1 /* 2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 3 * Copyright 2004-2011 Red Hat, Inc. 4 * 5 * This copyrighted material is made available to anyone wishing to use, 6 * modify, copy, or redistribute it subject to the terms and conditions 7 * of the GNU General Public License version 2. 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/fs.h> 13 #include <linux/dlm.h> 14 #include <linux/slab.h> 15 #include <linux/types.h> 16 #include <linux/delay.h> 17 #include <linux/gfs2_ondisk.h> 18 #include <linux/sched/signal.h> 19 20 #include "incore.h" 21 #include "glock.h" 22 #include "util.h" 23 #include "sys.h" 24 #include "trace_gfs2.h" 25 26 /** 27 * gfs2_update_stats - Update time based stats 28 * @mv: Pointer to mean/variance structure to update 29 * @sample: New data to include 30 * 31 * @delta is the difference between the current rtt sample and the 32 * running average srtt. We add 1/8 of that to the srtt in order to 33 * update the current srtt estimate. The variance estimate is a bit 34 * more complicated. We subtract the abs value of the @delta from 35 * the current variance estimate and add 1/4 of that to the running 36 * total. 37 * 38 * Note that the index points at the array entry containing the smoothed 39 * mean value, and the variance is always in the following entry 40 * 41 * Reference: TCP/IP Illustrated, vol 2, p. 831,832 42 * All times are in units of integer nanoseconds. Unlike the TCP/IP case, 43 * they are not scaled fixed point. 44 */ 45 46 static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index, 47 s64 sample) 48 { 49 s64 delta = sample - s->stats[index]; 50 s->stats[index] += (delta >> 3); 51 index++; 52 s->stats[index] += ((abs(delta) - s->stats[index]) >> 2); 53 } 54 55 /** 56 * gfs2_update_reply_times - Update locking statistics 57 * @gl: The glock to update 58 * 59 * This assumes that gl->gl_dstamp has been set earlier. 60 * 61 * The rtt (lock round trip time) is an estimate of the time 62 * taken to perform a dlm lock request. We update it on each 63 * reply from the dlm. 64 * 65 * The blocking flag is set on the glock for all dlm requests 66 * which may potentially block due to lock requests from other nodes. 67 * DLM requests where the current lock state is exclusive, the 68 * requested state is null (or unlocked) or where the TRY or 69 * TRY_1CB flags are set are classified as non-blocking. All 70 * other DLM requests are counted as (potentially) blocking. 71 */ 72 static inline void gfs2_update_reply_times(struct gfs2_glock *gl) 73 { 74 struct gfs2_pcpu_lkstats *lks; 75 const unsigned gltype = gl->gl_name.ln_type; 76 unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ? 77 GFS2_LKS_SRTTB : GFS2_LKS_SRTT; 78 s64 rtt; 79 80 preempt_disable(); 81 rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp)); 82 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats); 83 gfs2_update_stats(&gl->gl_stats, index, rtt); /* Local */ 84 gfs2_update_stats(&lks->lkstats[gltype], index, rtt); /* Global */ 85 preempt_enable(); 86 87 trace_gfs2_glock_lock_time(gl, rtt); 88 } 89 90 /** 91 * gfs2_update_request_times - Update locking statistics 92 * @gl: The glock to update 93 * 94 * The irt (lock inter-request times) measures the average time 95 * between requests to the dlm. It is updated immediately before 96 * each dlm call. 97 */ 98 99 static inline void gfs2_update_request_times(struct gfs2_glock *gl) 100 { 101 struct gfs2_pcpu_lkstats *lks; 102 const unsigned gltype = gl->gl_name.ln_type; 103 ktime_t dstamp; 104 s64 irt; 105 106 preempt_disable(); 107 dstamp = gl->gl_dstamp; 108 gl->gl_dstamp = ktime_get_real(); 109 irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp)); 110 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats); 111 gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt); /* Local */ 112 gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt); /* Global */ 113 preempt_enable(); 114 } 115 116 static void gdlm_ast(void *arg) 117 { 118 struct gfs2_glock *gl = arg; 119 unsigned ret = gl->gl_state; 120 121 gfs2_update_reply_times(gl); 122 BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED); 123 124 if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr) 125 memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE); 126 127 switch (gl->gl_lksb.sb_status) { 128 case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */ 129 gfs2_glock_free(gl); 130 return; 131 case -DLM_ECANCEL: /* Cancel while getting lock */ 132 ret |= LM_OUT_CANCELED; 133 goto out; 134 case -EAGAIN: /* Try lock fails */ 135 case -EDEADLK: /* Deadlock detected */ 136 goto out; 137 case -ETIMEDOUT: /* Canceled due to timeout */ 138 ret |= LM_OUT_ERROR; 139 goto out; 140 case 0: /* Success */ 141 break; 142 default: /* Something unexpected */ 143 BUG(); 144 } 145 146 ret = gl->gl_req; 147 if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) { 148 if (gl->gl_req == LM_ST_SHARED) 149 ret = LM_ST_DEFERRED; 150 else if (gl->gl_req == LM_ST_DEFERRED) 151 ret = LM_ST_SHARED; 152 else 153 BUG(); 154 } 155 156 set_bit(GLF_INITIAL, &gl->gl_flags); 157 gfs2_glock_complete(gl, ret); 158 return; 159 out: 160 if (!test_bit(GLF_INITIAL, &gl->gl_flags)) 161 gl->gl_lksb.sb_lkid = 0; 162 gfs2_glock_complete(gl, ret); 163 } 164 165 static void gdlm_bast(void *arg, int mode) 166 { 167 struct gfs2_glock *gl = arg; 168 169 switch (mode) { 170 case DLM_LOCK_EX: 171 gfs2_glock_cb(gl, LM_ST_UNLOCKED); 172 break; 173 case DLM_LOCK_CW: 174 gfs2_glock_cb(gl, LM_ST_DEFERRED); 175 break; 176 case DLM_LOCK_PR: 177 gfs2_glock_cb(gl, LM_ST_SHARED); 178 break; 179 default: 180 pr_err("unknown bast mode %d\n", mode); 181 BUG(); 182 } 183 } 184 185 /* convert gfs lock-state to dlm lock-mode */ 186 187 static int make_mode(const unsigned int lmstate) 188 { 189 switch (lmstate) { 190 case LM_ST_UNLOCKED: 191 return DLM_LOCK_NL; 192 case LM_ST_EXCLUSIVE: 193 return DLM_LOCK_EX; 194 case LM_ST_DEFERRED: 195 return DLM_LOCK_CW; 196 case LM_ST_SHARED: 197 return DLM_LOCK_PR; 198 } 199 pr_err("unknown LM state %d\n", lmstate); 200 BUG(); 201 return -1; 202 } 203 204 static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags, 205 const int req) 206 { 207 u32 lkf = 0; 208 209 if (gl->gl_lksb.sb_lvbptr) 210 lkf |= DLM_LKF_VALBLK; 211 212 if (gfs_flags & LM_FLAG_TRY) 213 lkf |= DLM_LKF_NOQUEUE; 214 215 if (gfs_flags & LM_FLAG_TRY_1CB) { 216 lkf |= DLM_LKF_NOQUEUE; 217 lkf |= DLM_LKF_NOQUEUEBAST; 218 } 219 220 if (gfs_flags & LM_FLAG_PRIORITY) { 221 lkf |= DLM_LKF_NOORDER; 222 lkf |= DLM_LKF_HEADQUE; 223 } 224 225 if (gfs_flags & LM_FLAG_ANY) { 226 if (req == DLM_LOCK_PR) 227 lkf |= DLM_LKF_ALTCW; 228 else if (req == DLM_LOCK_CW) 229 lkf |= DLM_LKF_ALTPR; 230 else 231 BUG(); 232 } 233 234 if (gl->gl_lksb.sb_lkid != 0) { 235 lkf |= DLM_LKF_CONVERT; 236 if (test_bit(GLF_BLOCKING, &gl->gl_flags)) 237 lkf |= DLM_LKF_QUECVT; 238 } 239 240 return lkf; 241 } 242 243 static void gfs2_reverse_hex(char *c, u64 value) 244 { 245 *c = '0'; 246 while (value) { 247 *c-- = hex_asc[value & 0x0f]; 248 value >>= 4; 249 } 250 } 251 252 static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state, 253 unsigned int flags) 254 { 255 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct; 256 int req; 257 u32 lkf; 258 char strname[GDLM_STRNAME_BYTES] = ""; 259 260 req = make_mode(req_state); 261 lkf = make_flags(gl, flags, req); 262 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT); 263 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT); 264 if (gl->gl_lksb.sb_lkid) { 265 gfs2_update_request_times(gl); 266 } else { 267 memset(strname, ' ', GDLM_STRNAME_BYTES - 1); 268 strname[GDLM_STRNAME_BYTES - 1] = '\0'; 269 gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type); 270 gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number); 271 gl->gl_dstamp = ktime_get_real(); 272 } 273 /* 274 * Submit the actual lock request. 275 */ 276 277 return dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname, 278 GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast); 279 } 280 281 static void gdlm_put_lock(struct gfs2_glock *gl) 282 { 283 struct gfs2_sbd *sdp = gl->gl_name.ln_sbd; 284 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 285 int lvb_needs_unlock = 0; 286 int error; 287 288 if (gl->gl_lksb.sb_lkid == 0) { 289 gfs2_glock_free(gl); 290 return; 291 } 292 293 clear_bit(GLF_BLOCKING, &gl->gl_flags); 294 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT); 295 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT); 296 gfs2_update_request_times(gl); 297 298 /* don't want to skip dlm_unlock writing the lvb when lock is ex */ 299 300 if (gl->gl_lksb.sb_lvbptr && (gl->gl_state == LM_ST_EXCLUSIVE)) 301 lvb_needs_unlock = 1; 302 303 if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) && 304 !lvb_needs_unlock) { 305 gfs2_glock_free(gl); 306 return; 307 } 308 309 error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK, 310 NULL, gl); 311 if (error) { 312 pr_err("gdlm_unlock %x,%llx err=%d\n", 313 gl->gl_name.ln_type, 314 (unsigned long long)gl->gl_name.ln_number, error); 315 return; 316 } 317 } 318 319 static void gdlm_cancel(struct gfs2_glock *gl) 320 { 321 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct; 322 dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl); 323 } 324 325 /* 326 * dlm/gfs2 recovery coordination using dlm_recover callbacks 327 * 328 * 1. dlm_controld sees lockspace members change 329 * 2. dlm_controld blocks dlm-kernel locking activity 330 * 3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep) 331 * 4. dlm_controld starts and finishes its own user level recovery 332 * 5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery 333 * 6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot) 334 * 7. dlm_recoverd does its own lock recovery 335 * 8. dlm_recoverd unblocks dlm-kernel locking activity 336 * 9. dlm_recoverd notifies gfs2 when done (recover_done with new generation) 337 * 10. gfs2_control updates control_lock lvb with new generation and jid bits 338 * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none) 339 * 12. gfs2_recover dequeues and recovers journals of failed nodes 340 * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result) 341 * 14. gfs2_control updates control_lock lvb jid bits for recovered journals 342 * 15. gfs2_control unblocks normal locking when all journals are recovered 343 * 344 * - failures during recovery 345 * 346 * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control 347 * clears BLOCK_LOCKS (step 15), e.g. another node fails while still 348 * recovering for a prior failure. gfs2_control needs a way to detect 349 * this so it can leave BLOCK_LOCKS set in step 15. This is managed using 350 * the recover_block and recover_start values. 351 * 352 * recover_done() provides a new lockspace generation number each time it 353 * is called (step 9). This generation number is saved as recover_start. 354 * When recover_prep() is called, it sets BLOCK_LOCKS and sets 355 * recover_block = recover_start. So, while recover_block is equal to 356 * recover_start, BLOCK_LOCKS should remain set. (recover_spin must 357 * be held around the BLOCK_LOCKS/recover_block/recover_start logic.) 358 * 359 * - more specific gfs2 steps in sequence above 360 * 361 * 3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start 362 * 6. recover_slot records any failed jids (maybe none) 363 * 9. recover_done sets recover_start = new generation number 364 * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids 365 * 12. gfs2_recover does journal recoveries for failed jids identified above 366 * 14. gfs2_control clears control_lock lvb bits for recovered jids 367 * 15. gfs2_control checks if recover_block == recover_start (step 3 occured 368 * again) then do nothing, otherwise if recover_start > recover_block 369 * then clear BLOCK_LOCKS. 370 * 371 * - parallel recovery steps across all nodes 372 * 373 * All nodes attempt to update the control_lock lvb with the new generation 374 * number and jid bits, but only the first to get the control_lock EX will 375 * do so; others will see that it's already done (lvb already contains new 376 * generation number.) 377 * 378 * . All nodes get the same recover_prep/recover_slot/recover_done callbacks 379 * . All nodes attempt to set control_lock lvb gen + bits for the new gen 380 * . One node gets control_lock first and writes the lvb, others see it's done 381 * . All nodes attempt to recover jids for which they see control_lock bits set 382 * . One node succeeds for a jid, and that one clears the jid bit in the lvb 383 * . All nodes will eventually see all lvb bits clear and unblock locks 384 * 385 * - is there a problem with clearing an lvb bit that should be set 386 * and missing a journal recovery? 387 * 388 * 1. jid fails 389 * 2. lvb bit set for step 1 390 * 3. jid recovered for step 1 391 * 4. jid taken again (new mount) 392 * 5. jid fails (for step 4) 393 * 6. lvb bit set for step 5 (will already be set) 394 * 7. lvb bit cleared for step 3 395 * 396 * This is not a problem because the failure in step 5 does not 397 * require recovery, because the mount in step 4 could not have 398 * progressed far enough to unblock locks and access the fs. The 399 * control_mount() function waits for all recoveries to be complete 400 * for the latest lockspace generation before ever unblocking locks 401 * and returning. The mount in step 4 waits until the recovery in 402 * step 1 is done. 403 * 404 * - special case of first mounter: first node to mount the fs 405 * 406 * The first node to mount a gfs2 fs needs to check all the journals 407 * and recover any that need recovery before other nodes are allowed 408 * to mount the fs. (Others may begin mounting, but they must wait 409 * for the first mounter to be done before taking locks on the fs 410 * or accessing the fs.) This has two parts: 411 * 412 * 1. The mounted_lock tells a node it's the first to mount the fs. 413 * Each node holds the mounted_lock in PR while it's mounted. 414 * Each node tries to acquire the mounted_lock in EX when it mounts. 415 * If a node is granted the mounted_lock EX it means there are no 416 * other mounted nodes (no PR locks exist), and it is the first mounter. 417 * The mounted_lock is demoted to PR when first recovery is done, so 418 * others will fail to get an EX lock, but will get a PR lock. 419 * 420 * 2. The control_lock blocks others in control_mount() while the first 421 * mounter is doing first mount recovery of all journals. 422 * A mounting node needs to acquire control_lock in EX mode before 423 * it can proceed. The first mounter holds control_lock in EX while doing 424 * the first mount recovery, blocking mounts from other nodes, then demotes 425 * control_lock to NL when it's done (others_may_mount/first_done), 426 * allowing other nodes to continue mounting. 427 * 428 * first mounter: 429 * control_lock EX/NOQUEUE success 430 * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters) 431 * set first=1 432 * do first mounter recovery 433 * mounted_lock EX->PR 434 * control_lock EX->NL, write lvb generation 435 * 436 * other mounter: 437 * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry) 438 * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR) 439 * mounted_lock PR/NOQUEUE success 440 * read lvb generation 441 * control_lock EX->NL 442 * set first=0 443 * 444 * - mount during recovery 445 * 446 * If a node mounts while others are doing recovery (not first mounter), 447 * the mounting node will get its initial recover_done() callback without 448 * having seen any previous failures/callbacks. 449 * 450 * It must wait for all recoveries preceding its mount to be finished 451 * before it unblocks locks. It does this by repeating the "other mounter" 452 * steps above until the lvb generation number is >= its mount generation 453 * number (from initial recover_done) and all lvb bits are clear. 454 * 455 * - control_lock lvb format 456 * 457 * 4 bytes generation number: the latest dlm lockspace generation number 458 * from recover_done callback. Indicates the jid bitmap has been updated 459 * to reflect all slot failures through that generation. 460 * 4 bytes unused. 461 * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates 462 * that jid N needs recovery. 463 */ 464 465 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */ 466 467 static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen, 468 char *lvb_bits) 469 { 470 __le32 gen; 471 memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE); 472 memcpy(&gen, lvb_bits, sizeof(__le32)); 473 *lvb_gen = le32_to_cpu(gen); 474 } 475 476 static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen, 477 char *lvb_bits) 478 { 479 __le32 gen; 480 memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE); 481 gen = cpu_to_le32(lvb_gen); 482 memcpy(ls->ls_control_lvb, &gen, sizeof(__le32)); 483 } 484 485 static int all_jid_bits_clear(char *lvb) 486 { 487 return !memchr_inv(lvb + JID_BITMAP_OFFSET, 0, 488 GDLM_LVB_SIZE - JID_BITMAP_OFFSET); 489 } 490 491 static void sync_wait_cb(void *arg) 492 { 493 struct lm_lockstruct *ls = arg; 494 complete(&ls->ls_sync_wait); 495 } 496 497 static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name) 498 { 499 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 500 int error; 501 502 error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls); 503 if (error) { 504 fs_err(sdp, "%s lkid %x error %d\n", 505 name, lksb->sb_lkid, error); 506 return error; 507 } 508 509 wait_for_completion(&ls->ls_sync_wait); 510 511 if (lksb->sb_status != -DLM_EUNLOCK) { 512 fs_err(sdp, "%s lkid %x status %d\n", 513 name, lksb->sb_lkid, lksb->sb_status); 514 return -1; 515 } 516 return 0; 517 } 518 519 static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags, 520 unsigned int num, struct dlm_lksb *lksb, char *name) 521 { 522 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 523 char strname[GDLM_STRNAME_BYTES]; 524 int error, status; 525 526 memset(strname, 0, GDLM_STRNAME_BYTES); 527 snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num); 528 529 error = dlm_lock(ls->ls_dlm, mode, lksb, flags, 530 strname, GDLM_STRNAME_BYTES - 1, 531 0, sync_wait_cb, ls, NULL); 532 if (error) { 533 fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n", 534 name, lksb->sb_lkid, flags, mode, error); 535 return error; 536 } 537 538 wait_for_completion(&ls->ls_sync_wait); 539 540 status = lksb->sb_status; 541 542 if (status && status != -EAGAIN) { 543 fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n", 544 name, lksb->sb_lkid, flags, mode, status); 545 } 546 547 return status; 548 } 549 550 static int mounted_unlock(struct gfs2_sbd *sdp) 551 { 552 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 553 return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock"); 554 } 555 556 static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags) 557 { 558 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 559 return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK, 560 &ls->ls_mounted_lksb, "mounted_lock"); 561 } 562 563 static int control_unlock(struct gfs2_sbd *sdp) 564 { 565 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 566 return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock"); 567 } 568 569 static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags) 570 { 571 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 572 return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK, 573 &ls->ls_control_lksb, "control_lock"); 574 } 575 576 static void gfs2_control_func(struct work_struct *work) 577 { 578 struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work); 579 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 580 uint32_t block_gen, start_gen, lvb_gen, flags; 581 int recover_set = 0; 582 int write_lvb = 0; 583 int recover_size; 584 int i, error; 585 586 spin_lock(&ls->ls_recover_spin); 587 /* 588 * No MOUNT_DONE means we're still mounting; control_mount() 589 * will set this flag, after which this thread will take over 590 * all further clearing of BLOCK_LOCKS. 591 * 592 * FIRST_MOUNT means this node is doing first mounter recovery, 593 * for which recovery control is handled by 594 * control_mount()/control_first_done(), not this thread. 595 */ 596 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || 597 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 598 spin_unlock(&ls->ls_recover_spin); 599 return; 600 } 601 block_gen = ls->ls_recover_block; 602 start_gen = ls->ls_recover_start; 603 spin_unlock(&ls->ls_recover_spin); 604 605 /* 606 * Equal block_gen and start_gen implies we are between 607 * recover_prep and recover_done callbacks, which means 608 * dlm recovery is in progress and dlm locking is blocked. 609 * There's no point trying to do any work until recover_done. 610 */ 611 612 if (block_gen == start_gen) 613 return; 614 615 /* 616 * Propagate recover_submit[] and recover_result[] to lvb: 617 * dlm_recoverd adds to recover_submit[] jids needing recovery 618 * gfs2_recover adds to recover_result[] journal recovery results 619 * 620 * set lvb bit for jids in recover_submit[] if the lvb has not 621 * yet been updated for the generation of the failure 622 * 623 * clear lvb bit for jids in recover_result[] if the result of 624 * the journal recovery is SUCCESS 625 */ 626 627 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK); 628 if (error) { 629 fs_err(sdp, "control lock EX error %d\n", error); 630 return; 631 } 632 633 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits); 634 635 spin_lock(&ls->ls_recover_spin); 636 if (block_gen != ls->ls_recover_block || 637 start_gen != ls->ls_recover_start) { 638 fs_info(sdp, "recover generation %u block1 %u %u\n", 639 start_gen, block_gen, ls->ls_recover_block); 640 spin_unlock(&ls->ls_recover_spin); 641 control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); 642 return; 643 } 644 645 recover_size = ls->ls_recover_size; 646 647 if (lvb_gen <= start_gen) { 648 /* 649 * Clear lvb bits for jids we've successfully recovered. 650 * Because all nodes attempt to recover failed journals, 651 * a journal can be recovered multiple times successfully 652 * in succession. Only the first will really do recovery, 653 * the others find it clean, but still report a successful 654 * recovery. So, another node may have already recovered 655 * the jid and cleared the lvb bit for it. 656 */ 657 for (i = 0; i < recover_size; i++) { 658 if (ls->ls_recover_result[i] != LM_RD_SUCCESS) 659 continue; 660 661 ls->ls_recover_result[i] = 0; 662 663 if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) 664 continue; 665 666 __clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET); 667 write_lvb = 1; 668 } 669 } 670 671 if (lvb_gen == start_gen) { 672 /* 673 * Failed slots before start_gen are already set in lvb. 674 */ 675 for (i = 0; i < recover_size; i++) { 676 if (!ls->ls_recover_submit[i]) 677 continue; 678 if (ls->ls_recover_submit[i] < lvb_gen) 679 ls->ls_recover_submit[i] = 0; 680 } 681 } else if (lvb_gen < start_gen) { 682 /* 683 * Failed slots before start_gen are not yet set in lvb. 684 */ 685 for (i = 0; i < recover_size; i++) { 686 if (!ls->ls_recover_submit[i]) 687 continue; 688 if (ls->ls_recover_submit[i] < start_gen) { 689 ls->ls_recover_submit[i] = 0; 690 __set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET); 691 } 692 } 693 /* even if there are no bits to set, we need to write the 694 latest generation to the lvb */ 695 write_lvb = 1; 696 } else { 697 /* 698 * we should be getting a recover_done() for lvb_gen soon 699 */ 700 } 701 spin_unlock(&ls->ls_recover_spin); 702 703 if (write_lvb) { 704 control_lvb_write(ls, start_gen, ls->ls_lvb_bits); 705 flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK; 706 } else { 707 flags = DLM_LKF_CONVERT; 708 } 709 710 error = control_lock(sdp, DLM_LOCK_NL, flags); 711 if (error) { 712 fs_err(sdp, "control lock NL error %d\n", error); 713 return; 714 } 715 716 /* 717 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(), 718 * and clear a jid bit in the lvb if the recovery is a success. 719 * Eventually all journals will be recovered, all jid bits will 720 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS. 721 */ 722 723 for (i = 0; i < recover_size; i++) { 724 if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) { 725 fs_info(sdp, "recover generation %u jid %d\n", 726 start_gen, i); 727 gfs2_recover_set(sdp, i); 728 recover_set++; 729 } 730 } 731 if (recover_set) 732 return; 733 734 /* 735 * No more jid bits set in lvb, all recovery is done, unblock locks 736 * (unless a new recover_prep callback has occured blocking locks 737 * again while working above) 738 */ 739 740 spin_lock(&ls->ls_recover_spin); 741 if (ls->ls_recover_block == block_gen && 742 ls->ls_recover_start == start_gen) { 743 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 744 spin_unlock(&ls->ls_recover_spin); 745 fs_info(sdp, "recover generation %u done\n", start_gen); 746 gfs2_glock_thaw(sdp); 747 } else { 748 fs_info(sdp, "recover generation %u block2 %u %u\n", 749 start_gen, block_gen, ls->ls_recover_block); 750 spin_unlock(&ls->ls_recover_spin); 751 } 752 } 753 754 static int control_mount(struct gfs2_sbd *sdp) 755 { 756 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 757 uint32_t start_gen, block_gen, mount_gen, lvb_gen; 758 int mounted_mode; 759 int retries = 0; 760 int error; 761 762 memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb)); 763 memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb)); 764 memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE); 765 ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb; 766 init_completion(&ls->ls_sync_wait); 767 768 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 769 770 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK); 771 if (error) { 772 fs_err(sdp, "control_mount control_lock NL error %d\n", error); 773 return error; 774 } 775 776 error = mounted_lock(sdp, DLM_LOCK_NL, 0); 777 if (error) { 778 fs_err(sdp, "control_mount mounted_lock NL error %d\n", error); 779 control_unlock(sdp); 780 return error; 781 } 782 mounted_mode = DLM_LOCK_NL; 783 784 restart: 785 if (retries++ && signal_pending(current)) { 786 error = -EINTR; 787 goto fail; 788 } 789 790 /* 791 * We always start with both locks in NL. control_lock is 792 * demoted to NL below so we don't need to do it here. 793 */ 794 795 if (mounted_mode != DLM_LOCK_NL) { 796 error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); 797 if (error) 798 goto fail; 799 mounted_mode = DLM_LOCK_NL; 800 } 801 802 /* 803 * Other nodes need to do some work in dlm recovery and gfs2_control 804 * before the recover_done and control_lock will be ready for us below. 805 * A delay here is not required but often avoids having to retry. 806 */ 807 808 msleep_interruptible(500); 809 810 /* 811 * Acquire control_lock in EX and mounted_lock in either EX or PR. 812 * control_lock lvb keeps track of any pending journal recoveries. 813 * mounted_lock indicates if any other nodes have the fs mounted. 814 */ 815 816 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK); 817 if (error == -EAGAIN) { 818 goto restart; 819 } else if (error) { 820 fs_err(sdp, "control_mount control_lock EX error %d\n", error); 821 goto fail; 822 } 823 824 error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE); 825 if (!error) { 826 mounted_mode = DLM_LOCK_EX; 827 goto locks_done; 828 } else if (error != -EAGAIN) { 829 fs_err(sdp, "control_mount mounted_lock EX error %d\n", error); 830 goto fail; 831 } 832 833 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE); 834 if (!error) { 835 mounted_mode = DLM_LOCK_PR; 836 goto locks_done; 837 } else { 838 /* not even -EAGAIN should happen here */ 839 fs_err(sdp, "control_mount mounted_lock PR error %d\n", error); 840 goto fail; 841 } 842 843 locks_done: 844 /* 845 * If we got both locks above in EX, then we're the first mounter. 846 * If not, then we need to wait for the control_lock lvb to be 847 * updated by other mounted nodes to reflect our mount generation. 848 * 849 * In simple first mounter cases, first mounter will see zero lvb_gen, 850 * but in cases where all existing nodes leave/fail before mounting 851 * nodes finish control_mount, then all nodes will be mounting and 852 * lvb_gen will be non-zero. 853 */ 854 855 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits); 856 857 if (lvb_gen == 0xFFFFFFFF) { 858 /* special value to force mount attempts to fail */ 859 fs_err(sdp, "control_mount control_lock disabled\n"); 860 error = -EINVAL; 861 goto fail; 862 } 863 864 if (mounted_mode == DLM_LOCK_EX) { 865 /* first mounter, keep both EX while doing first recovery */ 866 spin_lock(&ls->ls_recover_spin); 867 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 868 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags); 869 set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); 870 spin_unlock(&ls->ls_recover_spin); 871 fs_info(sdp, "first mounter control generation %u\n", lvb_gen); 872 return 0; 873 } 874 875 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); 876 if (error) 877 goto fail; 878 879 /* 880 * We are not first mounter, now we need to wait for the control_lock 881 * lvb generation to be >= the generation from our first recover_done 882 * and all lvb bits to be clear (no pending journal recoveries.) 883 */ 884 885 if (!all_jid_bits_clear(ls->ls_lvb_bits)) { 886 /* journals need recovery, wait until all are clear */ 887 fs_info(sdp, "control_mount wait for journal recovery\n"); 888 goto restart; 889 } 890 891 spin_lock(&ls->ls_recover_spin); 892 block_gen = ls->ls_recover_block; 893 start_gen = ls->ls_recover_start; 894 mount_gen = ls->ls_recover_mount; 895 896 if (lvb_gen < mount_gen) { 897 /* wait for mounted nodes to update control_lock lvb to our 898 generation, which might include new recovery bits set */ 899 fs_info(sdp, "control_mount wait1 block %u start %u mount %u " 900 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen, 901 lvb_gen, ls->ls_recover_flags); 902 spin_unlock(&ls->ls_recover_spin); 903 goto restart; 904 } 905 906 if (lvb_gen != start_gen) { 907 /* wait for mounted nodes to update control_lock lvb to the 908 latest recovery generation */ 909 fs_info(sdp, "control_mount wait2 block %u start %u mount %u " 910 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen, 911 lvb_gen, ls->ls_recover_flags); 912 spin_unlock(&ls->ls_recover_spin); 913 goto restart; 914 } 915 916 if (block_gen == start_gen) { 917 /* dlm recovery in progress, wait for it to finish */ 918 fs_info(sdp, "control_mount wait3 block %u start %u mount %u " 919 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen, 920 lvb_gen, ls->ls_recover_flags); 921 spin_unlock(&ls->ls_recover_spin); 922 goto restart; 923 } 924 925 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 926 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags); 927 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t)); 928 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t)); 929 spin_unlock(&ls->ls_recover_spin); 930 return 0; 931 932 fail: 933 mounted_unlock(sdp); 934 control_unlock(sdp); 935 return error; 936 } 937 938 static int control_first_done(struct gfs2_sbd *sdp) 939 { 940 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 941 uint32_t start_gen, block_gen; 942 int error; 943 944 restart: 945 spin_lock(&ls->ls_recover_spin); 946 start_gen = ls->ls_recover_start; 947 block_gen = ls->ls_recover_block; 948 949 if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) || 950 !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || 951 !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 952 /* sanity check, should not happen */ 953 fs_err(sdp, "control_first_done start %u block %u flags %lx\n", 954 start_gen, block_gen, ls->ls_recover_flags); 955 spin_unlock(&ls->ls_recover_spin); 956 control_unlock(sdp); 957 return -1; 958 } 959 960 if (start_gen == block_gen) { 961 /* 962 * Wait for the end of a dlm recovery cycle to switch from 963 * first mounter recovery. We can ignore any recover_slot 964 * callbacks between the recover_prep and next recover_done 965 * because we are still the first mounter and any failed nodes 966 * have not fully mounted, so they don't need recovery. 967 */ 968 spin_unlock(&ls->ls_recover_spin); 969 fs_info(sdp, "control_first_done wait gen %u\n", start_gen); 970 971 wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY, 972 TASK_UNINTERRUPTIBLE); 973 goto restart; 974 } 975 976 clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); 977 set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags); 978 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t)); 979 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t)); 980 spin_unlock(&ls->ls_recover_spin); 981 982 memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE); 983 control_lvb_write(ls, start_gen, ls->ls_lvb_bits); 984 985 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT); 986 if (error) 987 fs_err(sdp, "control_first_done mounted PR error %d\n", error); 988 989 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK); 990 if (error) 991 fs_err(sdp, "control_first_done control NL error %d\n", error); 992 993 return error; 994 } 995 996 /* 997 * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC) 998 * to accomodate the largest slot number. (NB dlm slot numbers start at 1, 999 * gfs2 jids start at 0, so jid = slot - 1) 1000 */ 1001 1002 #define RECOVER_SIZE_INC 16 1003 1004 static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots, 1005 int num_slots) 1006 { 1007 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1008 uint32_t *submit = NULL; 1009 uint32_t *result = NULL; 1010 uint32_t old_size, new_size; 1011 int i, max_jid; 1012 1013 if (!ls->ls_lvb_bits) { 1014 ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS); 1015 if (!ls->ls_lvb_bits) 1016 return -ENOMEM; 1017 } 1018 1019 max_jid = 0; 1020 for (i = 0; i < num_slots; i++) { 1021 if (max_jid < slots[i].slot - 1) 1022 max_jid = slots[i].slot - 1; 1023 } 1024 1025 old_size = ls->ls_recover_size; 1026 1027 if (old_size >= max_jid + 1) 1028 return 0; 1029 1030 new_size = old_size + RECOVER_SIZE_INC; 1031 1032 submit = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS); 1033 result = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS); 1034 if (!submit || !result) { 1035 kfree(submit); 1036 kfree(result); 1037 return -ENOMEM; 1038 } 1039 1040 spin_lock(&ls->ls_recover_spin); 1041 memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t)); 1042 memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t)); 1043 kfree(ls->ls_recover_submit); 1044 kfree(ls->ls_recover_result); 1045 ls->ls_recover_submit = submit; 1046 ls->ls_recover_result = result; 1047 ls->ls_recover_size = new_size; 1048 spin_unlock(&ls->ls_recover_spin); 1049 return 0; 1050 } 1051 1052 static void free_recover_size(struct lm_lockstruct *ls) 1053 { 1054 kfree(ls->ls_lvb_bits); 1055 kfree(ls->ls_recover_submit); 1056 kfree(ls->ls_recover_result); 1057 ls->ls_recover_submit = NULL; 1058 ls->ls_recover_result = NULL; 1059 ls->ls_recover_size = 0; 1060 ls->ls_lvb_bits = NULL; 1061 } 1062 1063 /* dlm calls before it does lock recovery */ 1064 1065 static void gdlm_recover_prep(void *arg) 1066 { 1067 struct gfs2_sbd *sdp = arg; 1068 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1069 1070 spin_lock(&ls->ls_recover_spin); 1071 ls->ls_recover_block = ls->ls_recover_start; 1072 set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags); 1073 1074 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || 1075 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 1076 spin_unlock(&ls->ls_recover_spin); 1077 return; 1078 } 1079 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 1080 spin_unlock(&ls->ls_recover_spin); 1081 } 1082 1083 /* dlm calls after recover_prep has been completed on all lockspace members; 1084 identifies slot/jid of failed member */ 1085 1086 static void gdlm_recover_slot(void *arg, struct dlm_slot *slot) 1087 { 1088 struct gfs2_sbd *sdp = arg; 1089 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1090 int jid = slot->slot - 1; 1091 1092 spin_lock(&ls->ls_recover_spin); 1093 if (ls->ls_recover_size < jid + 1) { 1094 fs_err(sdp, "recover_slot jid %d gen %u short size %d\n", 1095 jid, ls->ls_recover_block, ls->ls_recover_size); 1096 spin_unlock(&ls->ls_recover_spin); 1097 return; 1098 } 1099 1100 if (ls->ls_recover_submit[jid]) { 1101 fs_info(sdp, "recover_slot jid %d gen %u prev %u\n", 1102 jid, ls->ls_recover_block, ls->ls_recover_submit[jid]); 1103 } 1104 ls->ls_recover_submit[jid] = ls->ls_recover_block; 1105 spin_unlock(&ls->ls_recover_spin); 1106 } 1107 1108 /* dlm calls after recover_slot and after it completes lock recovery */ 1109 1110 static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots, 1111 int our_slot, uint32_t generation) 1112 { 1113 struct gfs2_sbd *sdp = arg; 1114 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1115 1116 /* ensure the ls jid arrays are large enough */ 1117 set_recover_size(sdp, slots, num_slots); 1118 1119 spin_lock(&ls->ls_recover_spin); 1120 ls->ls_recover_start = generation; 1121 1122 if (!ls->ls_recover_mount) { 1123 ls->ls_recover_mount = generation; 1124 ls->ls_jid = our_slot - 1; 1125 } 1126 1127 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) 1128 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0); 1129 1130 clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags); 1131 smp_mb__after_atomic(); 1132 wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY); 1133 spin_unlock(&ls->ls_recover_spin); 1134 } 1135 1136 /* gfs2_recover thread has a journal recovery result */ 1137 1138 static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid, 1139 unsigned int result) 1140 { 1141 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1142 1143 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) 1144 return; 1145 1146 /* don't care about the recovery of own journal during mount */ 1147 if (jid == ls->ls_jid) 1148 return; 1149 1150 spin_lock(&ls->ls_recover_spin); 1151 if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 1152 spin_unlock(&ls->ls_recover_spin); 1153 return; 1154 } 1155 if (ls->ls_recover_size < jid + 1) { 1156 fs_err(sdp, "recovery_result jid %d short size %d\n", 1157 jid, ls->ls_recover_size); 1158 spin_unlock(&ls->ls_recover_spin); 1159 return; 1160 } 1161 1162 fs_info(sdp, "recover jid %d result %s\n", jid, 1163 result == LM_RD_GAVEUP ? "busy" : "success"); 1164 1165 ls->ls_recover_result[jid] = result; 1166 1167 /* GAVEUP means another node is recovering the journal; delay our 1168 next attempt to recover it, to give the other node a chance to 1169 finish before trying again */ 1170 1171 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) 1172 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 1173 result == LM_RD_GAVEUP ? HZ : 0); 1174 spin_unlock(&ls->ls_recover_spin); 1175 } 1176 1177 static const struct dlm_lockspace_ops gdlm_lockspace_ops = { 1178 .recover_prep = gdlm_recover_prep, 1179 .recover_slot = gdlm_recover_slot, 1180 .recover_done = gdlm_recover_done, 1181 }; 1182 1183 static int gdlm_mount(struct gfs2_sbd *sdp, const char *table) 1184 { 1185 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1186 char cluster[GFS2_LOCKNAME_LEN]; 1187 const char *fsname; 1188 uint32_t flags; 1189 int error, ops_result; 1190 1191 /* 1192 * initialize everything 1193 */ 1194 1195 INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func); 1196 spin_lock_init(&ls->ls_recover_spin); 1197 ls->ls_recover_flags = 0; 1198 ls->ls_recover_mount = 0; 1199 ls->ls_recover_start = 0; 1200 ls->ls_recover_block = 0; 1201 ls->ls_recover_size = 0; 1202 ls->ls_recover_submit = NULL; 1203 ls->ls_recover_result = NULL; 1204 ls->ls_lvb_bits = NULL; 1205 1206 error = set_recover_size(sdp, NULL, 0); 1207 if (error) 1208 goto fail; 1209 1210 /* 1211 * prepare dlm_new_lockspace args 1212 */ 1213 1214 fsname = strchr(table, ':'); 1215 if (!fsname) { 1216 fs_info(sdp, "no fsname found\n"); 1217 error = -EINVAL; 1218 goto fail_free; 1219 } 1220 memset(cluster, 0, sizeof(cluster)); 1221 memcpy(cluster, table, strlen(table) - strlen(fsname)); 1222 fsname++; 1223 1224 flags = DLM_LSFL_FS | DLM_LSFL_NEWEXCL; 1225 1226 /* 1227 * create/join lockspace 1228 */ 1229 1230 error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE, 1231 &gdlm_lockspace_ops, sdp, &ops_result, 1232 &ls->ls_dlm); 1233 if (error) { 1234 fs_err(sdp, "dlm_new_lockspace error %d\n", error); 1235 goto fail_free; 1236 } 1237 1238 if (ops_result < 0) { 1239 /* 1240 * dlm does not support ops callbacks, 1241 * old dlm_controld/gfs_controld are used, try without ops. 1242 */ 1243 fs_info(sdp, "dlm lockspace ops not used\n"); 1244 free_recover_size(ls); 1245 set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags); 1246 return 0; 1247 } 1248 1249 if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) { 1250 fs_err(sdp, "dlm lockspace ops disallow jid preset\n"); 1251 error = -EINVAL; 1252 goto fail_release; 1253 } 1254 1255 /* 1256 * control_mount() uses control_lock to determine first mounter, 1257 * and for later mounts, waits for any recoveries to be cleared. 1258 */ 1259 1260 error = control_mount(sdp); 1261 if (error) { 1262 fs_err(sdp, "mount control error %d\n", error); 1263 goto fail_release; 1264 } 1265 1266 ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); 1267 clear_bit(SDF_NOJOURNALID, &sdp->sd_flags); 1268 smp_mb__after_atomic(); 1269 wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID); 1270 return 0; 1271 1272 fail_release: 1273 dlm_release_lockspace(ls->ls_dlm, 2); 1274 fail_free: 1275 free_recover_size(ls); 1276 fail: 1277 return error; 1278 } 1279 1280 static void gdlm_first_done(struct gfs2_sbd *sdp) 1281 { 1282 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1283 int error; 1284 1285 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) 1286 return; 1287 1288 error = control_first_done(sdp); 1289 if (error) 1290 fs_err(sdp, "mount first_done error %d\n", error); 1291 } 1292 1293 static void gdlm_unmount(struct gfs2_sbd *sdp) 1294 { 1295 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1296 1297 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) 1298 goto release; 1299 1300 /* wait for gfs2_control_wq to be done with this mount */ 1301 1302 spin_lock(&ls->ls_recover_spin); 1303 set_bit(DFL_UNMOUNT, &ls->ls_recover_flags); 1304 spin_unlock(&ls->ls_recover_spin); 1305 flush_delayed_work(&sdp->sd_control_work); 1306 1307 /* mounted_lock and control_lock will be purged in dlm recovery */ 1308 release: 1309 if (ls->ls_dlm) { 1310 dlm_release_lockspace(ls->ls_dlm, 2); 1311 ls->ls_dlm = NULL; 1312 } 1313 1314 free_recover_size(ls); 1315 } 1316 1317 static const match_table_t dlm_tokens = { 1318 { Opt_jid, "jid=%d"}, 1319 { Opt_id, "id=%d"}, 1320 { Opt_first, "first=%d"}, 1321 { Opt_nodir, "nodir=%d"}, 1322 { Opt_err, NULL }, 1323 }; 1324 1325 const struct lm_lockops gfs2_dlm_ops = { 1326 .lm_proto_name = "lock_dlm", 1327 .lm_mount = gdlm_mount, 1328 .lm_first_done = gdlm_first_done, 1329 .lm_recovery_result = gdlm_recovery_result, 1330 .lm_unmount = gdlm_unmount, 1331 .lm_put_lock = gdlm_put_lock, 1332 .lm_lock = gdlm_lock, 1333 .lm_cancel = gdlm_cancel, 1334 .lm_tokens = &dlm_tokens, 1335 }; 1336 1337