xref: /linux/fs/gfs2/lock_dlm.c (revision 2fe05e1139a555ae91f00a812cb9520e7d3022ab)
1 /*
2  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
3  * Copyright 2004-2011 Red Hat, Inc.
4  *
5  * This copyrighted material is made available to anyone wishing to use,
6  * modify, copy, or redistribute it subject to the terms and conditions
7  * of the GNU General Public License version 2.
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/fs.h>
13 #include <linux/dlm.h>
14 #include <linux/slab.h>
15 #include <linux/types.h>
16 #include <linux/delay.h>
17 #include <linux/gfs2_ondisk.h>
18 #include <linux/sched/signal.h>
19 
20 #include "incore.h"
21 #include "glock.h"
22 #include "util.h"
23 #include "sys.h"
24 #include "trace_gfs2.h"
25 
26 extern struct workqueue_struct *gfs2_control_wq;
27 
28 /**
29  * gfs2_update_stats - Update time based stats
30  * @mv: Pointer to mean/variance structure to update
31  * @sample: New data to include
32  *
33  * @delta is the difference between the current rtt sample and the
34  * running average srtt. We add 1/8 of that to the srtt in order to
35  * update the current srtt estimate. The variance estimate is a bit
36  * more complicated. We subtract the abs value of the @delta from
37  * the current variance estimate and add 1/4 of that to the running
38  * total.
39  *
40  * Note that the index points at the array entry containing the smoothed
41  * mean value, and the variance is always in the following entry
42  *
43  * Reference: TCP/IP Illustrated, vol 2, p. 831,832
44  * All times are in units of integer nanoseconds. Unlike the TCP/IP case,
45  * they are not scaled fixed point.
46  */
47 
48 static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index,
49 				     s64 sample)
50 {
51 	s64 delta = sample - s->stats[index];
52 	s->stats[index] += (delta >> 3);
53 	index++;
54 	s->stats[index] += ((abs(delta) - s->stats[index]) >> 2);
55 }
56 
57 /**
58  * gfs2_update_reply_times - Update locking statistics
59  * @gl: The glock to update
60  *
61  * This assumes that gl->gl_dstamp has been set earlier.
62  *
63  * The rtt (lock round trip time) is an estimate of the time
64  * taken to perform a dlm lock request. We update it on each
65  * reply from the dlm.
66  *
67  * The blocking flag is set on the glock for all dlm requests
68  * which may potentially block due to lock requests from other nodes.
69  * DLM requests where the current lock state is exclusive, the
70  * requested state is null (or unlocked) or where the TRY or
71  * TRY_1CB flags are set are classified as non-blocking. All
72  * other DLM requests are counted as (potentially) blocking.
73  */
74 static inline void gfs2_update_reply_times(struct gfs2_glock *gl)
75 {
76 	struct gfs2_pcpu_lkstats *lks;
77 	const unsigned gltype = gl->gl_name.ln_type;
78 	unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ?
79 			 GFS2_LKS_SRTTB : GFS2_LKS_SRTT;
80 	s64 rtt;
81 
82 	preempt_disable();
83 	rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp));
84 	lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
85 	gfs2_update_stats(&gl->gl_stats, index, rtt);		/* Local */
86 	gfs2_update_stats(&lks->lkstats[gltype], index, rtt);	/* Global */
87 	preempt_enable();
88 
89 	trace_gfs2_glock_lock_time(gl, rtt);
90 }
91 
92 /**
93  * gfs2_update_request_times - Update locking statistics
94  * @gl: The glock to update
95  *
96  * The irt (lock inter-request times) measures the average time
97  * between requests to the dlm. It is updated immediately before
98  * each dlm call.
99  */
100 
101 static inline void gfs2_update_request_times(struct gfs2_glock *gl)
102 {
103 	struct gfs2_pcpu_lkstats *lks;
104 	const unsigned gltype = gl->gl_name.ln_type;
105 	ktime_t dstamp;
106 	s64 irt;
107 
108 	preempt_disable();
109 	dstamp = gl->gl_dstamp;
110 	gl->gl_dstamp = ktime_get_real();
111 	irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp));
112 	lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
113 	gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt);		/* Local */
114 	gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt);	/* Global */
115 	preempt_enable();
116 }
117 
118 static void gdlm_ast(void *arg)
119 {
120 	struct gfs2_glock *gl = arg;
121 	unsigned ret = gl->gl_state;
122 
123 	gfs2_update_reply_times(gl);
124 	BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED);
125 
126 	if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr)
127 		memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE);
128 
129 	switch (gl->gl_lksb.sb_status) {
130 	case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */
131 		gfs2_glock_free(gl);
132 		return;
133 	case -DLM_ECANCEL: /* Cancel while getting lock */
134 		ret |= LM_OUT_CANCELED;
135 		goto out;
136 	case -EAGAIN: /* Try lock fails */
137 	case -EDEADLK: /* Deadlock detected */
138 		goto out;
139 	case -ETIMEDOUT: /* Canceled due to timeout */
140 		ret |= LM_OUT_ERROR;
141 		goto out;
142 	case 0: /* Success */
143 		break;
144 	default: /* Something unexpected */
145 		BUG();
146 	}
147 
148 	ret = gl->gl_req;
149 	if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) {
150 		if (gl->gl_req == LM_ST_SHARED)
151 			ret = LM_ST_DEFERRED;
152 		else if (gl->gl_req == LM_ST_DEFERRED)
153 			ret = LM_ST_SHARED;
154 		else
155 			BUG();
156 	}
157 
158 	set_bit(GLF_INITIAL, &gl->gl_flags);
159 	gfs2_glock_complete(gl, ret);
160 	return;
161 out:
162 	if (!test_bit(GLF_INITIAL, &gl->gl_flags))
163 		gl->gl_lksb.sb_lkid = 0;
164 	gfs2_glock_complete(gl, ret);
165 }
166 
167 static void gdlm_bast(void *arg, int mode)
168 {
169 	struct gfs2_glock *gl = arg;
170 
171 	switch (mode) {
172 	case DLM_LOCK_EX:
173 		gfs2_glock_cb(gl, LM_ST_UNLOCKED);
174 		break;
175 	case DLM_LOCK_CW:
176 		gfs2_glock_cb(gl, LM_ST_DEFERRED);
177 		break;
178 	case DLM_LOCK_PR:
179 		gfs2_glock_cb(gl, LM_ST_SHARED);
180 		break;
181 	default:
182 		pr_err("unknown bast mode %d\n", mode);
183 		BUG();
184 	}
185 }
186 
187 /* convert gfs lock-state to dlm lock-mode */
188 
189 static int make_mode(const unsigned int lmstate)
190 {
191 	switch (lmstate) {
192 	case LM_ST_UNLOCKED:
193 		return DLM_LOCK_NL;
194 	case LM_ST_EXCLUSIVE:
195 		return DLM_LOCK_EX;
196 	case LM_ST_DEFERRED:
197 		return DLM_LOCK_CW;
198 	case LM_ST_SHARED:
199 		return DLM_LOCK_PR;
200 	}
201 	pr_err("unknown LM state %d\n", lmstate);
202 	BUG();
203 	return -1;
204 }
205 
206 static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags,
207 		      const int req)
208 {
209 	u32 lkf = 0;
210 
211 	if (gl->gl_lksb.sb_lvbptr)
212 		lkf |= DLM_LKF_VALBLK;
213 
214 	if (gfs_flags & LM_FLAG_TRY)
215 		lkf |= DLM_LKF_NOQUEUE;
216 
217 	if (gfs_flags & LM_FLAG_TRY_1CB) {
218 		lkf |= DLM_LKF_NOQUEUE;
219 		lkf |= DLM_LKF_NOQUEUEBAST;
220 	}
221 
222 	if (gfs_flags & LM_FLAG_PRIORITY) {
223 		lkf |= DLM_LKF_NOORDER;
224 		lkf |= DLM_LKF_HEADQUE;
225 	}
226 
227 	if (gfs_flags & LM_FLAG_ANY) {
228 		if (req == DLM_LOCK_PR)
229 			lkf |= DLM_LKF_ALTCW;
230 		else if (req == DLM_LOCK_CW)
231 			lkf |= DLM_LKF_ALTPR;
232 		else
233 			BUG();
234 	}
235 
236 	if (gl->gl_lksb.sb_lkid != 0) {
237 		lkf |= DLM_LKF_CONVERT;
238 		if (test_bit(GLF_BLOCKING, &gl->gl_flags))
239 			lkf |= DLM_LKF_QUECVT;
240 	}
241 
242 	return lkf;
243 }
244 
245 static void gfs2_reverse_hex(char *c, u64 value)
246 {
247 	*c = '0';
248 	while (value) {
249 		*c-- = hex_asc[value & 0x0f];
250 		value >>= 4;
251 	}
252 }
253 
254 static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state,
255 		     unsigned int flags)
256 {
257 	struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
258 	int req;
259 	u32 lkf;
260 	char strname[GDLM_STRNAME_BYTES] = "";
261 
262 	req = make_mode(req_state);
263 	lkf = make_flags(gl, flags, req);
264 	gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
265 	gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
266 	if (gl->gl_lksb.sb_lkid) {
267 		gfs2_update_request_times(gl);
268 	} else {
269 		memset(strname, ' ', GDLM_STRNAME_BYTES - 1);
270 		strname[GDLM_STRNAME_BYTES - 1] = '\0';
271 		gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type);
272 		gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number);
273 		gl->gl_dstamp = ktime_get_real();
274 	}
275 	/*
276 	 * Submit the actual lock request.
277 	 */
278 
279 	return dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname,
280 			GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast);
281 }
282 
283 static void gdlm_put_lock(struct gfs2_glock *gl)
284 {
285 	struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
286 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
287 	int lvb_needs_unlock = 0;
288 	int error;
289 
290 	if (gl->gl_lksb.sb_lkid == 0) {
291 		gfs2_glock_free(gl);
292 		return;
293 	}
294 
295 	clear_bit(GLF_BLOCKING, &gl->gl_flags);
296 	gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
297 	gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
298 	gfs2_update_request_times(gl);
299 
300 	/* don't want to skip dlm_unlock writing the lvb when lock is ex */
301 
302 	if (gl->gl_lksb.sb_lvbptr && (gl->gl_state == LM_ST_EXCLUSIVE))
303 		lvb_needs_unlock = 1;
304 
305 	if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) &&
306 	    !lvb_needs_unlock) {
307 		gfs2_glock_free(gl);
308 		return;
309 	}
310 
311 	error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK,
312 			   NULL, gl);
313 	if (error) {
314 		pr_err("gdlm_unlock %x,%llx err=%d\n",
315 		       gl->gl_name.ln_type,
316 		       (unsigned long long)gl->gl_name.ln_number, error);
317 		return;
318 	}
319 }
320 
321 static void gdlm_cancel(struct gfs2_glock *gl)
322 {
323 	struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
324 	dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl);
325 }
326 
327 /*
328  * dlm/gfs2 recovery coordination using dlm_recover callbacks
329  *
330  *  1. dlm_controld sees lockspace members change
331  *  2. dlm_controld blocks dlm-kernel locking activity
332  *  3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
333  *  4. dlm_controld starts and finishes its own user level recovery
334  *  5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
335  *  6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
336  *  7. dlm_recoverd does its own lock recovery
337  *  8. dlm_recoverd unblocks dlm-kernel locking activity
338  *  9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
339  * 10. gfs2_control updates control_lock lvb with new generation and jid bits
340  * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
341  * 12. gfs2_recover dequeues and recovers journals of failed nodes
342  * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
343  * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
344  * 15. gfs2_control unblocks normal locking when all journals are recovered
345  *
346  * - failures during recovery
347  *
348  * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
349  * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
350  * recovering for a prior failure.  gfs2_control needs a way to detect
351  * this so it can leave BLOCK_LOCKS set in step 15.  This is managed using
352  * the recover_block and recover_start values.
353  *
354  * recover_done() provides a new lockspace generation number each time it
355  * is called (step 9).  This generation number is saved as recover_start.
356  * When recover_prep() is called, it sets BLOCK_LOCKS and sets
357  * recover_block = recover_start.  So, while recover_block is equal to
358  * recover_start, BLOCK_LOCKS should remain set.  (recover_spin must
359  * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
360  *
361  * - more specific gfs2 steps in sequence above
362  *
363  *  3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
364  *  6. recover_slot records any failed jids (maybe none)
365  *  9. recover_done sets recover_start = new generation number
366  * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
367  * 12. gfs2_recover does journal recoveries for failed jids identified above
368  * 14. gfs2_control clears control_lock lvb bits for recovered jids
369  * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
370  *     again) then do nothing, otherwise if recover_start > recover_block
371  *     then clear BLOCK_LOCKS.
372  *
373  * - parallel recovery steps across all nodes
374  *
375  * All nodes attempt to update the control_lock lvb with the new generation
376  * number and jid bits, but only the first to get the control_lock EX will
377  * do so; others will see that it's already done (lvb already contains new
378  * generation number.)
379  *
380  * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
381  * . All nodes attempt to set control_lock lvb gen + bits for the new gen
382  * . One node gets control_lock first and writes the lvb, others see it's done
383  * . All nodes attempt to recover jids for which they see control_lock bits set
384  * . One node succeeds for a jid, and that one clears the jid bit in the lvb
385  * . All nodes will eventually see all lvb bits clear and unblock locks
386  *
387  * - is there a problem with clearing an lvb bit that should be set
388  *   and missing a journal recovery?
389  *
390  * 1. jid fails
391  * 2. lvb bit set for step 1
392  * 3. jid recovered for step 1
393  * 4. jid taken again (new mount)
394  * 5. jid fails (for step 4)
395  * 6. lvb bit set for step 5 (will already be set)
396  * 7. lvb bit cleared for step 3
397  *
398  * This is not a problem because the failure in step 5 does not
399  * require recovery, because the mount in step 4 could not have
400  * progressed far enough to unblock locks and access the fs.  The
401  * control_mount() function waits for all recoveries to be complete
402  * for the latest lockspace generation before ever unblocking locks
403  * and returning.  The mount in step 4 waits until the recovery in
404  * step 1 is done.
405  *
406  * - special case of first mounter: first node to mount the fs
407  *
408  * The first node to mount a gfs2 fs needs to check all the journals
409  * and recover any that need recovery before other nodes are allowed
410  * to mount the fs.  (Others may begin mounting, but they must wait
411  * for the first mounter to be done before taking locks on the fs
412  * or accessing the fs.)  This has two parts:
413  *
414  * 1. The mounted_lock tells a node it's the first to mount the fs.
415  * Each node holds the mounted_lock in PR while it's mounted.
416  * Each node tries to acquire the mounted_lock in EX when it mounts.
417  * If a node is granted the mounted_lock EX it means there are no
418  * other mounted nodes (no PR locks exist), and it is the first mounter.
419  * The mounted_lock is demoted to PR when first recovery is done, so
420  * others will fail to get an EX lock, but will get a PR lock.
421  *
422  * 2. The control_lock blocks others in control_mount() while the first
423  * mounter is doing first mount recovery of all journals.
424  * A mounting node needs to acquire control_lock in EX mode before
425  * it can proceed.  The first mounter holds control_lock in EX while doing
426  * the first mount recovery, blocking mounts from other nodes, then demotes
427  * control_lock to NL when it's done (others_may_mount/first_done),
428  * allowing other nodes to continue mounting.
429  *
430  * first mounter:
431  * control_lock EX/NOQUEUE success
432  * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
433  * set first=1
434  * do first mounter recovery
435  * mounted_lock EX->PR
436  * control_lock EX->NL, write lvb generation
437  *
438  * other mounter:
439  * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
440  * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
441  * mounted_lock PR/NOQUEUE success
442  * read lvb generation
443  * control_lock EX->NL
444  * set first=0
445  *
446  * - mount during recovery
447  *
448  * If a node mounts while others are doing recovery (not first mounter),
449  * the mounting node will get its initial recover_done() callback without
450  * having seen any previous failures/callbacks.
451  *
452  * It must wait for all recoveries preceding its mount to be finished
453  * before it unblocks locks.  It does this by repeating the "other mounter"
454  * steps above until the lvb generation number is >= its mount generation
455  * number (from initial recover_done) and all lvb bits are clear.
456  *
457  * - control_lock lvb format
458  *
459  * 4 bytes generation number: the latest dlm lockspace generation number
460  * from recover_done callback.  Indicates the jid bitmap has been updated
461  * to reflect all slot failures through that generation.
462  * 4 bytes unused.
463  * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
464  * that jid N needs recovery.
465  */
466 
467 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
468 
469 static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen,
470 			     char *lvb_bits)
471 {
472 	__le32 gen;
473 	memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE);
474 	memcpy(&gen, lvb_bits, sizeof(__le32));
475 	*lvb_gen = le32_to_cpu(gen);
476 }
477 
478 static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen,
479 			      char *lvb_bits)
480 {
481 	__le32 gen;
482 	memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE);
483 	gen = cpu_to_le32(lvb_gen);
484 	memcpy(ls->ls_control_lvb, &gen, sizeof(__le32));
485 }
486 
487 static int all_jid_bits_clear(char *lvb)
488 {
489 	return !memchr_inv(lvb + JID_BITMAP_OFFSET, 0,
490 			GDLM_LVB_SIZE - JID_BITMAP_OFFSET);
491 }
492 
493 static void sync_wait_cb(void *arg)
494 {
495 	struct lm_lockstruct *ls = arg;
496 	complete(&ls->ls_sync_wait);
497 }
498 
499 static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name)
500 {
501 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
502 	int error;
503 
504 	error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls);
505 	if (error) {
506 		fs_err(sdp, "%s lkid %x error %d\n",
507 		       name, lksb->sb_lkid, error);
508 		return error;
509 	}
510 
511 	wait_for_completion(&ls->ls_sync_wait);
512 
513 	if (lksb->sb_status != -DLM_EUNLOCK) {
514 		fs_err(sdp, "%s lkid %x status %d\n",
515 		       name, lksb->sb_lkid, lksb->sb_status);
516 		return -1;
517 	}
518 	return 0;
519 }
520 
521 static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags,
522 		     unsigned int num, struct dlm_lksb *lksb, char *name)
523 {
524 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
525 	char strname[GDLM_STRNAME_BYTES];
526 	int error, status;
527 
528 	memset(strname, 0, GDLM_STRNAME_BYTES);
529 	snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num);
530 
531 	error = dlm_lock(ls->ls_dlm, mode, lksb, flags,
532 			 strname, GDLM_STRNAME_BYTES - 1,
533 			 0, sync_wait_cb, ls, NULL);
534 	if (error) {
535 		fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n",
536 		       name, lksb->sb_lkid, flags, mode, error);
537 		return error;
538 	}
539 
540 	wait_for_completion(&ls->ls_sync_wait);
541 
542 	status = lksb->sb_status;
543 
544 	if (status && status != -EAGAIN) {
545 		fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n",
546 		       name, lksb->sb_lkid, flags, mode, status);
547 	}
548 
549 	return status;
550 }
551 
552 static int mounted_unlock(struct gfs2_sbd *sdp)
553 {
554 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
555 	return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock");
556 }
557 
558 static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
559 {
560 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
561 	return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK,
562 			 &ls->ls_mounted_lksb, "mounted_lock");
563 }
564 
565 static int control_unlock(struct gfs2_sbd *sdp)
566 {
567 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
568 	return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock");
569 }
570 
571 static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
572 {
573 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
574 	return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK,
575 			 &ls->ls_control_lksb, "control_lock");
576 }
577 
578 static void gfs2_control_func(struct work_struct *work)
579 {
580 	struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work);
581 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
582 	uint32_t block_gen, start_gen, lvb_gen, flags;
583 	int recover_set = 0;
584 	int write_lvb = 0;
585 	int recover_size;
586 	int i, error;
587 
588 	spin_lock(&ls->ls_recover_spin);
589 	/*
590 	 * No MOUNT_DONE means we're still mounting; control_mount()
591 	 * will set this flag, after which this thread will take over
592 	 * all further clearing of BLOCK_LOCKS.
593 	 *
594 	 * FIRST_MOUNT means this node is doing first mounter recovery,
595 	 * for which recovery control is handled by
596 	 * control_mount()/control_first_done(), not this thread.
597 	 */
598 	if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
599 	     test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
600 		spin_unlock(&ls->ls_recover_spin);
601 		return;
602 	}
603 	block_gen = ls->ls_recover_block;
604 	start_gen = ls->ls_recover_start;
605 	spin_unlock(&ls->ls_recover_spin);
606 
607 	/*
608 	 * Equal block_gen and start_gen implies we are between
609 	 * recover_prep and recover_done callbacks, which means
610 	 * dlm recovery is in progress and dlm locking is blocked.
611 	 * There's no point trying to do any work until recover_done.
612 	 */
613 
614 	if (block_gen == start_gen)
615 		return;
616 
617 	/*
618 	 * Propagate recover_submit[] and recover_result[] to lvb:
619 	 * dlm_recoverd adds to recover_submit[] jids needing recovery
620 	 * gfs2_recover adds to recover_result[] journal recovery results
621 	 *
622 	 * set lvb bit for jids in recover_submit[] if the lvb has not
623 	 * yet been updated for the generation of the failure
624 	 *
625 	 * clear lvb bit for jids in recover_result[] if the result of
626 	 * the journal recovery is SUCCESS
627 	 */
628 
629 	error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
630 	if (error) {
631 		fs_err(sdp, "control lock EX error %d\n", error);
632 		return;
633 	}
634 
635 	control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
636 
637 	spin_lock(&ls->ls_recover_spin);
638 	if (block_gen != ls->ls_recover_block ||
639 	    start_gen != ls->ls_recover_start) {
640 		fs_info(sdp, "recover generation %u block1 %u %u\n",
641 			start_gen, block_gen, ls->ls_recover_block);
642 		spin_unlock(&ls->ls_recover_spin);
643 		control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
644 		return;
645 	}
646 
647 	recover_size = ls->ls_recover_size;
648 
649 	if (lvb_gen <= start_gen) {
650 		/*
651 		 * Clear lvb bits for jids we've successfully recovered.
652 		 * Because all nodes attempt to recover failed journals,
653 		 * a journal can be recovered multiple times successfully
654 		 * in succession.  Only the first will really do recovery,
655 		 * the others find it clean, but still report a successful
656 		 * recovery.  So, another node may have already recovered
657 		 * the jid and cleared the lvb bit for it.
658 		 */
659 		for (i = 0; i < recover_size; i++) {
660 			if (ls->ls_recover_result[i] != LM_RD_SUCCESS)
661 				continue;
662 
663 			ls->ls_recover_result[i] = 0;
664 
665 			if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET))
666 				continue;
667 
668 			__clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
669 			write_lvb = 1;
670 		}
671 	}
672 
673 	if (lvb_gen == start_gen) {
674 		/*
675 		 * Failed slots before start_gen are already set in lvb.
676 		 */
677 		for (i = 0; i < recover_size; i++) {
678 			if (!ls->ls_recover_submit[i])
679 				continue;
680 			if (ls->ls_recover_submit[i] < lvb_gen)
681 				ls->ls_recover_submit[i] = 0;
682 		}
683 	} else if (lvb_gen < start_gen) {
684 		/*
685 		 * Failed slots before start_gen are not yet set in lvb.
686 		 */
687 		for (i = 0; i < recover_size; i++) {
688 			if (!ls->ls_recover_submit[i])
689 				continue;
690 			if (ls->ls_recover_submit[i] < start_gen) {
691 				ls->ls_recover_submit[i] = 0;
692 				__set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
693 			}
694 		}
695 		/* even if there are no bits to set, we need to write the
696 		   latest generation to the lvb */
697 		write_lvb = 1;
698 	} else {
699 		/*
700 		 * we should be getting a recover_done() for lvb_gen soon
701 		 */
702 	}
703 	spin_unlock(&ls->ls_recover_spin);
704 
705 	if (write_lvb) {
706 		control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
707 		flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK;
708 	} else {
709 		flags = DLM_LKF_CONVERT;
710 	}
711 
712 	error = control_lock(sdp, DLM_LOCK_NL, flags);
713 	if (error) {
714 		fs_err(sdp, "control lock NL error %d\n", error);
715 		return;
716 	}
717 
718 	/*
719 	 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
720 	 * and clear a jid bit in the lvb if the recovery is a success.
721 	 * Eventually all journals will be recovered, all jid bits will
722 	 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
723 	 */
724 
725 	for (i = 0; i < recover_size; i++) {
726 		if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) {
727 			fs_info(sdp, "recover generation %u jid %d\n",
728 				start_gen, i);
729 			gfs2_recover_set(sdp, i);
730 			recover_set++;
731 		}
732 	}
733 	if (recover_set)
734 		return;
735 
736 	/*
737 	 * No more jid bits set in lvb, all recovery is done, unblock locks
738 	 * (unless a new recover_prep callback has occured blocking locks
739 	 * again while working above)
740 	 */
741 
742 	spin_lock(&ls->ls_recover_spin);
743 	if (ls->ls_recover_block == block_gen &&
744 	    ls->ls_recover_start == start_gen) {
745 		clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
746 		spin_unlock(&ls->ls_recover_spin);
747 		fs_info(sdp, "recover generation %u done\n", start_gen);
748 		gfs2_glock_thaw(sdp);
749 	} else {
750 		fs_info(sdp, "recover generation %u block2 %u %u\n",
751 			start_gen, block_gen, ls->ls_recover_block);
752 		spin_unlock(&ls->ls_recover_spin);
753 	}
754 }
755 
756 static int control_mount(struct gfs2_sbd *sdp)
757 {
758 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
759 	uint32_t start_gen, block_gen, mount_gen, lvb_gen;
760 	int mounted_mode;
761 	int retries = 0;
762 	int error;
763 
764 	memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb));
765 	memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb));
766 	memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE);
767 	ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb;
768 	init_completion(&ls->ls_sync_wait);
769 
770 	set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
771 
772 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK);
773 	if (error) {
774 		fs_err(sdp, "control_mount control_lock NL error %d\n", error);
775 		return error;
776 	}
777 
778 	error = mounted_lock(sdp, DLM_LOCK_NL, 0);
779 	if (error) {
780 		fs_err(sdp, "control_mount mounted_lock NL error %d\n", error);
781 		control_unlock(sdp);
782 		return error;
783 	}
784 	mounted_mode = DLM_LOCK_NL;
785 
786 restart:
787 	if (retries++ && signal_pending(current)) {
788 		error = -EINTR;
789 		goto fail;
790 	}
791 
792 	/*
793 	 * We always start with both locks in NL. control_lock is
794 	 * demoted to NL below so we don't need to do it here.
795 	 */
796 
797 	if (mounted_mode != DLM_LOCK_NL) {
798 		error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
799 		if (error)
800 			goto fail;
801 		mounted_mode = DLM_LOCK_NL;
802 	}
803 
804 	/*
805 	 * Other nodes need to do some work in dlm recovery and gfs2_control
806 	 * before the recover_done and control_lock will be ready for us below.
807 	 * A delay here is not required but often avoids having to retry.
808 	 */
809 
810 	msleep_interruptible(500);
811 
812 	/*
813 	 * Acquire control_lock in EX and mounted_lock in either EX or PR.
814 	 * control_lock lvb keeps track of any pending journal recoveries.
815 	 * mounted_lock indicates if any other nodes have the fs mounted.
816 	 */
817 
818 	error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK);
819 	if (error == -EAGAIN) {
820 		goto restart;
821 	} else if (error) {
822 		fs_err(sdp, "control_mount control_lock EX error %d\n", error);
823 		goto fail;
824 	}
825 
826 	error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
827 	if (!error) {
828 		mounted_mode = DLM_LOCK_EX;
829 		goto locks_done;
830 	} else if (error != -EAGAIN) {
831 		fs_err(sdp, "control_mount mounted_lock EX error %d\n", error);
832 		goto fail;
833 	}
834 
835 	error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
836 	if (!error) {
837 		mounted_mode = DLM_LOCK_PR;
838 		goto locks_done;
839 	} else {
840 		/* not even -EAGAIN should happen here */
841 		fs_err(sdp, "control_mount mounted_lock PR error %d\n", error);
842 		goto fail;
843 	}
844 
845 locks_done:
846 	/*
847 	 * If we got both locks above in EX, then we're the first mounter.
848 	 * If not, then we need to wait for the control_lock lvb to be
849 	 * updated by other mounted nodes to reflect our mount generation.
850 	 *
851 	 * In simple first mounter cases, first mounter will see zero lvb_gen,
852 	 * but in cases where all existing nodes leave/fail before mounting
853 	 * nodes finish control_mount, then all nodes will be mounting and
854 	 * lvb_gen will be non-zero.
855 	 */
856 
857 	control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
858 
859 	if (lvb_gen == 0xFFFFFFFF) {
860 		/* special value to force mount attempts to fail */
861 		fs_err(sdp, "control_mount control_lock disabled\n");
862 		error = -EINVAL;
863 		goto fail;
864 	}
865 
866 	if (mounted_mode == DLM_LOCK_EX) {
867 		/* first mounter, keep both EX while doing first recovery */
868 		spin_lock(&ls->ls_recover_spin);
869 		clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
870 		set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
871 		set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
872 		spin_unlock(&ls->ls_recover_spin);
873 		fs_info(sdp, "first mounter control generation %u\n", lvb_gen);
874 		return 0;
875 	}
876 
877 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
878 	if (error)
879 		goto fail;
880 
881 	/*
882 	 * We are not first mounter, now we need to wait for the control_lock
883 	 * lvb generation to be >= the generation from our first recover_done
884 	 * and all lvb bits to be clear (no pending journal recoveries.)
885 	 */
886 
887 	if (!all_jid_bits_clear(ls->ls_lvb_bits)) {
888 		/* journals need recovery, wait until all are clear */
889 		fs_info(sdp, "control_mount wait for journal recovery\n");
890 		goto restart;
891 	}
892 
893 	spin_lock(&ls->ls_recover_spin);
894 	block_gen = ls->ls_recover_block;
895 	start_gen = ls->ls_recover_start;
896 	mount_gen = ls->ls_recover_mount;
897 
898 	if (lvb_gen < mount_gen) {
899 		/* wait for mounted nodes to update control_lock lvb to our
900 		   generation, which might include new recovery bits set */
901 		fs_info(sdp, "control_mount wait1 block %u start %u mount %u "
902 			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
903 			lvb_gen, ls->ls_recover_flags);
904 		spin_unlock(&ls->ls_recover_spin);
905 		goto restart;
906 	}
907 
908 	if (lvb_gen != start_gen) {
909 		/* wait for mounted nodes to update control_lock lvb to the
910 		   latest recovery generation */
911 		fs_info(sdp, "control_mount wait2 block %u start %u mount %u "
912 			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
913 			lvb_gen, ls->ls_recover_flags);
914 		spin_unlock(&ls->ls_recover_spin);
915 		goto restart;
916 	}
917 
918 	if (block_gen == start_gen) {
919 		/* dlm recovery in progress, wait for it to finish */
920 		fs_info(sdp, "control_mount wait3 block %u start %u mount %u "
921 			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
922 			lvb_gen, ls->ls_recover_flags);
923 		spin_unlock(&ls->ls_recover_spin);
924 		goto restart;
925 	}
926 
927 	clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
928 	set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
929 	memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
930 	memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
931 	spin_unlock(&ls->ls_recover_spin);
932 	return 0;
933 
934 fail:
935 	mounted_unlock(sdp);
936 	control_unlock(sdp);
937 	return error;
938 }
939 
940 static int control_first_done(struct gfs2_sbd *sdp)
941 {
942 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
943 	uint32_t start_gen, block_gen;
944 	int error;
945 
946 restart:
947 	spin_lock(&ls->ls_recover_spin);
948 	start_gen = ls->ls_recover_start;
949 	block_gen = ls->ls_recover_block;
950 
951 	if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) ||
952 	    !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
953 	    !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
954 		/* sanity check, should not happen */
955 		fs_err(sdp, "control_first_done start %u block %u flags %lx\n",
956 		       start_gen, block_gen, ls->ls_recover_flags);
957 		spin_unlock(&ls->ls_recover_spin);
958 		control_unlock(sdp);
959 		return -1;
960 	}
961 
962 	if (start_gen == block_gen) {
963 		/*
964 		 * Wait for the end of a dlm recovery cycle to switch from
965 		 * first mounter recovery.  We can ignore any recover_slot
966 		 * callbacks between the recover_prep and next recover_done
967 		 * because we are still the first mounter and any failed nodes
968 		 * have not fully mounted, so they don't need recovery.
969 		 */
970 		spin_unlock(&ls->ls_recover_spin);
971 		fs_info(sdp, "control_first_done wait gen %u\n", start_gen);
972 
973 		wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY,
974 			    TASK_UNINTERRUPTIBLE);
975 		goto restart;
976 	}
977 
978 	clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
979 	set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags);
980 	memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
981 	memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
982 	spin_unlock(&ls->ls_recover_spin);
983 
984 	memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE);
985 	control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
986 
987 	error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT);
988 	if (error)
989 		fs_err(sdp, "control_first_done mounted PR error %d\n", error);
990 
991 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
992 	if (error)
993 		fs_err(sdp, "control_first_done control NL error %d\n", error);
994 
995 	return error;
996 }
997 
998 /*
999  * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
1000  * to accomodate the largest slot number.  (NB dlm slot numbers start at 1,
1001  * gfs2 jids start at 0, so jid = slot - 1)
1002  */
1003 
1004 #define RECOVER_SIZE_INC 16
1005 
1006 static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots,
1007 			    int num_slots)
1008 {
1009 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1010 	uint32_t *submit = NULL;
1011 	uint32_t *result = NULL;
1012 	uint32_t old_size, new_size;
1013 	int i, max_jid;
1014 
1015 	if (!ls->ls_lvb_bits) {
1016 		ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS);
1017 		if (!ls->ls_lvb_bits)
1018 			return -ENOMEM;
1019 	}
1020 
1021 	max_jid = 0;
1022 	for (i = 0; i < num_slots; i++) {
1023 		if (max_jid < slots[i].slot - 1)
1024 			max_jid = slots[i].slot - 1;
1025 	}
1026 
1027 	old_size = ls->ls_recover_size;
1028 
1029 	if (old_size >= max_jid + 1)
1030 		return 0;
1031 
1032 	new_size = old_size + RECOVER_SIZE_INC;
1033 
1034 	submit = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1035 	result = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1036 	if (!submit || !result) {
1037 		kfree(submit);
1038 		kfree(result);
1039 		return -ENOMEM;
1040 	}
1041 
1042 	spin_lock(&ls->ls_recover_spin);
1043 	memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t));
1044 	memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t));
1045 	kfree(ls->ls_recover_submit);
1046 	kfree(ls->ls_recover_result);
1047 	ls->ls_recover_submit = submit;
1048 	ls->ls_recover_result = result;
1049 	ls->ls_recover_size = new_size;
1050 	spin_unlock(&ls->ls_recover_spin);
1051 	return 0;
1052 }
1053 
1054 static void free_recover_size(struct lm_lockstruct *ls)
1055 {
1056 	kfree(ls->ls_lvb_bits);
1057 	kfree(ls->ls_recover_submit);
1058 	kfree(ls->ls_recover_result);
1059 	ls->ls_recover_submit = NULL;
1060 	ls->ls_recover_result = NULL;
1061 	ls->ls_recover_size = 0;
1062 }
1063 
1064 /* dlm calls before it does lock recovery */
1065 
1066 static void gdlm_recover_prep(void *arg)
1067 {
1068 	struct gfs2_sbd *sdp = arg;
1069 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1070 
1071 	spin_lock(&ls->ls_recover_spin);
1072 	ls->ls_recover_block = ls->ls_recover_start;
1073 	set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1074 
1075 	if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1076 	     test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1077 		spin_unlock(&ls->ls_recover_spin);
1078 		return;
1079 	}
1080 	set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
1081 	spin_unlock(&ls->ls_recover_spin);
1082 }
1083 
1084 /* dlm calls after recover_prep has been completed on all lockspace members;
1085    identifies slot/jid of failed member */
1086 
1087 static void gdlm_recover_slot(void *arg, struct dlm_slot *slot)
1088 {
1089 	struct gfs2_sbd *sdp = arg;
1090 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1091 	int jid = slot->slot - 1;
1092 
1093 	spin_lock(&ls->ls_recover_spin);
1094 	if (ls->ls_recover_size < jid + 1) {
1095 		fs_err(sdp, "recover_slot jid %d gen %u short size %d",
1096 		       jid, ls->ls_recover_block, ls->ls_recover_size);
1097 		spin_unlock(&ls->ls_recover_spin);
1098 		return;
1099 	}
1100 
1101 	if (ls->ls_recover_submit[jid]) {
1102 		fs_info(sdp, "recover_slot jid %d gen %u prev %u\n",
1103 			jid, ls->ls_recover_block, ls->ls_recover_submit[jid]);
1104 	}
1105 	ls->ls_recover_submit[jid] = ls->ls_recover_block;
1106 	spin_unlock(&ls->ls_recover_spin);
1107 }
1108 
1109 /* dlm calls after recover_slot and after it completes lock recovery */
1110 
1111 static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots,
1112 			      int our_slot, uint32_t generation)
1113 {
1114 	struct gfs2_sbd *sdp = arg;
1115 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1116 
1117 	/* ensure the ls jid arrays are large enough */
1118 	set_recover_size(sdp, slots, num_slots);
1119 
1120 	spin_lock(&ls->ls_recover_spin);
1121 	ls->ls_recover_start = generation;
1122 
1123 	if (!ls->ls_recover_mount) {
1124 		ls->ls_recover_mount = generation;
1125 		ls->ls_jid = our_slot - 1;
1126 	}
1127 
1128 	if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1129 		queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0);
1130 
1131 	clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1132 	smp_mb__after_atomic();
1133 	wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY);
1134 	spin_unlock(&ls->ls_recover_spin);
1135 }
1136 
1137 /* gfs2_recover thread has a journal recovery result */
1138 
1139 static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid,
1140 				 unsigned int result)
1141 {
1142 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1143 
1144 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1145 		return;
1146 
1147 	/* don't care about the recovery of own journal during mount */
1148 	if (jid == ls->ls_jid)
1149 		return;
1150 
1151 	spin_lock(&ls->ls_recover_spin);
1152 	if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1153 		spin_unlock(&ls->ls_recover_spin);
1154 		return;
1155 	}
1156 	if (ls->ls_recover_size < jid + 1) {
1157 		fs_err(sdp, "recovery_result jid %d short size %d",
1158 		       jid, ls->ls_recover_size);
1159 		spin_unlock(&ls->ls_recover_spin);
1160 		return;
1161 	}
1162 
1163 	fs_info(sdp, "recover jid %d result %s\n", jid,
1164 		result == LM_RD_GAVEUP ? "busy" : "success");
1165 
1166 	ls->ls_recover_result[jid] = result;
1167 
1168 	/* GAVEUP means another node is recovering the journal; delay our
1169 	   next attempt to recover it, to give the other node a chance to
1170 	   finish before trying again */
1171 
1172 	if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1173 		queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work,
1174 				   result == LM_RD_GAVEUP ? HZ : 0);
1175 	spin_unlock(&ls->ls_recover_spin);
1176 }
1177 
1178 const struct dlm_lockspace_ops gdlm_lockspace_ops = {
1179 	.recover_prep = gdlm_recover_prep,
1180 	.recover_slot = gdlm_recover_slot,
1181 	.recover_done = gdlm_recover_done,
1182 };
1183 
1184 static int gdlm_mount(struct gfs2_sbd *sdp, const char *table)
1185 {
1186 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1187 	char cluster[GFS2_LOCKNAME_LEN];
1188 	const char *fsname;
1189 	uint32_t flags;
1190 	int error, ops_result;
1191 
1192 	/*
1193 	 * initialize everything
1194 	 */
1195 
1196 	INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func);
1197 	spin_lock_init(&ls->ls_recover_spin);
1198 	ls->ls_recover_flags = 0;
1199 	ls->ls_recover_mount = 0;
1200 	ls->ls_recover_start = 0;
1201 	ls->ls_recover_block = 0;
1202 	ls->ls_recover_size = 0;
1203 	ls->ls_recover_submit = NULL;
1204 	ls->ls_recover_result = NULL;
1205 	ls->ls_lvb_bits = NULL;
1206 
1207 	error = set_recover_size(sdp, NULL, 0);
1208 	if (error)
1209 		goto fail;
1210 
1211 	/*
1212 	 * prepare dlm_new_lockspace args
1213 	 */
1214 
1215 	fsname = strchr(table, ':');
1216 	if (!fsname) {
1217 		fs_info(sdp, "no fsname found\n");
1218 		error = -EINVAL;
1219 		goto fail_free;
1220 	}
1221 	memset(cluster, 0, sizeof(cluster));
1222 	memcpy(cluster, table, strlen(table) - strlen(fsname));
1223 	fsname++;
1224 
1225 	flags = DLM_LSFL_FS | DLM_LSFL_NEWEXCL;
1226 
1227 	/*
1228 	 * create/join lockspace
1229 	 */
1230 
1231 	error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE,
1232 				  &gdlm_lockspace_ops, sdp, &ops_result,
1233 				  &ls->ls_dlm);
1234 	if (error) {
1235 		fs_err(sdp, "dlm_new_lockspace error %d\n", error);
1236 		goto fail_free;
1237 	}
1238 
1239 	if (ops_result < 0) {
1240 		/*
1241 		 * dlm does not support ops callbacks,
1242 		 * old dlm_controld/gfs_controld are used, try without ops.
1243 		 */
1244 		fs_info(sdp, "dlm lockspace ops not used\n");
1245 		free_recover_size(ls);
1246 		set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags);
1247 		return 0;
1248 	}
1249 
1250 	if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) {
1251 		fs_err(sdp, "dlm lockspace ops disallow jid preset\n");
1252 		error = -EINVAL;
1253 		goto fail_release;
1254 	}
1255 
1256 	/*
1257 	 * control_mount() uses control_lock to determine first mounter,
1258 	 * and for later mounts, waits for any recoveries to be cleared.
1259 	 */
1260 
1261 	error = control_mount(sdp);
1262 	if (error) {
1263 		fs_err(sdp, "mount control error %d\n", error);
1264 		goto fail_release;
1265 	}
1266 
1267 	ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1268 	clear_bit(SDF_NOJOURNALID, &sdp->sd_flags);
1269 	smp_mb__after_atomic();
1270 	wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID);
1271 	return 0;
1272 
1273 fail_release:
1274 	dlm_release_lockspace(ls->ls_dlm, 2);
1275 fail_free:
1276 	free_recover_size(ls);
1277 fail:
1278 	return error;
1279 }
1280 
1281 static void gdlm_first_done(struct gfs2_sbd *sdp)
1282 {
1283 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1284 	int error;
1285 
1286 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1287 		return;
1288 
1289 	error = control_first_done(sdp);
1290 	if (error)
1291 		fs_err(sdp, "mount first_done error %d\n", error);
1292 }
1293 
1294 static void gdlm_unmount(struct gfs2_sbd *sdp)
1295 {
1296 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1297 
1298 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1299 		goto release;
1300 
1301 	/* wait for gfs2_control_wq to be done with this mount */
1302 
1303 	spin_lock(&ls->ls_recover_spin);
1304 	set_bit(DFL_UNMOUNT, &ls->ls_recover_flags);
1305 	spin_unlock(&ls->ls_recover_spin);
1306 	flush_delayed_work(&sdp->sd_control_work);
1307 
1308 	/* mounted_lock and control_lock will be purged in dlm recovery */
1309 release:
1310 	if (ls->ls_dlm) {
1311 		dlm_release_lockspace(ls->ls_dlm, 2);
1312 		ls->ls_dlm = NULL;
1313 	}
1314 
1315 	free_recover_size(ls);
1316 }
1317 
1318 static const match_table_t dlm_tokens = {
1319 	{ Opt_jid, "jid=%d"},
1320 	{ Opt_id, "id=%d"},
1321 	{ Opt_first, "first=%d"},
1322 	{ Opt_nodir, "nodir=%d"},
1323 	{ Opt_err, NULL },
1324 };
1325 
1326 const struct lm_lockops gfs2_dlm_ops = {
1327 	.lm_proto_name = "lock_dlm",
1328 	.lm_mount = gdlm_mount,
1329 	.lm_first_done = gdlm_first_done,
1330 	.lm_recovery_result = gdlm_recovery_result,
1331 	.lm_unmount = gdlm_unmount,
1332 	.lm_put_lock = gdlm_put_lock,
1333 	.lm_lock = gdlm_lock,
1334 	.lm_cancel = gdlm_cancel,
1335 	.lm_tokens = &dlm_tokens,
1336 };
1337 
1338