1 /* 2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 3 * Copyright 2004-2011 Red Hat, Inc. 4 * 5 * This copyrighted material is made available to anyone wishing to use, 6 * modify, copy, or redistribute it subject to the terms and conditions 7 * of the GNU General Public License version 2. 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/fs.h> 13 #include <linux/dlm.h> 14 #include <linux/slab.h> 15 #include <linux/types.h> 16 #include <linux/delay.h> 17 #include <linux/gfs2_ondisk.h> 18 #include <linux/sched/signal.h> 19 20 #include "incore.h" 21 #include "glock.h" 22 #include "util.h" 23 #include "sys.h" 24 #include "trace_gfs2.h" 25 26 extern struct workqueue_struct *gfs2_control_wq; 27 28 /** 29 * gfs2_update_stats - Update time based stats 30 * @mv: Pointer to mean/variance structure to update 31 * @sample: New data to include 32 * 33 * @delta is the difference between the current rtt sample and the 34 * running average srtt. We add 1/8 of that to the srtt in order to 35 * update the current srtt estimate. The variance estimate is a bit 36 * more complicated. We subtract the abs value of the @delta from 37 * the current variance estimate and add 1/4 of that to the running 38 * total. 39 * 40 * Note that the index points at the array entry containing the smoothed 41 * mean value, and the variance is always in the following entry 42 * 43 * Reference: TCP/IP Illustrated, vol 2, p. 831,832 44 * All times are in units of integer nanoseconds. Unlike the TCP/IP case, 45 * they are not scaled fixed point. 46 */ 47 48 static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index, 49 s64 sample) 50 { 51 s64 delta = sample - s->stats[index]; 52 s->stats[index] += (delta >> 3); 53 index++; 54 s->stats[index] += ((abs(delta) - s->stats[index]) >> 2); 55 } 56 57 /** 58 * gfs2_update_reply_times - Update locking statistics 59 * @gl: The glock to update 60 * 61 * This assumes that gl->gl_dstamp has been set earlier. 62 * 63 * The rtt (lock round trip time) is an estimate of the time 64 * taken to perform a dlm lock request. We update it on each 65 * reply from the dlm. 66 * 67 * The blocking flag is set on the glock for all dlm requests 68 * which may potentially block due to lock requests from other nodes. 69 * DLM requests where the current lock state is exclusive, the 70 * requested state is null (or unlocked) or where the TRY or 71 * TRY_1CB flags are set are classified as non-blocking. All 72 * other DLM requests are counted as (potentially) blocking. 73 */ 74 static inline void gfs2_update_reply_times(struct gfs2_glock *gl) 75 { 76 struct gfs2_pcpu_lkstats *lks; 77 const unsigned gltype = gl->gl_name.ln_type; 78 unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ? 79 GFS2_LKS_SRTTB : GFS2_LKS_SRTT; 80 s64 rtt; 81 82 preempt_disable(); 83 rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp)); 84 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats); 85 gfs2_update_stats(&gl->gl_stats, index, rtt); /* Local */ 86 gfs2_update_stats(&lks->lkstats[gltype], index, rtt); /* Global */ 87 preempt_enable(); 88 89 trace_gfs2_glock_lock_time(gl, rtt); 90 } 91 92 /** 93 * gfs2_update_request_times - Update locking statistics 94 * @gl: The glock to update 95 * 96 * The irt (lock inter-request times) measures the average time 97 * between requests to the dlm. It is updated immediately before 98 * each dlm call. 99 */ 100 101 static inline void gfs2_update_request_times(struct gfs2_glock *gl) 102 { 103 struct gfs2_pcpu_lkstats *lks; 104 const unsigned gltype = gl->gl_name.ln_type; 105 ktime_t dstamp; 106 s64 irt; 107 108 preempt_disable(); 109 dstamp = gl->gl_dstamp; 110 gl->gl_dstamp = ktime_get_real(); 111 irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp)); 112 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats); 113 gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt); /* Local */ 114 gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt); /* Global */ 115 preempt_enable(); 116 } 117 118 static void gdlm_ast(void *arg) 119 { 120 struct gfs2_glock *gl = arg; 121 unsigned ret = gl->gl_state; 122 123 gfs2_update_reply_times(gl); 124 BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED); 125 126 if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr) 127 memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE); 128 129 switch (gl->gl_lksb.sb_status) { 130 case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */ 131 gfs2_glock_free(gl); 132 return; 133 case -DLM_ECANCEL: /* Cancel while getting lock */ 134 ret |= LM_OUT_CANCELED; 135 goto out; 136 case -EAGAIN: /* Try lock fails */ 137 case -EDEADLK: /* Deadlock detected */ 138 goto out; 139 case -ETIMEDOUT: /* Canceled due to timeout */ 140 ret |= LM_OUT_ERROR; 141 goto out; 142 case 0: /* Success */ 143 break; 144 default: /* Something unexpected */ 145 BUG(); 146 } 147 148 ret = gl->gl_req; 149 if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) { 150 if (gl->gl_req == LM_ST_SHARED) 151 ret = LM_ST_DEFERRED; 152 else if (gl->gl_req == LM_ST_DEFERRED) 153 ret = LM_ST_SHARED; 154 else 155 BUG(); 156 } 157 158 set_bit(GLF_INITIAL, &gl->gl_flags); 159 gfs2_glock_complete(gl, ret); 160 return; 161 out: 162 if (!test_bit(GLF_INITIAL, &gl->gl_flags)) 163 gl->gl_lksb.sb_lkid = 0; 164 gfs2_glock_complete(gl, ret); 165 } 166 167 static void gdlm_bast(void *arg, int mode) 168 { 169 struct gfs2_glock *gl = arg; 170 171 switch (mode) { 172 case DLM_LOCK_EX: 173 gfs2_glock_cb(gl, LM_ST_UNLOCKED); 174 break; 175 case DLM_LOCK_CW: 176 gfs2_glock_cb(gl, LM_ST_DEFERRED); 177 break; 178 case DLM_LOCK_PR: 179 gfs2_glock_cb(gl, LM_ST_SHARED); 180 break; 181 default: 182 pr_err("unknown bast mode %d\n", mode); 183 BUG(); 184 } 185 } 186 187 /* convert gfs lock-state to dlm lock-mode */ 188 189 static int make_mode(const unsigned int lmstate) 190 { 191 switch (lmstate) { 192 case LM_ST_UNLOCKED: 193 return DLM_LOCK_NL; 194 case LM_ST_EXCLUSIVE: 195 return DLM_LOCK_EX; 196 case LM_ST_DEFERRED: 197 return DLM_LOCK_CW; 198 case LM_ST_SHARED: 199 return DLM_LOCK_PR; 200 } 201 pr_err("unknown LM state %d\n", lmstate); 202 BUG(); 203 return -1; 204 } 205 206 static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags, 207 const int req) 208 { 209 u32 lkf = 0; 210 211 if (gl->gl_lksb.sb_lvbptr) 212 lkf |= DLM_LKF_VALBLK; 213 214 if (gfs_flags & LM_FLAG_TRY) 215 lkf |= DLM_LKF_NOQUEUE; 216 217 if (gfs_flags & LM_FLAG_TRY_1CB) { 218 lkf |= DLM_LKF_NOQUEUE; 219 lkf |= DLM_LKF_NOQUEUEBAST; 220 } 221 222 if (gfs_flags & LM_FLAG_PRIORITY) { 223 lkf |= DLM_LKF_NOORDER; 224 lkf |= DLM_LKF_HEADQUE; 225 } 226 227 if (gfs_flags & LM_FLAG_ANY) { 228 if (req == DLM_LOCK_PR) 229 lkf |= DLM_LKF_ALTCW; 230 else if (req == DLM_LOCK_CW) 231 lkf |= DLM_LKF_ALTPR; 232 else 233 BUG(); 234 } 235 236 if (gl->gl_lksb.sb_lkid != 0) { 237 lkf |= DLM_LKF_CONVERT; 238 if (test_bit(GLF_BLOCKING, &gl->gl_flags)) 239 lkf |= DLM_LKF_QUECVT; 240 } 241 242 return lkf; 243 } 244 245 static void gfs2_reverse_hex(char *c, u64 value) 246 { 247 *c = '0'; 248 while (value) { 249 *c-- = hex_asc[value & 0x0f]; 250 value >>= 4; 251 } 252 } 253 254 static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state, 255 unsigned int flags) 256 { 257 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct; 258 int req; 259 u32 lkf; 260 char strname[GDLM_STRNAME_BYTES] = ""; 261 262 req = make_mode(req_state); 263 lkf = make_flags(gl, flags, req); 264 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT); 265 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT); 266 if (gl->gl_lksb.sb_lkid) { 267 gfs2_update_request_times(gl); 268 } else { 269 memset(strname, ' ', GDLM_STRNAME_BYTES - 1); 270 strname[GDLM_STRNAME_BYTES - 1] = '\0'; 271 gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type); 272 gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number); 273 gl->gl_dstamp = ktime_get_real(); 274 } 275 /* 276 * Submit the actual lock request. 277 */ 278 279 return dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname, 280 GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast); 281 } 282 283 static void gdlm_put_lock(struct gfs2_glock *gl) 284 { 285 struct gfs2_sbd *sdp = gl->gl_name.ln_sbd; 286 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 287 int lvb_needs_unlock = 0; 288 int error; 289 290 if (gl->gl_lksb.sb_lkid == 0) { 291 gfs2_glock_free(gl); 292 return; 293 } 294 295 clear_bit(GLF_BLOCKING, &gl->gl_flags); 296 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT); 297 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT); 298 gfs2_update_request_times(gl); 299 300 /* don't want to skip dlm_unlock writing the lvb when lock is ex */ 301 302 if (gl->gl_lksb.sb_lvbptr && (gl->gl_state == LM_ST_EXCLUSIVE)) 303 lvb_needs_unlock = 1; 304 305 if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) && 306 !lvb_needs_unlock) { 307 gfs2_glock_free(gl); 308 return; 309 } 310 311 error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK, 312 NULL, gl); 313 if (error) { 314 pr_err("gdlm_unlock %x,%llx err=%d\n", 315 gl->gl_name.ln_type, 316 (unsigned long long)gl->gl_name.ln_number, error); 317 return; 318 } 319 } 320 321 static void gdlm_cancel(struct gfs2_glock *gl) 322 { 323 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct; 324 dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl); 325 } 326 327 /* 328 * dlm/gfs2 recovery coordination using dlm_recover callbacks 329 * 330 * 1. dlm_controld sees lockspace members change 331 * 2. dlm_controld blocks dlm-kernel locking activity 332 * 3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep) 333 * 4. dlm_controld starts and finishes its own user level recovery 334 * 5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery 335 * 6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot) 336 * 7. dlm_recoverd does its own lock recovery 337 * 8. dlm_recoverd unblocks dlm-kernel locking activity 338 * 9. dlm_recoverd notifies gfs2 when done (recover_done with new generation) 339 * 10. gfs2_control updates control_lock lvb with new generation and jid bits 340 * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none) 341 * 12. gfs2_recover dequeues and recovers journals of failed nodes 342 * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result) 343 * 14. gfs2_control updates control_lock lvb jid bits for recovered journals 344 * 15. gfs2_control unblocks normal locking when all journals are recovered 345 * 346 * - failures during recovery 347 * 348 * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control 349 * clears BLOCK_LOCKS (step 15), e.g. another node fails while still 350 * recovering for a prior failure. gfs2_control needs a way to detect 351 * this so it can leave BLOCK_LOCKS set in step 15. This is managed using 352 * the recover_block and recover_start values. 353 * 354 * recover_done() provides a new lockspace generation number each time it 355 * is called (step 9). This generation number is saved as recover_start. 356 * When recover_prep() is called, it sets BLOCK_LOCKS and sets 357 * recover_block = recover_start. So, while recover_block is equal to 358 * recover_start, BLOCK_LOCKS should remain set. (recover_spin must 359 * be held around the BLOCK_LOCKS/recover_block/recover_start logic.) 360 * 361 * - more specific gfs2 steps in sequence above 362 * 363 * 3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start 364 * 6. recover_slot records any failed jids (maybe none) 365 * 9. recover_done sets recover_start = new generation number 366 * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids 367 * 12. gfs2_recover does journal recoveries for failed jids identified above 368 * 14. gfs2_control clears control_lock lvb bits for recovered jids 369 * 15. gfs2_control checks if recover_block == recover_start (step 3 occured 370 * again) then do nothing, otherwise if recover_start > recover_block 371 * then clear BLOCK_LOCKS. 372 * 373 * - parallel recovery steps across all nodes 374 * 375 * All nodes attempt to update the control_lock lvb with the new generation 376 * number and jid bits, but only the first to get the control_lock EX will 377 * do so; others will see that it's already done (lvb already contains new 378 * generation number.) 379 * 380 * . All nodes get the same recover_prep/recover_slot/recover_done callbacks 381 * . All nodes attempt to set control_lock lvb gen + bits for the new gen 382 * . One node gets control_lock first and writes the lvb, others see it's done 383 * . All nodes attempt to recover jids for which they see control_lock bits set 384 * . One node succeeds for a jid, and that one clears the jid bit in the lvb 385 * . All nodes will eventually see all lvb bits clear and unblock locks 386 * 387 * - is there a problem with clearing an lvb bit that should be set 388 * and missing a journal recovery? 389 * 390 * 1. jid fails 391 * 2. lvb bit set for step 1 392 * 3. jid recovered for step 1 393 * 4. jid taken again (new mount) 394 * 5. jid fails (for step 4) 395 * 6. lvb bit set for step 5 (will already be set) 396 * 7. lvb bit cleared for step 3 397 * 398 * This is not a problem because the failure in step 5 does not 399 * require recovery, because the mount in step 4 could not have 400 * progressed far enough to unblock locks and access the fs. The 401 * control_mount() function waits for all recoveries to be complete 402 * for the latest lockspace generation before ever unblocking locks 403 * and returning. The mount in step 4 waits until the recovery in 404 * step 1 is done. 405 * 406 * - special case of first mounter: first node to mount the fs 407 * 408 * The first node to mount a gfs2 fs needs to check all the journals 409 * and recover any that need recovery before other nodes are allowed 410 * to mount the fs. (Others may begin mounting, but they must wait 411 * for the first mounter to be done before taking locks on the fs 412 * or accessing the fs.) This has two parts: 413 * 414 * 1. The mounted_lock tells a node it's the first to mount the fs. 415 * Each node holds the mounted_lock in PR while it's mounted. 416 * Each node tries to acquire the mounted_lock in EX when it mounts. 417 * If a node is granted the mounted_lock EX it means there are no 418 * other mounted nodes (no PR locks exist), and it is the first mounter. 419 * The mounted_lock is demoted to PR when first recovery is done, so 420 * others will fail to get an EX lock, but will get a PR lock. 421 * 422 * 2. The control_lock blocks others in control_mount() while the first 423 * mounter is doing first mount recovery of all journals. 424 * A mounting node needs to acquire control_lock in EX mode before 425 * it can proceed. The first mounter holds control_lock in EX while doing 426 * the first mount recovery, blocking mounts from other nodes, then demotes 427 * control_lock to NL when it's done (others_may_mount/first_done), 428 * allowing other nodes to continue mounting. 429 * 430 * first mounter: 431 * control_lock EX/NOQUEUE success 432 * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters) 433 * set first=1 434 * do first mounter recovery 435 * mounted_lock EX->PR 436 * control_lock EX->NL, write lvb generation 437 * 438 * other mounter: 439 * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry) 440 * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR) 441 * mounted_lock PR/NOQUEUE success 442 * read lvb generation 443 * control_lock EX->NL 444 * set first=0 445 * 446 * - mount during recovery 447 * 448 * If a node mounts while others are doing recovery (not first mounter), 449 * the mounting node will get its initial recover_done() callback without 450 * having seen any previous failures/callbacks. 451 * 452 * It must wait for all recoveries preceding its mount to be finished 453 * before it unblocks locks. It does this by repeating the "other mounter" 454 * steps above until the lvb generation number is >= its mount generation 455 * number (from initial recover_done) and all lvb bits are clear. 456 * 457 * - control_lock lvb format 458 * 459 * 4 bytes generation number: the latest dlm lockspace generation number 460 * from recover_done callback. Indicates the jid bitmap has been updated 461 * to reflect all slot failures through that generation. 462 * 4 bytes unused. 463 * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates 464 * that jid N needs recovery. 465 */ 466 467 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */ 468 469 static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen, 470 char *lvb_bits) 471 { 472 __le32 gen; 473 memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE); 474 memcpy(&gen, lvb_bits, sizeof(__le32)); 475 *lvb_gen = le32_to_cpu(gen); 476 } 477 478 static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen, 479 char *lvb_bits) 480 { 481 __le32 gen; 482 memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE); 483 gen = cpu_to_le32(lvb_gen); 484 memcpy(ls->ls_control_lvb, &gen, sizeof(__le32)); 485 } 486 487 static int all_jid_bits_clear(char *lvb) 488 { 489 return !memchr_inv(lvb + JID_BITMAP_OFFSET, 0, 490 GDLM_LVB_SIZE - JID_BITMAP_OFFSET); 491 } 492 493 static void sync_wait_cb(void *arg) 494 { 495 struct lm_lockstruct *ls = arg; 496 complete(&ls->ls_sync_wait); 497 } 498 499 static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name) 500 { 501 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 502 int error; 503 504 error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls); 505 if (error) { 506 fs_err(sdp, "%s lkid %x error %d\n", 507 name, lksb->sb_lkid, error); 508 return error; 509 } 510 511 wait_for_completion(&ls->ls_sync_wait); 512 513 if (lksb->sb_status != -DLM_EUNLOCK) { 514 fs_err(sdp, "%s lkid %x status %d\n", 515 name, lksb->sb_lkid, lksb->sb_status); 516 return -1; 517 } 518 return 0; 519 } 520 521 static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags, 522 unsigned int num, struct dlm_lksb *lksb, char *name) 523 { 524 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 525 char strname[GDLM_STRNAME_BYTES]; 526 int error, status; 527 528 memset(strname, 0, GDLM_STRNAME_BYTES); 529 snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num); 530 531 error = dlm_lock(ls->ls_dlm, mode, lksb, flags, 532 strname, GDLM_STRNAME_BYTES - 1, 533 0, sync_wait_cb, ls, NULL); 534 if (error) { 535 fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n", 536 name, lksb->sb_lkid, flags, mode, error); 537 return error; 538 } 539 540 wait_for_completion(&ls->ls_sync_wait); 541 542 status = lksb->sb_status; 543 544 if (status && status != -EAGAIN) { 545 fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n", 546 name, lksb->sb_lkid, flags, mode, status); 547 } 548 549 return status; 550 } 551 552 static int mounted_unlock(struct gfs2_sbd *sdp) 553 { 554 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 555 return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock"); 556 } 557 558 static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags) 559 { 560 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 561 return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK, 562 &ls->ls_mounted_lksb, "mounted_lock"); 563 } 564 565 static int control_unlock(struct gfs2_sbd *sdp) 566 { 567 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 568 return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock"); 569 } 570 571 static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags) 572 { 573 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 574 return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK, 575 &ls->ls_control_lksb, "control_lock"); 576 } 577 578 static void gfs2_control_func(struct work_struct *work) 579 { 580 struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work); 581 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 582 uint32_t block_gen, start_gen, lvb_gen, flags; 583 int recover_set = 0; 584 int write_lvb = 0; 585 int recover_size; 586 int i, error; 587 588 spin_lock(&ls->ls_recover_spin); 589 /* 590 * No MOUNT_DONE means we're still mounting; control_mount() 591 * will set this flag, after which this thread will take over 592 * all further clearing of BLOCK_LOCKS. 593 * 594 * FIRST_MOUNT means this node is doing first mounter recovery, 595 * for which recovery control is handled by 596 * control_mount()/control_first_done(), not this thread. 597 */ 598 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || 599 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 600 spin_unlock(&ls->ls_recover_spin); 601 return; 602 } 603 block_gen = ls->ls_recover_block; 604 start_gen = ls->ls_recover_start; 605 spin_unlock(&ls->ls_recover_spin); 606 607 /* 608 * Equal block_gen and start_gen implies we are between 609 * recover_prep and recover_done callbacks, which means 610 * dlm recovery is in progress and dlm locking is blocked. 611 * There's no point trying to do any work until recover_done. 612 */ 613 614 if (block_gen == start_gen) 615 return; 616 617 /* 618 * Propagate recover_submit[] and recover_result[] to lvb: 619 * dlm_recoverd adds to recover_submit[] jids needing recovery 620 * gfs2_recover adds to recover_result[] journal recovery results 621 * 622 * set lvb bit for jids in recover_submit[] if the lvb has not 623 * yet been updated for the generation of the failure 624 * 625 * clear lvb bit for jids in recover_result[] if the result of 626 * the journal recovery is SUCCESS 627 */ 628 629 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK); 630 if (error) { 631 fs_err(sdp, "control lock EX error %d\n", error); 632 return; 633 } 634 635 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits); 636 637 spin_lock(&ls->ls_recover_spin); 638 if (block_gen != ls->ls_recover_block || 639 start_gen != ls->ls_recover_start) { 640 fs_info(sdp, "recover generation %u block1 %u %u\n", 641 start_gen, block_gen, ls->ls_recover_block); 642 spin_unlock(&ls->ls_recover_spin); 643 control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); 644 return; 645 } 646 647 recover_size = ls->ls_recover_size; 648 649 if (lvb_gen <= start_gen) { 650 /* 651 * Clear lvb bits for jids we've successfully recovered. 652 * Because all nodes attempt to recover failed journals, 653 * a journal can be recovered multiple times successfully 654 * in succession. Only the first will really do recovery, 655 * the others find it clean, but still report a successful 656 * recovery. So, another node may have already recovered 657 * the jid and cleared the lvb bit for it. 658 */ 659 for (i = 0; i < recover_size; i++) { 660 if (ls->ls_recover_result[i] != LM_RD_SUCCESS) 661 continue; 662 663 ls->ls_recover_result[i] = 0; 664 665 if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) 666 continue; 667 668 __clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET); 669 write_lvb = 1; 670 } 671 } 672 673 if (lvb_gen == start_gen) { 674 /* 675 * Failed slots before start_gen are already set in lvb. 676 */ 677 for (i = 0; i < recover_size; i++) { 678 if (!ls->ls_recover_submit[i]) 679 continue; 680 if (ls->ls_recover_submit[i] < lvb_gen) 681 ls->ls_recover_submit[i] = 0; 682 } 683 } else if (lvb_gen < start_gen) { 684 /* 685 * Failed slots before start_gen are not yet set in lvb. 686 */ 687 for (i = 0; i < recover_size; i++) { 688 if (!ls->ls_recover_submit[i]) 689 continue; 690 if (ls->ls_recover_submit[i] < start_gen) { 691 ls->ls_recover_submit[i] = 0; 692 __set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET); 693 } 694 } 695 /* even if there are no bits to set, we need to write the 696 latest generation to the lvb */ 697 write_lvb = 1; 698 } else { 699 /* 700 * we should be getting a recover_done() for lvb_gen soon 701 */ 702 } 703 spin_unlock(&ls->ls_recover_spin); 704 705 if (write_lvb) { 706 control_lvb_write(ls, start_gen, ls->ls_lvb_bits); 707 flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK; 708 } else { 709 flags = DLM_LKF_CONVERT; 710 } 711 712 error = control_lock(sdp, DLM_LOCK_NL, flags); 713 if (error) { 714 fs_err(sdp, "control lock NL error %d\n", error); 715 return; 716 } 717 718 /* 719 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(), 720 * and clear a jid bit in the lvb if the recovery is a success. 721 * Eventually all journals will be recovered, all jid bits will 722 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS. 723 */ 724 725 for (i = 0; i < recover_size; i++) { 726 if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) { 727 fs_info(sdp, "recover generation %u jid %d\n", 728 start_gen, i); 729 gfs2_recover_set(sdp, i); 730 recover_set++; 731 } 732 } 733 if (recover_set) 734 return; 735 736 /* 737 * No more jid bits set in lvb, all recovery is done, unblock locks 738 * (unless a new recover_prep callback has occured blocking locks 739 * again while working above) 740 */ 741 742 spin_lock(&ls->ls_recover_spin); 743 if (ls->ls_recover_block == block_gen && 744 ls->ls_recover_start == start_gen) { 745 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 746 spin_unlock(&ls->ls_recover_spin); 747 fs_info(sdp, "recover generation %u done\n", start_gen); 748 gfs2_glock_thaw(sdp); 749 } else { 750 fs_info(sdp, "recover generation %u block2 %u %u\n", 751 start_gen, block_gen, ls->ls_recover_block); 752 spin_unlock(&ls->ls_recover_spin); 753 } 754 } 755 756 static int control_mount(struct gfs2_sbd *sdp) 757 { 758 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 759 uint32_t start_gen, block_gen, mount_gen, lvb_gen; 760 int mounted_mode; 761 int retries = 0; 762 int error; 763 764 memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb)); 765 memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb)); 766 memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE); 767 ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb; 768 init_completion(&ls->ls_sync_wait); 769 770 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 771 772 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK); 773 if (error) { 774 fs_err(sdp, "control_mount control_lock NL error %d\n", error); 775 return error; 776 } 777 778 error = mounted_lock(sdp, DLM_LOCK_NL, 0); 779 if (error) { 780 fs_err(sdp, "control_mount mounted_lock NL error %d\n", error); 781 control_unlock(sdp); 782 return error; 783 } 784 mounted_mode = DLM_LOCK_NL; 785 786 restart: 787 if (retries++ && signal_pending(current)) { 788 error = -EINTR; 789 goto fail; 790 } 791 792 /* 793 * We always start with both locks in NL. control_lock is 794 * demoted to NL below so we don't need to do it here. 795 */ 796 797 if (mounted_mode != DLM_LOCK_NL) { 798 error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); 799 if (error) 800 goto fail; 801 mounted_mode = DLM_LOCK_NL; 802 } 803 804 /* 805 * Other nodes need to do some work in dlm recovery and gfs2_control 806 * before the recover_done and control_lock will be ready for us below. 807 * A delay here is not required but often avoids having to retry. 808 */ 809 810 msleep_interruptible(500); 811 812 /* 813 * Acquire control_lock in EX and mounted_lock in either EX or PR. 814 * control_lock lvb keeps track of any pending journal recoveries. 815 * mounted_lock indicates if any other nodes have the fs mounted. 816 */ 817 818 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK); 819 if (error == -EAGAIN) { 820 goto restart; 821 } else if (error) { 822 fs_err(sdp, "control_mount control_lock EX error %d\n", error); 823 goto fail; 824 } 825 826 error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE); 827 if (!error) { 828 mounted_mode = DLM_LOCK_EX; 829 goto locks_done; 830 } else if (error != -EAGAIN) { 831 fs_err(sdp, "control_mount mounted_lock EX error %d\n", error); 832 goto fail; 833 } 834 835 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE); 836 if (!error) { 837 mounted_mode = DLM_LOCK_PR; 838 goto locks_done; 839 } else { 840 /* not even -EAGAIN should happen here */ 841 fs_err(sdp, "control_mount mounted_lock PR error %d\n", error); 842 goto fail; 843 } 844 845 locks_done: 846 /* 847 * If we got both locks above in EX, then we're the first mounter. 848 * If not, then we need to wait for the control_lock lvb to be 849 * updated by other mounted nodes to reflect our mount generation. 850 * 851 * In simple first mounter cases, first mounter will see zero lvb_gen, 852 * but in cases where all existing nodes leave/fail before mounting 853 * nodes finish control_mount, then all nodes will be mounting and 854 * lvb_gen will be non-zero. 855 */ 856 857 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits); 858 859 if (lvb_gen == 0xFFFFFFFF) { 860 /* special value to force mount attempts to fail */ 861 fs_err(sdp, "control_mount control_lock disabled\n"); 862 error = -EINVAL; 863 goto fail; 864 } 865 866 if (mounted_mode == DLM_LOCK_EX) { 867 /* first mounter, keep both EX while doing first recovery */ 868 spin_lock(&ls->ls_recover_spin); 869 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 870 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags); 871 set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); 872 spin_unlock(&ls->ls_recover_spin); 873 fs_info(sdp, "first mounter control generation %u\n", lvb_gen); 874 return 0; 875 } 876 877 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); 878 if (error) 879 goto fail; 880 881 /* 882 * We are not first mounter, now we need to wait for the control_lock 883 * lvb generation to be >= the generation from our first recover_done 884 * and all lvb bits to be clear (no pending journal recoveries.) 885 */ 886 887 if (!all_jid_bits_clear(ls->ls_lvb_bits)) { 888 /* journals need recovery, wait until all are clear */ 889 fs_info(sdp, "control_mount wait for journal recovery\n"); 890 goto restart; 891 } 892 893 spin_lock(&ls->ls_recover_spin); 894 block_gen = ls->ls_recover_block; 895 start_gen = ls->ls_recover_start; 896 mount_gen = ls->ls_recover_mount; 897 898 if (lvb_gen < mount_gen) { 899 /* wait for mounted nodes to update control_lock lvb to our 900 generation, which might include new recovery bits set */ 901 fs_info(sdp, "control_mount wait1 block %u start %u mount %u " 902 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen, 903 lvb_gen, ls->ls_recover_flags); 904 spin_unlock(&ls->ls_recover_spin); 905 goto restart; 906 } 907 908 if (lvb_gen != start_gen) { 909 /* wait for mounted nodes to update control_lock lvb to the 910 latest recovery generation */ 911 fs_info(sdp, "control_mount wait2 block %u start %u mount %u " 912 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen, 913 lvb_gen, ls->ls_recover_flags); 914 spin_unlock(&ls->ls_recover_spin); 915 goto restart; 916 } 917 918 if (block_gen == start_gen) { 919 /* dlm recovery in progress, wait for it to finish */ 920 fs_info(sdp, "control_mount wait3 block %u start %u mount %u " 921 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen, 922 lvb_gen, ls->ls_recover_flags); 923 spin_unlock(&ls->ls_recover_spin); 924 goto restart; 925 } 926 927 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 928 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags); 929 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t)); 930 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t)); 931 spin_unlock(&ls->ls_recover_spin); 932 return 0; 933 934 fail: 935 mounted_unlock(sdp); 936 control_unlock(sdp); 937 return error; 938 } 939 940 static int control_first_done(struct gfs2_sbd *sdp) 941 { 942 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 943 uint32_t start_gen, block_gen; 944 int error; 945 946 restart: 947 spin_lock(&ls->ls_recover_spin); 948 start_gen = ls->ls_recover_start; 949 block_gen = ls->ls_recover_block; 950 951 if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) || 952 !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || 953 !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 954 /* sanity check, should not happen */ 955 fs_err(sdp, "control_first_done start %u block %u flags %lx\n", 956 start_gen, block_gen, ls->ls_recover_flags); 957 spin_unlock(&ls->ls_recover_spin); 958 control_unlock(sdp); 959 return -1; 960 } 961 962 if (start_gen == block_gen) { 963 /* 964 * Wait for the end of a dlm recovery cycle to switch from 965 * first mounter recovery. We can ignore any recover_slot 966 * callbacks between the recover_prep and next recover_done 967 * because we are still the first mounter and any failed nodes 968 * have not fully mounted, so they don't need recovery. 969 */ 970 spin_unlock(&ls->ls_recover_spin); 971 fs_info(sdp, "control_first_done wait gen %u\n", start_gen); 972 973 wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY, 974 TASK_UNINTERRUPTIBLE); 975 goto restart; 976 } 977 978 clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); 979 set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags); 980 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t)); 981 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t)); 982 spin_unlock(&ls->ls_recover_spin); 983 984 memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE); 985 control_lvb_write(ls, start_gen, ls->ls_lvb_bits); 986 987 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT); 988 if (error) 989 fs_err(sdp, "control_first_done mounted PR error %d\n", error); 990 991 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK); 992 if (error) 993 fs_err(sdp, "control_first_done control NL error %d\n", error); 994 995 return error; 996 } 997 998 /* 999 * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC) 1000 * to accomodate the largest slot number. (NB dlm slot numbers start at 1, 1001 * gfs2 jids start at 0, so jid = slot - 1) 1002 */ 1003 1004 #define RECOVER_SIZE_INC 16 1005 1006 static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots, 1007 int num_slots) 1008 { 1009 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1010 uint32_t *submit = NULL; 1011 uint32_t *result = NULL; 1012 uint32_t old_size, new_size; 1013 int i, max_jid; 1014 1015 if (!ls->ls_lvb_bits) { 1016 ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS); 1017 if (!ls->ls_lvb_bits) 1018 return -ENOMEM; 1019 } 1020 1021 max_jid = 0; 1022 for (i = 0; i < num_slots; i++) { 1023 if (max_jid < slots[i].slot - 1) 1024 max_jid = slots[i].slot - 1; 1025 } 1026 1027 old_size = ls->ls_recover_size; 1028 1029 if (old_size >= max_jid + 1) 1030 return 0; 1031 1032 new_size = old_size + RECOVER_SIZE_INC; 1033 1034 submit = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS); 1035 result = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS); 1036 if (!submit || !result) { 1037 kfree(submit); 1038 kfree(result); 1039 return -ENOMEM; 1040 } 1041 1042 spin_lock(&ls->ls_recover_spin); 1043 memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t)); 1044 memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t)); 1045 kfree(ls->ls_recover_submit); 1046 kfree(ls->ls_recover_result); 1047 ls->ls_recover_submit = submit; 1048 ls->ls_recover_result = result; 1049 ls->ls_recover_size = new_size; 1050 spin_unlock(&ls->ls_recover_spin); 1051 return 0; 1052 } 1053 1054 static void free_recover_size(struct lm_lockstruct *ls) 1055 { 1056 kfree(ls->ls_lvb_bits); 1057 kfree(ls->ls_recover_submit); 1058 kfree(ls->ls_recover_result); 1059 ls->ls_recover_submit = NULL; 1060 ls->ls_recover_result = NULL; 1061 ls->ls_recover_size = 0; 1062 } 1063 1064 /* dlm calls before it does lock recovery */ 1065 1066 static void gdlm_recover_prep(void *arg) 1067 { 1068 struct gfs2_sbd *sdp = arg; 1069 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1070 1071 spin_lock(&ls->ls_recover_spin); 1072 ls->ls_recover_block = ls->ls_recover_start; 1073 set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags); 1074 1075 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || 1076 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 1077 spin_unlock(&ls->ls_recover_spin); 1078 return; 1079 } 1080 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 1081 spin_unlock(&ls->ls_recover_spin); 1082 } 1083 1084 /* dlm calls after recover_prep has been completed on all lockspace members; 1085 identifies slot/jid of failed member */ 1086 1087 static void gdlm_recover_slot(void *arg, struct dlm_slot *slot) 1088 { 1089 struct gfs2_sbd *sdp = arg; 1090 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1091 int jid = slot->slot - 1; 1092 1093 spin_lock(&ls->ls_recover_spin); 1094 if (ls->ls_recover_size < jid + 1) { 1095 fs_err(sdp, "recover_slot jid %d gen %u short size %d", 1096 jid, ls->ls_recover_block, ls->ls_recover_size); 1097 spin_unlock(&ls->ls_recover_spin); 1098 return; 1099 } 1100 1101 if (ls->ls_recover_submit[jid]) { 1102 fs_info(sdp, "recover_slot jid %d gen %u prev %u\n", 1103 jid, ls->ls_recover_block, ls->ls_recover_submit[jid]); 1104 } 1105 ls->ls_recover_submit[jid] = ls->ls_recover_block; 1106 spin_unlock(&ls->ls_recover_spin); 1107 } 1108 1109 /* dlm calls after recover_slot and after it completes lock recovery */ 1110 1111 static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots, 1112 int our_slot, uint32_t generation) 1113 { 1114 struct gfs2_sbd *sdp = arg; 1115 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1116 1117 /* ensure the ls jid arrays are large enough */ 1118 set_recover_size(sdp, slots, num_slots); 1119 1120 spin_lock(&ls->ls_recover_spin); 1121 ls->ls_recover_start = generation; 1122 1123 if (!ls->ls_recover_mount) { 1124 ls->ls_recover_mount = generation; 1125 ls->ls_jid = our_slot - 1; 1126 } 1127 1128 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) 1129 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0); 1130 1131 clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags); 1132 smp_mb__after_atomic(); 1133 wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY); 1134 spin_unlock(&ls->ls_recover_spin); 1135 } 1136 1137 /* gfs2_recover thread has a journal recovery result */ 1138 1139 static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid, 1140 unsigned int result) 1141 { 1142 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1143 1144 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) 1145 return; 1146 1147 /* don't care about the recovery of own journal during mount */ 1148 if (jid == ls->ls_jid) 1149 return; 1150 1151 spin_lock(&ls->ls_recover_spin); 1152 if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 1153 spin_unlock(&ls->ls_recover_spin); 1154 return; 1155 } 1156 if (ls->ls_recover_size < jid + 1) { 1157 fs_err(sdp, "recovery_result jid %d short size %d", 1158 jid, ls->ls_recover_size); 1159 spin_unlock(&ls->ls_recover_spin); 1160 return; 1161 } 1162 1163 fs_info(sdp, "recover jid %d result %s\n", jid, 1164 result == LM_RD_GAVEUP ? "busy" : "success"); 1165 1166 ls->ls_recover_result[jid] = result; 1167 1168 /* GAVEUP means another node is recovering the journal; delay our 1169 next attempt to recover it, to give the other node a chance to 1170 finish before trying again */ 1171 1172 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) 1173 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 1174 result == LM_RD_GAVEUP ? HZ : 0); 1175 spin_unlock(&ls->ls_recover_spin); 1176 } 1177 1178 const struct dlm_lockspace_ops gdlm_lockspace_ops = { 1179 .recover_prep = gdlm_recover_prep, 1180 .recover_slot = gdlm_recover_slot, 1181 .recover_done = gdlm_recover_done, 1182 }; 1183 1184 static int gdlm_mount(struct gfs2_sbd *sdp, const char *table) 1185 { 1186 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1187 char cluster[GFS2_LOCKNAME_LEN]; 1188 const char *fsname; 1189 uint32_t flags; 1190 int error, ops_result; 1191 1192 /* 1193 * initialize everything 1194 */ 1195 1196 INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func); 1197 spin_lock_init(&ls->ls_recover_spin); 1198 ls->ls_recover_flags = 0; 1199 ls->ls_recover_mount = 0; 1200 ls->ls_recover_start = 0; 1201 ls->ls_recover_block = 0; 1202 ls->ls_recover_size = 0; 1203 ls->ls_recover_submit = NULL; 1204 ls->ls_recover_result = NULL; 1205 ls->ls_lvb_bits = NULL; 1206 1207 error = set_recover_size(sdp, NULL, 0); 1208 if (error) 1209 goto fail; 1210 1211 /* 1212 * prepare dlm_new_lockspace args 1213 */ 1214 1215 fsname = strchr(table, ':'); 1216 if (!fsname) { 1217 fs_info(sdp, "no fsname found\n"); 1218 error = -EINVAL; 1219 goto fail_free; 1220 } 1221 memset(cluster, 0, sizeof(cluster)); 1222 memcpy(cluster, table, strlen(table) - strlen(fsname)); 1223 fsname++; 1224 1225 flags = DLM_LSFL_FS | DLM_LSFL_NEWEXCL; 1226 1227 /* 1228 * create/join lockspace 1229 */ 1230 1231 error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE, 1232 &gdlm_lockspace_ops, sdp, &ops_result, 1233 &ls->ls_dlm); 1234 if (error) { 1235 fs_err(sdp, "dlm_new_lockspace error %d\n", error); 1236 goto fail_free; 1237 } 1238 1239 if (ops_result < 0) { 1240 /* 1241 * dlm does not support ops callbacks, 1242 * old dlm_controld/gfs_controld are used, try without ops. 1243 */ 1244 fs_info(sdp, "dlm lockspace ops not used\n"); 1245 free_recover_size(ls); 1246 set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags); 1247 return 0; 1248 } 1249 1250 if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) { 1251 fs_err(sdp, "dlm lockspace ops disallow jid preset\n"); 1252 error = -EINVAL; 1253 goto fail_release; 1254 } 1255 1256 /* 1257 * control_mount() uses control_lock to determine first mounter, 1258 * and for later mounts, waits for any recoveries to be cleared. 1259 */ 1260 1261 error = control_mount(sdp); 1262 if (error) { 1263 fs_err(sdp, "mount control error %d\n", error); 1264 goto fail_release; 1265 } 1266 1267 ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); 1268 clear_bit(SDF_NOJOURNALID, &sdp->sd_flags); 1269 smp_mb__after_atomic(); 1270 wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID); 1271 return 0; 1272 1273 fail_release: 1274 dlm_release_lockspace(ls->ls_dlm, 2); 1275 fail_free: 1276 free_recover_size(ls); 1277 fail: 1278 return error; 1279 } 1280 1281 static void gdlm_first_done(struct gfs2_sbd *sdp) 1282 { 1283 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1284 int error; 1285 1286 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) 1287 return; 1288 1289 error = control_first_done(sdp); 1290 if (error) 1291 fs_err(sdp, "mount first_done error %d\n", error); 1292 } 1293 1294 static void gdlm_unmount(struct gfs2_sbd *sdp) 1295 { 1296 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1297 1298 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) 1299 goto release; 1300 1301 /* wait for gfs2_control_wq to be done with this mount */ 1302 1303 spin_lock(&ls->ls_recover_spin); 1304 set_bit(DFL_UNMOUNT, &ls->ls_recover_flags); 1305 spin_unlock(&ls->ls_recover_spin); 1306 flush_delayed_work(&sdp->sd_control_work); 1307 1308 /* mounted_lock and control_lock will be purged in dlm recovery */ 1309 release: 1310 if (ls->ls_dlm) { 1311 dlm_release_lockspace(ls->ls_dlm, 2); 1312 ls->ls_dlm = NULL; 1313 } 1314 1315 free_recover_size(ls); 1316 } 1317 1318 static const match_table_t dlm_tokens = { 1319 { Opt_jid, "jid=%d"}, 1320 { Opt_id, "id=%d"}, 1321 { Opt_first, "first=%d"}, 1322 { Opt_nodir, "nodir=%d"}, 1323 { Opt_err, NULL }, 1324 }; 1325 1326 const struct lm_lockops gfs2_dlm_ops = { 1327 .lm_proto_name = "lock_dlm", 1328 .lm_mount = gdlm_mount, 1329 .lm_first_done = gdlm_first_done, 1330 .lm_recovery_result = gdlm_recovery_result, 1331 .lm_unmount = gdlm_unmount, 1332 .lm_put_lock = gdlm_put_lock, 1333 .lm_lock = gdlm_lock, 1334 .lm_cancel = gdlm_cancel, 1335 .lm_tokens = &dlm_tokens, 1336 }; 1337 1338