1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 4 * Copyright 2004-2011 Red Hat, Inc. 5 */ 6 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 9 #include <linux/fs.h> 10 #include <linux/dlm.h> 11 #include <linux/slab.h> 12 #include <linux/types.h> 13 #include <linux/delay.h> 14 #include <linux/gfs2_ondisk.h> 15 #include <linux/sched/signal.h> 16 17 #include "incore.h" 18 #include "glock.h" 19 #include "glops.h" 20 #include "recovery.h" 21 #include "util.h" 22 #include "sys.h" 23 #include "trace_gfs2.h" 24 25 /** 26 * gfs2_update_stats - Update time based stats 27 * @s: The stats to update (local or global) 28 * @index: The index inside @s 29 * @sample: New data to include 30 */ 31 static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index, 32 s64 sample) 33 { 34 /* 35 * @delta is the difference between the current rtt sample and the 36 * running average srtt. We add 1/8 of that to the srtt in order to 37 * update the current srtt estimate. The variance estimate is a bit 38 * more complicated. We subtract the current variance estimate from 39 * the abs value of the @delta and add 1/4 of that to the running 40 * total. That's equivalent to 3/4 of the current variance 41 * estimate plus 1/4 of the abs of @delta. 42 * 43 * Note that the index points at the array entry containing the 44 * smoothed mean value, and the variance is always in the following 45 * entry 46 * 47 * Reference: TCP/IP Illustrated, vol 2, p. 831,832 48 * All times are in units of integer nanoseconds. Unlike the TCP/IP 49 * case, they are not scaled fixed point. 50 */ 51 52 s64 delta = sample - s->stats[index]; 53 s->stats[index] += (delta >> 3); 54 index++; 55 s->stats[index] += (s64)(abs(delta) - s->stats[index]) >> 2; 56 } 57 58 /** 59 * gfs2_update_reply_times - Update locking statistics 60 * @gl: The glock to update 61 * 62 * This assumes that gl->gl_dstamp has been set earlier. 63 * 64 * The rtt (lock round trip time) is an estimate of the time 65 * taken to perform a dlm lock request. We update it on each 66 * reply from the dlm. 67 * 68 * The blocking flag is set on the glock for all dlm requests 69 * which may potentially block due to lock requests from other nodes. 70 * DLM requests where the current lock state is exclusive, the 71 * requested state is null (or unlocked) or where the TRY or 72 * TRY_1CB flags are set are classified as non-blocking. All 73 * other DLM requests are counted as (potentially) blocking. 74 */ 75 static inline void gfs2_update_reply_times(struct gfs2_glock *gl) 76 { 77 struct gfs2_pcpu_lkstats *lks; 78 const unsigned gltype = gl->gl_name.ln_type; 79 unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ? 80 GFS2_LKS_SRTTB : GFS2_LKS_SRTT; 81 s64 rtt; 82 83 preempt_disable(); 84 rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp)); 85 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats); 86 gfs2_update_stats(&gl->gl_stats, index, rtt); /* Local */ 87 gfs2_update_stats(&lks->lkstats[gltype], index, rtt); /* Global */ 88 preempt_enable(); 89 90 trace_gfs2_glock_lock_time(gl, rtt); 91 } 92 93 /** 94 * gfs2_update_request_times - Update locking statistics 95 * @gl: The glock to update 96 * 97 * The irt (lock inter-request times) measures the average time 98 * between requests to the dlm. It is updated immediately before 99 * each dlm call. 100 */ 101 102 static inline void gfs2_update_request_times(struct gfs2_glock *gl) 103 { 104 struct gfs2_pcpu_lkstats *lks; 105 const unsigned gltype = gl->gl_name.ln_type; 106 ktime_t dstamp; 107 s64 irt; 108 109 preempt_disable(); 110 dstamp = gl->gl_dstamp; 111 gl->gl_dstamp = ktime_get_real(); 112 irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp)); 113 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats); 114 gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt); /* Local */ 115 gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt); /* Global */ 116 preempt_enable(); 117 } 118 119 static void gdlm_ast(void *arg) 120 { 121 struct gfs2_glock *gl = arg; 122 unsigned ret = gl->gl_state; 123 124 gfs2_update_reply_times(gl); 125 BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED); 126 127 if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr) 128 memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE); 129 130 switch (gl->gl_lksb.sb_status) { 131 case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */ 132 if (gl->gl_ops->go_free) 133 gl->gl_ops->go_free(gl); 134 gfs2_glock_free(gl); 135 return; 136 case -DLM_ECANCEL: /* Cancel while getting lock */ 137 ret |= LM_OUT_CANCELED; 138 goto out; 139 case -EAGAIN: /* Try lock fails */ 140 case -EDEADLK: /* Deadlock detected */ 141 goto out; 142 case -ETIMEDOUT: /* Canceled due to timeout */ 143 ret |= LM_OUT_ERROR; 144 goto out; 145 case 0: /* Success */ 146 break; 147 default: /* Something unexpected */ 148 BUG(); 149 } 150 151 ret = gl->gl_req; 152 if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) { 153 if (gl->gl_req == LM_ST_SHARED) 154 ret = LM_ST_DEFERRED; 155 else if (gl->gl_req == LM_ST_DEFERRED) 156 ret = LM_ST_SHARED; 157 else 158 BUG(); 159 } 160 161 set_bit(GLF_INITIAL, &gl->gl_flags); 162 gfs2_glock_complete(gl, ret); 163 return; 164 out: 165 if (!test_bit(GLF_INITIAL, &gl->gl_flags)) 166 gl->gl_lksb.sb_lkid = 0; 167 gfs2_glock_complete(gl, ret); 168 } 169 170 static void gdlm_bast(void *arg, int mode) 171 { 172 struct gfs2_glock *gl = arg; 173 174 switch (mode) { 175 case DLM_LOCK_EX: 176 gfs2_glock_cb(gl, LM_ST_UNLOCKED); 177 break; 178 case DLM_LOCK_CW: 179 gfs2_glock_cb(gl, LM_ST_DEFERRED); 180 break; 181 case DLM_LOCK_PR: 182 gfs2_glock_cb(gl, LM_ST_SHARED); 183 break; 184 default: 185 fs_err(gl->gl_name.ln_sbd, "unknown bast mode %d\n", mode); 186 BUG(); 187 } 188 } 189 190 /* convert gfs lock-state to dlm lock-mode */ 191 192 static int make_mode(struct gfs2_sbd *sdp, const unsigned int lmstate) 193 { 194 switch (lmstate) { 195 case LM_ST_UNLOCKED: 196 return DLM_LOCK_NL; 197 case LM_ST_EXCLUSIVE: 198 return DLM_LOCK_EX; 199 case LM_ST_DEFERRED: 200 return DLM_LOCK_CW; 201 case LM_ST_SHARED: 202 return DLM_LOCK_PR; 203 } 204 fs_err(sdp, "unknown LM state %d\n", lmstate); 205 BUG(); 206 return -1; 207 } 208 209 static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags, 210 const int req) 211 { 212 u32 lkf = 0; 213 214 if (gl->gl_lksb.sb_lvbptr) 215 lkf |= DLM_LKF_VALBLK; 216 217 if (gfs_flags & LM_FLAG_TRY) 218 lkf |= DLM_LKF_NOQUEUE; 219 220 if (gfs_flags & LM_FLAG_TRY_1CB) { 221 lkf |= DLM_LKF_NOQUEUE; 222 lkf |= DLM_LKF_NOQUEUEBAST; 223 } 224 225 if (gfs_flags & LM_FLAG_PRIORITY) { 226 lkf |= DLM_LKF_NOORDER; 227 lkf |= DLM_LKF_HEADQUE; 228 } 229 230 if (gfs_flags & LM_FLAG_ANY) { 231 if (req == DLM_LOCK_PR) 232 lkf |= DLM_LKF_ALTCW; 233 else if (req == DLM_LOCK_CW) 234 lkf |= DLM_LKF_ALTPR; 235 else 236 BUG(); 237 } 238 239 if (gl->gl_lksb.sb_lkid != 0) { 240 lkf |= DLM_LKF_CONVERT; 241 if (test_bit(GLF_BLOCKING, &gl->gl_flags)) 242 lkf |= DLM_LKF_QUECVT; 243 } 244 245 return lkf; 246 } 247 248 static void gfs2_reverse_hex(char *c, u64 value) 249 { 250 *c = '0'; 251 while (value) { 252 *c-- = hex_asc[value & 0x0f]; 253 value >>= 4; 254 } 255 } 256 257 static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state, 258 unsigned int flags) 259 { 260 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct; 261 int req; 262 u32 lkf; 263 char strname[GDLM_STRNAME_BYTES] = ""; 264 265 req = make_mode(gl->gl_name.ln_sbd, req_state); 266 lkf = make_flags(gl, flags, req); 267 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT); 268 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT); 269 if (gl->gl_lksb.sb_lkid) { 270 gfs2_update_request_times(gl); 271 } else { 272 memset(strname, ' ', GDLM_STRNAME_BYTES - 1); 273 strname[GDLM_STRNAME_BYTES - 1] = '\0'; 274 gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type); 275 gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number); 276 gl->gl_dstamp = ktime_get_real(); 277 } 278 /* 279 * Submit the actual lock request. 280 */ 281 282 return dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname, 283 GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast); 284 } 285 286 static void gdlm_put_lock(struct gfs2_glock *gl) 287 { 288 struct gfs2_sbd *sdp = gl->gl_name.ln_sbd; 289 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 290 int error; 291 292 if (gl->gl_lksb.sb_lkid == 0) { 293 gfs2_glock_free(gl); 294 return; 295 } 296 297 clear_bit(GLF_BLOCKING, &gl->gl_flags); 298 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT); 299 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT); 300 gfs2_update_request_times(gl); 301 302 /* don't want to skip dlm_unlock writing the lvb when lock has one */ 303 304 if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) && 305 !gl->gl_lksb.sb_lvbptr) { 306 gfs2_glock_free(gl); 307 return; 308 } 309 310 error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK, 311 NULL, gl); 312 if (error) { 313 fs_err(sdp, "gdlm_unlock %x,%llx err=%d\n", 314 gl->gl_name.ln_type, 315 (unsigned long long)gl->gl_name.ln_number, error); 316 return; 317 } 318 } 319 320 static void gdlm_cancel(struct gfs2_glock *gl) 321 { 322 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct; 323 dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl); 324 } 325 326 /* 327 * dlm/gfs2 recovery coordination using dlm_recover callbacks 328 * 329 * 0. gfs2 checks for another cluster node withdraw, needing journal replay 330 * 1. dlm_controld sees lockspace members change 331 * 2. dlm_controld blocks dlm-kernel locking activity 332 * 3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep) 333 * 4. dlm_controld starts and finishes its own user level recovery 334 * 5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery 335 * 6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot) 336 * 7. dlm_recoverd does its own lock recovery 337 * 8. dlm_recoverd unblocks dlm-kernel locking activity 338 * 9. dlm_recoverd notifies gfs2 when done (recover_done with new generation) 339 * 10. gfs2_control updates control_lock lvb with new generation and jid bits 340 * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none) 341 * 12. gfs2_recover dequeues and recovers journals of failed nodes 342 * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result) 343 * 14. gfs2_control updates control_lock lvb jid bits for recovered journals 344 * 15. gfs2_control unblocks normal locking when all journals are recovered 345 * 346 * - failures during recovery 347 * 348 * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control 349 * clears BLOCK_LOCKS (step 15), e.g. another node fails while still 350 * recovering for a prior failure. gfs2_control needs a way to detect 351 * this so it can leave BLOCK_LOCKS set in step 15. This is managed using 352 * the recover_block and recover_start values. 353 * 354 * recover_done() provides a new lockspace generation number each time it 355 * is called (step 9). This generation number is saved as recover_start. 356 * When recover_prep() is called, it sets BLOCK_LOCKS and sets 357 * recover_block = recover_start. So, while recover_block is equal to 358 * recover_start, BLOCK_LOCKS should remain set. (recover_spin must 359 * be held around the BLOCK_LOCKS/recover_block/recover_start logic.) 360 * 361 * - more specific gfs2 steps in sequence above 362 * 363 * 3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start 364 * 6. recover_slot records any failed jids (maybe none) 365 * 9. recover_done sets recover_start = new generation number 366 * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids 367 * 12. gfs2_recover does journal recoveries for failed jids identified above 368 * 14. gfs2_control clears control_lock lvb bits for recovered jids 369 * 15. gfs2_control checks if recover_block == recover_start (step 3 occured 370 * again) then do nothing, otherwise if recover_start > recover_block 371 * then clear BLOCK_LOCKS. 372 * 373 * - parallel recovery steps across all nodes 374 * 375 * All nodes attempt to update the control_lock lvb with the new generation 376 * number and jid bits, but only the first to get the control_lock EX will 377 * do so; others will see that it's already done (lvb already contains new 378 * generation number.) 379 * 380 * . All nodes get the same recover_prep/recover_slot/recover_done callbacks 381 * . All nodes attempt to set control_lock lvb gen + bits for the new gen 382 * . One node gets control_lock first and writes the lvb, others see it's done 383 * . All nodes attempt to recover jids for which they see control_lock bits set 384 * . One node succeeds for a jid, and that one clears the jid bit in the lvb 385 * . All nodes will eventually see all lvb bits clear and unblock locks 386 * 387 * - is there a problem with clearing an lvb bit that should be set 388 * and missing a journal recovery? 389 * 390 * 1. jid fails 391 * 2. lvb bit set for step 1 392 * 3. jid recovered for step 1 393 * 4. jid taken again (new mount) 394 * 5. jid fails (for step 4) 395 * 6. lvb bit set for step 5 (will already be set) 396 * 7. lvb bit cleared for step 3 397 * 398 * This is not a problem because the failure in step 5 does not 399 * require recovery, because the mount in step 4 could not have 400 * progressed far enough to unblock locks and access the fs. The 401 * control_mount() function waits for all recoveries to be complete 402 * for the latest lockspace generation before ever unblocking locks 403 * and returning. The mount in step 4 waits until the recovery in 404 * step 1 is done. 405 * 406 * - special case of first mounter: first node to mount the fs 407 * 408 * The first node to mount a gfs2 fs needs to check all the journals 409 * and recover any that need recovery before other nodes are allowed 410 * to mount the fs. (Others may begin mounting, but they must wait 411 * for the first mounter to be done before taking locks on the fs 412 * or accessing the fs.) This has two parts: 413 * 414 * 1. The mounted_lock tells a node it's the first to mount the fs. 415 * Each node holds the mounted_lock in PR while it's mounted. 416 * Each node tries to acquire the mounted_lock in EX when it mounts. 417 * If a node is granted the mounted_lock EX it means there are no 418 * other mounted nodes (no PR locks exist), and it is the first mounter. 419 * The mounted_lock is demoted to PR when first recovery is done, so 420 * others will fail to get an EX lock, but will get a PR lock. 421 * 422 * 2. The control_lock blocks others in control_mount() while the first 423 * mounter is doing first mount recovery of all journals. 424 * A mounting node needs to acquire control_lock in EX mode before 425 * it can proceed. The first mounter holds control_lock in EX while doing 426 * the first mount recovery, blocking mounts from other nodes, then demotes 427 * control_lock to NL when it's done (others_may_mount/first_done), 428 * allowing other nodes to continue mounting. 429 * 430 * first mounter: 431 * control_lock EX/NOQUEUE success 432 * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters) 433 * set first=1 434 * do first mounter recovery 435 * mounted_lock EX->PR 436 * control_lock EX->NL, write lvb generation 437 * 438 * other mounter: 439 * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry) 440 * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR) 441 * mounted_lock PR/NOQUEUE success 442 * read lvb generation 443 * control_lock EX->NL 444 * set first=0 445 * 446 * - mount during recovery 447 * 448 * If a node mounts while others are doing recovery (not first mounter), 449 * the mounting node will get its initial recover_done() callback without 450 * having seen any previous failures/callbacks. 451 * 452 * It must wait for all recoveries preceding its mount to be finished 453 * before it unblocks locks. It does this by repeating the "other mounter" 454 * steps above until the lvb generation number is >= its mount generation 455 * number (from initial recover_done) and all lvb bits are clear. 456 * 457 * - control_lock lvb format 458 * 459 * 4 bytes generation number: the latest dlm lockspace generation number 460 * from recover_done callback. Indicates the jid bitmap has been updated 461 * to reflect all slot failures through that generation. 462 * 4 bytes unused. 463 * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates 464 * that jid N needs recovery. 465 */ 466 467 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */ 468 469 static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen, 470 char *lvb_bits) 471 { 472 __le32 gen; 473 memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE); 474 memcpy(&gen, lvb_bits, sizeof(__le32)); 475 *lvb_gen = le32_to_cpu(gen); 476 } 477 478 static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen, 479 char *lvb_bits) 480 { 481 __le32 gen; 482 memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE); 483 gen = cpu_to_le32(lvb_gen); 484 memcpy(ls->ls_control_lvb, &gen, sizeof(__le32)); 485 } 486 487 static int all_jid_bits_clear(char *lvb) 488 { 489 return !memchr_inv(lvb + JID_BITMAP_OFFSET, 0, 490 GDLM_LVB_SIZE - JID_BITMAP_OFFSET); 491 } 492 493 static void sync_wait_cb(void *arg) 494 { 495 struct lm_lockstruct *ls = arg; 496 complete(&ls->ls_sync_wait); 497 } 498 499 static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name) 500 { 501 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 502 int error; 503 504 error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls); 505 if (error) { 506 fs_err(sdp, "%s lkid %x error %d\n", 507 name, lksb->sb_lkid, error); 508 return error; 509 } 510 511 wait_for_completion(&ls->ls_sync_wait); 512 513 if (lksb->sb_status != -DLM_EUNLOCK) { 514 fs_err(sdp, "%s lkid %x status %d\n", 515 name, lksb->sb_lkid, lksb->sb_status); 516 return -1; 517 } 518 return 0; 519 } 520 521 static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags, 522 unsigned int num, struct dlm_lksb *lksb, char *name) 523 { 524 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 525 char strname[GDLM_STRNAME_BYTES]; 526 int error, status; 527 528 memset(strname, 0, GDLM_STRNAME_BYTES); 529 snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num); 530 531 error = dlm_lock(ls->ls_dlm, mode, lksb, flags, 532 strname, GDLM_STRNAME_BYTES - 1, 533 0, sync_wait_cb, ls, NULL); 534 if (error) { 535 fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n", 536 name, lksb->sb_lkid, flags, mode, error); 537 return error; 538 } 539 540 wait_for_completion(&ls->ls_sync_wait); 541 542 status = lksb->sb_status; 543 544 if (status && status != -EAGAIN) { 545 fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n", 546 name, lksb->sb_lkid, flags, mode, status); 547 } 548 549 return status; 550 } 551 552 static int mounted_unlock(struct gfs2_sbd *sdp) 553 { 554 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 555 return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock"); 556 } 557 558 static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags) 559 { 560 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 561 return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK, 562 &ls->ls_mounted_lksb, "mounted_lock"); 563 } 564 565 static int control_unlock(struct gfs2_sbd *sdp) 566 { 567 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 568 return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock"); 569 } 570 571 static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags) 572 { 573 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 574 return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK, 575 &ls->ls_control_lksb, "control_lock"); 576 } 577 578 /** 579 * remote_withdraw - react to a node withdrawing from the file system 580 * @sdp: The superblock 581 */ 582 static void remote_withdraw(struct gfs2_sbd *sdp) 583 { 584 struct gfs2_jdesc *jd; 585 int ret = 0, count = 0; 586 587 list_for_each_entry(jd, &sdp->sd_jindex_list, jd_list) { 588 if (jd->jd_jid == sdp->sd_lockstruct.ls_jid) 589 continue; 590 ret = gfs2_recover_journal(jd, true); 591 if (ret) 592 break; 593 count++; 594 } 595 596 /* Now drop the additional reference we acquired */ 597 fs_err(sdp, "Journals checked: %d, ret = %d.\n", count, ret); 598 } 599 600 static void gfs2_control_func(struct work_struct *work) 601 { 602 struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work); 603 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 604 uint32_t block_gen, start_gen, lvb_gen, flags; 605 int recover_set = 0; 606 int write_lvb = 0; 607 int recover_size; 608 int i, error; 609 610 /* First check for other nodes that may have done a withdraw. */ 611 if (test_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags)) { 612 remote_withdraw(sdp); 613 clear_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags); 614 return; 615 } 616 617 spin_lock(&ls->ls_recover_spin); 618 /* 619 * No MOUNT_DONE means we're still mounting; control_mount() 620 * will set this flag, after which this thread will take over 621 * all further clearing of BLOCK_LOCKS. 622 * 623 * FIRST_MOUNT means this node is doing first mounter recovery, 624 * for which recovery control is handled by 625 * control_mount()/control_first_done(), not this thread. 626 */ 627 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || 628 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 629 spin_unlock(&ls->ls_recover_spin); 630 return; 631 } 632 block_gen = ls->ls_recover_block; 633 start_gen = ls->ls_recover_start; 634 spin_unlock(&ls->ls_recover_spin); 635 636 /* 637 * Equal block_gen and start_gen implies we are between 638 * recover_prep and recover_done callbacks, which means 639 * dlm recovery is in progress and dlm locking is blocked. 640 * There's no point trying to do any work until recover_done. 641 */ 642 643 if (block_gen == start_gen) 644 return; 645 646 /* 647 * Propagate recover_submit[] and recover_result[] to lvb: 648 * dlm_recoverd adds to recover_submit[] jids needing recovery 649 * gfs2_recover adds to recover_result[] journal recovery results 650 * 651 * set lvb bit for jids in recover_submit[] if the lvb has not 652 * yet been updated for the generation of the failure 653 * 654 * clear lvb bit for jids in recover_result[] if the result of 655 * the journal recovery is SUCCESS 656 */ 657 658 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK); 659 if (error) { 660 fs_err(sdp, "control lock EX error %d\n", error); 661 return; 662 } 663 664 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits); 665 666 spin_lock(&ls->ls_recover_spin); 667 if (block_gen != ls->ls_recover_block || 668 start_gen != ls->ls_recover_start) { 669 fs_info(sdp, "recover generation %u block1 %u %u\n", 670 start_gen, block_gen, ls->ls_recover_block); 671 spin_unlock(&ls->ls_recover_spin); 672 control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); 673 return; 674 } 675 676 recover_size = ls->ls_recover_size; 677 678 if (lvb_gen <= start_gen) { 679 /* 680 * Clear lvb bits for jids we've successfully recovered. 681 * Because all nodes attempt to recover failed journals, 682 * a journal can be recovered multiple times successfully 683 * in succession. Only the first will really do recovery, 684 * the others find it clean, but still report a successful 685 * recovery. So, another node may have already recovered 686 * the jid and cleared the lvb bit for it. 687 */ 688 for (i = 0; i < recover_size; i++) { 689 if (ls->ls_recover_result[i] != LM_RD_SUCCESS) 690 continue; 691 692 ls->ls_recover_result[i] = 0; 693 694 if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) 695 continue; 696 697 __clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET); 698 write_lvb = 1; 699 } 700 } 701 702 if (lvb_gen == start_gen) { 703 /* 704 * Failed slots before start_gen are already set in lvb. 705 */ 706 for (i = 0; i < recover_size; i++) { 707 if (!ls->ls_recover_submit[i]) 708 continue; 709 if (ls->ls_recover_submit[i] < lvb_gen) 710 ls->ls_recover_submit[i] = 0; 711 } 712 } else if (lvb_gen < start_gen) { 713 /* 714 * Failed slots before start_gen are not yet set in lvb. 715 */ 716 for (i = 0; i < recover_size; i++) { 717 if (!ls->ls_recover_submit[i]) 718 continue; 719 if (ls->ls_recover_submit[i] < start_gen) { 720 ls->ls_recover_submit[i] = 0; 721 __set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET); 722 } 723 } 724 /* even if there are no bits to set, we need to write the 725 latest generation to the lvb */ 726 write_lvb = 1; 727 } else { 728 /* 729 * we should be getting a recover_done() for lvb_gen soon 730 */ 731 } 732 spin_unlock(&ls->ls_recover_spin); 733 734 if (write_lvb) { 735 control_lvb_write(ls, start_gen, ls->ls_lvb_bits); 736 flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK; 737 } else { 738 flags = DLM_LKF_CONVERT; 739 } 740 741 error = control_lock(sdp, DLM_LOCK_NL, flags); 742 if (error) { 743 fs_err(sdp, "control lock NL error %d\n", error); 744 return; 745 } 746 747 /* 748 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(), 749 * and clear a jid bit in the lvb if the recovery is a success. 750 * Eventually all journals will be recovered, all jid bits will 751 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS. 752 */ 753 754 for (i = 0; i < recover_size; i++) { 755 if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) { 756 fs_info(sdp, "recover generation %u jid %d\n", 757 start_gen, i); 758 gfs2_recover_set(sdp, i); 759 recover_set++; 760 } 761 } 762 if (recover_set) 763 return; 764 765 /* 766 * No more jid bits set in lvb, all recovery is done, unblock locks 767 * (unless a new recover_prep callback has occured blocking locks 768 * again while working above) 769 */ 770 771 spin_lock(&ls->ls_recover_spin); 772 if (ls->ls_recover_block == block_gen && 773 ls->ls_recover_start == start_gen) { 774 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 775 spin_unlock(&ls->ls_recover_spin); 776 fs_info(sdp, "recover generation %u done\n", start_gen); 777 gfs2_glock_thaw(sdp); 778 } else { 779 fs_info(sdp, "recover generation %u block2 %u %u\n", 780 start_gen, block_gen, ls->ls_recover_block); 781 spin_unlock(&ls->ls_recover_spin); 782 } 783 } 784 785 static int control_mount(struct gfs2_sbd *sdp) 786 { 787 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 788 uint32_t start_gen, block_gen, mount_gen, lvb_gen; 789 int mounted_mode; 790 int retries = 0; 791 int error; 792 793 memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb)); 794 memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb)); 795 memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE); 796 ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb; 797 init_completion(&ls->ls_sync_wait); 798 799 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 800 801 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK); 802 if (error) { 803 fs_err(sdp, "control_mount control_lock NL error %d\n", error); 804 return error; 805 } 806 807 error = mounted_lock(sdp, DLM_LOCK_NL, 0); 808 if (error) { 809 fs_err(sdp, "control_mount mounted_lock NL error %d\n", error); 810 control_unlock(sdp); 811 return error; 812 } 813 mounted_mode = DLM_LOCK_NL; 814 815 restart: 816 if (retries++ && signal_pending(current)) { 817 error = -EINTR; 818 goto fail; 819 } 820 821 /* 822 * We always start with both locks in NL. control_lock is 823 * demoted to NL below so we don't need to do it here. 824 */ 825 826 if (mounted_mode != DLM_LOCK_NL) { 827 error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); 828 if (error) 829 goto fail; 830 mounted_mode = DLM_LOCK_NL; 831 } 832 833 /* 834 * Other nodes need to do some work in dlm recovery and gfs2_control 835 * before the recover_done and control_lock will be ready for us below. 836 * A delay here is not required but often avoids having to retry. 837 */ 838 839 msleep_interruptible(500); 840 841 /* 842 * Acquire control_lock in EX and mounted_lock in either EX or PR. 843 * control_lock lvb keeps track of any pending journal recoveries. 844 * mounted_lock indicates if any other nodes have the fs mounted. 845 */ 846 847 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK); 848 if (error == -EAGAIN) { 849 goto restart; 850 } else if (error) { 851 fs_err(sdp, "control_mount control_lock EX error %d\n", error); 852 goto fail; 853 } 854 855 /** 856 * If we're a spectator, we don't want to take the lock in EX because 857 * we cannot do the first-mount responsibility it implies: recovery. 858 */ 859 if (sdp->sd_args.ar_spectator) 860 goto locks_done; 861 862 error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE); 863 if (!error) { 864 mounted_mode = DLM_LOCK_EX; 865 goto locks_done; 866 } else if (error != -EAGAIN) { 867 fs_err(sdp, "control_mount mounted_lock EX error %d\n", error); 868 goto fail; 869 } 870 871 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE); 872 if (!error) { 873 mounted_mode = DLM_LOCK_PR; 874 goto locks_done; 875 } else { 876 /* not even -EAGAIN should happen here */ 877 fs_err(sdp, "control_mount mounted_lock PR error %d\n", error); 878 goto fail; 879 } 880 881 locks_done: 882 /* 883 * If we got both locks above in EX, then we're the first mounter. 884 * If not, then we need to wait for the control_lock lvb to be 885 * updated by other mounted nodes to reflect our mount generation. 886 * 887 * In simple first mounter cases, first mounter will see zero lvb_gen, 888 * but in cases where all existing nodes leave/fail before mounting 889 * nodes finish control_mount, then all nodes will be mounting and 890 * lvb_gen will be non-zero. 891 */ 892 893 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits); 894 895 if (lvb_gen == 0xFFFFFFFF) { 896 /* special value to force mount attempts to fail */ 897 fs_err(sdp, "control_mount control_lock disabled\n"); 898 error = -EINVAL; 899 goto fail; 900 } 901 902 if (mounted_mode == DLM_LOCK_EX) { 903 /* first mounter, keep both EX while doing first recovery */ 904 spin_lock(&ls->ls_recover_spin); 905 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 906 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags); 907 set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); 908 spin_unlock(&ls->ls_recover_spin); 909 fs_info(sdp, "first mounter control generation %u\n", lvb_gen); 910 return 0; 911 } 912 913 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); 914 if (error) 915 goto fail; 916 917 /* 918 * We are not first mounter, now we need to wait for the control_lock 919 * lvb generation to be >= the generation from our first recover_done 920 * and all lvb bits to be clear (no pending journal recoveries.) 921 */ 922 923 if (!all_jid_bits_clear(ls->ls_lvb_bits)) { 924 /* journals need recovery, wait until all are clear */ 925 fs_info(sdp, "control_mount wait for journal recovery\n"); 926 goto restart; 927 } 928 929 spin_lock(&ls->ls_recover_spin); 930 block_gen = ls->ls_recover_block; 931 start_gen = ls->ls_recover_start; 932 mount_gen = ls->ls_recover_mount; 933 934 if (lvb_gen < mount_gen) { 935 /* wait for mounted nodes to update control_lock lvb to our 936 generation, which might include new recovery bits set */ 937 if (sdp->sd_args.ar_spectator) { 938 fs_info(sdp, "Recovery is required. Waiting for a " 939 "non-spectator to mount.\n"); 940 msleep_interruptible(1000); 941 } else { 942 fs_info(sdp, "control_mount wait1 block %u start %u " 943 "mount %u lvb %u flags %lx\n", block_gen, 944 start_gen, mount_gen, lvb_gen, 945 ls->ls_recover_flags); 946 } 947 spin_unlock(&ls->ls_recover_spin); 948 goto restart; 949 } 950 951 if (lvb_gen != start_gen) { 952 /* wait for mounted nodes to update control_lock lvb to the 953 latest recovery generation */ 954 fs_info(sdp, "control_mount wait2 block %u start %u mount %u " 955 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen, 956 lvb_gen, ls->ls_recover_flags); 957 spin_unlock(&ls->ls_recover_spin); 958 goto restart; 959 } 960 961 if (block_gen == start_gen) { 962 /* dlm recovery in progress, wait for it to finish */ 963 fs_info(sdp, "control_mount wait3 block %u start %u mount %u " 964 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen, 965 lvb_gen, ls->ls_recover_flags); 966 spin_unlock(&ls->ls_recover_spin); 967 goto restart; 968 } 969 970 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 971 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags); 972 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t)); 973 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t)); 974 spin_unlock(&ls->ls_recover_spin); 975 return 0; 976 977 fail: 978 mounted_unlock(sdp); 979 control_unlock(sdp); 980 return error; 981 } 982 983 static int control_first_done(struct gfs2_sbd *sdp) 984 { 985 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 986 uint32_t start_gen, block_gen; 987 int error; 988 989 restart: 990 spin_lock(&ls->ls_recover_spin); 991 start_gen = ls->ls_recover_start; 992 block_gen = ls->ls_recover_block; 993 994 if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) || 995 !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || 996 !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 997 /* sanity check, should not happen */ 998 fs_err(sdp, "control_first_done start %u block %u flags %lx\n", 999 start_gen, block_gen, ls->ls_recover_flags); 1000 spin_unlock(&ls->ls_recover_spin); 1001 control_unlock(sdp); 1002 return -1; 1003 } 1004 1005 if (start_gen == block_gen) { 1006 /* 1007 * Wait for the end of a dlm recovery cycle to switch from 1008 * first mounter recovery. We can ignore any recover_slot 1009 * callbacks between the recover_prep and next recover_done 1010 * because we are still the first mounter and any failed nodes 1011 * have not fully mounted, so they don't need recovery. 1012 */ 1013 spin_unlock(&ls->ls_recover_spin); 1014 fs_info(sdp, "control_first_done wait gen %u\n", start_gen); 1015 1016 wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY, 1017 TASK_UNINTERRUPTIBLE); 1018 goto restart; 1019 } 1020 1021 clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); 1022 set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags); 1023 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t)); 1024 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t)); 1025 spin_unlock(&ls->ls_recover_spin); 1026 1027 memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE); 1028 control_lvb_write(ls, start_gen, ls->ls_lvb_bits); 1029 1030 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT); 1031 if (error) 1032 fs_err(sdp, "control_first_done mounted PR error %d\n", error); 1033 1034 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK); 1035 if (error) 1036 fs_err(sdp, "control_first_done control NL error %d\n", error); 1037 1038 return error; 1039 } 1040 1041 /* 1042 * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC) 1043 * to accomodate the largest slot number. (NB dlm slot numbers start at 1, 1044 * gfs2 jids start at 0, so jid = slot - 1) 1045 */ 1046 1047 #define RECOVER_SIZE_INC 16 1048 1049 static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots, 1050 int num_slots) 1051 { 1052 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1053 uint32_t *submit = NULL; 1054 uint32_t *result = NULL; 1055 uint32_t old_size, new_size; 1056 int i, max_jid; 1057 1058 if (!ls->ls_lvb_bits) { 1059 ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS); 1060 if (!ls->ls_lvb_bits) 1061 return -ENOMEM; 1062 } 1063 1064 max_jid = 0; 1065 for (i = 0; i < num_slots; i++) { 1066 if (max_jid < slots[i].slot - 1) 1067 max_jid = slots[i].slot - 1; 1068 } 1069 1070 old_size = ls->ls_recover_size; 1071 new_size = old_size; 1072 while (new_size < max_jid + 1) 1073 new_size += RECOVER_SIZE_INC; 1074 if (new_size == old_size) 1075 return 0; 1076 1077 submit = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS); 1078 result = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS); 1079 if (!submit || !result) { 1080 kfree(submit); 1081 kfree(result); 1082 return -ENOMEM; 1083 } 1084 1085 spin_lock(&ls->ls_recover_spin); 1086 memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t)); 1087 memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t)); 1088 kfree(ls->ls_recover_submit); 1089 kfree(ls->ls_recover_result); 1090 ls->ls_recover_submit = submit; 1091 ls->ls_recover_result = result; 1092 ls->ls_recover_size = new_size; 1093 spin_unlock(&ls->ls_recover_spin); 1094 return 0; 1095 } 1096 1097 static void free_recover_size(struct lm_lockstruct *ls) 1098 { 1099 kfree(ls->ls_lvb_bits); 1100 kfree(ls->ls_recover_submit); 1101 kfree(ls->ls_recover_result); 1102 ls->ls_recover_submit = NULL; 1103 ls->ls_recover_result = NULL; 1104 ls->ls_recover_size = 0; 1105 ls->ls_lvb_bits = NULL; 1106 } 1107 1108 /* dlm calls before it does lock recovery */ 1109 1110 static void gdlm_recover_prep(void *arg) 1111 { 1112 struct gfs2_sbd *sdp = arg; 1113 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1114 1115 if (gfs2_withdrawn(sdp)) { 1116 fs_err(sdp, "recover_prep ignored due to withdraw.\n"); 1117 return; 1118 } 1119 spin_lock(&ls->ls_recover_spin); 1120 ls->ls_recover_block = ls->ls_recover_start; 1121 set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags); 1122 1123 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || 1124 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 1125 spin_unlock(&ls->ls_recover_spin); 1126 return; 1127 } 1128 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 1129 spin_unlock(&ls->ls_recover_spin); 1130 } 1131 1132 /* dlm calls after recover_prep has been completed on all lockspace members; 1133 identifies slot/jid of failed member */ 1134 1135 static void gdlm_recover_slot(void *arg, struct dlm_slot *slot) 1136 { 1137 struct gfs2_sbd *sdp = arg; 1138 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1139 int jid = slot->slot - 1; 1140 1141 if (gfs2_withdrawn(sdp)) { 1142 fs_err(sdp, "recover_slot jid %d ignored due to withdraw.\n", 1143 jid); 1144 return; 1145 } 1146 spin_lock(&ls->ls_recover_spin); 1147 if (ls->ls_recover_size < jid + 1) { 1148 fs_err(sdp, "recover_slot jid %d gen %u short size %d\n", 1149 jid, ls->ls_recover_block, ls->ls_recover_size); 1150 spin_unlock(&ls->ls_recover_spin); 1151 return; 1152 } 1153 1154 if (ls->ls_recover_submit[jid]) { 1155 fs_info(sdp, "recover_slot jid %d gen %u prev %u\n", 1156 jid, ls->ls_recover_block, ls->ls_recover_submit[jid]); 1157 } 1158 ls->ls_recover_submit[jid] = ls->ls_recover_block; 1159 spin_unlock(&ls->ls_recover_spin); 1160 } 1161 1162 /* dlm calls after recover_slot and after it completes lock recovery */ 1163 1164 static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots, 1165 int our_slot, uint32_t generation) 1166 { 1167 struct gfs2_sbd *sdp = arg; 1168 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1169 1170 if (gfs2_withdrawn(sdp)) { 1171 fs_err(sdp, "recover_done ignored due to withdraw.\n"); 1172 return; 1173 } 1174 /* ensure the ls jid arrays are large enough */ 1175 set_recover_size(sdp, slots, num_slots); 1176 1177 spin_lock(&ls->ls_recover_spin); 1178 ls->ls_recover_start = generation; 1179 1180 if (!ls->ls_recover_mount) { 1181 ls->ls_recover_mount = generation; 1182 ls->ls_jid = our_slot - 1; 1183 } 1184 1185 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) 1186 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0); 1187 1188 clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags); 1189 smp_mb__after_atomic(); 1190 wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY); 1191 spin_unlock(&ls->ls_recover_spin); 1192 } 1193 1194 /* gfs2_recover thread has a journal recovery result */ 1195 1196 static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid, 1197 unsigned int result) 1198 { 1199 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1200 1201 if (gfs2_withdrawn(sdp)) { 1202 fs_err(sdp, "recovery_result jid %d ignored due to withdraw.\n", 1203 jid); 1204 return; 1205 } 1206 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) 1207 return; 1208 1209 /* don't care about the recovery of own journal during mount */ 1210 if (jid == ls->ls_jid) 1211 return; 1212 1213 spin_lock(&ls->ls_recover_spin); 1214 if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 1215 spin_unlock(&ls->ls_recover_spin); 1216 return; 1217 } 1218 if (ls->ls_recover_size < jid + 1) { 1219 fs_err(sdp, "recovery_result jid %d short size %d\n", 1220 jid, ls->ls_recover_size); 1221 spin_unlock(&ls->ls_recover_spin); 1222 return; 1223 } 1224 1225 fs_info(sdp, "recover jid %d result %s\n", jid, 1226 result == LM_RD_GAVEUP ? "busy" : "success"); 1227 1228 ls->ls_recover_result[jid] = result; 1229 1230 /* GAVEUP means another node is recovering the journal; delay our 1231 next attempt to recover it, to give the other node a chance to 1232 finish before trying again */ 1233 1234 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) 1235 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 1236 result == LM_RD_GAVEUP ? HZ : 0); 1237 spin_unlock(&ls->ls_recover_spin); 1238 } 1239 1240 static const struct dlm_lockspace_ops gdlm_lockspace_ops = { 1241 .recover_prep = gdlm_recover_prep, 1242 .recover_slot = gdlm_recover_slot, 1243 .recover_done = gdlm_recover_done, 1244 }; 1245 1246 static int gdlm_mount(struct gfs2_sbd *sdp, const char *table) 1247 { 1248 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1249 char cluster[GFS2_LOCKNAME_LEN]; 1250 const char *fsname; 1251 uint32_t flags; 1252 int error, ops_result; 1253 1254 /* 1255 * initialize everything 1256 */ 1257 1258 INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func); 1259 spin_lock_init(&ls->ls_recover_spin); 1260 ls->ls_recover_flags = 0; 1261 ls->ls_recover_mount = 0; 1262 ls->ls_recover_start = 0; 1263 ls->ls_recover_block = 0; 1264 ls->ls_recover_size = 0; 1265 ls->ls_recover_submit = NULL; 1266 ls->ls_recover_result = NULL; 1267 ls->ls_lvb_bits = NULL; 1268 1269 error = set_recover_size(sdp, NULL, 0); 1270 if (error) 1271 goto fail; 1272 1273 /* 1274 * prepare dlm_new_lockspace args 1275 */ 1276 1277 fsname = strchr(table, ':'); 1278 if (!fsname) { 1279 fs_info(sdp, "no fsname found\n"); 1280 error = -EINVAL; 1281 goto fail_free; 1282 } 1283 memset(cluster, 0, sizeof(cluster)); 1284 memcpy(cluster, table, strlen(table) - strlen(fsname)); 1285 fsname++; 1286 1287 flags = DLM_LSFL_FS | DLM_LSFL_NEWEXCL; 1288 1289 /* 1290 * create/join lockspace 1291 */ 1292 1293 error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE, 1294 &gdlm_lockspace_ops, sdp, &ops_result, 1295 &ls->ls_dlm); 1296 if (error) { 1297 fs_err(sdp, "dlm_new_lockspace error %d\n", error); 1298 goto fail_free; 1299 } 1300 1301 if (ops_result < 0) { 1302 /* 1303 * dlm does not support ops callbacks, 1304 * old dlm_controld/gfs_controld are used, try without ops. 1305 */ 1306 fs_info(sdp, "dlm lockspace ops not used\n"); 1307 free_recover_size(ls); 1308 set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags); 1309 return 0; 1310 } 1311 1312 if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) { 1313 fs_err(sdp, "dlm lockspace ops disallow jid preset\n"); 1314 error = -EINVAL; 1315 goto fail_release; 1316 } 1317 1318 /* 1319 * control_mount() uses control_lock to determine first mounter, 1320 * and for later mounts, waits for any recoveries to be cleared. 1321 */ 1322 1323 error = control_mount(sdp); 1324 if (error) { 1325 fs_err(sdp, "mount control error %d\n", error); 1326 goto fail_release; 1327 } 1328 1329 ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); 1330 clear_bit(SDF_NOJOURNALID, &sdp->sd_flags); 1331 smp_mb__after_atomic(); 1332 wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID); 1333 return 0; 1334 1335 fail_release: 1336 dlm_release_lockspace(ls->ls_dlm, 2); 1337 fail_free: 1338 free_recover_size(ls); 1339 fail: 1340 return error; 1341 } 1342 1343 static void gdlm_first_done(struct gfs2_sbd *sdp) 1344 { 1345 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1346 int error; 1347 1348 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) 1349 return; 1350 1351 error = control_first_done(sdp); 1352 if (error) 1353 fs_err(sdp, "mount first_done error %d\n", error); 1354 } 1355 1356 static void gdlm_unmount(struct gfs2_sbd *sdp) 1357 { 1358 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1359 1360 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) 1361 goto release; 1362 1363 /* wait for gfs2_control_wq to be done with this mount */ 1364 1365 spin_lock(&ls->ls_recover_spin); 1366 set_bit(DFL_UNMOUNT, &ls->ls_recover_flags); 1367 spin_unlock(&ls->ls_recover_spin); 1368 flush_delayed_work(&sdp->sd_control_work); 1369 1370 /* mounted_lock and control_lock will be purged in dlm recovery */ 1371 release: 1372 if (ls->ls_dlm) { 1373 dlm_release_lockspace(ls->ls_dlm, 2); 1374 ls->ls_dlm = NULL; 1375 } 1376 1377 free_recover_size(ls); 1378 } 1379 1380 static const match_table_t dlm_tokens = { 1381 { Opt_jid, "jid=%d"}, 1382 { Opt_id, "id=%d"}, 1383 { Opt_first, "first=%d"}, 1384 { Opt_nodir, "nodir=%d"}, 1385 { Opt_err, NULL }, 1386 }; 1387 1388 const struct lm_lockops gfs2_dlm_ops = { 1389 .lm_proto_name = "lock_dlm", 1390 .lm_mount = gdlm_mount, 1391 .lm_first_done = gdlm_first_done, 1392 .lm_recovery_result = gdlm_recovery_result, 1393 .lm_unmount = gdlm_unmount, 1394 .lm_put_lock = gdlm_put_lock, 1395 .lm_lock = gdlm_lock, 1396 .lm_cancel = gdlm_cancel, 1397 .lm_tokens = &dlm_tokens, 1398 }; 1399 1400