which this thread will take over
680 	 * all further clearing of BLOCK_LOCKS.
681 	 *
682 	 * FIRST_MOUNT means this node is doing first mounter recovery,
683 	 * for which recovery control is handled by
684 	 * control_mount()/control_first_done(), not this thread.
685 	 */
686 	if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
687 	     test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
688 		spin_unlock(&ls->ls_recover_spin);
689 		return;
690 	}
691 	block_gen = ls->ls_recover_block;
692 	start_gen = ls->ls_recover_start;
693 	spin_unlock(&ls->ls_recover_spin);
694 
695 	/*
696 	 * Equal block_gen and start_gen implies we are between
697 	 * recover_prep and recover_done callbacks, which means
698 	 * dlm recovery is in progress and dlm locking is blocked.
699 	 * There's no point trying to do any work until recover_done.
700 	 */
701 
702 	if (block_gen == start_gen)
703 		return;
704 
705 	/*
706 	 * Propagate recover_submit[] and recover_result[] to lvb:
707 	 * dlm_recoverd adds to recover_submit[] jids needing recovery
708 	 * gfs2_recover adds to recover_result[] journal recovery results
709 	 *
710 	 * set lvb bit for jids in recover_submit[] if the lvb has not
711 	 * yet been updated for the generation of the failure
712 	 *
713 	 * clear lvb bit for jids in recover_result[] if the result of
714 	 * the journal recovery is SUCCESS
715 	 */
716 
717 	error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
718 	if (error) {
719 		fs_err(sdp, "control lock EX error %d\n", error);
720 		return;
721 	}
722 
723 	control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
724 
725 	spin_lock(&ls->ls_recover_spin);
726 	if (block_gen != ls->ls_recover_block ||
727 	    start_gen != ls->ls_recover_start) {
728 		fs_info(sdp, "recover generation %u block1 %u %u\n",
729 			start_gen, block_gen, ls->ls_recover_block);
730 		spin_unlock(&ls->ls_recover_spin);
731 		control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
732 		return;
733 	}
734 
735 	recover_size = ls->ls_recover_size;
736 
737 	if (lvb_gen <= start_gen) {
738 		/*
739 		 * Clear lvb bits for jids we've successfully recovered.
740 		 * Because all nodes attempt to recover failed journals,
741 		 * a journal can be recovered multiple times successfully
742 		 * in succession.  Only the first will really do recovery,
743 		 * the others find it clean, but still report a successful
744 		 * recovery.  So, another node may have already recovered
745 		 * the jid and cleared the lvb bit for it.
746 		 */
747 		for (i = 0; i < recover_size; i++) {
748 			if (ls->ls_recover_result[i] != LM_RD_SUCCESS)
749 				continue;
750 
751 			ls->ls_recover_result[i] = 0;
752 
753 			if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET))
754 				continue;
755 
756 			__clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
757 			write_lvb = 1;
758 		}
759 	}
760 
761 	if (lvb_gen == start_gen) {
762 		/*
763 		 * Failed slots before start_gen are already set in lvb.
764 		 */
765 		for (i = 0; i < recover_size; i++) {
766 			if (!ls->ls_recover_submit[i])
767 				continue;
768 			if (ls->ls_recover_submit[i] < lvb_gen)
769 				ls->ls_recover_submit[i] = 0;
770 		}
771 	} else if (lvb_gen < start_gen) {
772 		/*
773 		 * Failed slots before start_gen are not yet set in lvb.
774 		 */
775 		for (i = 0; i < recover_size; i++) {
776 			if (!ls->ls_recover_submit[i])
777 				continue;
778 			if (ls->ls_recover_submit[i] < start_gen) {
779 				ls->ls_recover_submit[i] = 0;
780 				__set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
781 			}
782 		}
783 		/* even if there are no bits to set, we need to write the
784 		   latest generation to the lvb */
785 		write_lvb = 1;
786 	} else {
787 		/*
788 		 * we should be getting a recover_done() for lvb_gen soon
789 		 */
790 	}
791 	spin_unlock(&ls->ls_recover_spin);
792 
793 	if (write_lvb) {
794 		control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
795 		flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK;
796 	} else {
797 		flags = DLM_LKF_CONVERT;
798 	}
799 
800 	error = control_lock(sdp, DLM_LOCK_NL, flags);
801 	if (error) {
802 		fs_err(sdp, "control lock NL error %d\n", error);
803 		return;
804 	}
805 
806 	/*
807 	 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
808 	 * and clear a jid bit in the lvb if the recovery is a success.
809 	 * Eventually all journals will be recovered, all jid bits will
810 	 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
811 	 */
812 
813 	for (i = 0; i < recover_size; i++) {
814 		if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) {
815 			fs_info(sdp, "recover generation %u jid %d\n",
816 				start_gen, i);
817 			gfs2_recover_set(sdp, i);
818 			recover_set++;
819 		}
820 	}
821 	if (recover_set)
822 		return;
823 
824 	/*
825 	 * No more jid bits set in lvb, all recovery is done, unblock locks
826 	 * (unless a new recover_prep callback has occured blocking locks
827 	 * again while working above)
828 	 */
829 
830 	spin_lock(&ls->ls_recover_spin);
831 	if (ls->ls_recover_block == block_gen &&
832 	    ls->ls_recover_start == start_gen) {
833 		clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
834 		spin_unlock(&ls->ls_recover_spin);
835 		fs_info(sdp, "recover generation %u done\n", start_gen);
836 		gfs2_glock_thaw(sdp);
837 	} else {
838 		fs_info(sdp, "recover generation %u block2 %u %u\n",
839 			start_gen, block_gen, ls->ls_recover_block);
840 		spin_unlock(&ls->ls_recover_spin);
841 	}
842 }
843 
844 static int control_mount(struct gfs2_sbd *sdp)
845 {
846 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
847 	uint32_t start_gen, block_gen, mount_gen, lvb_gen;
848 	int mounted_mode;
849 	int retries = 0;
850 	int error;
851 
852 	memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb));
853 	memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb));
854 	memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE);
855 	ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb;
856 	init_completion(&ls->ls_sync_wait);
857 
858 	set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
859 
860 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK);
861 	if (error) {
862 		fs_err(sdp, "control_mount control_lock NL error %d\n", error);
863 		return error;
864 	}
865 
866 	error = mounted_lock(sdp, DLM_LOCK_NL, 0);
867 	if (error) {
868 		fs_err(sdp, "control_mount mounted_lock NL error %d\n", error);
869 		control_unlock(sdp);
870 		return error;
871 	}
872 	mounted_mode = DLM_LOCK_NL;
873 
874 restart:
875 	if (retries++ && signal_pending(current)) {
876 		error = -EINTR;
877 		goto fail;
878 	}
879 
880 	/*
881 	 * We always start with both locks in NL. control_lock is
882 	 * demoted to NL below so we don't need to do it here.
883 	 */
884 
885 	if (mounted_mode != DLM_LOCK_NL) {
886 		error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
887 		if (error)
888 			goto fail;
889 		mounted_mode = DLM_LOCK_NL;
890 	}
891 
892 	/*
893 	 * Other nodes need to do some work in dlm recovery and gfs2_control
894 	 * before the recover_done and control_lock will be ready for us below.
895 	 * A delay here is not required but often avoids having to retry.
896 	 */
897 
898 	msleep_interruptible(500);
899 
900 	/*
901 	 * Acquire control_lock in EX and mounted_lock in either EX or PR.
902 	 * control_lock lvb keeps track of any pending journal recoveries.
903 	 * mounted_lock indicates if any other nodes have the fs mounted.
904 	 */
905 
906 	error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK);
907 	if (error == -EAGAIN) {
908 		goto restart;
909 	} else if (error) {
910 		fs_err(sdp, "control_mount control_lock EX error %d\n", error);
911 		goto fail;
912 	}
913 
914 	/**
915 	 * If we're a spectator, we don't want to take the lock in EX because
916 	 * we cannot do the first-mount responsibility it implies: recovery.
917 	 */
918 	if (sdp->sd_args.ar_spectator)
919 		goto locks_done;
920 
921 	error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
922 	if (!error) {
923 		mounted_mode = DLM_LOCK_EX;
924 		goto locks_done;
925 	} else if (error != -EAGAIN) {
926 		fs_err(sdp, "control_mount mounted_lock EX error %d\n", error);
927 		goto fail;
928 	}
929 
930 	error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
931 	if (!error) {
932 		mounted_mode = DLM_LOCK_PR;
933 		goto locks_done;
934 	} else {
935 		/* not even -EAGAIN should happen here */
936 		fs_err(sdp, "control_mount mounted_lock PR error %d\n", error);
937 		goto fail;
938 	}
939 
940 locks_done:
941 	/*
942 	 * If we got both locks above in EX, then we're the first mounter.
943 	 * If not, then we need to wait for the control_lock lvb to be
944 	 * updated by other mounted nodes to reflect our mount generation.
945 	 *
946 	 * In simple first mounter cases, first mounter will see zero lvb_gen,
947 	 * but in cases where all existing nodes leave/fail before mounting
948 	 * nodes finish control_mount, then all nodes will be mounting and
949 	 * lvb_gen will be non-zero.
950 	 */
951 
952 	control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
953 
954 	if (lvb_gen == 0xFFFFFFFF) {
955 		/* special value to force mount attempts to fail */
956 		fs_err(sdp, "control_mount control_lock disabled\n");
957 		error = -EINVAL;
958 		goto fail;
959 	}
960 
961 	if (mounted_mode == DLM_LOCK_EX) {
962 		/* first mounter, keep both EX while doing first recovery */
963 		spin_lock(&ls->ls_recover_spin);
964 		clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
965 		set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
966 		set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
967 		spin_unlock(&ls->ls_recover_spin);
968 		fs_info(sdp, "first mounter control generation %u\n", lvb_gen);
969 		return 0;
970 	}
971 
972 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
973 	if (error)
974 		goto fail;
975 
976 	/*
977 	 * We are not first mounter, now we need to wait for the control_lock
978 	 * lvb generation to be >= the generation from our first recover_done
979 	 * and all lvb bits to be clear (no pending journal recoveries.)
980 	 */
981 
982 	if (!all_jid_bits_clear(ls->ls_lvb_bits)) {
983 		/* journals need recovery, wait until all are clear */
984 		fs_info(sdp, "control_mount wait for journal recovery\n");
985 		goto restart;
986 	}
987 
988 	spin_lock(&ls->ls_recover_spin);
989 	block_gen = ls->ls_recover_block;
990 	start_gen = ls->ls_recover_start;
991 	mount_gen = ls->ls_recover_mount;
992 
993 	if (lvb_gen < mount_gen) {
994 		/* wait for mounted nodes to update control_lock lvb to our
995 		   generation, which might include new recovery bits set */
996 		if (sdp->sd_args.ar_spectator) {
997 			fs_info(sdp, "Recovery is required. Waiting for a "
998 				"non-spectator to mount.\n");
999 			msleep_interruptible(1000);
1000 		} else {
1001 			fs_info(sdp, "control_mount wait1 block %u start %u "
1002 				"mount %u lvb %u flags %lx\n", block_gen,
1003 				start_gen, mount_gen, lvb_gen,
1004 				ls->ls_recover_flags);
1005 		}
1006 		spin_unlock(&ls->ls_recover_spin);
1007 		goto restart;
1008 	}
1009 
1010 	if (lvb_gen != start_gen) {
1011 		/* wait for mounted nodes to update control_lock lvb to the
1012 		   latest recovery generation */
1013 		fs_info(sdp, "control_mount wait2 block %u start %u mount %u "
1014 			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
1015 			lvb_gen, ls->ls_recover_flags);
1016 		spin_unlock(&ls->ls_recover_spin);
1017 		goto restart;
1018 	}
1019 
1020 	if (block_gen == start_gen) {
1021 		/* dlm recovery in progress, wait for it to finish */
1022 		fs_info(sdp, "control_mount wait3 block %u start %u mount %u "
1023 			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
1024 			lvb_gen, ls->ls_recover_flags);
1025 		spin_unlock(&ls->ls_recover_spin);
1026 		goto restart;
1027 	}
1028 
1029 	clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
1030 	set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
1031 	memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
1032 	memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
1033 	spin_unlock(&ls->ls_recover_spin);
1034 	return 0;
1035 
1036 fail:
1037 	mounted_unlock(sdp);
1038 	control_unlock(sdp);
1039 	return error;
1040 }
1041 
1042 static int control_first_done(struct gfs2_sbd *sdp)
1043 {
1044 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1045 	uint32_t start_gen, block_gen;
1046 	int error;
1047 
1048 restart:
1049 	spin_lock(&ls->ls_recover_spin);
1050 	start_gen = ls->ls_recover_start;
1051 	block_gen = ls->ls_recover_block;
1052 
1053 	if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) ||
1054 	    !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1055 	    !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1056 		/* sanity check, should not happen */
1057 		fs_err(sdp, "control_first_done start %u block %u flags %lx\n",
1058 		       start_gen, block_gen, ls->ls_recover_flags);
1059 		spin_unlock(&ls->ls_recover_spin);
1060 		control_unlock(sdp);
1061 		return -1;
1062 	}
1063 
1064 	if (start_gen == block_gen) {
1065 		/*
1066 		 * Wait for the end of a dlm recovery cycle to switch from
1067 		 * first mounter recovery.  We can ignore any recover_slot
1068 		 * callbacks between the recover_prep and next recover_done
1069 		 * because we are still the first mounter and any failed nodes
1070 		 * have not fully mounted, so they don't need recovery.
1071 		 */
1072 		spin_unlock(&ls->ls_recover_spin);
1073 		fs_info(sdp, "control_first_done wait gen %u\n", start_gen);
1074 
1075 		wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY,
1076 			    TASK_UNINTERRUPTIBLE);
1077 		goto restart;
1078 	}
1079 
1080 	clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1081 	set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags);
1082 	memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
1083 	memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
1084 	spin_unlock(&ls->ls_recover_spin);
1085 
1086 	memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE);
1087 	control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
1088 
1089 	error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT);
1090 	if (error)
1091 		fs_err(sdp, "control_first_done mounted PR error %d\n", error);
1092 
1093 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
1094 	if (error)
1095 		fs_err(sdp, "control_first_done control NL error %d\n", error);
1096 
1097 	return error;
1098 }
1099 
1100 /*
1101  * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
1102  * to accommodate the largest slot number.  (NB dlm slot numbers start at 1,
1103  * gfs2 jids start at 0, so jid = slot - 1)
1104  */
1105 
1106 #define RECOVER_SIZE_INC 16
1107 
1108 static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots,
1109 			    int num_slots)
1110 {
1111 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1112 	uint32_t *submit = NULL;
1113 	uint32_t *result = NULL;
1114 	uint32_t old_size, new_size;
1115 	int i, max_jid;
1116 
1117 	if (!ls->ls_lvb_bits) {
1118 		ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS);
1119 		if (!ls->ls_lvb_bits)
1120 			return -ENOMEM;
1121 	}
1122 
1123 	max_jid = 0;
1124 	for (i = 0; i < num_slots; i++) {
1125 		if (max_jid < slots[i].slot - 1)
1126 			max_jid = slots[i].slot - 1;
1127 	}
1128 
1129 	old_size = ls->ls_recover_size;
1130 	new_size = old_size;
1131 	while (new_size < max_jid + 1)
1132 		new_size += RECOVER_SIZE_INC;
1133 	if (new_size == old_size)
1134 		return 0;
1135 
1136 	submit = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1137 	result = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1138 	if (!submit || !result) {
1139 		kfree(submit);
1140 		kfree(result);
1141 		return -ENOMEM;
1142 	}
1143 
1144 	spin_lock(&ls->ls_recover_spin);
1145 	memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t));
1146 	memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t));
1147 	kfree(ls->ls_recover_submit);
1148 	kfree(ls->ls_recover_result);
1149 	ls->ls_recover_submit = submit;
1150 	ls->ls_recover_result = result;
1151 	ls->ls_recover_size = new_size;
1152 	spin_unlock(&ls->ls_recover_spin);
1153 	return 0;
1154 }
1155 
1156 static void free_recover_size(struct lm_lockstruct *ls)
1157 {
1158 	kfree(ls->ls_lvb_bits);
1159 	kfree(ls->ls_recover_submit);
1160 	kfree(ls->ls_recover_result);
1161 	ls->ls_recover_submit = NULL;
1162 	ls->ls_recover_result = NULL;
1163 	ls->ls_recover_size = 0;
1164 	ls->ls_lvb_bits = NULL;
1165 }
1166 
1167 /* dlm calls before it does lock recovery */
1168 
1169 static void gdlm_recover_prep(void *arg)
1170 {
1171 	struct gfs2_sbd *sdp = arg;
1172 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1173 
1174 	if (gfs2_withdrawing_or_withdrawn(sdp)) {
1175 		fs_err(sdp, "recover_prep ignored due to withdraw.\n");
1176 		return;
1177 	}
1178 	spin_lock(&ls->ls_recover_spin);
1179 	ls->ls_recover_block = ls->ls_recover_start;
1180 	set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1181 
1182 	if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1183 	     test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1184 		spin_unlock(&ls->ls_recover_spin);
1185 		return;
1186 	}
1187 	set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
1188 	spin_unlock(&ls->ls_recover_spin);
1189 }
1190 
1191 /* dlm calls after recover_prep has been completed on all lockspace members;
1192    identifies slot/jid of failed member */
1193 
1194 static void gdlm_recover_slot(void *arg, struct dlm_slot *slot)
1195 {
1196 	struct gfs2_sbd *sdp = arg;
1197 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1198 	int jid = slot->slot - 1;
1199 
1200 	if (gfs2_withdrawing_or_withdrawn(sdp)) {
1201 		fs_err(sdp, "recover_slot jid %d ignored due to withdraw.\n",
1202 		       jid);
1203 		return;
1204 	}
1205 	spin_lock(&ls->ls_recover_spin);
1206 	if (ls->ls_recover_size < jid + 1) {
1207 		fs_err(sdp, "recover_slot jid %d gen %u short size %d\n",
1208 		       jid, ls->ls_recover_block, ls->ls_recover_size);
1209 		spin_unlock(&ls->ls_recover_spin);
1210 		return;
1211 	}
1212 
1213 	if (ls->ls_recover_submit[jid]) {
1214 		fs_info(sdp, "recover_slot jid %d gen %u prev %u\n",
1215 			jid, ls->ls_recover_block, ls->ls_recover_submit[jid]);
1216 	}
1217 	ls->ls_recover_submit[jid] = ls->ls_recover_block;
1218 	spin_unlock(&ls->ls_recover_spin);
1219 }
1220 
1221 /* dlm calls after recover_slot and after it completes lock recovery */
1222 
1223 static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots,
1224 			      int our_slot, uint32_t generation)
1225 {
1226 	struct gfs2_sbd *sdp = arg;
1227 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1228 
1229 	if (gfs2_withdrawing_or_withdrawn(sdp)) {
1230 		fs_err(sdp, "recover_done ignored due to withdraw.\n");
1231 		return;
1232 	}
1233 	/* ensure the ls jid arrays are large enough */
1234 	set_recover_size(sdp, slots, num_slots);
1235 
1236 	spin_lock(&ls->ls_recover_spin);
1237 	ls->ls_recover_start = generation;
1238 
1239 	if (!ls->ls_recover_mount) {
1240 		ls->ls_recover_mount = generation;
1241 		ls->ls_jid = our_slot - 1;
1242 	}
1243 
1244 	if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1245 		queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0);
1246 
1247 	clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1248 	smp_mb__after_atomic();
1249 	wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY);
1250 	spin_unlock(&ls->ls_recover_spin);
1251 }
1252 
1253 /* gfs2_recover thread has a journal recovery result */
1254 
1255 static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid,
1256 				 unsigned int result)
1257 {
1258 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1259 
1260 	if (gfs2_withdrawing_or_withdrawn(sdp)) {
1261 		fs_err(sdp, "recovery_result jid %d ignored due to withdraw.\n",
1262 		       jid);
1263 		return;
1264 	}
1265 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1266 		return;
1267 
1268 	/* don't care about the recovery of own journal during mount */
1269 	if (jid == ls->ls_jid)
1270 		return;
1271 
1272 	spin_lock(&ls->ls_recover_spin);
1273 	if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1274 		spin_unlock(&ls->ls_recover_spin);
1275 		return;
1276 	}
1277 	if (ls->ls_recover_size < jid + 1) {
1278 		fs_err(sdp, "recovery_result jid %d short size %d\n",
1279 		       jid, ls->ls_recover_size);
1280 		spin_unlock(&ls->ls_recover_spin);
1281 		return;
1282 	}
1283 
1284 	fs_info(sdp, "recover jid %d result %s\n", jid,
1285 		result == LM_RD_GAVEUP ? "busy" : "success");
1286 
1287 	ls->ls_recover_result[jid] = result;
1288 
1289 	/* GAVEUP means another node is recovering the journal; delay our
1290 	   next attempt to recover it, to give the other node a chance to
1291 	   finish before trying again */
1292 
1293 	if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1294 		queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work,
1295 				   result == LM_RD_GAVEUP ? HZ : 0);
1296 	spin_unlock(&ls->ls_recover_spin);
1297 }
1298 
1299 static const struct dlm_lockspace_ops gdlm_lockspace_ops = {
1300 	.recover_prep = gdlm_recover_prep,
1301 	.recover_slot = gdlm_recover_slot,
1302 	.recover_done = gdlm_recover_done,
1303 };
1304 
1305 static int gdlm_mount(struct gfs2_sbd *sdp, const char *table)
1306 {
1307 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1308 	char cluster[GFS2_LOCKNAME_LEN];
1309 	const char *fsname;
1310 	uint32_t flags;
1311 	int error, ops_result;
1312 
1313 	/*
1314 	 * initialize everything
1315 	 */
1316 
1317 	INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func);
1318 	spin_lock_init(&ls->ls_recover_spin);
1319 	ls->ls_recover_flags = 0;
1320 	ls->ls_recover_mount = 0;
1321 	ls->ls_recover_start = 0;
1322 	ls->ls_recover_block = 0;
1323 	ls->ls_recover_size = 0;
1324 	ls->ls_recover_submit = NULL;
1325 	ls->ls_recover_result = NULL;
1326 	ls->ls_lvb_bits = NULL;
1327 
1328 	error = set_recover_size(sdp, NULL, 0);
1329 	if (error)
1330 		goto fail;
1331 
1332 	/*
1333 	 * prepare dlm_new_lockspace args
1334 	 */
1335 
1336 	fsname = strchr(table, ':');
1337 	if (!fsname) {
1338 		fs_info(sdp, "no fsname found\n");
1339 		error = -EINVAL;
1340 		goto fail_free;
1341 	}
1342 	memset(cluster, 0, sizeof(cluster));
1343 	memcpy(cluster, table, strlen(table) - strlen(fsname));
1344 	fsname++;
1345 
1346 	flags = DLM_LSFL_NEWEXCL;
1347 
1348 	/*
1349 	 * create/join lockspace
1350 	 */
1351 
1352 	error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE,
1353 				  &gdlm_lockspace_ops, sdp, &ops_result,
1354 				  &ls->ls_dlm);
1355 	if (error) {
1356 		fs_err(sdp, "dlm_new_lockspace error %d\n", error);
1357 		goto fail_free;
1358 	}
1359 
1360 	if (ops_result < 0) {
1361 		/*
1362 		 * dlm does not support ops callbacks,
1363 		 * old dlm_controld/gfs_controld are used, try without ops.
1364 		 */
1365 		fs_info(sdp, "dlm lockspace ops not used\n");
1366 		free_recover_size(ls);
1367 		set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags);
1368 		return 0;
1369 	}
1370 
1371 	if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) {
1372 		fs_err(sdp, "dlm lockspace ops disallow jid preset\n");
1373 		error = -EINVAL;
1374 		goto fail_release;
1375 	}
1376 
1377 	/*
1378 	 * control_mount() uses control_lock to determine first mounter,
1379 	 * and for later mounts, waits for any recoveries to be cleared.
1380 	 */
1381 
1382 	error = control_mount(sdp);
1383 	if (error) {
1384 		fs_err(sdp, "mount control error %d\n", error);
1385 		goto fail_release;
1386 	}
1387 
1388 	ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1389 	clear_bit(SDF_NOJOURNALID, &sdp->sd_flags);
1390 	smp_mb__after_atomic();
1391 	wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID);
1392 	return 0;
1393 
1394 fail_release:
1395 	dlm_release_lockspace(ls->ls_dlm, 2);
1396 fail_free:
1397 	free_recover_size(ls);
1398 fail:
1399 	return error;
1400 }
1401 
1402 static void gdlm_first_done(struct gfs2_sbd *sdp)
1403 {
1404 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1405 	int error;
1406 
1407 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1408 		return;
1409 
1410 	error = control_first_done(sdp);
1411 	if (error)
1412 		fs_err(sdp, "mount first_done error %d\n", error);
1413 }
1414 
1415 static void gdlm_unmount(struct gfs2_sbd *sdp)
1416 {
1417 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1418 
1419 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1420 		goto release;
1421 
1422 	/* wait for gfs2_control_wq to be done with this mount */
1423 
1424 	spin_lock(&ls->ls_recover_spin);
1425 	set_bit(DFL_UNMOUNT, &ls->ls_recover_flags);
1426 	spin_unlock(&ls->ls_recover_spin);
1427 	flush_delayed_work(&sdp->sd_control_work);
1428 
1429 	/* mounted_lock and control_lock will be purged in dlm recovery */
1430 release:
1431 	if (ls->ls_dlm) {
1432 		dlm_release_lockspace(ls->ls_dlm, 2);
1433 		ls->ls_dlm = NULL;
1434 	}
1435 
1436 	free_recover_size(ls);
1437 }
1438 
1439 static const match_table_t dlm_tokens = {
1440 	{ Opt_jid, "jid=%d"},
1441 	{ Opt_id, "id=%d"},
1442 	{ Opt_first, "first=%d"},
1443 	{ Opt_nodir, "nodir=%d"},
1444 	{ Opt_err, NULL },
1445 };
1446 
1447 const struct lm_lockops gfs2_dlm_ops = {
1448 	.lm_proto_name = "lock_dlm",
1449 	.lm_mount = gdlm_mount,
1450 	.lm_first_done = gdlm_first_done,
1451 	.lm_recovery_result = gdlm_recovery_result,
1452 	.lm_unmount = gdlm_unmount,
1453 	.lm_put_lock = gdlm_put_lock,
1454 	.lm_lock = gdlm_lock,
1455 	.lm_cancel = gdlm_cancel,
1456 	.lm_tokens = &dlm_tokens,
1457 };
1458 
1459