xref: /linux/fs/gfs2/lock_dlm.c (revision 4359a011e259a4608afc7fb3635370c9d4ba5943)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
4  * Copyright 2004-2011 Red Hat, Inc.
5  */
6 
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 
9 #include <linux/fs.h>
10 #include <linux/dlm.h>
11 #include <linux/slab.h>
12 #include <linux/types.h>
13 #include <linux/delay.h>
14 #include <linux/gfs2_ondisk.h>
15 #include <linux/sched/signal.h>
16 
17 #include "incore.h"
18 #include "glock.h"
19 #include "glops.h"
20 #include "recovery.h"
21 #include "util.h"
22 #include "sys.h"
23 #include "trace_gfs2.h"
24 
25 /**
26  * gfs2_update_stats - Update time based stats
27  * @s: The stats to update (local or global)
28  * @index: The index inside @s
29  * @sample: New data to include
30  */
31 static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index,
32 				     s64 sample)
33 {
34 	/*
35 	 * @delta is the difference between the current rtt sample and the
36 	 * running average srtt. We add 1/8 of that to the srtt in order to
37 	 * update the current srtt estimate. The variance estimate is a bit
38 	 * more complicated. We subtract the current variance estimate from
39 	 * the abs value of the @delta and add 1/4 of that to the running
40 	 * total.  That's equivalent to 3/4 of the current variance
41 	 * estimate plus 1/4 of the abs of @delta.
42 	 *
43 	 * Note that the index points at the array entry containing the
44 	 * smoothed mean value, and the variance is always in the following
45 	 * entry
46 	 *
47 	 * Reference: TCP/IP Illustrated, vol 2, p. 831,832
48 	 * All times are in units of integer nanoseconds. Unlike the TCP/IP
49 	 * case, they are not scaled fixed point.
50 	 */
51 
52 	s64 delta = sample - s->stats[index];
53 	s->stats[index] += (delta >> 3);
54 	index++;
55 	s->stats[index] += (s64)(abs(delta) - s->stats[index]) >> 2;
56 }
57 
58 /**
59  * gfs2_update_reply_times - Update locking statistics
60  * @gl: The glock to update
61  *
62  * This assumes that gl->gl_dstamp has been set earlier.
63  *
64  * The rtt (lock round trip time) is an estimate of the time
65  * taken to perform a dlm lock request. We update it on each
66  * reply from the dlm.
67  *
68  * The blocking flag is set on the glock for all dlm requests
69  * which may potentially block due to lock requests from other nodes.
70  * DLM requests where the current lock state is exclusive, the
71  * requested state is null (or unlocked) or where the TRY or
72  * TRY_1CB flags are set are classified as non-blocking. All
73  * other DLM requests are counted as (potentially) blocking.
74  */
75 static inline void gfs2_update_reply_times(struct gfs2_glock *gl)
76 {
77 	struct gfs2_pcpu_lkstats *lks;
78 	const unsigned gltype = gl->gl_name.ln_type;
79 	unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ?
80 			 GFS2_LKS_SRTTB : GFS2_LKS_SRTT;
81 	s64 rtt;
82 
83 	preempt_disable();
84 	rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp));
85 	lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
86 	gfs2_update_stats(&gl->gl_stats, index, rtt);		/* Local */
87 	gfs2_update_stats(&lks->lkstats[gltype], index, rtt);	/* Global */
88 	preempt_enable();
89 
90 	trace_gfs2_glock_lock_time(gl, rtt);
91 }
92 
93 /**
94  * gfs2_update_request_times - Update locking statistics
95  * @gl: The glock to update
96  *
97  * The irt (lock inter-request times) measures the average time
98  * between requests to the dlm. It is updated immediately before
99  * each dlm call.
100  */
101 
102 static inline void gfs2_update_request_times(struct gfs2_glock *gl)
103 {
104 	struct gfs2_pcpu_lkstats *lks;
105 	const unsigned gltype = gl->gl_name.ln_type;
106 	ktime_t dstamp;
107 	s64 irt;
108 
109 	preempt_disable();
110 	dstamp = gl->gl_dstamp;
111 	gl->gl_dstamp = ktime_get_real();
112 	irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp));
113 	lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
114 	gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt);		/* Local */
115 	gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt);	/* Global */
116 	preempt_enable();
117 }
118 
119 static void gdlm_ast(void *arg)
120 {
121 	struct gfs2_glock *gl = arg;
122 	unsigned ret = gl->gl_state;
123 
124 	gfs2_update_reply_times(gl);
125 	BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED);
126 
127 	if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr)
128 		memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE);
129 
130 	switch (gl->gl_lksb.sb_status) {
131 	case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */
132 		if (gl->gl_ops->go_free)
133 			gl->gl_ops->go_free(gl);
134 		gfs2_glock_free(gl);
135 		return;
136 	case -DLM_ECANCEL: /* Cancel while getting lock */
137 		ret |= LM_OUT_CANCELED;
138 		goto out;
139 	case -EAGAIN: /* Try lock fails */
140 	case -EDEADLK: /* Deadlock detected */
141 		goto out;
142 	case -ETIMEDOUT: /* Canceled due to timeout */
143 		ret |= LM_OUT_ERROR;
144 		goto out;
145 	case 0: /* Success */
146 		break;
147 	default: /* Something unexpected */
148 		BUG();
149 	}
150 
151 	ret = gl->gl_req;
152 	if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) {
153 		if (gl->gl_req == LM_ST_SHARED)
154 			ret = LM_ST_DEFERRED;
155 		else if (gl->gl_req == LM_ST_DEFERRED)
156 			ret = LM_ST_SHARED;
157 		else
158 			BUG();
159 	}
160 
161 	set_bit(GLF_INITIAL, &gl->gl_flags);
162 	gfs2_glock_complete(gl, ret);
163 	return;
164 out:
165 	if (!test_bit(GLF_INITIAL, &gl->gl_flags))
166 		gl->gl_lksb.sb_lkid = 0;
167 	gfs2_glock_complete(gl, ret);
168 }
169 
170 static void gdlm_bast(void *arg, int mode)
171 {
172 	struct gfs2_glock *gl = arg;
173 
174 	switch (mode) {
175 	case DLM_LOCK_EX:
176 		gfs2_glock_cb(gl, LM_ST_UNLOCKED);
177 		break;
178 	case DLM_LOCK_CW:
179 		gfs2_glock_cb(gl, LM_ST_DEFERRED);
180 		break;
181 	case DLM_LOCK_PR:
182 		gfs2_glock_cb(gl, LM_ST_SHARED);
183 		break;
184 	default:
185 		fs_err(gl->gl_name.ln_sbd, "unknown bast mode %d\n", mode);
186 		BUG();
187 	}
188 }
189 
190 /* convert gfs lock-state to dlm lock-mode */
191 
192 static int make_mode(struct gfs2_sbd *sdp, const unsigned int lmstate)
193 {
194 	switch (lmstate) {
195 	case LM_ST_UNLOCKED:
196 		return DLM_LOCK_NL;
197 	case LM_ST_EXCLUSIVE:
198 		return DLM_LOCK_EX;
199 	case LM_ST_DEFERRED:
200 		return DLM_LOCK_CW;
201 	case LM_ST_SHARED:
202 		return DLM_LOCK_PR;
203 	}
204 	fs_err(sdp, "unknown LM state %d\n", lmstate);
205 	BUG();
206 	return -1;
207 }
208 
209 static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags,
210 		      const int req)
211 {
212 	u32 lkf = 0;
213 
214 	if (gl->gl_lksb.sb_lvbptr)
215 		lkf |= DLM_LKF_VALBLK;
216 
217 	if (gfs_flags & LM_FLAG_TRY)
218 		lkf |= DLM_LKF_NOQUEUE;
219 
220 	if (gfs_flags & LM_FLAG_TRY_1CB) {
221 		lkf |= DLM_LKF_NOQUEUE;
222 		lkf |= DLM_LKF_NOQUEUEBAST;
223 	}
224 
225 	if (gfs_flags & LM_FLAG_PRIORITY) {
226 		lkf |= DLM_LKF_NOORDER;
227 		lkf |= DLM_LKF_HEADQUE;
228 	}
229 
230 	if (gfs_flags & LM_FLAG_ANY) {
231 		if (req == DLM_LOCK_PR)
232 			lkf |= DLM_LKF_ALTCW;
233 		else if (req == DLM_LOCK_CW)
234 			lkf |= DLM_LKF_ALTPR;
235 		else
236 			BUG();
237 	}
238 
239 	if (gl->gl_lksb.sb_lkid != 0) {
240 		lkf |= DLM_LKF_CONVERT;
241 		if (test_bit(GLF_BLOCKING, &gl->gl_flags))
242 			lkf |= DLM_LKF_QUECVT;
243 	}
244 
245 	return lkf;
246 }
247 
248 static void gfs2_reverse_hex(char *c, u64 value)
249 {
250 	*c = '0';
251 	while (value) {
252 		*c-- = hex_asc[value & 0x0f];
253 		value >>= 4;
254 	}
255 }
256 
257 static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state,
258 		     unsigned int flags)
259 {
260 	struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
261 	int req;
262 	u32 lkf;
263 	char strname[GDLM_STRNAME_BYTES] = "";
264 	int error;
265 
266 	req = make_mode(gl->gl_name.ln_sbd, req_state);
267 	lkf = make_flags(gl, flags, req);
268 	gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
269 	gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
270 	if (gl->gl_lksb.sb_lkid) {
271 		gfs2_update_request_times(gl);
272 	} else {
273 		memset(strname, ' ', GDLM_STRNAME_BYTES - 1);
274 		strname[GDLM_STRNAME_BYTES - 1] = '\0';
275 		gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type);
276 		gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number);
277 		gl->gl_dstamp = ktime_get_real();
278 	}
279 	/*
280 	 * Submit the actual lock request.
281 	 */
282 
283 again:
284 	error = dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname,
285 			GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast);
286 	if (error == -EBUSY) {
287 		msleep(20);
288 		goto again;
289 	}
290 	return error;
291 }
292 
293 static void gdlm_put_lock(struct gfs2_glock *gl)
294 {
295 	struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
296 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
297 	int error;
298 
299 	if (gl->gl_lksb.sb_lkid == 0) {
300 		gfs2_glock_free(gl);
301 		return;
302 	}
303 
304 	clear_bit(GLF_BLOCKING, &gl->gl_flags);
305 	gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
306 	gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
307 	gfs2_update_request_times(gl);
308 
309 	/* don't want to call dlm if we've unmounted the lock protocol */
310 	if (test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) {
311 		gfs2_glock_free(gl);
312 		return;
313 	}
314 	/* don't want to skip dlm_unlock writing the lvb when lock has one */
315 
316 	if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) &&
317 	    !gl->gl_lksb.sb_lvbptr) {
318 		gfs2_glock_free(gl);
319 		return;
320 	}
321 
322 again:
323 	error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK,
324 			   NULL, gl);
325 	if (error == -EBUSY) {
326 		msleep(20);
327 		goto again;
328 	}
329 
330 	if (error) {
331 		fs_err(sdp, "gdlm_unlock %x,%llx err=%d\n",
332 		       gl->gl_name.ln_type,
333 		       (unsigned long long)gl->gl_name.ln_number, error);
334 		return;
335 	}
336 }
337 
338 static void gdlm_cancel(struct gfs2_glock *gl)
339 {
340 	struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
341 	dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl);
342 }
343 
344 /*
345  * dlm/gfs2 recovery coordination using dlm_recover callbacks
346  *
347  *  0. gfs2 checks for another cluster node withdraw, needing journal replay
348  *  1. dlm_controld sees lockspace members change
349  *  2. dlm_controld blocks dlm-kernel locking activity
350  *  3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
351  *  4. dlm_controld starts and finishes its own user level recovery
352  *  5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
353  *  6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
354  *  7. dlm_recoverd does its own lock recovery
355  *  8. dlm_recoverd unblocks dlm-kernel locking activity
356  *  9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
357  * 10. gfs2_control updates control_lock lvb with new generation and jid bits
358  * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
359  * 12. gfs2_recover dequeues and recovers journals of failed nodes
360  * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
361  * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
362  * 15. gfs2_control unblocks normal locking when all journals are recovered
363  *
364  * - failures during recovery
365  *
366  * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
367  * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
368  * recovering for a prior failure.  gfs2_control needs a way to detect
369  * this so it can leave BLOCK_LOCKS set in step 15.  This is managed using
370  * the recover_block and recover_start values.
371  *
372  * recover_done() provides a new lockspace generation number each time it
373  * is called (step 9).  This generation number is saved as recover_start.
374  * When recover_prep() is called, it sets BLOCK_LOCKS and sets
375  * recover_block = recover_start.  So, while recover_block is equal to
376  * recover_start, BLOCK_LOCKS should remain set.  (recover_spin must
377  * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
378  *
379  * - more specific gfs2 steps in sequence above
380  *
381  *  3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
382  *  6. recover_slot records any failed jids (maybe none)
383  *  9. recover_done sets recover_start = new generation number
384  * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
385  * 12. gfs2_recover does journal recoveries for failed jids identified above
386  * 14. gfs2_control clears control_lock lvb bits for recovered jids
387  * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
388  *     again) then do nothing, otherwise if recover_start > recover_block
389  *     then clear BLOCK_LOCKS.
390  *
391  * - parallel recovery steps across all nodes
392  *
393  * All nodes attempt to update the control_lock lvb with the new generation
394  * number and jid bits, but only the first to get the control_lock EX will
395  * do so; others will see that it's already done (lvb already contains new
396  * generation number.)
397  *
398  * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
399  * . All nodes attempt to set control_lock lvb gen + bits for the new gen
400  * . One node gets control_lock first and writes the lvb, others see it's done
401  * . All nodes attempt to recover jids for which they see control_lock bits set
402  * . One node succeeds for a jid, and that one clears the jid bit in the lvb
403  * . All nodes will eventually see all lvb bits clear and unblock locks
404  *
405  * - is there a problem with clearing an lvb bit that should be set
406  *   and missing a journal recovery?
407  *
408  * 1. jid fails
409  * 2. lvb bit set for step 1
410  * 3. jid recovered for step 1
411  * 4. jid taken again (new mount)
412  * 5. jid fails (for step 4)
413  * 6. lvb bit set for step 5 (will already be set)
414  * 7. lvb bit cleared for step 3
415  *
416  * This is not a problem because the failure in step 5 does not
417  * require recovery, because the mount in step 4 could not have
418  * progressed far enough to unblock locks and access the fs.  The
419  * control_mount() function waits for all recoveries to be complete
420  * for the latest lockspace generation before ever unblocking locks
421  * and returning.  The mount in step 4 waits until the recovery in
422  * step 1 is done.
423  *
424  * - special case of first mounter: first node to mount the fs
425  *
426  * The first node to mount a gfs2 fs needs to check all the journals
427  * and recover any that need recovery before other nodes are allowed
428  * to mount the fs.  (Others may begin mounting, but they must wait
429  * for the first mounter to be done before taking locks on the fs
430  * or accessing the fs.)  This has two parts:
431  *
432  * 1. The mounted_lock tells a node it's the first to mount the fs.
433  * Each node holds the mounted_lock in PR while it's mounted.
434  * Each node tries to acquire the mounted_lock in EX when it mounts.
435  * If a node is granted the mounted_lock EX it means there are no
436  * other mounted nodes (no PR locks exist), and it is the first mounter.
437  * The mounted_lock is demoted to PR when first recovery is done, so
438  * others will fail to get an EX lock, but will get a PR lock.
439  *
440  * 2. The control_lock blocks others in control_mount() while the first
441  * mounter is doing first mount recovery of all journals.
442  * A mounting node needs to acquire control_lock in EX mode before
443  * it can proceed.  The first mounter holds control_lock in EX while doing
444  * the first mount recovery, blocking mounts from other nodes, then demotes
445  * control_lock to NL when it's done (others_may_mount/first_done),
446  * allowing other nodes to continue mounting.
447  *
448  * first mounter:
449  * control_lock EX/NOQUEUE success
450  * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
451  * set first=1
452  * do first mounter recovery
453  * mounted_lock EX->PR
454  * control_lock EX->NL, write lvb generation
455  *
456  * other mounter:
457  * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
458  * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
459  * mounted_lock PR/NOQUEUE success
460  * read lvb generation
461  * control_lock EX->NL
462  * set first=0
463  *
464  * - mount during recovery
465  *
466  * If a node mounts while others are doing recovery (not first mounter),
467  * the mounting node will get its initial recover_done() callback without
468  * having seen any previous failures/callbacks.
469  *
470  * It must wait for all recoveries preceding its mount to be finished
471  * before it unblocks locks.  It does this by repeating the "other mounter"
472  * steps above until the lvb generation number is >= its mount generation
473  * number (from initial recover_done) and all lvb bits are clear.
474  *
475  * - control_lock lvb format
476  *
477  * 4 bytes generation number: the latest dlm lockspace generation number
478  * from recover_done callback.  Indicates the jid bitmap has been updated
479  * to reflect all slot failures through that generation.
480  * 4 bytes unused.
481  * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
482  * that jid N needs recovery.
483  */
484 
485 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
486 
487 static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen,
488 			     char *lvb_bits)
489 {
490 	__le32 gen;
491 	memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE);
492 	memcpy(&gen, lvb_bits, sizeof(__le32));
493 	*lvb_gen = le32_to_cpu(gen);
494 }
495 
496 static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen,
497 			      char *lvb_bits)
498 {
499 	__le32 gen;
500 	memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE);
501 	gen = cpu_to_le32(lvb_gen);
502 	memcpy(ls->ls_control_lvb, &gen, sizeof(__le32));
503 }
504 
505 static int all_jid_bits_clear(char *lvb)
506 {
507 	return !memchr_inv(lvb + JID_BITMAP_OFFSET, 0,
508 			GDLM_LVB_SIZE - JID_BITMAP_OFFSET);
509 }
510 
511 static void sync_wait_cb(void *arg)
512 {
513 	struct lm_lockstruct *ls = arg;
514 	complete(&ls->ls_sync_wait);
515 }
516 
517 static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name)
518 {
519 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
520 	int error;
521 
522 	error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls);
523 	if (error) {
524 		fs_err(sdp, "%s lkid %x error %d\n",
525 		       name, lksb->sb_lkid, error);
526 		return error;
527 	}
528 
529 	wait_for_completion(&ls->ls_sync_wait);
530 
531 	if (lksb->sb_status != -DLM_EUNLOCK) {
532 		fs_err(sdp, "%s lkid %x status %d\n",
533 		       name, lksb->sb_lkid, lksb->sb_status);
534 		return -1;
535 	}
536 	return 0;
537 }
538 
539 static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags,
540 		     unsigned int num, struct dlm_lksb *lksb, char *name)
541 {
542 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
543 	char strname[GDLM_STRNAME_BYTES];
544 	int error, status;
545 
546 	memset(strname, 0, GDLM_STRNAME_BYTES);
547 	snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num);
548 
549 	error = dlm_lock(ls->ls_dlm, mode, lksb, flags,
550 			 strname, GDLM_STRNAME_BYTES - 1,
551 			 0, sync_wait_cb, ls, NULL);
552 	if (error) {
553 		fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n",
554 		       name, lksb->sb_lkid, flags, mode, error);
555 		return error;
556 	}
557 
558 	wait_for_completion(&ls->ls_sync_wait);
559 
560 	status = lksb->sb_status;
561 
562 	if (status && status != -EAGAIN) {
563 		fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n",
564 		       name, lksb->sb_lkid, flags, mode, status);
565 	}
566 
567 	return status;
568 }
569 
570 static int mounted_unlock(struct gfs2_sbd *sdp)
571 {
572 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
573 	return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock");
574 }
575 
576 static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
577 {
578 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
579 	return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK,
580 			 &ls->ls_mounted_lksb, "mounted_lock");
581 }
582 
583 static int control_unlock(struct gfs2_sbd *sdp)
584 {
585 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
586 	return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock");
587 }
588 
589 static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
590 {
591 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
592 	return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK,
593 			 &ls->ls_control_lksb, "control_lock");
594 }
595 
596 /**
597  * remote_withdraw - react to a node withdrawing from the file system
598  * @sdp: The superblock
599  */
600 static void remote_withdraw(struct gfs2_sbd *sdp)
601 {
602 	struct gfs2_jdesc *jd;
603 	int ret = 0, count = 0;
604 
605 	list_for_each_entry(jd, &sdp->sd_jindex_list, jd_list) {
606 		if (jd->jd_jid == sdp->sd_lockstruct.ls_jid)
607 			continue;
608 		ret = gfs2_recover_journal(jd, true);
609 		if (ret)
610 			break;
611 		count++;
612 	}
613 
614 	/* Now drop the additional reference we acquired */
615 	fs_err(sdp, "Journals checked: %d, ret = %d.\n", count, ret);
616 }
617 
618 static void gfs2_control_func(struct work_struct *work)
619 {
620 	struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work);
621 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
622 	uint32_t block_gen, start_gen, lvb_gen, flags;
623 	int recover_set = 0;
624 	int write_lvb = 0;
625 	int recover_size;
626 	int i, error;
627 
628 	/* First check for other nodes that may have done a withdraw. */
629 	if (test_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags)) {
630 		remote_withdraw(sdp);
631 		clear_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags);
632 		return;
633 	}
634 
635 	spin_lock(&ls->ls_recover_spin);
636 	/*
637 	 * No MOUNT_DONE means we're still mounting; control_mount()
638 	 * will set this flag, after which this thread will take over
639 	 * all further clearing of BLOCK_LOCKS.
640 	 *
641 	 * FIRST_MOUNT means this node is doing first mounter recovery,
642 	 * for which recovery control is handled by
643 	 * control_mount()/control_first_done(), not this thread.
644 	 */
645 	if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
646 	     test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
647 		spin_unlock(&ls->ls_recover_spin);
648 		return;
649 	}
650 	block_gen = ls->ls_recover_block;
651 	start_gen = ls->ls_recover_start;
652 	spin_unlock(&ls->ls_recover_spin);
653 
654 	/*
655 	 * Equal block_gen and start_gen implies we are between
656 	 * recover_prep and recover_done callbacks, which means
657 	 * dlm recovery is in progress and dlm locking is blocked.
658 	 * There's no point trying to do any work until recover_done.
659 	 */
660 
661 	if (block_gen == start_gen)
662 		return;
663 
664 	/*
665 	 * Propagate recover_submit[] and recover_result[] to lvb:
666 	 * dlm_recoverd adds to recover_submit[] jids needing recovery
667 	 * gfs2_recover adds to recover_result[] journal recovery results
668 	 *
669 	 * set lvb bit for jids in recover_submit[] if the lvb has not
670 	 * yet been updated for the generation of the failure
671 	 *
672 	 * clear lvb bit for jids in recover_result[] if the result of
673 	 * the journal recovery is SUCCESS
674 	 */
675 
676 	error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
677 	if (error) {
678 		fs_err(sdp, "control lock EX error %d\n", error);
679 		return;
680 	}
681 
682 	control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
683 
684 	spin_lock(&ls->ls_recover_spin);
685 	if (block_gen != ls->ls_recover_block ||
686 	    start_gen != ls->ls_recover_start) {
687 		fs_info(sdp, "recover generation %u block1 %u %u\n",
688 			start_gen, block_gen, ls->ls_recover_block);
689 		spin_unlock(&ls->ls_recover_spin);
690 		control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
691 		return;
692 	}
693 
694 	recover_size = ls->ls_recover_size;
695 
696 	if (lvb_gen <= start_gen) {
697 		/*
698 		 * Clear lvb bits for jids we've successfully recovered.
699 		 * Because all nodes attempt to recover failed journals,
700 		 * a journal can be recovered multiple times successfully
701 		 * in succession.  Only the first will really do recovery,
702 		 * the others find it clean, but still report a successful
703 		 * recovery.  So, another node may have already recovered
704 		 * the jid and cleared the lvb bit for it.
705 		 */
706 		for (i = 0; i < recover_size; i++) {
707 			if (ls->ls_recover_result[i] != LM_RD_SUCCESS)
708 				continue;
709 
710 			ls->ls_recover_result[i] = 0;
711 
712 			if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET))
713 				continue;
714 
715 			__clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
716 			write_lvb = 1;
717 		}
718 	}
719 
720 	if (lvb_gen == start_gen) {
721 		/*
722 		 * Failed slots before start_gen are already set in lvb.
723 		 */
724 		for (i = 0; i < recover_size; i++) {
725 			if (!ls->ls_recover_submit[i])
726 				continue;
727 			if (ls->ls_recover_submit[i] < lvb_gen)
728 				ls->ls_recover_submit[i] = 0;
729 		}
730 	} else if (lvb_gen < start_gen) {
731 		/*
732 		 * Failed slots before start_gen are not yet set in lvb.
733 		 */
734 		for (i = 0; i < recover_size; i++) {
735 			if (!ls->ls_recover_submit[i])
736 				continue;
737 			if (ls->ls_recover_submit[i] < start_gen) {
738 				ls->ls_recover_submit[i] = 0;
739 				__set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
740 			}
741 		}
742 		/* even if there are no bits to set, we need to write the
743 		   latest generation to the lvb */
744 		write_lvb = 1;
745 	} else {
746 		/*
747 		 * we should be getting a recover_done() for lvb_gen soon
748 		 */
749 	}
750 	spin_unlock(&ls->ls_recover_spin);
751 
752 	if (write_lvb) {
753 		control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
754 		flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK;
755 	} else {
756 		flags = DLM_LKF_CONVERT;
757 	}
758 
759 	error = control_lock(sdp, DLM_LOCK_NL, flags);
760 	if (error) {
761 		fs_err(sdp, "control lock NL error %d\n", error);
762 		return;
763 	}
764 
765 	/*
766 	 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
767 	 * and clear a jid bit in the lvb if the recovery is a success.
768 	 * Eventually all journals will be recovered, all jid bits will
769 	 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
770 	 */
771 
772 	for (i = 0; i < recover_size; i++) {
773 		if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) {
774 			fs_info(sdp, "recover generation %u jid %d\n",
775 				start_gen, i);
776 			gfs2_recover_set(sdp, i);
777 			recover_set++;
778 		}
779 	}
780 	if (recover_set)
781 		return;
782 
783 	/*
784 	 * No more jid bits set in lvb, all recovery is done, unblock locks
785 	 * (unless a new recover_prep callback has occured blocking locks
786 	 * again while working above)
787 	 */
788 
789 	spin_lock(&ls->ls_recover_spin);
790 	if (ls->ls_recover_block == block_gen &&
791 	    ls->ls_recover_start == start_gen) {
792 		clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
793 		spin_unlock(&ls->ls_recover_spin);
794 		fs_info(sdp, "recover generation %u done\n", start_gen);
795 		gfs2_glock_thaw(sdp);
796 	} else {
797 		fs_info(sdp, "recover generation %u block2 %u %u\n",
798 			start_gen, block_gen, ls->ls_recover_block);
799 		spin_unlock(&ls->ls_recover_spin);
800 	}
801 }
802 
803 static int control_mount(struct gfs2_sbd *sdp)
804 {
805 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
806 	uint32_t start_gen, block_gen, mount_gen, lvb_gen;
807 	int mounted_mode;
808 	int retries = 0;
809 	int error;
810 
811 	memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb));
812 	memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb));
813 	memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE);
814 	ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb;
815 	init_completion(&ls->ls_sync_wait);
816 
817 	set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
818 
819 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK);
820 	if (error) {
821 		fs_err(sdp, "control_mount control_lock NL error %d\n", error);
822 		return error;
823 	}
824 
825 	error = mounted_lock(sdp, DLM_LOCK_NL, 0);
826 	if (error) {
827 		fs_err(sdp, "control_mount mounted_lock NL error %d\n", error);
828 		control_unlock(sdp);
829 		return error;
830 	}
831 	mounted_mode = DLM_LOCK_NL;
832 
833 restart:
834 	if (retries++ && signal_pending(current)) {
835 		error = -EINTR;
836 		goto fail;
837 	}
838 
839 	/*
840 	 * We always start with both locks in NL. control_lock is
841 	 * demoted to NL below so we don't need to do it here.
842 	 */
843 
844 	if (mounted_mode != DLM_LOCK_NL) {
845 		error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
846 		if (error)
847 			goto fail;
848 		mounted_mode = DLM_LOCK_NL;
849 	}
850 
851 	/*
852 	 * Other nodes need to do some work in dlm recovery and gfs2_control
853 	 * before the recover_done and control_lock will be ready for us below.
854 	 * A delay here is not required but often avoids having to retry.
855 	 */
856 
857 	msleep_interruptible(500);
858 
859 	/*
860 	 * Acquire control_lock in EX and mounted_lock in either EX or PR.
861 	 * control_lock lvb keeps track of any pending journal recoveries.
862 	 * mounted_lock indicates if any other nodes have the fs mounted.
863 	 */
864 
865 	error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK);
866 	if (error == -EAGAIN) {
867 		goto restart;
868 	} else if (error) {
869 		fs_err(sdp, "control_mount control_lock EX error %d\n", error);
870 		goto fail;
871 	}
872 
873 	/**
874 	 * If we're a spectator, we don't want to take the lock in EX because
875 	 * we cannot do the first-mount responsibility it implies: recovery.
876 	 */
877 	if (sdp->sd_args.ar_spectator)
878 		goto locks_done;
879 
880 	error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
881 	if (!error) {
882 		mounted_mode = DLM_LOCK_EX;
883 		goto locks_done;
884 	} else if (error != -EAGAIN) {
885 		fs_err(sdp, "control_mount mounted_lock EX error %d\n", error);
886 		goto fail;
887 	}
888 
889 	error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
890 	if (!error) {
891 		mounted_mode = DLM_LOCK_PR;
892 		goto locks_done;
893 	} else {
894 		/* not even -EAGAIN should happen here */
895 		fs_err(sdp, "control_mount mounted_lock PR error %d\n", error);
896 		goto fail;
897 	}
898 
899 locks_done:
900 	/*
901 	 * If we got both locks above in EX, then we're the first mounter.
902 	 * If not, then we need to wait for the control_lock lvb to be
903 	 * updated by other mounted nodes to reflect our mount generation.
904 	 *
905 	 * In simple first mounter cases, first mounter will see zero lvb_gen,
906 	 * but in cases where all existing nodes leave/fail before mounting
907 	 * nodes finish control_mount, then all nodes will be mounting and
908 	 * lvb_gen will be non-zero.
909 	 */
910 
911 	control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
912 
913 	if (lvb_gen == 0xFFFFFFFF) {
914 		/* special value to force mount attempts to fail */
915 		fs_err(sdp, "control_mount control_lock disabled\n");
916 		error = -EINVAL;
917 		goto fail;
918 	}
919 
920 	if (mounted_mode == DLM_LOCK_EX) {
921 		/* first mounter, keep both EX while doing first recovery */
922 		spin_lock(&ls->ls_recover_spin);
923 		clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
924 		set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
925 		set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
926 		spin_unlock(&ls->ls_recover_spin);
927 		fs_info(sdp, "first mounter control generation %u\n", lvb_gen);
928 		return 0;
929 	}
930 
931 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
932 	if (error)
933 		goto fail;
934 
935 	/*
936 	 * We are not first mounter, now we need to wait for the control_lock
937 	 * lvb generation to be >= the generation from our first recover_done
938 	 * and all lvb bits to be clear (no pending journal recoveries.)
939 	 */
940 
941 	if (!all_jid_bits_clear(ls->ls_lvb_bits)) {
942 		/* journals need recovery, wait until all are clear */
943 		fs_info(sdp, "control_mount wait for journal recovery\n");
944 		goto restart;
945 	}
946 
947 	spin_lock(&ls->ls_recover_spin);
948 	block_gen = ls->ls_recover_block;
949 	start_gen = ls->ls_recover_start;
950 	mount_gen = ls->ls_recover_mount;
951 
952 	if (lvb_gen < mount_gen) {
953 		/* wait for mounted nodes to update control_lock lvb to our
954 		   generation, which might include new recovery bits set */
955 		if (sdp->sd_args.ar_spectator) {
956 			fs_info(sdp, "Recovery is required. Waiting for a "
957 				"non-spectator to mount.\n");
958 			msleep_interruptible(1000);
959 		} else {
960 			fs_info(sdp, "control_mount wait1 block %u start %u "
961 				"mount %u lvb %u flags %lx\n", block_gen,
962 				start_gen, mount_gen, lvb_gen,
963 				ls->ls_recover_flags);
964 		}
965 		spin_unlock(&ls->ls_recover_spin);
966 		goto restart;
967 	}
968 
969 	if (lvb_gen != start_gen) {
970 		/* wait for mounted nodes to update control_lock lvb to the
971 		   latest recovery generation */
972 		fs_info(sdp, "control_mount wait2 block %u start %u mount %u "
973 			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
974 			lvb_gen, ls->ls_recover_flags);
975 		spin_unlock(&ls->ls_recover_spin);
976 		goto restart;
977 	}
978 
979 	if (block_gen == start_gen) {
980 		/* dlm recovery in progress, wait for it to finish */
981 		fs_info(sdp, "control_mount wait3 block %u start %u mount %u "
982 			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
983 			lvb_gen, ls->ls_recover_flags);
984 		spin_unlock(&ls->ls_recover_spin);
985 		goto restart;
986 	}
987 
988 	clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
989 	set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
990 	memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
991 	memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
992 	spin_unlock(&ls->ls_recover_spin);
993 	return 0;
994 
995 fail:
996 	mounted_unlock(sdp);
997 	control_unlock(sdp);
998 	return error;
999 }
1000 
1001 static int control_first_done(struct gfs2_sbd *sdp)
1002 {
1003 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1004 	uint32_t start_gen, block_gen;
1005 	int error;
1006 
1007 restart:
1008 	spin_lock(&ls->ls_recover_spin);
1009 	start_gen = ls->ls_recover_start;
1010 	block_gen = ls->ls_recover_block;
1011 
1012 	if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) ||
1013 	    !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1014 	    !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1015 		/* sanity check, should not happen */
1016 		fs_err(sdp, "control_first_done start %u block %u flags %lx\n",
1017 		       start_gen, block_gen, ls->ls_recover_flags);
1018 		spin_unlock(&ls->ls_recover_spin);
1019 		control_unlock(sdp);
1020 		return -1;
1021 	}
1022 
1023 	if (start_gen == block_gen) {
1024 		/*
1025 		 * Wait for the end of a dlm recovery cycle to switch from
1026 		 * first mounter recovery.  We can ignore any recover_slot
1027 		 * callbacks between the recover_prep and next recover_done
1028 		 * because we are still the first mounter and any failed nodes
1029 		 * have not fully mounted, so they don't need recovery.
1030 		 */
1031 		spin_unlock(&ls->ls_recover_spin);
1032 		fs_info(sdp, "control_first_done wait gen %u\n", start_gen);
1033 
1034 		wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY,
1035 			    TASK_UNINTERRUPTIBLE);
1036 		goto restart;
1037 	}
1038 
1039 	clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1040 	set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags);
1041 	memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
1042 	memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
1043 	spin_unlock(&ls->ls_recover_spin);
1044 
1045 	memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE);
1046 	control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
1047 
1048 	error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT);
1049 	if (error)
1050 		fs_err(sdp, "control_first_done mounted PR error %d\n", error);
1051 
1052 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
1053 	if (error)
1054 		fs_err(sdp, "control_first_done control NL error %d\n", error);
1055 
1056 	return error;
1057 }
1058 
1059 /*
1060  * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
1061  * to accommodate the largest slot number.  (NB dlm slot numbers start at 1,
1062  * gfs2 jids start at 0, so jid = slot - 1)
1063  */
1064 
1065 #define RECOVER_SIZE_INC 16
1066 
1067 static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots,
1068 			    int num_slots)
1069 {
1070 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1071 	uint32_t *submit = NULL;
1072 	uint32_t *result = NULL;
1073 	uint32_t old_size, new_size;
1074 	int i, max_jid;
1075 
1076 	if (!ls->ls_lvb_bits) {
1077 		ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS);
1078 		if (!ls->ls_lvb_bits)
1079 			return -ENOMEM;
1080 	}
1081 
1082 	max_jid = 0;
1083 	for (i = 0; i < num_slots; i++) {
1084 		if (max_jid < slots[i].slot - 1)
1085 			max_jid = slots[i].slot - 1;
1086 	}
1087 
1088 	old_size = ls->ls_recover_size;
1089 	new_size = old_size;
1090 	while (new_size < max_jid + 1)
1091 		new_size += RECOVER_SIZE_INC;
1092 	if (new_size == old_size)
1093 		return 0;
1094 
1095 	submit = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1096 	result = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1097 	if (!submit || !result) {
1098 		kfree(submit);
1099 		kfree(result);
1100 		return -ENOMEM;
1101 	}
1102 
1103 	spin_lock(&ls->ls_recover_spin);
1104 	memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t));
1105 	memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t));
1106 	kfree(ls->ls_recover_submit);
1107 	kfree(ls->ls_recover_result);
1108 	ls->ls_recover_submit = submit;
1109 	ls->ls_recover_result = result;
1110 	ls->ls_recover_size = new_size;
1111 	spin_unlock(&ls->ls_recover_spin);
1112 	return 0;
1113 }
1114 
1115 static void free_recover_size(struct lm_lockstruct *ls)
1116 {
1117 	kfree(ls->ls_lvb_bits);
1118 	kfree(ls->ls_recover_submit);
1119 	kfree(ls->ls_recover_result);
1120 	ls->ls_recover_submit = NULL;
1121 	ls->ls_recover_result = NULL;
1122 	ls->ls_recover_size = 0;
1123 	ls->ls_lvb_bits = NULL;
1124 }
1125 
1126 /* dlm calls before it does lock recovery */
1127 
1128 static void gdlm_recover_prep(void *arg)
1129 {
1130 	struct gfs2_sbd *sdp = arg;
1131 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1132 
1133 	if (gfs2_withdrawn(sdp)) {
1134 		fs_err(sdp, "recover_prep ignored due to withdraw.\n");
1135 		return;
1136 	}
1137 	spin_lock(&ls->ls_recover_spin);
1138 	ls->ls_recover_block = ls->ls_recover_start;
1139 	set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1140 
1141 	if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1142 	     test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1143 		spin_unlock(&ls->ls_recover_spin);
1144 		return;
1145 	}
1146 	set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
1147 	spin_unlock(&ls->ls_recover_spin);
1148 }
1149 
1150 /* dlm calls after recover_prep has been completed on all lockspace members;
1151    identifies slot/jid of failed member */
1152 
1153 static void gdlm_recover_slot(void *arg, struct dlm_slot *slot)
1154 {
1155 	struct gfs2_sbd *sdp = arg;
1156 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1157 	int jid = slot->slot - 1;
1158 
1159 	if (gfs2_withdrawn(sdp)) {
1160 		fs_err(sdp, "recover_slot jid %d ignored due to withdraw.\n",
1161 		       jid);
1162 		return;
1163 	}
1164 	spin_lock(&ls->ls_recover_spin);
1165 	if (ls->ls_recover_size < jid + 1) {
1166 		fs_err(sdp, "recover_slot jid %d gen %u short size %d\n",
1167 		       jid, ls->ls_recover_block, ls->ls_recover_size);
1168 		spin_unlock(&ls->ls_recover_spin);
1169 		return;
1170 	}
1171 
1172 	if (ls->ls_recover_submit[jid]) {
1173 		fs_info(sdp, "recover_slot jid %d gen %u prev %u\n",
1174 			jid, ls->ls_recover_block, ls->ls_recover_submit[jid]);
1175 	}
1176 	ls->ls_recover_submit[jid] = ls->ls_recover_block;
1177 	spin_unlock(&ls->ls_recover_spin);
1178 }
1179 
1180 /* dlm calls after recover_slot and after it completes lock recovery */
1181 
1182 static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots,
1183 			      int our_slot, uint32_t generation)
1184 {
1185 	struct gfs2_sbd *sdp = arg;
1186 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1187 
1188 	if (gfs2_withdrawn(sdp)) {
1189 		fs_err(sdp, "recover_done ignored due to withdraw.\n");
1190 		return;
1191 	}
1192 	/* ensure the ls jid arrays are large enough */
1193 	set_recover_size(sdp, slots, num_slots);
1194 
1195 	spin_lock(&ls->ls_recover_spin);
1196 	ls->ls_recover_start = generation;
1197 
1198 	if (!ls->ls_recover_mount) {
1199 		ls->ls_recover_mount = generation;
1200 		ls->ls_jid = our_slot - 1;
1201 	}
1202 
1203 	if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1204 		queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0);
1205 
1206 	clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1207 	smp_mb__after_atomic();
1208 	wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY);
1209 	spin_unlock(&ls->ls_recover_spin);
1210 }
1211 
1212 /* gfs2_recover thread has a journal recovery result */
1213 
1214 static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid,
1215 				 unsigned int result)
1216 {
1217 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1218 
1219 	if (gfs2_withdrawn(sdp)) {
1220 		fs_err(sdp, "recovery_result jid %d ignored due to withdraw.\n",
1221 		       jid);
1222 		return;
1223 	}
1224 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1225 		return;
1226 
1227 	/* don't care about the recovery of own journal during mount */
1228 	if (jid == ls->ls_jid)
1229 		return;
1230 
1231 	spin_lock(&ls->ls_recover_spin);
1232 	if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1233 		spin_unlock(&ls->ls_recover_spin);
1234 		return;
1235 	}
1236 	if (ls->ls_recover_size < jid + 1) {
1237 		fs_err(sdp, "recovery_result jid %d short size %d\n",
1238 		       jid, ls->ls_recover_size);
1239 		spin_unlock(&ls->ls_recover_spin);
1240 		return;
1241 	}
1242 
1243 	fs_info(sdp, "recover jid %d result %s\n", jid,
1244 		result == LM_RD_GAVEUP ? "busy" : "success");
1245 
1246 	ls->ls_recover_result[jid] = result;
1247 
1248 	/* GAVEUP means another node is recovering the journal; delay our
1249 	   next attempt to recover it, to give the other node a chance to
1250 	   finish before trying again */
1251 
1252 	if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1253 		queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work,
1254 				   result == LM_RD_GAVEUP ? HZ : 0);
1255 	spin_unlock(&ls->ls_recover_spin);
1256 }
1257 
1258 static const struct dlm_lockspace_ops gdlm_lockspace_ops = {
1259 	.recover_prep = gdlm_recover_prep,
1260 	.recover_slot = gdlm_recover_slot,
1261 	.recover_done = gdlm_recover_done,
1262 };
1263 
1264 static int gdlm_mount(struct gfs2_sbd *sdp, const char *table)
1265 {
1266 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1267 	char cluster[GFS2_LOCKNAME_LEN];
1268 	const char *fsname;
1269 	uint32_t flags;
1270 	int error, ops_result;
1271 
1272 	/*
1273 	 * initialize everything
1274 	 */
1275 
1276 	INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func);
1277 	spin_lock_init(&ls->ls_recover_spin);
1278 	ls->ls_recover_flags = 0;
1279 	ls->ls_recover_mount = 0;
1280 	ls->ls_recover_start = 0;
1281 	ls->ls_recover_block = 0;
1282 	ls->ls_recover_size = 0;
1283 	ls->ls_recover_submit = NULL;
1284 	ls->ls_recover_result = NULL;
1285 	ls->ls_lvb_bits = NULL;
1286 
1287 	error = set_recover_size(sdp, NULL, 0);
1288 	if (error)
1289 		goto fail;
1290 
1291 	/*
1292 	 * prepare dlm_new_lockspace args
1293 	 */
1294 
1295 	fsname = strchr(table, ':');
1296 	if (!fsname) {
1297 		fs_info(sdp, "no fsname found\n");
1298 		error = -EINVAL;
1299 		goto fail_free;
1300 	}
1301 	memset(cluster, 0, sizeof(cluster));
1302 	memcpy(cluster, table, strlen(table) - strlen(fsname));
1303 	fsname++;
1304 
1305 	flags = DLM_LSFL_FS | DLM_LSFL_NEWEXCL;
1306 
1307 	/*
1308 	 * create/join lockspace
1309 	 */
1310 
1311 	error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE,
1312 				  &gdlm_lockspace_ops, sdp, &ops_result,
1313 				  &ls->ls_dlm);
1314 	if (error) {
1315 		fs_err(sdp, "dlm_new_lockspace error %d\n", error);
1316 		goto fail_free;
1317 	}
1318 
1319 	if (ops_result < 0) {
1320 		/*
1321 		 * dlm does not support ops callbacks,
1322 		 * old dlm_controld/gfs_controld are used, try without ops.
1323 		 */
1324 		fs_info(sdp, "dlm lockspace ops not used\n");
1325 		free_recover_size(ls);
1326 		set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags);
1327 		return 0;
1328 	}
1329 
1330 	if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) {
1331 		fs_err(sdp, "dlm lockspace ops disallow jid preset\n");
1332 		error = -EINVAL;
1333 		goto fail_release;
1334 	}
1335 
1336 	/*
1337 	 * control_mount() uses control_lock to determine first mounter,
1338 	 * and for later mounts, waits for any recoveries to be cleared.
1339 	 */
1340 
1341 	error = control_mount(sdp);
1342 	if (error) {
1343 		fs_err(sdp, "mount control error %d\n", error);
1344 		goto fail_release;
1345 	}
1346 
1347 	ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1348 	clear_bit(SDF_NOJOURNALID, &sdp->sd_flags);
1349 	smp_mb__after_atomic();
1350 	wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID);
1351 	return 0;
1352 
1353 fail_release:
1354 	dlm_release_lockspace(ls->ls_dlm, 2);
1355 fail_free:
1356 	free_recover_size(ls);
1357 fail:
1358 	return error;
1359 }
1360 
1361 static void gdlm_first_done(struct gfs2_sbd *sdp)
1362 {
1363 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1364 	int error;
1365 
1366 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1367 		return;
1368 
1369 	error = control_first_done(sdp);
1370 	if (error)
1371 		fs_err(sdp, "mount first_done error %d\n", error);
1372 }
1373 
1374 static void gdlm_unmount(struct gfs2_sbd *sdp)
1375 {
1376 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1377 
1378 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1379 		goto release;
1380 
1381 	/* wait for gfs2_control_wq to be done with this mount */
1382 
1383 	spin_lock(&ls->ls_recover_spin);
1384 	set_bit(DFL_UNMOUNT, &ls->ls_recover_flags);
1385 	spin_unlock(&ls->ls_recover_spin);
1386 	flush_delayed_work(&sdp->sd_control_work);
1387 
1388 	/* mounted_lock and control_lock will be purged in dlm recovery */
1389 release:
1390 	if (ls->ls_dlm) {
1391 		dlm_release_lockspace(ls->ls_dlm, 2);
1392 		ls->ls_dlm = NULL;
1393 	}
1394 
1395 	free_recover_size(ls);
1396 }
1397 
1398 static const match_table_t dlm_tokens = {
1399 	{ Opt_jid, "jid=%d"},
1400 	{ Opt_id, "id=%d"},
1401 	{ Opt_first, "first=%d"},
1402 	{ Opt_nodir, "nodir=%d"},
1403 	{ Opt_err, NULL },
1404 };
1405 
1406 const struct lm_lockops gfs2_dlm_ops = {
1407 	.lm_proto_name = "lock_dlm",
1408 	.lm_mount = gdlm_mount,
1409 	.lm_first_done = gdlm_first_done,
1410 	.lm_recovery_result = gdlm_recovery_result,
1411 	.lm_unmount = gdlm_unmount,
1412 	.lm_put_lock = gdlm_put_lock,
1413 	.lm_lock = gdlm_lock,
1414 	.lm_cancel = gdlm_cancel,
1415 	.lm_tokens = &dlm_tokens,
1416 };
1417 
1418