xref: /linux/fs/gfs2/lock_dlm.c (revision 17cfcb68af3bc7d5e8ae08779b1853310a2949f3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
4  * Copyright 2004-2011 Red Hat, Inc.
5  */
6 
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 
9 #include <linux/fs.h>
10 #include <linux/dlm.h>
11 #include <linux/slab.h>
12 #include <linux/types.h>
13 #include <linux/delay.h>
14 #include <linux/gfs2_ondisk.h>
15 #include <linux/sched/signal.h>
16 
17 #include "incore.h"
18 #include "glock.h"
19 #include "util.h"
20 #include "sys.h"
21 #include "trace_gfs2.h"
22 
23 /**
24  * gfs2_update_stats - Update time based stats
25  * @mv: Pointer to mean/variance structure to update
26  * @sample: New data to include
27  *
28  * @delta is the difference between the current rtt sample and the
29  * running average srtt. We add 1/8 of that to the srtt in order to
30  * update the current srtt estimate. The variance estimate is a bit
31  * more complicated. We subtract the current variance estimate from
32  * the abs value of the @delta and add 1/4 of that to the running
33  * total.  That's equivalent to 3/4 of the current variance
34  * estimate plus 1/4 of the abs of @delta.
35  *
36  * Note that the index points at the array entry containing the smoothed
37  * mean value, and the variance is always in the following entry
38  *
39  * Reference: TCP/IP Illustrated, vol 2, p. 831,832
40  * All times are in units of integer nanoseconds. Unlike the TCP/IP case,
41  * they are not scaled fixed point.
42  */
43 
44 static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index,
45 				     s64 sample)
46 {
47 	s64 delta = sample - s->stats[index];
48 	s->stats[index] += (delta >> 3);
49 	index++;
50 	s->stats[index] += (s64)(abs(delta) - s->stats[index]) >> 2;
51 }
52 
53 /**
54  * gfs2_update_reply_times - Update locking statistics
55  * @gl: The glock to update
56  *
57  * This assumes that gl->gl_dstamp has been set earlier.
58  *
59  * The rtt (lock round trip time) is an estimate of the time
60  * taken to perform a dlm lock request. We update it on each
61  * reply from the dlm.
62  *
63  * The blocking flag is set on the glock for all dlm requests
64  * which may potentially block due to lock requests from other nodes.
65  * DLM requests where the current lock state is exclusive, the
66  * requested state is null (or unlocked) or where the TRY or
67  * TRY_1CB flags are set are classified as non-blocking. All
68  * other DLM requests are counted as (potentially) blocking.
69  */
70 static inline void gfs2_update_reply_times(struct gfs2_glock *gl)
71 {
72 	struct gfs2_pcpu_lkstats *lks;
73 	const unsigned gltype = gl->gl_name.ln_type;
74 	unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ?
75 			 GFS2_LKS_SRTTB : GFS2_LKS_SRTT;
76 	s64 rtt;
77 
78 	preempt_disable();
79 	rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp));
80 	lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
81 	gfs2_update_stats(&gl->gl_stats, index, rtt);		/* Local */
82 	gfs2_update_stats(&lks->lkstats[gltype], index, rtt);	/* Global */
83 	preempt_enable();
84 
85 	trace_gfs2_glock_lock_time(gl, rtt);
86 }
87 
88 /**
89  * gfs2_update_request_times - Update locking statistics
90  * @gl: The glock to update
91  *
92  * The irt (lock inter-request times) measures the average time
93  * between requests to the dlm. It is updated immediately before
94  * each dlm call.
95  */
96 
97 static inline void gfs2_update_request_times(struct gfs2_glock *gl)
98 {
99 	struct gfs2_pcpu_lkstats *lks;
100 	const unsigned gltype = gl->gl_name.ln_type;
101 	ktime_t dstamp;
102 	s64 irt;
103 
104 	preempt_disable();
105 	dstamp = gl->gl_dstamp;
106 	gl->gl_dstamp = ktime_get_real();
107 	irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp));
108 	lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
109 	gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt);		/* Local */
110 	gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt);	/* Global */
111 	preempt_enable();
112 }
113 
114 static void gdlm_ast(void *arg)
115 {
116 	struct gfs2_glock *gl = arg;
117 	unsigned ret = gl->gl_state;
118 
119 	gfs2_update_reply_times(gl);
120 	BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED);
121 
122 	if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr)
123 		memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE);
124 
125 	switch (gl->gl_lksb.sb_status) {
126 	case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */
127 		gfs2_glock_free(gl);
128 		return;
129 	case -DLM_ECANCEL: /* Cancel while getting lock */
130 		ret |= LM_OUT_CANCELED;
131 		goto out;
132 	case -EAGAIN: /* Try lock fails */
133 	case -EDEADLK: /* Deadlock detected */
134 		goto out;
135 	case -ETIMEDOUT: /* Canceled due to timeout */
136 		ret |= LM_OUT_ERROR;
137 		goto out;
138 	case 0: /* Success */
139 		break;
140 	default: /* Something unexpected */
141 		BUG();
142 	}
143 
144 	ret = gl->gl_req;
145 	if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) {
146 		if (gl->gl_req == LM_ST_SHARED)
147 			ret = LM_ST_DEFERRED;
148 		else if (gl->gl_req == LM_ST_DEFERRED)
149 			ret = LM_ST_SHARED;
150 		else
151 			BUG();
152 	}
153 
154 	set_bit(GLF_INITIAL, &gl->gl_flags);
155 	gfs2_glock_complete(gl, ret);
156 	return;
157 out:
158 	if (!test_bit(GLF_INITIAL, &gl->gl_flags))
159 		gl->gl_lksb.sb_lkid = 0;
160 	gfs2_glock_complete(gl, ret);
161 }
162 
163 static void gdlm_bast(void *arg, int mode)
164 {
165 	struct gfs2_glock *gl = arg;
166 
167 	switch (mode) {
168 	case DLM_LOCK_EX:
169 		gfs2_glock_cb(gl, LM_ST_UNLOCKED);
170 		break;
171 	case DLM_LOCK_CW:
172 		gfs2_glock_cb(gl, LM_ST_DEFERRED);
173 		break;
174 	case DLM_LOCK_PR:
175 		gfs2_glock_cb(gl, LM_ST_SHARED);
176 		break;
177 	default:
178 		fs_err(gl->gl_name.ln_sbd, "unknown bast mode %d\n", mode);
179 		BUG();
180 	}
181 }
182 
183 /* convert gfs lock-state to dlm lock-mode */
184 
185 static int make_mode(struct gfs2_sbd *sdp, const unsigned int lmstate)
186 {
187 	switch (lmstate) {
188 	case LM_ST_UNLOCKED:
189 		return DLM_LOCK_NL;
190 	case LM_ST_EXCLUSIVE:
191 		return DLM_LOCK_EX;
192 	case LM_ST_DEFERRED:
193 		return DLM_LOCK_CW;
194 	case LM_ST_SHARED:
195 		return DLM_LOCK_PR;
196 	}
197 	fs_err(sdp, "unknown LM state %d\n", lmstate);
198 	BUG();
199 	return -1;
200 }
201 
202 static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags,
203 		      const int req)
204 {
205 	u32 lkf = 0;
206 
207 	if (gl->gl_lksb.sb_lvbptr)
208 		lkf |= DLM_LKF_VALBLK;
209 
210 	if (gfs_flags & LM_FLAG_TRY)
211 		lkf |= DLM_LKF_NOQUEUE;
212 
213 	if (gfs_flags & LM_FLAG_TRY_1CB) {
214 		lkf |= DLM_LKF_NOQUEUE;
215 		lkf |= DLM_LKF_NOQUEUEBAST;
216 	}
217 
218 	if (gfs_flags & LM_FLAG_PRIORITY) {
219 		lkf |= DLM_LKF_NOORDER;
220 		lkf |= DLM_LKF_HEADQUE;
221 	}
222 
223 	if (gfs_flags & LM_FLAG_ANY) {
224 		if (req == DLM_LOCK_PR)
225 			lkf |= DLM_LKF_ALTCW;
226 		else if (req == DLM_LOCK_CW)
227 			lkf |= DLM_LKF_ALTPR;
228 		else
229 			BUG();
230 	}
231 
232 	if (gl->gl_lksb.sb_lkid != 0) {
233 		lkf |= DLM_LKF_CONVERT;
234 		if (test_bit(GLF_BLOCKING, &gl->gl_flags))
235 			lkf |= DLM_LKF_QUECVT;
236 	}
237 
238 	return lkf;
239 }
240 
241 static void gfs2_reverse_hex(char *c, u64 value)
242 {
243 	*c = '0';
244 	while (value) {
245 		*c-- = hex_asc[value & 0x0f];
246 		value >>= 4;
247 	}
248 }
249 
250 static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state,
251 		     unsigned int flags)
252 {
253 	struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
254 	int req;
255 	u32 lkf;
256 	char strname[GDLM_STRNAME_BYTES] = "";
257 
258 	req = make_mode(gl->gl_name.ln_sbd, req_state);
259 	lkf = make_flags(gl, flags, req);
260 	gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
261 	gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
262 	if (gl->gl_lksb.sb_lkid) {
263 		gfs2_update_request_times(gl);
264 	} else {
265 		memset(strname, ' ', GDLM_STRNAME_BYTES - 1);
266 		strname[GDLM_STRNAME_BYTES - 1] = '\0';
267 		gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type);
268 		gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number);
269 		gl->gl_dstamp = ktime_get_real();
270 	}
271 	/*
272 	 * Submit the actual lock request.
273 	 */
274 
275 	return dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname,
276 			GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast);
277 }
278 
279 static void gdlm_put_lock(struct gfs2_glock *gl)
280 {
281 	struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
282 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
283 	int lvb_needs_unlock = 0;
284 	int error;
285 
286 	if (gl->gl_lksb.sb_lkid == 0) {
287 		gfs2_glock_free(gl);
288 		return;
289 	}
290 
291 	clear_bit(GLF_BLOCKING, &gl->gl_flags);
292 	gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
293 	gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
294 	gfs2_update_request_times(gl);
295 
296 	/* don't want to skip dlm_unlock writing the lvb when lock is ex */
297 
298 	if (gl->gl_lksb.sb_lvbptr && (gl->gl_state == LM_ST_EXCLUSIVE))
299 		lvb_needs_unlock = 1;
300 
301 	if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) &&
302 	    !lvb_needs_unlock) {
303 		gfs2_glock_free(gl);
304 		return;
305 	}
306 
307 	error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK,
308 			   NULL, gl);
309 	if (error) {
310 		fs_err(sdp, "gdlm_unlock %x,%llx err=%d\n",
311 		       gl->gl_name.ln_type,
312 		       (unsigned long long)gl->gl_name.ln_number, error);
313 		return;
314 	}
315 }
316 
317 static void gdlm_cancel(struct gfs2_glock *gl)
318 {
319 	struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
320 	dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl);
321 }
322 
323 /*
324  * dlm/gfs2 recovery coordination using dlm_recover callbacks
325  *
326  *  1. dlm_controld sees lockspace members change
327  *  2. dlm_controld blocks dlm-kernel locking activity
328  *  3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
329  *  4. dlm_controld starts and finishes its own user level recovery
330  *  5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
331  *  6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
332  *  7. dlm_recoverd does its own lock recovery
333  *  8. dlm_recoverd unblocks dlm-kernel locking activity
334  *  9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
335  * 10. gfs2_control updates control_lock lvb with new generation and jid bits
336  * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
337  * 12. gfs2_recover dequeues and recovers journals of failed nodes
338  * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
339  * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
340  * 15. gfs2_control unblocks normal locking when all journals are recovered
341  *
342  * - failures during recovery
343  *
344  * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
345  * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
346  * recovering for a prior failure.  gfs2_control needs a way to detect
347  * this so it can leave BLOCK_LOCKS set in step 15.  This is managed using
348  * the recover_block and recover_start values.
349  *
350  * recover_done() provides a new lockspace generation number each time it
351  * is called (step 9).  This generation number is saved as recover_start.
352  * When recover_prep() is called, it sets BLOCK_LOCKS and sets
353  * recover_block = recover_start.  So, while recover_block is equal to
354  * recover_start, BLOCK_LOCKS should remain set.  (recover_spin must
355  * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
356  *
357  * - more specific gfs2 steps in sequence above
358  *
359  *  3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
360  *  6. recover_slot records any failed jids (maybe none)
361  *  9. recover_done sets recover_start = new generation number
362  * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
363  * 12. gfs2_recover does journal recoveries for failed jids identified above
364  * 14. gfs2_control clears control_lock lvb bits for recovered jids
365  * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
366  *     again) then do nothing, otherwise if recover_start > recover_block
367  *     then clear BLOCK_LOCKS.
368  *
369  * - parallel recovery steps across all nodes
370  *
371  * All nodes attempt to update the control_lock lvb with the new generation
372  * number and jid bits, but only the first to get the control_lock EX will
373  * do so; others will see that it's already done (lvb already contains new
374  * generation number.)
375  *
376  * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
377  * . All nodes attempt to set control_lock lvb gen + bits for the new gen
378  * . One node gets control_lock first and writes the lvb, others see it's done
379  * . All nodes attempt to recover jids for which they see control_lock bits set
380  * . One node succeeds for a jid, and that one clears the jid bit in the lvb
381  * . All nodes will eventually see all lvb bits clear and unblock locks
382  *
383  * - is there a problem with clearing an lvb bit that should be set
384  *   and missing a journal recovery?
385  *
386  * 1. jid fails
387  * 2. lvb bit set for step 1
388  * 3. jid recovered for step 1
389  * 4. jid taken again (new mount)
390  * 5. jid fails (for step 4)
391  * 6. lvb bit set for step 5 (will already be set)
392  * 7. lvb bit cleared for step 3
393  *
394  * This is not a problem because the failure in step 5 does not
395  * require recovery, because the mount in step 4 could not have
396  * progressed far enough to unblock locks and access the fs.  The
397  * control_mount() function waits for all recoveries to be complete
398  * for the latest lockspace generation before ever unblocking locks
399  * and returning.  The mount in step 4 waits until the recovery in
400  * step 1 is done.
401  *
402  * - special case of first mounter: first node to mount the fs
403  *
404  * The first node to mount a gfs2 fs needs to check all the journals
405  * and recover any that need recovery before other nodes are allowed
406  * to mount the fs.  (Others may begin mounting, but they must wait
407  * for the first mounter to be done before taking locks on the fs
408  * or accessing the fs.)  This has two parts:
409  *
410  * 1. The mounted_lock tells a node it's the first to mount the fs.
411  * Each node holds the mounted_lock in PR while it's mounted.
412  * Each node tries to acquire the mounted_lock in EX when it mounts.
413  * If a node is granted the mounted_lock EX it means there are no
414  * other mounted nodes (no PR locks exist), and it is the first mounter.
415  * The mounted_lock is demoted to PR when first recovery is done, so
416  * others will fail to get an EX lock, but will get a PR lock.
417  *
418  * 2. The control_lock blocks others in control_mount() while the first
419  * mounter is doing first mount recovery of all journals.
420  * A mounting node needs to acquire control_lock in EX mode before
421  * it can proceed.  The first mounter holds control_lock in EX while doing
422  * the first mount recovery, blocking mounts from other nodes, then demotes
423  * control_lock to NL when it's done (others_may_mount/first_done),
424  * allowing other nodes to continue mounting.
425  *
426  * first mounter:
427  * control_lock EX/NOQUEUE success
428  * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
429  * set first=1
430  * do first mounter recovery
431  * mounted_lock EX->PR
432  * control_lock EX->NL, write lvb generation
433  *
434  * other mounter:
435  * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
436  * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
437  * mounted_lock PR/NOQUEUE success
438  * read lvb generation
439  * control_lock EX->NL
440  * set first=0
441  *
442  * - mount during recovery
443  *
444  * If a node mounts while others are doing recovery (not first mounter),
445  * the mounting node will get its initial recover_done() callback without
446  * having seen any previous failures/callbacks.
447  *
448  * It must wait for all recoveries preceding its mount to be finished
449  * before it unblocks locks.  It does this by repeating the "other mounter"
450  * steps above until the lvb generation number is >= its mount generation
451  * number (from initial recover_done) and all lvb bits are clear.
452  *
453  * - control_lock lvb format
454  *
455  * 4 bytes generation number: the latest dlm lockspace generation number
456  * from recover_done callback.  Indicates the jid bitmap has been updated
457  * to reflect all slot failures through that generation.
458  * 4 bytes unused.
459  * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
460  * that jid N needs recovery.
461  */
462 
463 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
464 
465 static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen,
466 			     char *lvb_bits)
467 {
468 	__le32 gen;
469 	memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE);
470 	memcpy(&gen, lvb_bits, sizeof(__le32));
471 	*lvb_gen = le32_to_cpu(gen);
472 }
473 
474 static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen,
475 			      char *lvb_bits)
476 {
477 	__le32 gen;
478 	memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE);
479 	gen = cpu_to_le32(lvb_gen);
480 	memcpy(ls->ls_control_lvb, &gen, sizeof(__le32));
481 }
482 
483 static int all_jid_bits_clear(char *lvb)
484 {
485 	return !memchr_inv(lvb + JID_BITMAP_OFFSET, 0,
486 			GDLM_LVB_SIZE - JID_BITMAP_OFFSET);
487 }
488 
489 static void sync_wait_cb(void *arg)
490 {
491 	struct lm_lockstruct *ls = arg;
492 	complete(&ls->ls_sync_wait);
493 }
494 
495 static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name)
496 {
497 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
498 	int error;
499 
500 	error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls);
501 	if (error) {
502 		fs_err(sdp, "%s lkid %x error %d\n",
503 		       name, lksb->sb_lkid, error);
504 		return error;
505 	}
506 
507 	wait_for_completion(&ls->ls_sync_wait);
508 
509 	if (lksb->sb_status != -DLM_EUNLOCK) {
510 		fs_err(sdp, "%s lkid %x status %d\n",
511 		       name, lksb->sb_lkid, lksb->sb_status);
512 		return -1;
513 	}
514 	return 0;
515 }
516 
517 static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags,
518 		     unsigned int num, struct dlm_lksb *lksb, char *name)
519 {
520 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
521 	char strname[GDLM_STRNAME_BYTES];
522 	int error, status;
523 
524 	memset(strname, 0, GDLM_STRNAME_BYTES);
525 	snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num);
526 
527 	error = dlm_lock(ls->ls_dlm, mode, lksb, flags,
528 			 strname, GDLM_STRNAME_BYTES - 1,
529 			 0, sync_wait_cb, ls, NULL);
530 	if (error) {
531 		fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n",
532 		       name, lksb->sb_lkid, flags, mode, error);
533 		return error;
534 	}
535 
536 	wait_for_completion(&ls->ls_sync_wait);
537 
538 	status = lksb->sb_status;
539 
540 	if (status && status != -EAGAIN) {
541 		fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n",
542 		       name, lksb->sb_lkid, flags, mode, status);
543 	}
544 
545 	return status;
546 }
547 
548 static int mounted_unlock(struct gfs2_sbd *sdp)
549 {
550 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
551 	return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock");
552 }
553 
554 static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
555 {
556 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
557 	return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK,
558 			 &ls->ls_mounted_lksb, "mounted_lock");
559 }
560 
561 static int control_unlock(struct gfs2_sbd *sdp)
562 {
563 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
564 	return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock");
565 }
566 
567 static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
568 {
569 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
570 	return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK,
571 			 &ls->ls_control_lksb, "control_lock");
572 }
573 
574 static void gfs2_control_func(struct work_struct *work)
575 {
576 	struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work);
577 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
578 	uint32_t block_gen, start_gen, lvb_gen, flags;
579 	int recover_set = 0;
580 	int write_lvb = 0;
581 	int recover_size;
582 	int i, error;
583 
584 	spin_lock(&ls->ls_recover_spin);
585 	/*
586 	 * No MOUNT_DONE means we're still mounting; control_mount()
587 	 * will set this flag, after which this thread will take over
588 	 * all further clearing of BLOCK_LOCKS.
589 	 *
590 	 * FIRST_MOUNT means this node is doing first mounter recovery,
591 	 * for which recovery control is handled by
592 	 * control_mount()/control_first_done(), not this thread.
593 	 */
594 	if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
595 	     test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
596 		spin_unlock(&ls->ls_recover_spin);
597 		return;
598 	}
599 	block_gen = ls->ls_recover_block;
600 	start_gen = ls->ls_recover_start;
601 	spin_unlock(&ls->ls_recover_spin);
602 
603 	/*
604 	 * Equal block_gen and start_gen implies we are between
605 	 * recover_prep and recover_done callbacks, which means
606 	 * dlm recovery is in progress and dlm locking is blocked.
607 	 * There's no point trying to do any work until recover_done.
608 	 */
609 
610 	if (block_gen == start_gen)
611 		return;
612 
613 	/*
614 	 * Propagate recover_submit[] and recover_result[] to lvb:
615 	 * dlm_recoverd adds to recover_submit[] jids needing recovery
616 	 * gfs2_recover adds to recover_result[] journal recovery results
617 	 *
618 	 * set lvb bit for jids in recover_submit[] if the lvb has not
619 	 * yet been updated for the generation of the failure
620 	 *
621 	 * clear lvb bit for jids in recover_result[] if the result of
622 	 * the journal recovery is SUCCESS
623 	 */
624 
625 	error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
626 	if (error) {
627 		fs_err(sdp, "control lock EX error %d\n", error);
628 		return;
629 	}
630 
631 	control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
632 
633 	spin_lock(&ls->ls_recover_spin);
634 	if (block_gen != ls->ls_recover_block ||
635 	    start_gen != ls->ls_recover_start) {
636 		fs_info(sdp, "recover generation %u block1 %u %u\n",
637 			start_gen, block_gen, ls->ls_recover_block);
638 		spin_unlock(&ls->ls_recover_spin);
639 		control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
640 		return;
641 	}
642 
643 	recover_size = ls->ls_recover_size;
644 
645 	if (lvb_gen <= start_gen) {
646 		/*
647 		 * Clear lvb bits for jids we've successfully recovered.
648 		 * Because all nodes attempt to recover failed journals,
649 		 * a journal can be recovered multiple times successfully
650 		 * in succession.  Only the first will really do recovery,
651 		 * the others find it clean, but still report a successful
652 		 * recovery.  So, another node may have already recovered
653 		 * the jid and cleared the lvb bit for it.
654 		 */
655 		for (i = 0; i < recover_size; i++) {
656 			if (ls->ls_recover_result[i] != LM_RD_SUCCESS)
657 				continue;
658 
659 			ls->ls_recover_result[i] = 0;
660 
661 			if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET))
662 				continue;
663 
664 			__clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
665 			write_lvb = 1;
666 		}
667 	}
668 
669 	if (lvb_gen == start_gen) {
670 		/*
671 		 * Failed slots before start_gen are already set in lvb.
672 		 */
673 		for (i = 0; i < recover_size; i++) {
674 			if (!ls->ls_recover_submit[i])
675 				continue;
676 			if (ls->ls_recover_submit[i] < lvb_gen)
677 				ls->ls_recover_submit[i] = 0;
678 		}
679 	} else if (lvb_gen < start_gen) {
680 		/*
681 		 * Failed slots before start_gen are not yet set in lvb.
682 		 */
683 		for (i = 0; i < recover_size; i++) {
684 			if (!ls->ls_recover_submit[i])
685 				continue;
686 			if (ls->ls_recover_submit[i] < start_gen) {
687 				ls->ls_recover_submit[i] = 0;
688 				__set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
689 			}
690 		}
691 		/* even if there are no bits to set, we need to write the
692 		   latest generation to the lvb */
693 		write_lvb = 1;
694 	} else {
695 		/*
696 		 * we should be getting a recover_done() for lvb_gen soon
697 		 */
698 	}
699 	spin_unlock(&ls->ls_recover_spin);
700 
701 	if (write_lvb) {
702 		control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
703 		flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK;
704 	} else {
705 		flags = DLM_LKF_CONVERT;
706 	}
707 
708 	error = control_lock(sdp, DLM_LOCK_NL, flags);
709 	if (error) {
710 		fs_err(sdp, "control lock NL error %d\n", error);
711 		return;
712 	}
713 
714 	/*
715 	 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
716 	 * and clear a jid bit in the lvb if the recovery is a success.
717 	 * Eventually all journals will be recovered, all jid bits will
718 	 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
719 	 */
720 
721 	for (i = 0; i < recover_size; i++) {
722 		if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) {
723 			fs_info(sdp, "recover generation %u jid %d\n",
724 				start_gen, i);
725 			gfs2_recover_set(sdp, i);
726 			recover_set++;
727 		}
728 	}
729 	if (recover_set)
730 		return;
731 
732 	/*
733 	 * No more jid bits set in lvb, all recovery is done, unblock locks
734 	 * (unless a new recover_prep callback has occured blocking locks
735 	 * again while working above)
736 	 */
737 
738 	spin_lock(&ls->ls_recover_spin);
739 	if (ls->ls_recover_block == block_gen &&
740 	    ls->ls_recover_start == start_gen) {
741 		clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
742 		spin_unlock(&ls->ls_recover_spin);
743 		fs_info(sdp, "recover generation %u done\n", start_gen);
744 		gfs2_glock_thaw(sdp);
745 	} else {
746 		fs_info(sdp, "recover generation %u block2 %u %u\n",
747 			start_gen, block_gen, ls->ls_recover_block);
748 		spin_unlock(&ls->ls_recover_spin);
749 	}
750 }
751 
752 static int control_mount(struct gfs2_sbd *sdp)
753 {
754 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
755 	uint32_t start_gen, block_gen, mount_gen, lvb_gen;
756 	int mounted_mode;
757 	int retries = 0;
758 	int error;
759 
760 	memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb));
761 	memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb));
762 	memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE);
763 	ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb;
764 	init_completion(&ls->ls_sync_wait);
765 
766 	set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
767 
768 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK);
769 	if (error) {
770 		fs_err(sdp, "control_mount control_lock NL error %d\n", error);
771 		return error;
772 	}
773 
774 	error = mounted_lock(sdp, DLM_LOCK_NL, 0);
775 	if (error) {
776 		fs_err(sdp, "control_mount mounted_lock NL error %d\n", error);
777 		control_unlock(sdp);
778 		return error;
779 	}
780 	mounted_mode = DLM_LOCK_NL;
781 
782 restart:
783 	if (retries++ && signal_pending(current)) {
784 		error = -EINTR;
785 		goto fail;
786 	}
787 
788 	/*
789 	 * We always start with both locks in NL. control_lock is
790 	 * demoted to NL below so we don't need to do it here.
791 	 */
792 
793 	if (mounted_mode != DLM_LOCK_NL) {
794 		error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
795 		if (error)
796 			goto fail;
797 		mounted_mode = DLM_LOCK_NL;
798 	}
799 
800 	/*
801 	 * Other nodes need to do some work in dlm recovery and gfs2_control
802 	 * before the recover_done and control_lock will be ready for us below.
803 	 * A delay here is not required but often avoids having to retry.
804 	 */
805 
806 	msleep_interruptible(500);
807 
808 	/*
809 	 * Acquire control_lock in EX and mounted_lock in either EX or PR.
810 	 * control_lock lvb keeps track of any pending journal recoveries.
811 	 * mounted_lock indicates if any other nodes have the fs mounted.
812 	 */
813 
814 	error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK);
815 	if (error == -EAGAIN) {
816 		goto restart;
817 	} else if (error) {
818 		fs_err(sdp, "control_mount control_lock EX error %d\n", error);
819 		goto fail;
820 	}
821 
822 	/**
823 	 * If we're a spectator, we don't want to take the lock in EX because
824 	 * we cannot do the first-mount responsibility it implies: recovery.
825 	 */
826 	if (sdp->sd_args.ar_spectator)
827 		goto locks_done;
828 
829 	error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
830 	if (!error) {
831 		mounted_mode = DLM_LOCK_EX;
832 		goto locks_done;
833 	} else if (error != -EAGAIN) {
834 		fs_err(sdp, "control_mount mounted_lock EX error %d\n", error);
835 		goto fail;
836 	}
837 
838 	error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
839 	if (!error) {
840 		mounted_mode = DLM_LOCK_PR;
841 		goto locks_done;
842 	} else {
843 		/* not even -EAGAIN should happen here */
844 		fs_err(sdp, "control_mount mounted_lock PR error %d\n", error);
845 		goto fail;
846 	}
847 
848 locks_done:
849 	/*
850 	 * If we got both locks above in EX, then we're the first mounter.
851 	 * If not, then we need to wait for the control_lock lvb to be
852 	 * updated by other mounted nodes to reflect our mount generation.
853 	 *
854 	 * In simple first mounter cases, first mounter will see zero lvb_gen,
855 	 * but in cases where all existing nodes leave/fail before mounting
856 	 * nodes finish control_mount, then all nodes will be mounting and
857 	 * lvb_gen will be non-zero.
858 	 */
859 
860 	control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
861 
862 	if (lvb_gen == 0xFFFFFFFF) {
863 		/* special value to force mount attempts to fail */
864 		fs_err(sdp, "control_mount control_lock disabled\n");
865 		error = -EINVAL;
866 		goto fail;
867 	}
868 
869 	if (mounted_mode == DLM_LOCK_EX) {
870 		/* first mounter, keep both EX while doing first recovery */
871 		spin_lock(&ls->ls_recover_spin);
872 		clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
873 		set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
874 		set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
875 		spin_unlock(&ls->ls_recover_spin);
876 		fs_info(sdp, "first mounter control generation %u\n", lvb_gen);
877 		return 0;
878 	}
879 
880 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
881 	if (error)
882 		goto fail;
883 
884 	/*
885 	 * We are not first mounter, now we need to wait for the control_lock
886 	 * lvb generation to be >= the generation from our first recover_done
887 	 * and all lvb bits to be clear (no pending journal recoveries.)
888 	 */
889 
890 	if (!all_jid_bits_clear(ls->ls_lvb_bits)) {
891 		/* journals need recovery, wait until all are clear */
892 		fs_info(sdp, "control_mount wait for journal recovery\n");
893 		goto restart;
894 	}
895 
896 	spin_lock(&ls->ls_recover_spin);
897 	block_gen = ls->ls_recover_block;
898 	start_gen = ls->ls_recover_start;
899 	mount_gen = ls->ls_recover_mount;
900 
901 	if (lvb_gen < mount_gen) {
902 		/* wait for mounted nodes to update control_lock lvb to our
903 		   generation, which might include new recovery bits set */
904 		if (sdp->sd_args.ar_spectator) {
905 			fs_info(sdp, "Recovery is required. Waiting for a "
906 				"non-spectator to mount.\n");
907 			msleep_interruptible(1000);
908 		} else {
909 			fs_info(sdp, "control_mount wait1 block %u start %u "
910 				"mount %u lvb %u flags %lx\n", block_gen,
911 				start_gen, mount_gen, lvb_gen,
912 				ls->ls_recover_flags);
913 		}
914 		spin_unlock(&ls->ls_recover_spin);
915 		goto restart;
916 	}
917 
918 	if (lvb_gen != start_gen) {
919 		/* wait for mounted nodes to update control_lock lvb to the
920 		   latest recovery generation */
921 		fs_info(sdp, "control_mount wait2 block %u start %u mount %u "
922 			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
923 			lvb_gen, ls->ls_recover_flags);
924 		spin_unlock(&ls->ls_recover_spin);
925 		goto restart;
926 	}
927 
928 	if (block_gen == start_gen) {
929 		/* dlm recovery in progress, wait for it to finish */
930 		fs_info(sdp, "control_mount wait3 block %u start %u mount %u "
931 			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
932 			lvb_gen, ls->ls_recover_flags);
933 		spin_unlock(&ls->ls_recover_spin);
934 		goto restart;
935 	}
936 
937 	clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
938 	set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
939 	memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
940 	memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
941 	spin_unlock(&ls->ls_recover_spin);
942 	return 0;
943 
944 fail:
945 	mounted_unlock(sdp);
946 	control_unlock(sdp);
947 	return error;
948 }
949 
950 static int control_first_done(struct gfs2_sbd *sdp)
951 {
952 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
953 	uint32_t start_gen, block_gen;
954 	int error;
955 
956 restart:
957 	spin_lock(&ls->ls_recover_spin);
958 	start_gen = ls->ls_recover_start;
959 	block_gen = ls->ls_recover_block;
960 
961 	if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) ||
962 	    !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
963 	    !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
964 		/* sanity check, should not happen */
965 		fs_err(sdp, "control_first_done start %u block %u flags %lx\n",
966 		       start_gen, block_gen, ls->ls_recover_flags);
967 		spin_unlock(&ls->ls_recover_spin);
968 		control_unlock(sdp);
969 		return -1;
970 	}
971 
972 	if (start_gen == block_gen) {
973 		/*
974 		 * Wait for the end of a dlm recovery cycle to switch from
975 		 * first mounter recovery.  We can ignore any recover_slot
976 		 * callbacks between the recover_prep and next recover_done
977 		 * because we are still the first mounter and any failed nodes
978 		 * have not fully mounted, so they don't need recovery.
979 		 */
980 		spin_unlock(&ls->ls_recover_spin);
981 		fs_info(sdp, "control_first_done wait gen %u\n", start_gen);
982 
983 		wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY,
984 			    TASK_UNINTERRUPTIBLE);
985 		goto restart;
986 	}
987 
988 	clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
989 	set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags);
990 	memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
991 	memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
992 	spin_unlock(&ls->ls_recover_spin);
993 
994 	memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE);
995 	control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
996 
997 	error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT);
998 	if (error)
999 		fs_err(sdp, "control_first_done mounted PR error %d\n", error);
1000 
1001 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
1002 	if (error)
1003 		fs_err(sdp, "control_first_done control NL error %d\n", error);
1004 
1005 	return error;
1006 }
1007 
1008 /*
1009  * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
1010  * to accomodate the largest slot number.  (NB dlm slot numbers start at 1,
1011  * gfs2 jids start at 0, so jid = slot - 1)
1012  */
1013 
1014 #define RECOVER_SIZE_INC 16
1015 
1016 static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots,
1017 			    int num_slots)
1018 {
1019 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1020 	uint32_t *submit = NULL;
1021 	uint32_t *result = NULL;
1022 	uint32_t old_size, new_size;
1023 	int i, max_jid;
1024 
1025 	if (!ls->ls_lvb_bits) {
1026 		ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS);
1027 		if (!ls->ls_lvb_bits)
1028 			return -ENOMEM;
1029 	}
1030 
1031 	max_jid = 0;
1032 	for (i = 0; i < num_slots; i++) {
1033 		if (max_jid < slots[i].slot - 1)
1034 			max_jid = slots[i].slot - 1;
1035 	}
1036 
1037 	old_size = ls->ls_recover_size;
1038 	new_size = old_size;
1039 	while (new_size < max_jid + 1)
1040 		new_size += RECOVER_SIZE_INC;
1041 	if (new_size == old_size)
1042 		return 0;
1043 
1044 	submit = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1045 	result = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1046 	if (!submit || !result) {
1047 		kfree(submit);
1048 		kfree(result);
1049 		return -ENOMEM;
1050 	}
1051 
1052 	spin_lock(&ls->ls_recover_spin);
1053 	memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t));
1054 	memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t));
1055 	kfree(ls->ls_recover_submit);
1056 	kfree(ls->ls_recover_result);
1057 	ls->ls_recover_submit = submit;
1058 	ls->ls_recover_result = result;
1059 	ls->ls_recover_size = new_size;
1060 	spin_unlock(&ls->ls_recover_spin);
1061 	return 0;
1062 }
1063 
1064 static void free_recover_size(struct lm_lockstruct *ls)
1065 {
1066 	kfree(ls->ls_lvb_bits);
1067 	kfree(ls->ls_recover_submit);
1068 	kfree(ls->ls_recover_result);
1069 	ls->ls_recover_submit = NULL;
1070 	ls->ls_recover_result = NULL;
1071 	ls->ls_recover_size = 0;
1072 	ls->ls_lvb_bits = NULL;
1073 }
1074 
1075 /* dlm calls before it does lock recovery */
1076 
1077 static void gdlm_recover_prep(void *arg)
1078 {
1079 	struct gfs2_sbd *sdp = arg;
1080 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1081 
1082 	spin_lock(&ls->ls_recover_spin);
1083 	ls->ls_recover_block = ls->ls_recover_start;
1084 	set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1085 
1086 	if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1087 	     test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1088 		spin_unlock(&ls->ls_recover_spin);
1089 		return;
1090 	}
1091 	set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
1092 	spin_unlock(&ls->ls_recover_spin);
1093 }
1094 
1095 /* dlm calls after recover_prep has been completed on all lockspace members;
1096    identifies slot/jid of failed member */
1097 
1098 static void gdlm_recover_slot(void *arg, struct dlm_slot *slot)
1099 {
1100 	struct gfs2_sbd *sdp = arg;
1101 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1102 	int jid = slot->slot - 1;
1103 
1104 	spin_lock(&ls->ls_recover_spin);
1105 	if (ls->ls_recover_size < jid + 1) {
1106 		fs_err(sdp, "recover_slot jid %d gen %u short size %d\n",
1107 		       jid, ls->ls_recover_block, ls->ls_recover_size);
1108 		spin_unlock(&ls->ls_recover_spin);
1109 		return;
1110 	}
1111 
1112 	if (ls->ls_recover_submit[jid]) {
1113 		fs_info(sdp, "recover_slot jid %d gen %u prev %u\n",
1114 			jid, ls->ls_recover_block, ls->ls_recover_submit[jid]);
1115 	}
1116 	ls->ls_recover_submit[jid] = ls->ls_recover_block;
1117 	spin_unlock(&ls->ls_recover_spin);
1118 }
1119 
1120 /* dlm calls after recover_slot and after it completes lock recovery */
1121 
1122 static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots,
1123 			      int our_slot, uint32_t generation)
1124 {
1125 	struct gfs2_sbd *sdp = arg;
1126 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1127 
1128 	/* ensure the ls jid arrays are large enough */
1129 	set_recover_size(sdp, slots, num_slots);
1130 
1131 	spin_lock(&ls->ls_recover_spin);
1132 	ls->ls_recover_start = generation;
1133 
1134 	if (!ls->ls_recover_mount) {
1135 		ls->ls_recover_mount = generation;
1136 		ls->ls_jid = our_slot - 1;
1137 	}
1138 
1139 	if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1140 		queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0);
1141 
1142 	clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1143 	smp_mb__after_atomic();
1144 	wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY);
1145 	spin_unlock(&ls->ls_recover_spin);
1146 }
1147 
1148 /* gfs2_recover thread has a journal recovery result */
1149 
1150 static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid,
1151 				 unsigned int result)
1152 {
1153 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1154 
1155 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1156 		return;
1157 
1158 	/* don't care about the recovery of own journal during mount */
1159 	if (jid == ls->ls_jid)
1160 		return;
1161 
1162 	spin_lock(&ls->ls_recover_spin);
1163 	if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1164 		spin_unlock(&ls->ls_recover_spin);
1165 		return;
1166 	}
1167 	if (ls->ls_recover_size < jid + 1) {
1168 		fs_err(sdp, "recovery_result jid %d short size %d\n",
1169 		       jid, ls->ls_recover_size);
1170 		spin_unlock(&ls->ls_recover_spin);
1171 		return;
1172 	}
1173 
1174 	fs_info(sdp, "recover jid %d result %s\n", jid,
1175 		result == LM_RD_GAVEUP ? "busy" : "success");
1176 
1177 	ls->ls_recover_result[jid] = result;
1178 
1179 	/* GAVEUP means another node is recovering the journal; delay our
1180 	   next attempt to recover it, to give the other node a chance to
1181 	   finish before trying again */
1182 
1183 	if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1184 		queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work,
1185 				   result == LM_RD_GAVEUP ? HZ : 0);
1186 	spin_unlock(&ls->ls_recover_spin);
1187 }
1188 
1189 static const struct dlm_lockspace_ops gdlm_lockspace_ops = {
1190 	.recover_prep = gdlm_recover_prep,
1191 	.recover_slot = gdlm_recover_slot,
1192 	.recover_done = gdlm_recover_done,
1193 };
1194 
1195 static int gdlm_mount(struct gfs2_sbd *sdp, const char *table)
1196 {
1197 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1198 	char cluster[GFS2_LOCKNAME_LEN];
1199 	const char *fsname;
1200 	uint32_t flags;
1201 	int error, ops_result;
1202 
1203 	/*
1204 	 * initialize everything
1205 	 */
1206 
1207 	INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func);
1208 	spin_lock_init(&ls->ls_recover_spin);
1209 	ls->ls_recover_flags = 0;
1210 	ls->ls_recover_mount = 0;
1211 	ls->ls_recover_start = 0;
1212 	ls->ls_recover_block = 0;
1213 	ls->ls_recover_size = 0;
1214 	ls->ls_recover_submit = NULL;
1215 	ls->ls_recover_result = NULL;
1216 	ls->ls_lvb_bits = NULL;
1217 
1218 	error = set_recover_size(sdp, NULL, 0);
1219 	if (error)
1220 		goto fail;
1221 
1222 	/*
1223 	 * prepare dlm_new_lockspace args
1224 	 */
1225 
1226 	fsname = strchr(table, ':');
1227 	if (!fsname) {
1228 		fs_info(sdp, "no fsname found\n");
1229 		error = -EINVAL;
1230 		goto fail_free;
1231 	}
1232 	memset(cluster, 0, sizeof(cluster));
1233 	memcpy(cluster, table, strlen(table) - strlen(fsname));
1234 	fsname++;
1235 
1236 	flags = DLM_LSFL_FS | DLM_LSFL_NEWEXCL;
1237 
1238 	/*
1239 	 * create/join lockspace
1240 	 */
1241 
1242 	error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE,
1243 				  &gdlm_lockspace_ops, sdp, &ops_result,
1244 				  &ls->ls_dlm);
1245 	if (error) {
1246 		fs_err(sdp, "dlm_new_lockspace error %d\n", error);
1247 		goto fail_free;
1248 	}
1249 
1250 	if (ops_result < 0) {
1251 		/*
1252 		 * dlm does not support ops callbacks,
1253 		 * old dlm_controld/gfs_controld are used, try without ops.
1254 		 */
1255 		fs_info(sdp, "dlm lockspace ops not used\n");
1256 		free_recover_size(ls);
1257 		set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags);
1258 		return 0;
1259 	}
1260 
1261 	if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) {
1262 		fs_err(sdp, "dlm lockspace ops disallow jid preset\n");
1263 		error = -EINVAL;
1264 		goto fail_release;
1265 	}
1266 
1267 	/*
1268 	 * control_mount() uses control_lock to determine first mounter,
1269 	 * and for later mounts, waits for any recoveries to be cleared.
1270 	 */
1271 
1272 	error = control_mount(sdp);
1273 	if (error) {
1274 		fs_err(sdp, "mount control error %d\n", error);
1275 		goto fail_release;
1276 	}
1277 
1278 	ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1279 	clear_bit(SDF_NOJOURNALID, &sdp->sd_flags);
1280 	smp_mb__after_atomic();
1281 	wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID);
1282 	return 0;
1283 
1284 fail_release:
1285 	dlm_release_lockspace(ls->ls_dlm, 2);
1286 fail_free:
1287 	free_recover_size(ls);
1288 fail:
1289 	return error;
1290 }
1291 
1292 static void gdlm_first_done(struct gfs2_sbd *sdp)
1293 {
1294 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1295 	int error;
1296 
1297 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1298 		return;
1299 
1300 	error = control_first_done(sdp);
1301 	if (error)
1302 		fs_err(sdp, "mount first_done error %d\n", error);
1303 }
1304 
1305 static void gdlm_unmount(struct gfs2_sbd *sdp)
1306 {
1307 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1308 
1309 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1310 		goto release;
1311 
1312 	/* wait for gfs2_control_wq to be done with this mount */
1313 
1314 	spin_lock(&ls->ls_recover_spin);
1315 	set_bit(DFL_UNMOUNT, &ls->ls_recover_flags);
1316 	spin_unlock(&ls->ls_recover_spin);
1317 	flush_delayed_work(&sdp->sd_control_work);
1318 
1319 	/* mounted_lock and control_lock will be purged in dlm recovery */
1320 release:
1321 	if (ls->ls_dlm) {
1322 		dlm_release_lockspace(ls->ls_dlm, 2);
1323 		ls->ls_dlm = NULL;
1324 	}
1325 
1326 	free_recover_size(ls);
1327 }
1328 
1329 static const match_table_t dlm_tokens = {
1330 	{ Opt_jid, "jid=%d"},
1331 	{ Opt_id, "id=%d"},
1332 	{ Opt_first, "first=%d"},
1333 	{ Opt_nodir, "nodir=%d"},
1334 	{ Opt_err, NULL },
1335 };
1336 
1337 const struct lm_lockops gfs2_dlm_ops = {
1338 	.lm_proto_name = "lock_dlm",
1339 	.lm_mount = gdlm_mount,
1340 	.lm_first_done = gdlm_first_done,
1341 	.lm_recovery_result = gdlm_recovery_result,
1342 	.lm_unmount = gdlm_unmount,
1343 	.lm_put_lock = gdlm_put_lock,
1344 	.lm_lock = gdlm_lock,
1345 	.lm_cancel = gdlm_cancel,
1346 	.lm_tokens = &dlm_tokens,
1347 };
1348 
1349