xref: /linux/fs/gfs2/lock_dlm.c (revision 36110669ddf832e6c9ceba4dd203749d5be31d31)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
4  * Copyright 2004-2011 Red Hat, Inc.
5  */
6 
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 
9 #include <linux/fs.h>
10 #include <linux/dlm.h>
11 #include <linux/slab.h>
12 #include <linux/types.h>
13 #include <linux/delay.h>
14 #include <linux/gfs2_ondisk.h>
15 #include <linux/sched/signal.h>
16 
17 #include "incore.h"
18 #include "glock.h"
19 #include "glops.h"
20 #include "recovery.h"
21 #include "util.h"
22 #include "sys.h"
23 #include "trace_gfs2.h"
24 
25 /**
26  * gfs2_update_stats - Update time based stats
27  * @s: The stats to update (local or global)
28  * @index: The index inside @s
29  * @sample: New data to include
30  */
31 static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index,
32 				     s64 sample)
33 {
34 	/*
35 	 * @delta is the difference between the current rtt sample and the
36 	 * running average srtt. We add 1/8 of that to the srtt in order to
37 	 * update the current srtt estimate. The variance estimate is a bit
38 	 * more complicated. We subtract the current variance estimate from
39 	 * the abs value of the @delta and add 1/4 of that to the running
40 	 * total.  That's equivalent to 3/4 of the current variance
41 	 * estimate plus 1/4 of the abs of @delta.
42 	 *
43 	 * Note that the index points at the array entry containing the
44 	 * smoothed mean value, and the variance is always in the following
45 	 * entry
46 	 *
47 	 * Reference: TCP/IP Illustrated, vol 2, p. 831,832
48 	 * All times are in units of integer nanoseconds. Unlike the TCP/IP
49 	 * case, they are not scaled fixed point.
50 	 */
51 
52 	s64 delta = sample - s->stats[index];
53 	s->stats[index] += (delta >> 3);
54 	index++;
55 	s->stats[index] += (s64)(abs(delta) - s->stats[index]) >> 2;
56 }
57 
58 /**
59  * gfs2_update_reply_times - Update locking statistics
60  * @gl: The glock to update
61  *
62  * This assumes that gl->gl_dstamp has been set earlier.
63  *
64  * The rtt (lock round trip time) is an estimate of the time
65  * taken to perform a dlm lock request. We update it on each
66  * reply from the dlm.
67  *
68  * The blocking flag is set on the glock for all dlm requests
69  * which may potentially block due to lock requests from other nodes.
70  * DLM requests where the current lock state is exclusive, the
71  * requested state is null (or unlocked) or where the TRY or
72  * TRY_1CB flags are set are classified as non-blocking. All
73  * other DLM requests are counted as (potentially) blocking.
74  */
75 static inline void gfs2_update_reply_times(struct gfs2_glock *gl)
76 {
77 	struct gfs2_pcpu_lkstats *lks;
78 	const unsigned gltype = gl->gl_name.ln_type;
79 	unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ?
80 			 GFS2_LKS_SRTTB : GFS2_LKS_SRTT;
81 	s64 rtt;
82 
83 	preempt_disable();
84 	rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp));
85 	lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
86 	gfs2_update_stats(&gl->gl_stats, index, rtt);		/* Local */
87 	gfs2_update_stats(&lks->lkstats[gltype], index, rtt);	/* Global */
88 	preempt_enable();
89 
90 	trace_gfs2_glock_lock_time(gl, rtt);
91 }
92 
93 /**
94  * gfs2_update_request_times - Update locking statistics
95  * @gl: The glock to update
96  *
97  * The irt (lock inter-request times) measures the average time
98  * between requests to the dlm. It is updated immediately before
99  * each dlm call.
100  */
101 
102 static inline void gfs2_update_request_times(struct gfs2_glock *gl)
103 {
104 	struct gfs2_pcpu_lkstats *lks;
105 	const unsigned gltype = gl->gl_name.ln_type;
106 	ktime_t dstamp;
107 	s64 irt;
108 
109 	preempt_disable();
110 	dstamp = gl->gl_dstamp;
111 	gl->gl_dstamp = ktime_get_real();
112 	irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp));
113 	lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
114 	gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt);		/* Local */
115 	gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt);	/* Global */
116 	preempt_enable();
117 }
118 
119 static void gdlm_ast(void *arg)
120 {
121 	struct gfs2_glock *gl = arg;
122 	unsigned ret = gl->gl_state;
123 
124 	/* If the glock is dead, we only react to a dlm_unlock() reply. */
125 	if (__lockref_is_dead(&gl->gl_lockref) &&
126 	    gl->gl_lksb.sb_status != -DLM_EUNLOCK)
127 		return;
128 
129 	gfs2_update_reply_times(gl);
130 	BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED);
131 
132 	if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr)
133 		memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE);
134 
135 	switch (gl->gl_lksb.sb_status) {
136 	case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */
137 		if (gl->gl_ops->go_unlocked)
138 			gl->gl_ops->go_unlocked(gl);
139 		gfs2_glock_free(gl);
140 		return;
141 	case -DLM_ECANCEL: /* Cancel while getting lock */
142 		ret |= LM_OUT_CANCELED;
143 		goto out;
144 	case -EAGAIN: /* Try lock fails */
145 	case -EDEADLK: /* Deadlock detected */
146 		goto out;
147 	case -ETIMEDOUT: /* Canceled due to timeout */
148 		ret |= LM_OUT_ERROR;
149 		goto out;
150 	case 0: /* Success */
151 		break;
152 	default: /* Something unexpected */
153 		BUG();
154 	}
155 
156 	ret = gl->gl_req;
157 	if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) {
158 		if (gl->gl_req == LM_ST_SHARED)
159 			ret = LM_ST_DEFERRED;
160 		else if (gl->gl_req == LM_ST_DEFERRED)
161 			ret = LM_ST_SHARED;
162 		else
163 			BUG();
164 	}
165 
166 	/*
167 	 * The GLF_INITIAL flag is initially set for new glocks.  Upon the
168 	 * first successful new (non-conversion) request, we clear this flag to
169 	 * indicate that a DLM lock exists and that gl->gl_lksb.sb_lkid is the
170 	 * identifier to use for identifying it.
171 	 *
172 	 * Any failed initial requests do not create a DLM lock, so we ignore
173 	 * the gl->gl_lksb.sb_lkid values that come with such requests.
174 	 */
175 
176 	clear_bit(GLF_INITIAL, &gl->gl_flags);
177 	gfs2_glock_complete(gl, ret);
178 	return;
179 out:
180 	if (test_bit(GLF_INITIAL, &gl->gl_flags))
181 		gl->gl_lksb.sb_lkid = 0;
182 	gfs2_glock_complete(gl, ret);
183 }
184 
185 static void gdlm_bast(void *arg, int mode)
186 {
187 	struct gfs2_glock *gl = arg;
188 
189 	if (__lockref_is_dead(&gl->gl_lockref))
190 		return;
191 
192 	switch (mode) {
193 	case DLM_LOCK_EX:
194 		gfs2_glock_cb(gl, LM_ST_UNLOCKED);
195 		break;
196 	case DLM_LOCK_CW:
197 		gfs2_glock_cb(gl, LM_ST_DEFERRED);
198 		break;
199 	case DLM_LOCK_PR:
200 		gfs2_glock_cb(gl, LM_ST_SHARED);
201 		break;
202 	default:
203 		fs_err(gl->gl_name.ln_sbd, "unknown bast mode %d\n", mode);
204 		BUG();
205 	}
206 }
207 
208 /* convert gfs lock-state to dlm lock-mode */
209 
210 static int make_mode(struct gfs2_sbd *sdp, const unsigned int lmstate)
211 {
212 	switch (lmstate) {
213 	case LM_ST_UNLOCKED:
214 		return DLM_LOCK_NL;
215 	case LM_ST_EXCLUSIVE:
216 		return DLM_LOCK_EX;
217 	case LM_ST_DEFERRED:
218 		return DLM_LOCK_CW;
219 	case LM_ST_SHARED:
220 		return DLM_LOCK_PR;
221 	}
222 	fs_err(sdp, "unknown LM state %d\n", lmstate);
223 	BUG();
224 	return -1;
225 }
226 
227 static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags,
228 		      const int req)
229 {
230 	u32 lkf = 0;
231 
232 	if (gl->gl_lksb.sb_lvbptr)
233 		lkf |= DLM_LKF_VALBLK;
234 
235 	if (gfs_flags & LM_FLAG_TRY)
236 		lkf |= DLM_LKF_NOQUEUE;
237 
238 	if (gfs_flags & LM_FLAG_TRY_1CB) {
239 		lkf |= DLM_LKF_NOQUEUE;
240 		lkf |= DLM_LKF_NOQUEUEBAST;
241 	}
242 
243 	if (gfs_flags & LM_FLAG_ANY) {
244 		if (req == DLM_LOCK_PR)
245 			lkf |= DLM_LKF_ALTCW;
246 		else if (req == DLM_LOCK_CW)
247 			lkf |= DLM_LKF_ALTPR;
248 		else
249 			BUG();
250 	}
251 
252 	if (!test_bit(GLF_INITIAL, &gl->gl_flags)) {
253 		lkf |= DLM_LKF_CONVERT;
254 		if (test_bit(GLF_BLOCKING, &gl->gl_flags))
255 			lkf |= DLM_LKF_QUECVT;
256 	}
257 
258 	return lkf;
259 }
260 
261 static void gfs2_reverse_hex(char *c, u64 value)
262 {
263 	*c = '0';
264 	while (value) {
265 		*c-- = hex_asc[value & 0x0f];
266 		value >>= 4;
267 	}
268 }
269 
270 static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state,
271 		     unsigned int flags)
272 {
273 	struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
274 	int req;
275 	u32 lkf;
276 	char strname[GDLM_STRNAME_BYTES] = "";
277 	int error;
278 
279 	req = make_mode(gl->gl_name.ln_sbd, req_state);
280 	lkf = make_flags(gl, flags, req);
281 	gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
282 	gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
283 	if (test_bit(GLF_INITIAL, &gl->gl_flags)) {
284 		memset(strname, ' ', GDLM_STRNAME_BYTES - 1);
285 		strname[GDLM_STRNAME_BYTES - 1] = '\0';
286 		gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type);
287 		gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number);
288 		gl->gl_dstamp = ktime_get_real();
289 	} else {
290 		gfs2_update_request_times(gl);
291 	}
292 	/*
293 	 * Submit the actual lock request.
294 	 */
295 
296 again:
297 	error = dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname,
298 			GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast);
299 	if (error == -EBUSY) {
300 		msleep(20);
301 		goto again;
302 	}
303 	return error;
304 }
305 
306 static void gdlm_put_lock(struct gfs2_glock *gl)
307 {
308 	struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
309 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
310 	int error;
311 
312 	BUG_ON(!__lockref_is_dead(&gl->gl_lockref));
313 
314 	if (test_bit(GLF_INITIAL, &gl->gl_flags)) {
315 		gfs2_glock_free(gl);
316 		return;
317 	}
318 
319 	clear_bit(GLF_BLOCKING, &gl->gl_flags);
320 	gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
321 	gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
322 	gfs2_update_request_times(gl);
323 
324 	/* don't want to call dlm if we've unmounted the lock protocol */
325 	if (test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) {
326 		gfs2_glock_free(gl);
327 		return;
328 	}
329 
330 	/*
331 	 * When the lockspace is released, all remaining glocks will be
332 	 * unlocked automatically.  This is more efficient than unlocking them
333 	 * individually, but when the lock is held in DLM_LOCK_EX or
334 	 * DLM_LOCK_PW mode, the lock value block (LVB) will be lost.
335 	 */
336 
337 	if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) &&
338 	    (!gl->gl_lksb.sb_lvbptr || gl->gl_state != LM_ST_EXCLUSIVE)) {
339 		gfs2_glock_free_later(gl);
340 		return;
341 	}
342 
343 again:
344 	error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK,
345 			   NULL, gl);
346 	if (error == -EBUSY) {
347 		msleep(20);
348 		goto again;
349 	}
350 
351 	if (error) {
352 		fs_err(sdp, "gdlm_unlock %x,%llx err=%d\n",
353 		       gl->gl_name.ln_type,
354 		       (unsigned long long)gl->gl_name.ln_number, error);
355 	}
356 }
357 
358 static void gdlm_cancel(struct gfs2_glock *gl)
359 {
360 	struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
361 	dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl);
362 }
363 
364 /*
365  * dlm/gfs2 recovery coordination using dlm_recover callbacks
366  *
367  *  0. gfs2 checks for another cluster node withdraw, needing journal replay
368  *  1. dlm_controld sees lockspace members change
369  *  2. dlm_controld blocks dlm-kernel locking activity
370  *  3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
371  *  4. dlm_controld starts and finishes its own user level recovery
372  *  5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
373  *  6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
374  *  7. dlm_recoverd does its own lock recovery
375  *  8. dlm_recoverd unblocks dlm-kernel locking activity
376  *  9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
377  * 10. gfs2_control updates control_lock lvb with new generation and jid bits
378  * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
379  * 12. gfs2_recover dequeues and recovers journals of failed nodes
380  * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
381  * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
382  * 15. gfs2_control unblocks normal locking when all journals are recovered
383  *
384  * - failures during recovery
385  *
386  * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
387  * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
388  * recovering for a prior failure.  gfs2_control needs a way to detect
389  * this so it can leave BLOCK_LOCKS set in step 15.  This is managed using
390  * the recover_block and recover_start values.
391  *
392  * recover_done() provides a new lockspace generation number each time it
393  * is called (step 9).  This generation number is saved as recover_start.
394  * When recover_prep() is called, it sets BLOCK_LOCKS and sets
395  * recover_block = recover_start.  So, while recover_block is equal to
396  * recover_start, BLOCK_LOCKS should remain set.  (recover_spin must
397  * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
398  *
399  * - more specific gfs2 steps in sequence above
400  *
401  *  3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
402  *  6. recover_slot records any failed jids (maybe none)
403  *  9. recover_done sets recover_start = new generation number
404  * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
405  * 12. gfs2_recover does journal recoveries for failed jids identified above
406  * 14. gfs2_control clears control_lock lvb bits for recovered jids
407  * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
408  *     again) then do nothing, otherwise if recover_start > recover_block
409  *     then clear BLOCK_LOCKS.
410  *
411  * - parallel recovery steps across all nodes
412  *
413  * All nodes attempt to update the control_lock lvb with the new generation
414  * number and jid bits, but only the first to get the control_lock EX will
415  * do so; others will see that it's already done (lvb already contains new
416  * generation number.)
417  *
418  * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
419  * . All nodes attempt to set control_lock lvb gen + bits for the new gen
420  * . One node gets control_lock first and writes the lvb, others see it's done
421  * . All nodes attempt to recover jids for which they see control_lock bits set
422  * . One node succeeds for a jid, and that one clears the jid bit in the lvb
423  * . All nodes will eventually see all lvb bits clear and unblock locks
424  *
425  * - is there a problem with clearing an lvb bit that should be set
426  *   and missing a journal recovery?
427  *
428  * 1. jid fails
429  * 2. lvb bit set for step 1
430  * 3. jid recovered for step 1
431  * 4. jid taken again (new mount)
432  * 5. jid fails (for step 4)
433  * 6. lvb bit set for step 5 (will already be set)
434  * 7. lvb bit cleared for step 3
435  *
436  * This is not a problem because the failure in step 5 does not
437  * require recovery, because the mount in step 4 could not have
438  * progressed far enough to unblock locks and access the fs.  The
439  * control_mount() function waits for all recoveries to be complete
440  * for the latest lockspace generation before ever unblocking locks
441  * and returning.  The mount in step 4 waits until the recovery in
442  * step 1 is done.
443  *
444  * - special case of first mounter: first node to mount the fs
445  *
446  * The first node to mount a gfs2 fs needs to check all the journals
447  * and recover any that need recovery before other nodes are allowed
448  * to mount the fs.  (Others may begin mounting, but they must wait
449  * for the first mounter to be done before taking locks on the fs
450  * or accessing the fs.)  This has two parts:
451  *
452  * 1. The mounted_lock tells a node it's the first to mount the fs.
453  * Each node holds the mounted_lock in PR while it's mounted.
454  * Each node tries to acquire the mounted_lock in EX when it mounts.
455  * If a node is granted the mounted_lock EX it means there are no
456  * other mounted nodes (no PR locks exist), and it is the first mounter.
457  * The mounted_lock is demoted to PR when first recovery is done, so
458  * others will fail to get an EX lock, but will get a PR lock.
459  *
460  * 2. The control_lock blocks others in control_mount() while the first
461  * mounter is doing first mount recovery of all journals.
462  * A mounting node needs to acquire control_lock in EX mode before
463  * it can proceed.  The first mounter holds control_lock in EX while doing
464  * the first mount recovery, blocking mounts from other nodes, then demotes
465  * control_lock to NL when it's done (others_may_mount/first_done),
466  * allowing other nodes to continue mounting.
467  *
468  * first mounter:
469  * control_lock EX/NOQUEUE success
470  * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
471  * set first=1
472  * do first mounter recovery
473  * mounted_lock EX->PR
474  * control_lock EX->NL, write lvb generation
475  *
476  * other mounter:
477  * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
478  * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
479  * mounted_lock PR/NOQUEUE success
480  * read lvb generation
481  * control_lock EX->NL
482  * set first=0
483  *
484  * - mount during recovery
485  *
486  * If a node mounts while others are doing recovery (not first mounter),
487  * the mounting node will get its initial recover_done() callback without
488  * having seen any previous failures/callbacks.
489  *
490  * It must wait for all recoveries preceding its mount to be finished
491  * before it unblocks locks.  It does this by repeating the "other mounter"
492  * steps above until the lvb generation number is >= its mount generation
493  * number (from initial recover_done) and all lvb bits are clear.
494  *
495  * - control_lock lvb format
496  *
497  * 4 bytes generation number: the latest dlm lockspace generation number
498  * from recover_done callback.  Indicates the jid bitmap has been updated
499  * to reflect all slot failures through that generation.
500  * 4 bytes unused.
501  * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
502  * that jid N needs recovery.
503  */
504 
505 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
506 
507 static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen,
508 			     char *lvb_bits)
509 {
510 	__le32 gen;
511 	memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE);
512 	memcpy(&gen, lvb_bits, sizeof(__le32));
513 	*lvb_gen = le32_to_cpu(gen);
514 }
515 
516 static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen,
517 			      char *lvb_bits)
518 {
519 	__le32 gen;
520 	memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE);
521 	gen = cpu_to_le32(lvb_gen);
522 	memcpy(ls->ls_control_lvb, &gen, sizeof(__le32));
523 }
524 
525 static int all_jid_bits_clear(char *lvb)
526 {
527 	return !memchr_inv(lvb + JID_BITMAP_OFFSET, 0,
528 			GDLM_LVB_SIZE - JID_BITMAP_OFFSET);
529 }
530 
531 static void sync_wait_cb(void *arg)
532 {
533 	struct lm_lockstruct *ls = arg;
534 	complete(&ls->ls_sync_wait);
535 }
536 
537 static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name)
538 {
539 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
540 	int error;
541 
542 	error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls);
543 	if (error) {
544 		fs_err(sdp, "%s lkid %x error %d\n",
545 		       name, lksb->sb_lkid, error);
546 		return error;
547 	}
548 
549 	wait_for_completion(&ls->ls_sync_wait);
550 
551 	if (lksb->sb_status != -DLM_EUNLOCK) {
552 		fs_err(sdp, "%s lkid %x status %d\n",
553 		       name, lksb->sb_lkid, lksb->sb_status);
554 		return -1;
555 	}
556 	return 0;
557 }
558 
559 static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags,
560 		     unsigned int num, struct dlm_lksb *lksb, char *name)
561 {
562 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
563 	char strname[GDLM_STRNAME_BYTES];
564 	int error, status;
565 
566 	memset(strname, 0, GDLM_STRNAME_BYTES);
567 	snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num);
568 
569 	error = dlm_lock(ls->ls_dlm, mode, lksb, flags,
570 			 strname, GDLM_STRNAME_BYTES - 1,
571 			 0, sync_wait_cb, ls, NULL);
572 	if (error) {
573 		fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n",
574 		       name, lksb->sb_lkid, flags, mode, error);
575 		return error;
576 	}
577 
578 	wait_for_completion(&ls->ls_sync_wait);
579 
580 	status = lksb->sb_status;
581 
582 	if (status && status != -EAGAIN) {
583 		fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n",
584 		       name, lksb->sb_lkid, flags, mode, status);
585 	}
586 
587 	return status;
588 }
589 
590 static int mounted_unlock(struct gfs2_sbd *sdp)
591 {
592 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
593 	return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock");
594 }
595 
596 static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
597 {
598 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
599 	return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK,
600 			 &ls->ls_mounted_lksb, "mounted_lock");
601 }
602 
603 static int control_unlock(struct gfs2_sbd *sdp)
604 {
605 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
606 	return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock");
607 }
608 
609 static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
610 {
611 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
612 	return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK,
613 			 &ls->ls_control_lksb, "control_lock");
614 }
615 
616 /**
617  * remote_withdraw - react to a node withdrawing from the file system
618  * @sdp: The superblock
619  */
620 static void remote_withdraw(struct gfs2_sbd *sdp)
621 {
622 	struct gfs2_jdesc *jd;
623 	int ret = 0, count = 0;
624 
625 	list_for_each_entry(jd, &sdp->sd_jindex_list, jd_list) {
626 		if (jd->jd_jid == sdp->sd_lockstruct.ls_jid)
627 			continue;
628 		ret = gfs2_recover_journal(jd, true);
629 		if (ret)
630 			break;
631 		count++;
632 	}
633 
634 	/* Now drop the additional reference we acquired */
635 	fs_err(sdp, "Journals checked: %d, ret = %d.\n", count, ret);
636 }
637 
638 static void gfs2_control_func(struct work_struct *work)
639 {
640 	struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work);
641 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
642 	uint32_t block_gen, start_gen, lvb_gen, flags;
643 	int recover_set = 0;
644 	int write_lvb = 0;
645 	int recover_size;
646 	int i, error;
647 
648 	/* First check for other nodes that may have done a withdraw. */
649 	if (test_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags)) {
650 		remote_withdraw(sdp);
651 		clear_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags);
652 		return;
653 	}
654 
655 	spin_lock(&ls->ls_recover_spin);
656 	/*
657 	 * No MOUNT_DONE means we're still mounting; control_mount()
658 	 * will set this flag, after which this thread will take over
659 	 * all further clearing of BLOCK_LOCKS.
660 	 *
661 	 * FIRST_MOUNT means this node is doing first mounter recovery,
662 	 * for which recovery control is handled by
663 	 * control_mount()/control_first_done(), not this thread.
664 	 */
665 	if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
666 	     test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
667 		spin_unlock(&ls->ls_recover_spin);
668 		return;
669 	}
670 	block_gen = ls->ls_recover_block;
671 	start_gen = ls->ls_recover_start;
672 	spin_unlock(&ls->ls_recover_spin);
673 
674 	/*
675 	 * Equal block_gen and start_gen implies we are between
676 	 * recover_prep and recover_done callbacks, which means
677 	 * dlm recovery is in progress and dlm locking is blocked.
678 	 * There's no point trying to do any work until recover_done.
679 	 */
680 
681 	if (block_gen == start_gen)
682 		return;
683 
684 	/*
685 	 * Propagate recover_submit[] and recover_result[] to lvb:
686 	 * dlm_recoverd adds to recover_submit[] jids needing recovery
687 	 * gfs2_recover adds to recover_result[] journal recovery results
688 	 *
689 	 * set lvb bit for jids in recover_submit[] if the lvb has not
690 	 * yet been updated for the generation of the failure
691 	 *
692 	 * clear lvb bit for jids in recover_result[] if the result of
693 	 * the journal recovery is SUCCESS
694 	 */
695 
696 	error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
697 	if (error) {
698 		fs_err(sdp, "control lock EX error %d\n", error);
699 		return;
700 	}
701 
702 	control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
703 
704 	spin_lock(&ls->ls_recover_spin);
705 	if (block_gen != ls->ls_recover_block ||
706 	    start_gen != ls->ls_recover_start) {
707 		fs_info(sdp, "recover generation %u block1 %u %u\n",
708 			start_gen, block_gen, ls->ls_recover_block);
709 		spin_unlock(&ls->ls_recover_spin);
710 		control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
711 		return;
712 	}
713 
714 	recover_size = ls->ls_recover_size;
715 
716 	if (lvb_gen <= start_gen) {
717 		/*
718 		 * Clear lvb bits for jids we've successfully recovered.
719 		 * Because all nodes attempt to recover failed journals,
720 		 * a journal can be recovered multiple times successfully
721 		 * in succession.  Only the first will really do recovery,
722 		 * the others find it clean, but still report a successful
723 		 * recovery.  So, another node may have already recovered
724 		 * the jid and cleared the lvb bit for it.
725 		 */
726 		for (i = 0; i < recover_size; i++) {
727 			if (ls->ls_recover_result[i] != LM_RD_SUCCESS)
728 				continue;
729 
730 			ls->ls_recover_result[i] = 0;
731 
732 			if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET))
733 				continue;
734 
735 			__clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
736 			write_lvb = 1;
737 		}
738 	}
739 
740 	if (lvb_gen == start_gen) {
741 		/*
742 		 * Failed slots before start_gen are already set in lvb.
743 		 */
744 		for (i = 0; i < recover_size; i++) {
745 			if (!ls->ls_recover_submit[i])
746 				continue;
747 			if (ls->ls_recover_submit[i] < lvb_gen)
748 				ls->ls_recover_submit[i] = 0;
749 		}
750 	} else if (lvb_gen < start_gen) {
751 		/*
752 		 * Failed slots before start_gen are not yet set in lvb.
753 		 */
754 		for (i = 0; i < recover_size; i++) {
755 			if (!ls->ls_recover_submit[i])
756 				continue;
757 			if (ls->ls_recover_submit[i] < start_gen) {
758 				ls->ls_recover_submit[i] = 0;
759 				__set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
760 			}
761 		}
762 		/* even if there are no bits to set, we need to write the
763 		   latest generation to the lvb */
764 		write_lvb = 1;
765 	} else {
766 		/*
767 		 * we should be getting a recover_done() for lvb_gen soon
768 		 */
769 	}
770 	spin_unlock(&ls->ls_recover_spin);
771 
772 	if (write_lvb) {
773 		control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
774 		flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK;
775 	} else {
776 		flags = DLM_LKF_CONVERT;
777 	}
778 
779 	error = control_lock(sdp, DLM_LOCK_NL, flags);
780 	if (error) {
781 		fs_err(sdp, "control lock NL error %d\n", error);
782 		return;
783 	}
784 
785 	/*
786 	 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
787 	 * and clear a jid bit in the lvb if the recovery is a success.
788 	 * Eventually all journals will be recovered, all jid bits will
789 	 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
790 	 */
791 
792 	for (i = 0; i < recover_size; i++) {
793 		if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) {
794 			fs_info(sdp, "recover generation %u jid %d\n",
795 				start_gen, i);
796 			gfs2_recover_set(sdp, i);
797 			recover_set++;
798 		}
799 	}
800 	if (recover_set)
801 		return;
802 
803 	/*
804 	 * No more jid bits set in lvb, all recovery is done, unblock locks
805 	 * (unless a new recover_prep callback has occured blocking locks
806 	 * again while working above)
807 	 */
808 
809 	spin_lock(&ls->ls_recover_spin);
810 	if (ls->ls_recover_block == block_gen &&
811 	    ls->ls_recover_start == start_gen) {
812 		clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
813 		spin_unlock(&ls->ls_recover_spin);
814 		fs_info(sdp, "recover generation %u done\n", start_gen);
815 		gfs2_glock_thaw(sdp);
816 	} else {
817 		fs_info(sdp, "recover generation %u block2 %u %u\n",
818 			start_gen, block_gen, ls->ls_recover_block);
819 		spin_unlock(&ls->ls_recover_spin);
820 	}
821 }
822 
823 static int control_mount(struct gfs2_sbd *sdp)
824 {
825 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
826 	uint32_t start_gen, block_gen, mount_gen, lvb_gen;
827 	int mounted_mode;
828 	int retries = 0;
829 	int error;
830 
831 	memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb));
832 	memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb));
833 	memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE);
834 	ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb;
835 	init_completion(&ls->ls_sync_wait);
836 
837 	set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
838 
839 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK);
840 	if (error) {
841 		fs_err(sdp, "control_mount control_lock NL error %d\n", error);
842 		return error;
843 	}
844 
845 	error = mounted_lock(sdp, DLM_LOCK_NL, 0);
846 	if (error) {
847 		fs_err(sdp, "control_mount mounted_lock NL error %d\n", error);
848 		control_unlock(sdp);
849 		return error;
850 	}
851 	mounted_mode = DLM_LOCK_NL;
852 
853 restart:
854 	if (retries++ && signal_pending(current)) {
855 		error = -EINTR;
856 		goto fail;
857 	}
858 
859 	/*
860 	 * We always start with both locks in NL. control_lock is
861 	 * demoted to NL below so we don't need to do it here.
862 	 */
863 
864 	if (mounted_mode != DLM_LOCK_NL) {
865 		error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
866 		if (error)
867 			goto fail;
868 		mounted_mode = DLM_LOCK_NL;
869 	}
870 
871 	/*
872 	 * Other nodes need to do some work in dlm recovery and gfs2_control
873 	 * before the recover_done and control_lock will be ready for us below.
874 	 * A delay here is not required but often avoids having to retry.
875 	 */
876 
877 	msleep_interruptible(500);
878 
879 	/*
880 	 * Acquire control_lock in EX and mounted_lock in either EX or PR.
881 	 * control_lock lvb keeps track of any pending journal recoveries.
882 	 * mounted_lock indicates if any other nodes have the fs mounted.
883 	 */
884 
885 	error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK);
886 	if (error == -EAGAIN) {
887 		goto restart;
888 	} else if (error) {
889 		fs_err(sdp, "control_mount control_lock EX error %d\n", error);
890 		goto fail;
891 	}
892 
893 	/**
894 	 * If we're a spectator, we don't want to take the lock in EX because
895 	 * we cannot do the first-mount responsibility it implies: recovery.
896 	 */
897 	if (sdp->sd_args.ar_spectator)
898 		goto locks_done;
899 
900 	error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
901 	if (!error) {
902 		mounted_mode = DLM_LOCK_EX;
903 		goto locks_done;
904 	} else if (error != -EAGAIN) {
905 		fs_err(sdp, "control_mount mounted_lock EX error %d\n", error);
906 		goto fail;
907 	}
908 
909 	error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
910 	if (!error) {
911 		mounted_mode = DLM_LOCK_PR;
912 		goto locks_done;
913 	} else {
914 		/* not even -EAGAIN should happen here */
915 		fs_err(sdp, "control_mount mounted_lock PR error %d\n", error);
916 		goto fail;
917 	}
918 
919 locks_done:
920 	/*
921 	 * If we got both locks above in EX, then we're the first mounter.
922 	 * If not, then we need to wait for the control_lock lvb to be
923 	 * updated by other mounted nodes to reflect our mount generation.
924 	 *
925 	 * In simple first mounter cases, first mounter will see zero lvb_gen,
926 	 * but in cases where all existing nodes leave/fail before mounting
927 	 * nodes finish control_mount, then all nodes will be mounting and
928 	 * lvb_gen will be non-zero.
929 	 */
930 
931 	control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
932 
933 	if (lvb_gen == 0xFFFFFFFF) {
934 		/* special value to force mount attempts to fail */
935 		fs_err(sdp, "control_mount control_lock disabled\n");
936 		error = -EINVAL;
937 		goto fail;
938 	}
939 
940 	if (mounted_mode == DLM_LOCK_EX) {
941 		/* first mounter, keep both EX while doing first recovery */
942 		spin_lock(&ls->ls_recover_spin);
943 		clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
944 		set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
945 		set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
946 		spin_unlock(&ls->ls_recover_spin);
947 		fs_info(sdp, "first mounter control generation %u\n", lvb_gen);
948 		return 0;
949 	}
950 
951 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
952 	if (error)
953 		goto fail;
954 
955 	/*
956 	 * We are not first mounter, now we need to wait for the control_lock
957 	 * lvb generation to be >= the generation from our first recover_done
958 	 * and all lvb bits to be clear (no pending journal recoveries.)
959 	 */
960 
961 	if (!all_jid_bits_clear(ls->ls_lvb_bits)) {
962 		/* journals need recovery, wait until all are clear */
963 		fs_info(sdp, "control_mount wait for journal recovery\n");
964 		goto restart;
965 	}
966 
967 	spin_lock(&ls->ls_recover_spin);
968 	block_gen = ls->ls_recover_block;
969 	start_gen = ls->ls_recover_start;
970 	mount_gen = ls->ls_recover_mount;
971 
972 	if (lvb_gen < mount_gen) {
973 		/* wait for mounted nodes to update control_lock lvb to our
974 		   generation, which might include new recovery bits set */
975 		if (sdp->sd_args.ar_spectator) {
976 			fs_info(sdp, "Recovery is required. Waiting for a "
977 				"non-spectator to mount.\n");
978 			msleep_interruptible(1000);
979 		} else {
980 			fs_info(sdp, "control_mount wait1 block %u start %u "
981 				"mount %u lvb %u flags %lx\n", block_gen,
982 				start_gen, mount_gen, lvb_gen,
983 				ls->ls_recover_flags);
984 		}
985 		spin_unlock(&ls->ls_recover_spin);
986 		goto restart;
987 	}
988 
989 	if (lvb_gen != start_gen) {
990 		/* wait for mounted nodes to update control_lock lvb to the
991 		   latest recovery generation */
992 		fs_info(sdp, "control_mount wait2 block %u start %u mount %u "
993 			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
994 			lvb_gen, ls->ls_recover_flags);
995 		spin_unlock(&ls->ls_recover_spin);
996 		goto restart;
997 	}
998 
999 	if (block_gen == start_gen) {
1000 		/* dlm recovery in progress, wait for it to finish */
1001 		fs_info(sdp, "control_mount wait3 block %u start %u mount %u "
1002 			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
1003 			lvb_gen, ls->ls_recover_flags);
1004 		spin_unlock(&ls->ls_recover_spin);
1005 		goto restart;
1006 	}
1007 
1008 	clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
1009 	set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
1010 	memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
1011 	memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
1012 	spin_unlock(&ls->ls_recover_spin);
1013 	return 0;
1014 
1015 fail:
1016 	mounted_unlock(sdp);
1017 	control_unlock(sdp);
1018 	return error;
1019 }
1020 
1021 static int control_first_done(struct gfs2_sbd *sdp)
1022 {
1023 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1024 	uint32_t start_gen, block_gen;
1025 	int error;
1026 
1027 restart:
1028 	spin_lock(&ls->ls_recover_spin);
1029 	start_gen = ls->ls_recover_start;
1030 	block_gen = ls->ls_recover_block;
1031 
1032 	if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) ||
1033 	    !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1034 	    !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1035 		/* sanity check, should not happen */
1036 		fs_err(sdp, "control_first_done start %u block %u flags %lx\n",
1037 		       start_gen, block_gen, ls->ls_recover_flags);
1038 		spin_unlock(&ls->ls_recover_spin);
1039 		control_unlock(sdp);
1040 		return -1;
1041 	}
1042 
1043 	if (start_gen == block_gen) {
1044 		/*
1045 		 * Wait for the end of a dlm recovery cycle to switch from
1046 		 * first mounter recovery.  We can ignore any recover_slot
1047 		 * callbacks between the recover_prep and next recover_done
1048 		 * because we are still the first mounter and any failed nodes
1049 		 * have not fully mounted, so they don't need recovery.
1050 		 */
1051 		spin_unlock(&ls->ls_recover_spin);
1052 		fs_info(sdp, "control_first_done wait gen %u\n", start_gen);
1053 
1054 		wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY,
1055 			    TASK_UNINTERRUPTIBLE);
1056 		goto restart;
1057 	}
1058 
1059 	clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1060 	set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags);
1061 	memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
1062 	memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
1063 	spin_unlock(&ls->ls_recover_spin);
1064 
1065 	memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE);
1066 	control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
1067 
1068 	error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT);
1069 	if (error)
1070 		fs_err(sdp, "control_first_done mounted PR error %d\n", error);
1071 
1072 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
1073 	if (error)
1074 		fs_err(sdp, "control_first_done control NL error %d\n", error);
1075 
1076 	return error;
1077 }
1078 
1079 /*
1080  * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
1081  * to accommodate the largest slot number.  (NB dlm slot numbers start at 1,
1082  * gfs2 jids start at 0, so jid = slot - 1)
1083  */
1084 
1085 #define RECOVER_SIZE_INC 16
1086 
1087 static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots,
1088 			    int num_slots)
1089 {
1090 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1091 	uint32_t *submit = NULL;
1092 	uint32_t *result = NULL;
1093 	uint32_t old_size, new_size;
1094 	int i, max_jid;
1095 
1096 	if (!ls->ls_lvb_bits) {
1097 		ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS);
1098 		if (!ls->ls_lvb_bits)
1099 			return -ENOMEM;
1100 	}
1101 
1102 	max_jid = 0;
1103 	for (i = 0; i < num_slots; i++) {
1104 		if (max_jid < slots[i].slot - 1)
1105 			max_jid = slots[i].slot - 1;
1106 	}
1107 
1108 	old_size = ls->ls_recover_size;
1109 	new_size = old_size;
1110 	while (new_size < max_jid + 1)
1111 		new_size += RECOVER_SIZE_INC;
1112 	if (new_size == old_size)
1113 		return 0;
1114 
1115 	submit = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1116 	result = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1117 	if (!submit || !result) {
1118 		kfree(submit);
1119 		kfree(result);
1120 		return -ENOMEM;
1121 	}
1122 
1123 	spin_lock(&ls->ls_recover_spin);
1124 	memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t));
1125 	memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t));
1126 	kfree(ls->ls_recover_submit);
1127 	kfree(ls->ls_recover_result);
1128 	ls->ls_recover_submit = submit;
1129 	ls->ls_recover_result = result;
1130 	ls->ls_recover_size = new_size;
1131 	spin_unlock(&ls->ls_recover_spin);
1132 	return 0;
1133 }
1134 
1135 static void free_recover_size(struct lm_lockstruct *ls)
1136 {
1137 	kfree(ls->ls_lvb_bits);
1138 	kfree(ls->ls_recover_submit);
1139 	kfree(ls->ls_recover_result);
1140 	ls->ls_recover_submit = NULL;
1141 	ls->ls_recover_result = NULL;
1142 	ls->ls_recover_size = 0;
1143 	ls->ls_lvb_bits = NULL;
1144 }
1145 
1146 /* dlm calls before it does lock recovery */
1147 
1148 static void gdlm_recover_prep(void *arg)
1149 {
1150 	struct gfs2_sbd *sdp = arg;
1151 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1152 
1153 	if (gfs2_withdrawing_or_withdrawn(sdp)) {
1154 		fs_err(sdp, "recover_prep ignored due to withdraw.\n");
1155 		return;
1156 	}
1157 	spin_lock(&ls->ls_recover_spin);
1158 	ls->ls_recover_block = ls->ls_recover_start;
1159 	set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1160 
1161 	if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1162 	     test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1163 		spin_unlock(&ls->ls_recover_spin);
1164 		return;
1165 	}
1166 	set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
1167 	spin_unlock(&ls->ls_recover_spin);
1168 }
1169 
1170 /* dlm calls after recover_prep has been completed on all lockspace members;
1171    identifies slot/jid of failed member */
1172 
1173 static void gdlm_recover_slot(void *arg, struct dlm_slot *slot)
1174 {
1175 	struct gfs2_sbd *sdp = arg;
1176 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1177 	int jid = slot->slot - 1;
1178 
1179 	if (gfs2_withdrawing_or_withdrawn(sdp)) {
1180 		fs_err(sdp, "recover_slot jid %d ignored due to withdraw.\n",
1181 		       jid);
1182 		return;
1183 	}
1184 	spin_lock(&ls->ls_recover_spin);
1185 	if (ls->ls_recover_size < jid + 1) {
1186 		fs_err(sdp, "recover_slot jid %d gen %u short size %d\n",
1187 		       jid, ls->ls_recover_block, ls->ls_recover_size);
1188 		spin_unlock(&ls->ls_recover_spin);
1189 		return;
1190 	}
1191 
1192 	if (ls->ls_recover_submit[jid]) {
1193 		fs_info(sdp, "recover_slot jid %d gen %u prev %u\n",
1194 			jid, ls->ls_recover_block, ls->ls_recover_submit[jid]);
1195 	}
1196 	ls->ls_recover_submit[jid] = ls->ls_recover_block;
1197 	spin_unlock(&ls->ls_recover_spin);
1198 }
1199 
1200 /* dlm calls after recover_slot and after it completes lock recovery */
1201 
1202 static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots,
1203 			      int our_slot, uint32_t generation)
1204 {
1205 	struct gfs2_sbd *sdp = arg;
1206 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1207 
1208 	if (gfs2_withdrawing_or_withdrawn(sdp)) {
1209 		fs_err(sdp, "recover_done ignored due to withdraw.\n");
1210 		return;
1211 	}
1212 	/* ensure the ls jid arrays are large enough */
1213 	set_recover_size(sdp, slots, num_slots);
1214 
1215 	spin_lock(&ls->ls_recover_spin);
1216 	ls->ls_recover_start = generation;
1217 
1218 	if (!ls->ls_recover_mount) {
1219 		ls->ls_recover_mount = generation;
1220 		ls->ls_jid = our_slot - 1;
1221 	}
1222 
1223 	if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1224 		queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0);
1225 
1226 	clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1227 	smp_mb__after_atomic();
1228 	wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY);
1229 	spin_unlock(&ls->ls_recover_spin);
1230 }
1231 
1232 /* gfs2_recover thread has a journal recovery result */
1233 
1234 static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid,
1235 				 unsigned int result)
1236 {
1237 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1238 
1239 	if (gfs2_withdrawing_or_withdrawn(sdp)) {
1240 		fs_err(sdp, "recovery_result jid %d ignored due to withdraw.\n",
1241 		       jid);
1242 		return;
1243 	}
1244 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1245 		return;
1246 
1247 	/* don't care about the recovery of own journal during mount */
1248 	if (jid == ls->ls_jid)
1249 		return;
1250 
1251 	spin_lock(&ls->ls_recover_spin);
1252 	if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1253 		spin_unlock(&ls->ls_recover_spin);
1254 		return;
1255 	}
1256 	if (ls->ls_recover_size < jid + 1) {
1257 		fs_err(sdp, "recovery_result jid %d short size %d\n",
1258 		       jid, ls->ls_recover_size);
1259 		spin_unlock(&ls->ls_recover_spin);
1260 		return;
1261 	}
1262 
1263 	fs_info(sdp, "recover jid %d result %s\n", jid,
1264 		result == LM_RD_GAVEUP ? "busy" : "success");
1265 
1266 	ls->ls_recover_result[jid] = result;
1267 
1268 	/* GAVEUP means another node is recovering the journal; delay our
1269 	   next attempt to recover it, to give the other node a chance to
1270 	   finish before trying again */
1271 
1272 	if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1273 		queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work,
1274 				   result == LM_RD_GAVEUP ? HZ : 0);
1275 	spin_unlock(&ls->ls_recover_spin);
1276 }
1277 
1278 static const struct dlm_lockspace_ops gdlm_lockspace_ops = {
1279 	.recover_prep = gdlm_recover_prep,
1280 	.recover_slot = gdlm_recover_slot,
1281 	.recover_done = gdlm_recover_done,
1282 };
1283 
1284 static int gdlm_mount(struct gfs2_sbd *sdp, const char *table)
1285 {
1286 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1287 	char cluster[GFS2_LOCKNAME_LEN];
1288 	const char *fsname;
1289 	uint32_t flags;
1290 	int error, ops_result;
1291 
1292 	/*
1293 	 * initialize everything
1294 	 */
1295 
1296 	INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func);
1297 	spin_lock_init(&ls->ls_recover_spin);
1298 	ls->ls_recover_flags = 0;
1299 	ls->ls_recover_mount = 0;
1300 	ls->ls_recover_start = 0;
1301 	ls->ls_recover_block = 0;
1302 	ls->ls_recover_size = 0;
1303 	ls->ls_recover_submit = NULL;
1304 	ls->ls_recover_result = NULL;
1305 	ls->ls_lvb_bits = NULL;
1306 
1307 	error = set_recover_size(sdp, NULL, 0);
1308 	if (error)
1309 		goto fail;
1310 
1311 	/*
1312 	 * prepare dlm_new_lockspace args
1313 	 */
1314 
1315 	fsname = strchr(table, ':');
1316 	if (!fsname) {
1317 		fs_info(sdp, "no fsname found\n");
1318 		error = -EINVAL;
1319 		goto fail_free;
1320 	}
1321 	memset(cluster, 0, sizeof(cluster));
1322 	memcpy(cluster, table, strlen(table) - strlen(fsname));
1323 	fsname++;
1324 
1325 	flags = DLM_LSFL_NEWEXCL;
1326 
1327 	/*
1328 	 * create/join lockspace
1329 	 */
1330 
1331 	error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE,
1332 				  &gdlm_lockspace_ops, sdp, &ops_result,
1333 				  &ls->ls_dlm);
1334 	if (error) {
1335 		fs_err(sdp, "dlm_new_lockspace error %d\n", error);
1336 		goto fail_free;
1337 	}
1338 
1339 	if (ops_result < 0) {
1340 		/*
1341 		 * dlm does not support ops callbacks,
1342 		 * old dlm_controld/gfs_controld are used, try without ops.
1343 		 */
1344 		fs_info(sdp, "dlm lockspace ops not used\n");
1345 		free_recover_size(ls);
1346 		set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags);
1347 		return 0;
1348 	}
1349 
1350 	if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) {
1351 		fs_err(sdp, "dlm lockspace ops disallow jid preset\n");
1352 		error = -EINVAL;
1353 		goto fail_release;
1354 	}
1355 
1356 	/*
1357 	 * control_mount() uses control_lock to determine first mounter,
1358 	 * and for later mounts, waits for any recoveries to be cleared.
1359 	 */
1360 
1361 	error = control_mount(sdp);
1362 	if (error) {
1363 		fs_err(sdp, "mount control error %d\n", error);
1364 		goto fail_release;
1365 	}
1366 
1367 	ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1368 	clear_bit(SDF_NOJOURNALID, &sdp->sd_flags);
1369 	smp_mb__after_atomic();
1370 	wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID);
1371 	return 0;
1372 
1373 fail_release:
1374 	dlm_release_lockspace(ls->ls_dlm, 2);
1375 fail_free:
1376 	free_recover_size(ls);
1377 fail:
1378 	return error;
1379 }
1380 
1381 static void gdlm_first_done(struct gfs2_sbd *sdp)
1382 {
1383 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1384 	int error;
1385 
1386 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1387 		return;
1388 
1389 	error = control_first_done(sdp);
1390 	if (error)
1391 		fs_err(sdp, "mount first_done error %d\n", error);
1392 }
1393 
1394 static void gdlm_unmount(struct gfs2_sbd *sdp)
1395 {
1396 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1397 
1398 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1399 		goto release;
1400 
1401 	/* wait for gfs2_control_wq to be done with this mount */
1402 
1403 	spin_lock(&ls->ls_recover_spin);
1404 	set_bit(DFL_UNMOUNT, &ls->ls_recover_flags);
1405 	spin_unlock(&ls->ls_recover_spin);
1406 	flush_delayed_work(&sdp->sd_control_work);
1407 
1408 	/* mounted_lock and control_lock will be purged in dlm recovery */
1409 release:
1410 	if (ls->ls_dlm) {
1411 		dlm_release_lockspace(ls->ls_dlm, 2);
1412 		ls->ls_dlm = NULL;
1413 	}
1414 
1415 	free_recover_size(ls);
1416 }
1417 
1418 static const match_table_t dlm_tokens = {
1419 	{ Opt_jid, "jid=%d"},
1420 	{ Opt_id, "id=%d"},
1421 	{ Opt_first, "first=%d"},
1422 	{ Opt_nodir, "nodir=%d"},
1423 	{ Opt_err, NULL },
1424 };
1425 
1426 const struct lm_lockops gfs2_dlm_ops = {
1427 	.lm_proto_name = "lock_dlm",
1428 	.lm_mount = gdlm_mount,
1429 	.lm_first_done = gdlm_first_done,
1430 	.lm_recovery_result = gdlm_recovery_result,
1431 	.lm_unmount = gdlm_unmount,
1432 	.lm_put_lock = gdlm_put_lock,
1433 	.lm_lock = gdlm_lock,
1434 	.lm_cancel = gdlm_cancel,
1435 	.lm_tokens = &dlm_tokens,
1436 };
1437 
1438