1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 4 * Copyright 2004-2011 Red Hat, Inc. 5 */ 6 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 9 #include <linux/fs.h> 10 #include <linux/dlm.h> 11 #include <linux/slab.h> 12 #include <linux/types.h> 13 #include <linux/delay.h> 14 #include <linux/gfs2_ondisk.h> 15 #include <linux/sched/signal.h> 16 17 #include "incore.h" 18 #include "glock.h" 19 #include "glops.h" 20 #include "recovery.h" 21 #include "util.h" 22 #include "sys.h" 23 #include "trace_gfs2.h" 24 25 /** 26 * gfs2_update_stats - Update time based stats 27 * @s: The stats to update (local or global) 28 * @index: The index inside @s 29 * @sample: New data to include 30 */ 31 static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index, 32 s64 sample) 33 { 34 /* 35 * @delta is the difference between the current rtt sample and the 36 * running average srtt. We add 1/8 of that to the srtt in order to 37 * update the current srtt estimate. The variance estimate is a bit 38 * more complicated. We subtract the current variance estimate from 39 * the abs value of the @delta and add 1/4 of that to the running 40 * total. That's equivalent to 3/4 of the current variance 41 * estimate plus 1/4 of the abs of @delta. 42 * 43 * Note that the index points at the array entry containing the 44 * smoothed mean value, and the variance is always in the following 45 * entry 46 * 47 * Reference: TCP/IP Illustrated, vol 2, p. 831,832 48 * All times are in units of integer nanoseconds. Unlike the TCP/IP 49 * case, they are not scaled fixed point. 50 */ 51 52 s64 delta = sample - s->stats[index]; 53 s->stats[index] += (delta >> 3); 54 index++; 55 s->stats[index] += (s64)(abs(delta) - s->stats[index]) >> 2; 56 } 57 58 /** 59 * gfs2_update_reply_times - Update locking statistics 60 * @gl: The glock to update 61 * 62 * This assumes that gl->gl_dstamp has been set earlier. 63 * 64 * The rtt (lock round trip time) is an estimate of the time 65 * taken to perform a dlm lock request. We update it on each 66 * reply from the dlm. 67 * 68 * The blocking flag is set on the glock for all dlm requests 69 * which may potentially block due to lock requests from other nodes. 70 * DLM requests where the current lock state is exclusive, the 71 * requested state is null (or unlocked) or where the TRY or 72 * TRY_1CB flags are set are classified as non-blocking. All 73 * other DLM requests are counted as (potentially) blocking. 74 */ 75 static inline void gfs2_update_reply_times(struct gfs2_glock *gl) 76 { 77 struct gfs2_pcpu_lkstats *lks; 78 const unsigned gltype = gl->gl_name.ln_type; 79 unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ? 80 GFS2_LKS_SRTTB : GFS2_LKS_SRTT; 81 s64 rtt; 82 83 preempt_disable(); 84 rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp)); 85 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats); 86 gfs2_update_stats(&gl->gl_stats, index, rtt); /* Local */ 87 gfs2_update_stats(&lks->lkstats[gltype], index, rtt); /* Global */ 88 preempt_enable(); 89 90 trace_gfs2_glock_lock_time(gl, rtt); 91 } 92 93 /** 94 * gfs2_update_request_times - Update locking statistics 95 * @gl: The glock to update 96 * 97 * The irt (lock inter-request times) measures the average time 98 * between requests to the dlm. It is updated immediately before 99 * each dlm call. 100 */ 101 102 static inline void gfs2_update_request_times(struct gfs2_glock *gl) 103 { 104 struct gfs2_pcpu_lkstats *lks; 105 const unsigned gltype = gl->gl_name.ln_type; 106 ktime_t dstamp; 107 s64 irt; 108 109 preempt_disable(); 110 dstamp = gl->gl_dstamp; 111 gl->gl_dstamp = ktime_get_real(); 112 irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp)); 113 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats); 114 gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt); /* Local */ 115 gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt); /* Global */ 116 preempt_enable(); 117 } 118 119 static void gdlm_ast(void *arg) 120 { 121 struct gfs2_glock *gl = arg; 122 unsigned ret = gl->gl_state; 123 124 gfs2_update_reply_times(gl); 125 BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED); 126 127 if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr) 128 memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE); 129 130 switch (gl->gl_lksb.sb_status) { 131 case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */ 132 if (gl->gl_ops->go_free) 133 gl->gl_ops->go_free(gl); 134 gfs2_glock_free(gl); 135 return; 136 case -DLM_ECANCEL: /* Cancel while getting lock */ 137 ret |= LM_OUT_CANCELED; 138 goto out; 139 case -EAGAIN: /* Try lock fails */ 140 case -EDEADLK: /* Deadlock detected */ 141 goto out; 142 case -ETIMEDOUT: /* Canceled due to timeout */ 143 ret |= LM_OUT_ERROR; 144 goto out; 145 case 0: /* Success */ 146 break; 147 default: /* Something unexpected */ 148 BUG(); 149 } 150 151 ret = gl->gl_req; 152 if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) { 153 if (gl->gl_req == LM_ST_SHARED) 154 ret = LM_ST_DEFERRED; 155 else if (gl->gl_req == LM_ST_DEFERRED) 156 ret = LM_ST_SHARED; 157 else 158 BUG(); 159 } 160 161 set_bit(GLF_INITIAL, &gl->gl_flags); 162 gfs2_glock_complete(gl, ret); 163 return; 164 out: 165 if (!test_bit(GLF_INITIAL, &gl->gl_flags)) 166 gl->gl_lksb.sb_lkid = 0; 167 gfs2_glock_complete(gl, ret); 168 } 169 170 static void gdlm_bast(void *arg, int mode) 171 { 172 struct gfs2_glock *gl = arg; 173 174 switch (mode) { 175 case DLM_LOCK_EX: 176 gfs2_glock_cb(gl, LM_ST_UNLOCKED); 177 break; 178 case DLM_LOCK_CW: 179 gfs2_glock_cb(gl, LM_ST_DEFERRED); 180 break; 181 case DLM_LOCK_PR: 182 gfs2_glock_cb(gl, LM_ST_SHARED); 183 break; 184 default: 185 fs_err(gl->gl_name.ln_sbd, "unknown bast mode %d\n", mode); 186 BUG(); 187 } 188 } 189 190 /* convert gfs lock-state to dlm lock-mode */ 191 192 static int make_mode(struct gfs2_sbd *sdp, const unsigned int lmstate) 193 { 194 switch (lmstate) { 195 case LM_ST_UNLOCKED: 196 return DLM_LOCK_NL; 197 case LM_ST_EXCLUSIVE: 198 return DLM_LOCK_EX; 199 case LM_ST_DEFERRED: 200 return DLM_LOCK_CW; 201 case LM_ST_SHARED: 202 return DLM_LOCK_PR; 203 } 204 fs_err(sdp, "unknown LM state %d\n", lmstate); 205 BUG(); 206 return -1; 207 } 208 209 static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags, 210 const int req) 211 { 212 u32 lkf = 0; 213 214 if (gl->gl_lksb.sb_lvbptr) 215 lkf |= DLM_LKF_VALBLK; 216 217 if (gfs_flags & LM_FLAG_TRY) 218 lkf |= DLM_LKF_NOQUEUE; 219 220 if (gfs_flags & LM_FLAG_TRY_1CB) { 221 lkf |= DLM_LKF_NOQUEUE; 222 lkf |= DLM_LKF_NOQUEUEBAST; 223 } 224 225 if (gfs_flags & LM_FLAG_PRIORITY) { 226 lkf |= DLM_LKF_NOORDER; 227 lkf |= DLM_LKF_HEADQUE; 228 } 229 230 if (gfs_flags & LM_FLAG_ANY) { 231 if (req == DLM_LOCK_PR) 232 lkf |= DLM_LKF_ALTCW; 233 else if (req == DLM_LOCK_CW) 234 lkf |= DLM_LKF_ALTPR; 235 else 236 BUG(); 237 } 238 239 if (gl->gl_lksb.sb_lkid != 0) { 240 lkf |= DLM_LKF_CONVERT; 241 if (test_bit(GLF_BLOCKING, &gl->gl_flags)) 242 lkf |= DLM_LKF_QUECVT; 243 } 244 245 return lkf; 246 } 247 248 static void gfs2_reverse_hex(char *c, u64 value) 249 { 250 *c = '0'; 251 while (value) { 252 *c-- = hex_asc[value & 0x0f]; 253 value >>= 4; 254 } 255 } 256 257 static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state, 258 unsigned int flags) 259 { 260 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct; 261 int req; 262 u32 lkf; 263 char strname[GDLM_STRNAME_BYTES] = ""; 264 int error; 265 266 req = make_mode(gl->gl_name.ln_sbd, req_state); 267 lkf = make_flags(gl, flags, req); 268 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT); 269 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT); 270 if (gl->gl_lksb.sb_lkid) { 271 gfs2_update_request_times(gl); 272 } else { 273 memset(strname, ' ', GDLM_STRNAME_BYTES - 1); 274 strname[GDLM_STRNAME_BYTES - 1] = '\0'; 275 gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type); 276 gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number); 277 gl->gl_dstamp = ktime_get_real(); 278 } 279 /* 280 * Submit the actual lock request. 281 */ 282 283 again: 284 error = dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname, 285 GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast); 286 if (error == -EBUSY) { 287 msleep(20); 288 goto again; 289 } 290 return error; 291 } 292 293 static void gdlm_put_lock(struct gfs2_glock *gl) 294 { 295 struct gfs2_sbd *sdp = gl->gl_name.ln_sbd; 296 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 297 int error; 298 299 if (gl->gl_lksb.sb_lkid == 0) 300 goto out_free; 301 302 clear_bit(GLF_BLOCKING, &gl->gl_flags); 303 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT); 304 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT); 305 gfs2_update_request_times(gl); 306 307 /* don't want to call dlm if we've unmounted the lock protocol */ 308 if (test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) 309 goto out_free; 310 /* don't want to skip dlm_unlock writing the lvb when lock has one */ 311 312 if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) && 313 !gl->gl_lksb.sb_lvbptr) 314 goto out_free; 315 316 again: 317 error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK, 318 NULL, gl); 319 if (error == -EBUSY) { 320 msleep(20); 321 goto again; 322 } 323 324 if (error) { 325 fs_err(sdp, "gdlm_unlock %x,%llx err=%d\n", 326 gl->gl_name.ln_type, 327 (unsigned long long)gl->gl_name.ln_number, error); 328 } 329 return; 330 331 out_free: 332 gfs2_glock_free(gl); 333 } 334 335 static void gdlm_cancel(struct gfs2_glock *gl) 336 { 337 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct; 338 dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl); 339 } 340 341 /* 342 * dlm/gfs2 recovery coordination using dlm_recover callbacks 343 * 344 * 0. gfs2 checks for another cluster node withdraw, needing journal replay 345 * 1. dlm_controld sees lockspace members change 346 * 2. dlm_controld blocks dlm-kernel locking activity 347 * 3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep) 348 * 4. dlm_controld starts and finishes its own user level recovery 349 * 5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery 350 * 6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot) 351 * 7. dlm_recoverd does its own lock recovery 352 * 8. dlm_recoverd unblocks dlm-kernel locking activity 353 * 9. dlm_recoverd notifies gfs2 when done (recover_done with new generation) 354 * 10. gfs2_control updates control_lock lvb with new generation and jid bits 355 * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none) 356 * 12. gfs2_recover dequeues and recovers journals of failed nodes 357 * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result) 358 * 14. gfs2_control updates control_lock lvb jid bits for recovered journals 359 * 15. gfs2_control unblocks normal locking when all journals are recovered 360 * 361 * - failures during recovery 362 * 363 * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control 364 * clears BLOCK_LOCKS (step 15), e.g. another node fails while still 365 * recovering for a prior failure. gfs2_control needs a way to detect 366 * this so it can leave BLOCK_LOCKS set in step 15. This is managed using 367 * the recover_block and recover_start values. 368 * 369 * recover_done() provides a new lockspace generation number each time it 370 * is called (step 9). This generation number is saved as recover_start. 371 * When recover_prep() is called, it sets BLOCK_LOCKS and sets 372 * recover_block = recover_start. So, while recover_block is equal to 373 * recover_start, BLOCK_LOCKS should remain set. (recover_spin must 374 * be held around the BLOCK_LOCKS/recover_block/recover_start logic.) 375 * 376 * - more specific gfs2 steps in sequence above 377 * 378 * 3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start 379 * 6. recover_slot records any failed jids (maybe none) 380 * 9. recover_done sets recover_start = new generation number 381 * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids 382 * 12. gfs2_recover does journal recoveries for failed jids identified above 383 * 14. gfs2_control clears control_lock lvb bits for recovered jids 384 * 15. gfs2_control checks if recover_block == recover_start (step 3 occured 385 * again) then do nothing, otherwise if recover_start > recover_block 386 * then clear BLOCK_LOCKS. 387 * 388 * - parallel recovery steps across all nodes 389 * 390 * All nodes attempt to update the control_lock lvb with the new generation 391 * number and jid bits, but only the first to get the control_lock EX will 392 * do so; others will see that it's already done (lvb already contains new 393 * generation number.) 394 * 395 * . All nodes get the same recover_prep/recover_slot/recover_done callbacks 396 * . All nodes attempt to set control_lock lvb gen + bits for the new gen 397 * . One node gets control_lock first and writes the lvb, others see it's done 398 * . All nodes attempt to recover jids for which they see control_lock bits set 399 * . One node succeeds for a jid, and that one clears the jid bit in the lvb 400 * . All nodes will eventually see all lvb bits clear and unblock locks 401 * 402 * - is there a problem with clearing an lvb bit that should be set 403 * and missing a journal recovery? 404 * 405 * 1. jid fails 406 * 2. lvb bit set for step 1 407 * 3. jid recovered for step 1 408 * 4. jid taken again (new mount) 409 * 5. jid fails (for step 4) 410 * 6. lvb bit set for step 5 (will already be set) 411 * 7. lvb bit cleared for step 3 412 * 413 * This is not a problem because the failure in step 5 does not 414 * require recovery, because the mount in step 4 could not have 415 * progressed far enough to unblock locks and access the fs. The 416 * control_mount() function waits for all recoveries to be complete 417 * for the latest lockspace generation before ever unblocking locks 418 * and returning. The mount in step 4 waits until the recovery in 419 * step 1 is done. 420 * 421 * - special case of first mounter: first node to mount the fs 422 * 423 * The first node to mount a gfs2 fs needs to check all the journals 424 * and recover any that need recovery before other nodes are allowed 425 * to mount the fs. (Others may begin mounting, but they must wait 426 * for the first mounter to be done before taking locks on the fs 427 * or accessing the fs.) This has two parts: 428 * 429 * 1. The mounted_lock tells a node it's the first to mount the fs. 430 * Each node holds the mounted_lock in PR while it's mounted. 431 * Each node tries to acquire the mounted_lock in EX when it mounts. 432 * If a node is granted the mounted_lock EX it means there are no 433 * other mounted nodes (no PR locks exist), and it is the first mounter. 434 * The mounted_lock is demoted to PR when first recovery is done, so 435 * others will fail to get an EX lock, but will get a PR lock. 436 * 437 * 2. The control_lock blocks others in control_mount() while the first 438 * mounter is doing first mount recovery of all journals. 439 * A mounting node needs to acquire control_lock in EX mode before 440 * it can proceed. The first mounter holds control_lock in EX while doing 441 * the first mount recovery, blocking mounts from other nodes, then demotes 442 * control_lock to NL when it's done (others_may_mount/first_done), 443 * allowing other nodes to continue mounting. 444 * 445 * first mounter: 446 * control_lock EX/NOQUEUE success 447 * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters) 448 * set first=1 449 * do first mounter recovery 450 * mounted_lock EX->PR 451 * control_lock EX->NL, write lvb generation 452 * 453 * other mounter: 454 * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry) 455 * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR) 456 * mounted_lock PR/NOQUEUE success 457 * read lvb generation 458 * control_lock EX->NL 459 * set first=0 460 * 461 * - mount during recovery 462 * 463 * If a node mounts while others are doing recovery (not first mounter), 464 * the mounting node will get its initial recover_done() callback without 465 * having seen any previous failures/callbacks. 466 * 467 * It must wait for all recoveries preceding its mount to be finished 468 * before it unblocks locks. It does this by repeating the "other mounter" 469 * steps above until the lvb generation number is >= its mount generation 470 * number (from initial recover_done) and all lvb bits are clear. 471 * 472 * - control_lock lvb format 473 * 474 * 4 bytes generation number: the latest dlm lockspace generation number 475 * from recover_done callback. Indicates the jid bitmap has been updated 476 * to reflect all slot failures through that generation. 477 * 4 bytes unused. 478 * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates 479 * that jid N needs recovery. 480 */ 481 482 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */ 483 484 static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen, 485 char *lvb_bits) 486 { 487 __le32 gen; 488 memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE); 489 memcpy(&gen, lvb_bits, sizeof(__le32)); 490 *lvb_gen = le32_to_cpu(gen); 491 } 492 493 static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen, 494 char *lvb_bits) 495 { 496 __le32 gen; 497 memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE); 498 gen = cpu_to_le32(lvb_gen); 499 memcpy(ls->ls_control_lvb, &gen, sizeof(__le32)); 500 } 501 502 static int all_jid_bits_clear(char *lvb) 503 { 504 return !memchr_inv(lvb + JID_BITMAP_OFFSET, 0, 505 GDLM_LVB_SIZE - JID_BITMAP_OFFSET); 506 } 507 508 static void sync_wait_cb(void *arg) 509 { 510 struct lm_lockstruct *ls = arg; 511 complete(&ls->ls_sync_wait); 512 } 513 514 static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name) 515 { 516 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 517 int error; 518 519 error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls); 520 if (error) { 521 fs_err(sdp, "%s lkid %x error %d\n", 522 name, lksb->sb_lkid, error); 523 return error; 524 } 525 526 wait_for_completion(&ls->ls_sync_wait); 527 528 if (lksb->sb_status != -DLM_EUNLOCK) { 529 fs_err(sdp, "%s lkid %x status %d\n", 530 name, lksb->sb_lkid, lksb->sb_status); 531 return -1; 532 } 533 return 0; 534 } 535 536 static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags, 537 unsigned int num, struct dlm_lksb *lksb, char *name) 538 { 539 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 540 char strname[GDLM_STRNAME_BYTES]; 541 int error, status; 542 543 memset(strname, 0, GDLM_STRNAME_BYTES); 544 snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num); 545 546 error = dlm_lock(ls->ls_dlm, mode, lksb, flags, 547 strname, GDLM_STRNAME_BYTES - 1, 548 0, sync_wait_cb, ls, NULL); 549 if (error) { 550 fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n", 551 name, lksb->sb_lkid, flags, mode, error); 552 return error; 553 } 554 555 wait_for_completion(&ls->ls_sync_wait); 556 557 status = lksb->sb_status; 558 559 if (status && status != -EAGAIN) { 560 fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n", 561 name, lksb->sb_lkid, flags, mode, status); 562 } 563 564 return status; 565 } 566 567 static int mounted_unlock(struct gfs2_sbd *sdp) 568 { 569 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 570 return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock"); 571 } 572 573 static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags) 574 { 575 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 576 return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK, 577 &ls->ls_mounted_lksb, "mounted_lock"); 578 } 579 580 static int control_unlock(struct gfs2_sbd *sdp) 581 { 582 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 583 return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock"); 584 } 585 586 static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags) 587 { 588 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 589 return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK, 590 &ls->ls_control_lksb, "control_lock"); 591 } 592 593 /** 594 * remote_withdraw - react to a node withdrawing from the file system 595 * @sdp: The superblock 596 */ 597 static void remote_withdraw(struct gfs2_sbd *sdp) 598 { 599 struct gfs2_jdesc *jd; 600 int ret = 0, count = 0; 601 602 list_for_each_entry(jd, &sdp->sd_jindex_list, jd_list) { 603 if (jd->jd_jid == sdp->sd_lockstruct.ls_jid) 604 continue; 605 ret = gfs2_recover_journal(jd, true); 606 if (ret) 607 break; 608 count++; 609 } 610 611 /* Now drop the additional reference we acquired */ 612 fs_err(sdp, "Journals checked: %d, ret = %d.\n", count, ret); 613 } 614 615 static void gfs2_control_func(struct work_struct *work) 616 { 617 struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work); 618 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 619 uint32_t block_gen, start_gen, lvb_gen, flags; 620 int recover_set = 0; 621 int write_lvb = 0; 622 int recover_size; 623 int i, error; 624 625 /* First check for other nodes that may have done a withdraw. */ 626 if (test_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags)) { 627 remote_withdraw(sdp); 628 clear_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags); 629 return; 630 } 631 632 spin_lock(&ls->ls_recover_spin); 633 /* 634 * No MOUNT_DONE means we're still mounting; control_mount() 635 * will set this flag, after which this thread will take over 636 * all further clearing of BLOCK_LOCKS. 637 * 638 * FIRST_MOUNT means this node is doing first mounter recovery, 639 * for which recovery control is handled by 640 * control_mount()/control_first_done(), not this thread. 641 */ 642 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || 643 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 644 spin_unlock(&ls->ls_recover_spin); 645 return; 646 } 647 block_gen = ls->ls_recover_block; 648 start_gen = ls->ls_recover_start; 649 spin_unlock(&ls->ls_recover_spin); 650 651 /* 652 * Equal block_gen and start_gen implies we are between 653 * recover_prep and recover_done callbacks, which means 654 * dlm recovery is in progress and dlm locking is blocked. 655 * There's no point trying to do any work until recover_done. 656 */ 657 658 if (block_gen == start_gen) 659 return; 660 661 /* 662 * Propagate recover_submit[] and recover_result[] to lvb: 663 * dlm_recoverd adds to recover_submit[] jids needing recovery 664 * gfs2_recover adds to recover_result[] journal recovery results 665 * 666 * set lvb bit for jids in recover_submit[] if the lvb has not 667 * yet been updated for the generation of the failure 668 * 669 * clear lvb bit for jids in recover_result[] if the result of 670 * the journal recovery is SUCCESS 671 */ 672 673 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK); 674 if (error) { 675 fs_err(sdp, "control lock EX error %d\n", error); 676 return; 677 } 678 679 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits); 680 681 spin_lock(&ls->ls_recover_spin); 682 if (block_gen != ls->ls_recover_block || 683 start_gen != ls->ls_recover_start) { 684 fs_info(sdp, "recover generation %u block1 %u %u\n", 685 start_gen, block_gen, ls->ls_recover_block); 686 spin_unlock(&ls->ls_recover_spin); 687 control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); 688 return; 689 } 690 691 recover_size = ls->ls_recover_size; 692 693 if (lvb_gen <= start_gen) { 694 /* 695 * Clear lvb bits for jids we've successfully recovered. 696 * Because all nodes attempt to recover failed journals, 697 * a journal can be recovered multiple times successfully 698 * in succession. Only the first will really do recovery, 699 * the others find it clean, but still report a successful 700 * recovery. So, another node may have already recovered 701 * the jid and cleared the lvb bit for it. 702 */ 703 for (i = 0; i < recover_size; i++) { 704 if (ls->ls_recover_result[i] != LM_RD_SUCCESS) 705 continue; 706 707 ls->ls_recover_result[i] = 0; 708 709 if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) 710 continue; 711 712 __clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET); 713 write_lvb = 1; 714 } 715 } 716 717 if (lvb_gen == start_gen) { 718 /* 719 * Failed slots before start_gen are already set in lvb. 720 */ 721 for (i = 0; i < recover_size; i++) { 722 if (!ls->ls_recover_submit[i]) 723 continue; 724 if (ls->ls_recover_submit[i] < lvb_gen) 725 ls->ls_recover_submit[i] = 0; 726 } 727 } else if (lvb_gen < start_gen) { 728 /* 729 * Failed slots before start_gen are not yet set in lvb. 730 */ 731 for (i = 0; i < recover_size; i++) { 732 if (!ls->ls_recover_submit[i]) 733 continue; 734 if (ls->ls_recover_submit[i] < start_gen) { 735 ls->ls_recover_submit[i] = 0; 736 __set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET); 737 } 738 } 739 /* even if there are no bits to set, we need to write the 740 latest generation to the lvb */ 741 write_lvb = 1; 742 } else { 743 /* 744 * we should be getting a recover_done() for lvb_gen soon 745 */ 746 } 747 spin_unlock(&ls->ls_recover_spin); 748 749 if (write_lvb) { 750 control_lvb_write(ls, start_gen, ls->ls_lvb_bits); 751 flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK; 752 } else { 753 flags = DLM_LKF_CONVERT; 754 } 755 756 error = control_lock(sdp, DLM_LOCK_NL, flags); 757 if (error) { 758 fs_err(sdp, "control lock NL error %d\n", error); 759 return; 760 } 761 762 /* 763 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(), 764 * and clear a jid bit in the lvb if the recovery is a success. 765 * Eventually all journals will be recovered, all jid bits will 766 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS. 767 */ 768 769 for (i = 0; i < recover_size; i++) { 770 if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) { 771 fs_info(sdp, "recover generation %u jid %d\n", 772 start_gen, i); 773 gfs2_recover_set(sdp, i); 774 recover_set++; 775 } 776 } 777 if (recover_set) 778 return; 779 780 /* 781 * No more jid bits set in lvb, all recovery is done, unblock locks 782 * (unless a new recover_prep callback has occured blocking locks 783 * again while working above) 784 */ 785 786 spin_lock(&ls->ls_recover_spin); 787 if (ls->ls_recover_block == block_gen && 788 ls->ls_recover_start == start_gen) { 789 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 790 spin_unlock(&ls->ls_recover_spin); 791 fs_info(sdp, "recover generation %u done\n", start_gen); 792 gfs2_glock_thaw(sdp); 793 } else { 794 fs_info(sdp, "recover generation %u block2 %u %u\n", 795 start_gen, block_gen, ls->ls_recover_block); 796 spin_unlock(&ls->ls_recover_spin); 797 } 798 } 799 800 static int control_mount(struct gfs2_sbd *sdp) 801 { 802 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 803 uint32_t start_gen, block_gen, mount_gen, lvb_gen; 804 int mounted_mode; 805 int retries = 0; 806 int error; 807 808 memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb)); 809 memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb)); 810 memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE); 811 ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb; 812 init_completion(&ls->ls_sync_wait); 813 814 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 815 816 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK); 817 if (error) { 818 fs_err(sdp, "control_mount control_lock NL error %d\n", error); 819 return error; 820 } 821 822 error = mounted_lock(sdp, DLM_LOCK_NL, 0); 823 if (error) { 824 fs_err(sdp, "control_mount mounted_lock NL error %d\n", error); 825 control_unlock(sdp); 826 return error; 827 } 828 mounted_mode = DLM_LOCK_NL; 829 830 restart: 831 if (retries++ && signal_pending(current)) { 832 error = -EINTR; 833 goto fail; 834 } 835 836 /* 837 * We always start with both locks in NL. control_lock is 838 * demoted to NL below so we don't need to do it here. 839 */ 840 841 if (mounted_mode != DLM_LOCK_NL) { 842 error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); 843 if (error) 844 goto fail; 845 mounted_mode = DLM_LOCK_NL; 846 } 847 848 /* 849 * Other nodes need to do some work in dlm recovery and gfs2_control 850 * before the recover_done and control_lock will be ready for us below. 851 * A delay here is not required but often avoids having to retry. 852 */ 853 854 msleep_interruptible(500); 855 856 /* 857 * Acquire control_lock in EX and mounted_lock in either EX or PR. 858 * control_lock lvb keeps track of any pending journal recoveries. 859 * mounted_lock indicates if any other nodes have the fs mounted. 860 */ 861 862 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK); 863 if (error == -EAGAIN) { 864 goto restart; 865 } else if (error) { 866 fs_err(sdp, "control_mount control_lock EX error %d\n", error); 867 goto fail; 868 } 869 870 /** 871 * If we're a spectator, we don't want to take the lock in EX because 872 * we cannot do the first-mount responsibility it implies: recovery. 873 */ 874 if (sdp->sd_args.ar_spectator) 875 goto locks_done; 876 877 error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE); 878 if (!error) { 879 mounted_mode = DLM_LOCK_EX; 880 goto locks_done; 881 } else if (error != -EAGAIN) { 882 fs_err(sdp, "control_mount mounted_lock EX error %d\n", error); 883 goto fail; 884 } 885 886 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE); 887 if (!error) { 888 mounted_mode = DLM_LOCK_PR; 889 goto locks_done; 890 } else { 891 /* not even -EAGAIN should happen here */ 892 fs_err(sdp, "control_mount mounted_lock PR error %d\n", error); 893 goto fail; 894 } 895 896 locks_done: 897 /* 898 * If we got both locks above in EX, then we're the first mounter. 899 * If not, then we need to wait for the control_lock lvb to be 900 * updated by other mounted nodes to reflect our mount generation. 901 * 902 * In simple first mounter cases, first mounter will see zero lvb_gen, 903 * but in cases where all existing nodes leave/fail before mounting 904 * nodes finish control_mount, then all nodes will be mounting and 905 * lvb_gen will be non-zero. 906 */ 907 908 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits); 909 910 if (lvb_gen == 0xFFFFFFFF) { 911 /* special value to force mount attempts to fail */ 912 fs_err(sdp, "control_mount control_lock disabled\n"); 913 error = -EINVAL; 914 goto fail; 915 } 916 917 if (mounted_mode == DLM_LOCK_EX) { 918 /* first mounter, keep both EX while doing first recovery */ 919 spin_lock(&ls->ls_recover_spin); 920 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 921 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags); 922 set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); 923 spin_unlock(&ls->ls_recover_spin); 924 fs_info(sdp, "first mounter control generation %u\n", lvb_gen); 925 return 0; 926 } 927 928 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); 929 if (error) 930 goto fail; 931 932 /* 933 * We are not first mounter, now we need to wait for the control_lock 934 * lvb generation to be >= the generation from our first recover_done 935 * and all lvb bits to be clear (no pending journal recoveries.) 936 */ 937 938 if (!all_jid_bits_clear(ls->ls_lvb_bits)) { 939 /* journals need recovery, wait until all are clear */ 940 fs_info(sdp, "control_mount wait for journal recovery\n"); 941 goto restart; 942 } 943 944 spin_lock(&ls->ls_recover_spin); 945 block_gen = ls->ls_recover_block; 946 start_gen = ls->ls_recover_start; 947 mount_gen = ls->ls_recover_mount; 948 949 if (lvb_gen < mount_gen) { 950 /* wait for mounted nodes to update control_lock lvb to our 951 generation, which might include new recovery bits set */ 952 if (sdp->sd_args.ar_spectator) { 953 fs_info(sdp, "Recovery is required. Waiting for a " 954 "non-spectator to mount.\n"); 955 msleep_interruptible(1000); 956 } else { 957 fs_info(sdp, "control_mount wait1 block %u start %u " 958 "mount %u lvb %u flags %lx\n", block_gen, 959 start_gen, mount_gen, lvb_gen, 960 ls->ls_recover_flags); 961 } 962 spin_unlock(&ls->ls_recover_spin); 963 goto restart; 964 } 965 966 if (lvb_gen != start_gen) { 967 /* wait for mounted nodes to update control_lock lvb to the 968 latest recovery generation */ 969 fs_info(sdp, "control_mount wait2 block %u start %u mount %u " 970 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen, 971 lvb_gen, ls->ls_recover_flags); 972 spin_unlock(&ls->ls_recover_spin); 973 goto restart; 974 } 975 976 if (block_gen == start_gen) { 977 /* dlm recovery in progress, wait for it to finish */ 978 fs_info(sdp, "control_mount wait3 block %u start %u mount %u " 979 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen, 980 lvb_gen, ls->ls_recover_flags); 981 spin_unlock(&ls->ls_recover_spin); 982 goto restart; 983 } 984 985 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 986 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags); 987 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t)); 988 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t)); 989 spin_unlock(&ls->ls_recover_spin); 990 return 0; 991 992 fail: 993 mounted_unlock(sdp); 994 control_unlock(sdp); 995 return error; 996 } 997 998 static int control_first_done(struct gfs2_sbd *sdp) 999 { 1000 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1001 uint32_t start_gen, block_gen; 1002 int error; 1003 1004 restart: 1005 spin_lock(&ls->ls_recover_spin); 1006 start_gen = ls->ls_recover_start; 1007 block_gen = ls->ls_recover_block; 1008 1009 if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) || 1010 !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || 1011 !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 1012 /* sanity check, should not happen */ 1013 fs_err(sdp, "control_first_done start %u block %u flags %lx\n", 1014 start_gen, block_gen, ls->ls_recover_flags); 1015 spin_unlock(&ls->ls_recover_spin); 1016 control_unlock(sdp); 1017 return -1; 1018 } 1019 1020 if (start_gen == block_gen) { 1021 /* 1022 * Wait for the end of a dlm recovery cycle to switch from 1023 * first mounter recovery. We can ignore any recover_slot 1024 * callbacks between the recover_prep and next recover_done 1025 * because we are still the first mounter and any failed nodes 1026 * have not fully mounted, so they don't need recovery. 1027 */ 1028 spin_unlock(&ls->ls_recover_spin); 1029 fs_info(sdp, "control_first_done wait gen %u\n", start_gen); 1030 1031 wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY, 1032 TASK_UNINTERRUPTIBLE); 1033 goto restart; 1034 } 1035 1036 clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); 1037 set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags); 1038 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t)); 1039 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t)); 1040 spin_unlock(&ls->ls_recover_spin); 1041 1042 memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE); 1043 control_lvb_write(ls, start_gen, ls->ls_lvb_bits); 1044 1045 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT); 1046 if (error) 1047 fs_err(sdp, "control_first_done mounted PR error %d\n", error); 1048 1049 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK); 1050 if (error) 1051 fs_err(sdp, "control_first_done control NL error %d\n", error); 1052 1053 return error; 1054 } 1055 1056 /* 1057 * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC) 1058 * to accommodate the largest slot number. (NB dlm slot numbers start at 1, 1059 * gfs2 jids start at 0, so jid = slot - 1) 1060 */ 1061 1062 #define RECOVER_SIZE_INC 16 1063 1064 static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots, 1065 int num_slots) 1066 { 1067 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1068 uint32_t *submit = NULL; 1069 uint32_t *result = NULL; 1070 uint32_t old_size, new_size; 1071 int i, max_jid; 1072 1073 if (!ls->ls_lvb_bits) { 1074 ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS); 1075 if (!ls->ls_lvb_bits) 1076 return -ENOMEM; 1077 } 1078 1079 max_jid = 0; 1080 for (i = 0; i < num_slots; i++) { 1081 if (max_jid < slots[i].slot - 1) 1082 max_jid = slots[i].slot - 1; 1083 } 1084 1085 old_size = ls->ls_recover_size; 1086 new_size = old_size; 1087 while (new_size < max_jid + 1) 1088 new_size += RECOVER_SIZE_INC; 1089 if (new_size == old_size) 1090 return 0; 1091 1092 submit = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS); 1093 result = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS); 1094 if (!submit || !result) { 1095 kfree(submit); 1096 kfree(result); 1097 return -ENOMEM; 1098 } 1099 1100 spin_lock(&ls->ls_recover_spin); 1101 memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t)); 1102 memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t)); 1103 kfree(ls->ls_recover_submit); 1104 kfree(ls->ls_recover_result); 1105 ls->ls_recover_submit = submit; 1106 ls->ls_recover_result = result; 1107 ls->ls_recover_size = new_size; 1108 spin_unlock(&ls->ls_recover_spin); 1109 return 0; 1110 } 1111 1112 static void free_recover_size(struct lm_lockstruct *ls) 1113 { 1114 kfree(ls->ls_lvb_bits); 1115 kfree(ls->ls_recover_submit); 1116 kfree(ls->ls_recover_result); 1117 ls->ls_recover_submit = NULL; 1118 ls->ls_recover_result = NULL; 1119 ls->ls_recover_size = 0; 1120 ls->ls_lvb_bits = NULL; 1121 } 1122 1123 /* dlm calls before it does lock recovery */ 1124 1125 static void gdlm_recover_prep(void *arg) 1126 { 1127 struct gfs2_sbd *sdp = arg; 1128 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1129 1130 if (gfs2_withdrawn(sdp)) { 1131 fs_err(sdp, "recover_prep ignored due to withdraw.\n"); 1132 return; 1133 } 1134 spin_lock(&ls->ls_recover_spin); 1135 ls->ls_recover_block = ls->ls_recover_start; 1136 set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags); 1137 1138 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || 1139 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 1140 spin_unlock(&ls->ls_recover_spin); 1141 return; 1142 } 1143 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 1144 spin_unlock(&ls->ls_recover_spin); 1145 } 1146 1147 /* dlm calls after recover_prep has been completed on all lockspace members; 1148 identifies slot/jid of failed member */ 1149 1150 static void gdlm_recover_slot(void *arg, struct dlm_slot *slot) 1151 { 1152 struct gfs2_sbd *sdp = arg; 1153 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1154 int jid = slot->slot - 1; 1155 1156 if (gfs2_withdrawn(sdp)) { 1157 fs_err(sdp, "recover_slot jid %d ignored due to withdraw.\n", 1158 jid); 1159 return; 1160 } 1161 spin_lock(&ls->ls_recover_spin); 1162 if (ls->ls_recover_size < jid + 1) { 1163 fs_err(sdp, "recover_slot jid %d gen %u short size %d\n", 1164 jid, ls->ls_recover_block, ls->ls_recover_size); 1165 spin_unlock(&ls->ls_recover_spin); 1166 return; 1167 } 1168 1169 if (ls->ls_recover_submit[jid]) { 1170 fs_info(sdp, "recover_slot jid %d gen %u prev %u\n", 1171 jid, ls->ls_recover_block, ls->ls_recover_submit[jid]); 1172 } 1173 ls->ls_recover_submit[jid] = ls->ls_recover_block; 1174 spin_unlock(&ls->ls_recover_spin); 1175 } 1176 1177 /* dlm calls after recover_slot and after it completes lock recovery */ 1178 1179 static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots, 1180 int our_slot, uint32_t generation) 1181 { 1182 struct gfs2_sbd *sdp = arg; 1183 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1184 1185 if (gfs2_withdrawn(sdp)) { 1186 fs_err(sdp, "recover_done ignored due to withdraw.\n"); 1187 return; 1188 } 1189 /* ensure the ls jid arrays are large enough */ 1190 set_recover_size(sdp, slots, num_slots); 1191 1192 spin_lock(&ls->ls_recover_spin); 1193 ls->ls_recover_start = generation; 1194 1195 if (!ls->ls_recover_mount) { 1196 ls->ls_recover_mount = generation; 1197 ls->ls_jid = our_slot - 1; 1198 } 1199 1200 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) 1201 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0); 1202 1203 clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags); 1204 smp_mb__after_atomic(); 1205 wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY); 1206 spin_unlock(&ls->ls_recover_spin); 1207 } 1208 1209 /* gfs2_recover thread has a journal recovery result */ 1210 1211 static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid, 1212 unsigned int result) 1213 { 1214 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1215 1216 if (gfs2_withdrawn(sdp)) { 1217 fs_err(sdp, "recovery_result jid %d ignored due to withdraw.\n", 1218 jid); 1219 return; 1220 } 1221 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) 1222 return; 1223 1224 /* don't care about the recovery of own journal during mount */ 1225 if (jid == ls->ls_jid) 1226 return; 1227 1228 spin_lock(&ls->ls_recover_spin); 1229 if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 1230 spin_unlock(&ls->ls_recover_spin); 1231 return; 1232 } 1233 if (ls->ls_recover_size < jid + 1) { 1234 fs_err(sdp, "recovery_result jid %d short size %d\n", 1235 jid, ls->ls_recover_size); 1236 spin_unlock(&ls->ls_recover_spin); 1237 return; 1238 } 1239 1240 fs_info(sdp, "recover jid %d result %s\n", jid, 1241 result == LM_RD_GAVEUP ? "busy" : "success"); 1242 1243 ls->ls_recover_result[jid] = result; 1244 1245 /* GAVEUP means another node is recovering the journal; delay our 1246 next attempt to recover it, to give the other node a chance to 1247 finish before trying again */ 1248 1249 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) 1250 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 1251 result == LM_RD_GAVEUP ? HZ : 0); 1252 spin_unlock(&ls->ls_recover_spin); 1253 } 1254 1255 static const struct dlm_lockspace_ops gdlm_lockspace_ops = { 1256 .recover_prep = gdlm_recover_prep, 1257 .recover_slot = gdlm_recover_slot, 1258 .recover_done = gdlm_recover_done, 1259 }; 1260 1261 static int gdlm_mount(struct gfs2_sbd *sdp, const char *table) 1262 { 1263 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1264 char cluster[GFS2_LOCKNAME_LEN]; 1265 const char *fsname; 1266 uint32_t flags; 1267 int error, ops_result; 1268 1269 /* 1270 * initialize everything 1271 */ 1272 1273 INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func); 1274 spin_lock_init(&ls->ls_recover_spin); 1275 ls->ls_recover_flags = 0; 1276 ls->ls_recover_mount = 0; 1277 ls->ls_recover_start = 0; 1278 ls->ls_recover_block = 0; 1279 ls->ls_recover_size = 0; 1280 ls->ls_recover_submit = NULL; 1281 ls->ls_recover_result = NULL; 1282 ls->ls_lvb_bits = NULL; 1283 1284 error = set_recover_size(sdp, NULL, 0); 1285 if (error) 1286 goto fail; 1287 1288 /* 1289 * prepare dlm_new_lockspace args 1290 */ 1291 1292 fsname = strchr(table, ':'); 1293 if (!fsname) { 1294 fs_info(sdp, "no fsname found\n"); 1295 error = -EINVAL; 1296 goto fail_free; 1297 } 1298 memset(cluster, 0, sizeof(cluster)); 1299 memcpy(cluster, table, strlen(table) - strlen(fsname)); 1300 fsname++; 1301 1302 flags = DLM_LSFL_NEWEXCL; 1303 1304 /* 1305 * create/join lockspace 1306 */ 1307 1308 error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE, 1309 &gdlm_lockspace_ops, sdp, &ops_result, 1310 &ls->ls_dlm); 1311 if (error) { 1312 fs_err(sdp, "dlm_new_lockspace error %d\n", error); 1313 goto fail_free; 1314 } 1315 1316 if (ops_result < 0) { 1317 /* 1318 * dlm does not support ops callbacks, 1319 * old dlm_controld/gfs_controld are used, try without ops. 1320 */ 1321 fs_info(sdp, "dlm lockspace ops not used\n"); 1322 free_recover_size(ls); 1323 set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags); 1324 return 0; 1325 } 1326 1327 if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) { 1328 fs_err(sdp, "dlm lockspace ops disallow jid preset\n"); 1329 error = -EINVAL; 1330 goto fail_release; 1331 } 1332 1333 /* 1334 * control_mount() uses control_lock to determine first mounter, 1335 * and for later mounts, waits for any recoveries to be cleared. 1336 */ 1337 1338 error = control_mount(sdp); 1339 if (error) { 1340 fs_err(sdp, "mount control error %d\n", error); 1341 goto fail_release; 1342 } 1343 1344 ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); 1345 clear_bit(SDF_NOJOURNALID, &sdp->sd_flags); 1346 smp_mb__after_atomic(); 1347 wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID); 1348 return 0; 1349 1350 fail_release: 1351 dlm_release_lockspace(ls->ls_dlm, 2); 1352 fail_free: 1353 free_recover_size(ls); 1354 fail: 1355 return error; 1356 } 1357 1358 static void gdlm_first_done(struct gfs2_sbd *sdp) 1359 { 1360 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1361 int error; 1362 1363 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) 1364 return; 1365 1366 error = control_first_done(sdp); 1367 if (error) 1368 fs_err(sdp, "mount first_done error %d\n", error); 1369 } 1370 1371 static void gdlm_unmount(struct gfs2_sbd *sdp) 1372 { 1373 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1374 1375 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) 1376 goto release; 1377 1378 /* wait for gfs2_control_wq to be done with this mount */ 1379 1380 spin_lock(&ls->ls_recover_spin); 1381 set_bit(DFL_UNMOUNT, &ls->ls_recover_flags); 1382 spin_unlock(&ls->ls_recover_spin); 1383 flush_delayed_work(&sdp->sd_control_work); 1384 1385 /* mounted_lock and control_lock will be purged in dlm recovery */ 1386 release: 1387 if (ls->ls_dlm) { 1388 dlm_release_lockspace(ls->ls_dlm, 2); 1389 ls->ls_dlm = NULL; 1390 } 1391 1392 free_recover_size(ls); 1393 } 1394 1395 static const match_table_t dlm_tokens = { 1396 { Opt_jid, "jid=%d"}, 1397 { Opt_id, "id=%d"}, 1398 { Opt_first, "first=%d"}, 1399 { Opt_nodir, "nodir=%d"}, 1400 { Opt_err, NULL }, 1401 }; 1402 1403 const struct lm_lockops gfs2_dlm_ops = { 1404 .lm_proto_name = "lock_dlm", 1405 .lm_mount = gdlm_mount, 1406 .lm_first_done = gdlm_first_done, 1407 .lm_recovery_result = gdlm_recovery_result, 1408 .lm_unmount = gdlm_unmount, 1409 .lm_put_lock = gdlm_put_lock, 1410 .lm_lock = gdlm_lock, 1411 .lm_cancel = gdlm_cancel, 1412 .lm_tokens = &dlm_tokens, 1413 }; 1414 1415