1 /* 2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 3 * Copyright 2004-2011 Red Hat, Inc. 4 * 5 * This copyrighted material is made available to anyone wishing to use, 6 * modify, copy, or redistribute it subject to the terms and conditions 7 * of the GNU General Public License version 2. 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/fs.h> 13 #include <linux/dlm.h> 14 #include <linux/slab.h> 15 #include <linux/types.h> 16 #include <linux/delay.h> 17 #include <linux/gfs2_ondisk.h> 18 19 #include "incore.h" 20 #include "glock.h" 21 #include "util.h" 22 #include "sys.h" 23 #include "trace_gfs2.h" 24 25 extern struct workqueue_struct *gfs2_control_wq; 26 27 /** 28 * gfs2_update_stats - Update time based stats 29 * @mv: Pointer to mean/variance structure to update 30 * @sample: New data to include 31 * 32 * @delta is the difference between the current rtt sample and the 33 * running average srtt. We add 1/8 of that to the srtt in order to 34 * update the current srtt estimate. The varience estimate is a bit 35 * more complicated. We subtract the abs value of the @delta from 36 * the current variance estimate and add 1/4 of that to the running 37 * total. 38 * 39 * Note that the index points at the array entry containing the smoothed 40 * mean value, and the variance is always in the following entry 41 * 42 * Reference: TCP/IP Illustrated, vol 2, p. 831,832 43 * All times are in units of integer nanoseconds. Unlike the TCP/IP case, 44 * they are not scaled fixed point. 45 */ 46 47 static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index, 48 s64 sample) 49 { 50 s64 delta = sample - s->stats[index]; 51 s->stats[index] += (delta >> 3); 52 index++; 53 s->stats[index] += ((abs64(delta) - s->stats[index]) >> 2); 54 } 55 56 /** 57 * gfs2_update_reply_times - Update locking statistics 58 * @gl: The glock to update 59 * 60 * This assumes that gl->gl_dstamp has been set earlier. 61 * 62 * The rtt (lock round trip time) is an estimate of the time 63 * taken to perform a dlm lock request. We update it on each 64 * reply from the dlm. 65 * 66 * The blocking flag is set on the glock for all dlm requests 67 * which may potentially block due to lock requests from other nodes. 68 * DLM requests where the current lock state is exclusive, the 69 * requested state is null (or unlocked) or where the TRY or 70 * TRY_1CB flags are set are classified as non-blocking. All 71 * other DLM requests are counted as (potentially) blocking. 72 */ 73 static inline void gfs2_update_reply_times(struct gfs2_glock *gl) 74 { 75 struct gfs2_pcpu_lkstats *lks; 76 const unsigned gltype = gl->gl_name.ln_type; 77 unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ? 78 GFS2_LKS_SRTTB : GFS2_LKS_SRTT; 79 s64 rtt; 80 81 preempt_disable(); 82 rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp)); 83 lks = this_cpu_ptr(gl->gl_sbd->sd_lkstats); 84 gfs2_update_stats(&gl->gl_stats, index, rtt); /* Local */ 85 gfs2_update_stats(&lks->lkstats[gltype], index, rtt); /* Global */ 86 preempt_enable(); 87 88 trace_gfs2_glock_lock_time(gl, rtt); 89 } 90 91 /** 92 * gfs2_update_request_times - Update locking statistics 93 * @gl: The glock to update 94 * 95 * The irt (lock inter-request times) measures the average time 96 * between requests to the dlm. It is updated immediately before 97 * each dlm call. 98 */ 99 100 static inline void gfs2_update_request_times(struct gfs2_glock *gl) 101 { 102 struct gfs2_pcpu_lkstats *lks; 103 const unsigned gltype = gl->gl_name.ln_type; 104 ktime_t dstamp; 105 s64 irt; 106 107 preempt_disable(); 108 dstamp = gl->gl_dstamp; 109 gl->gl_dstamp = ktime_get_real(); 110 irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp)); 111 lks = this_cpu_ptr(gl->gl_sbd->sd_lkstats); 112 gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt); /* Local */ 113 gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt); /* Global */ 114 preempt_enable(); 115 } 116 117 static void gdlm_ast(void *arg) 118 { 119 struct gfs2_glock *gl = arg; 120 unsigned ret = gl->gl_state; 121 122 gfs2_update_reply_times(gl); 123 BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED); 124 125 if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr) 126 memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE); 127 128 switch (gl->gl_lksb.sb_status) { 129 case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */ 130 gfs2_glock_free(gl); 131 return; 132 case -DLM_ECANCEL: /* Cancel while getting lock */ 133 ret |= LM_OUT_CANCELED; 134 goto out; 135 case -EAGAIN: /* Try lock fails */ 136 case -EDEADLK: /* Deadlock detected */ 137 goto out; 138 case -ETIMEDOUT: /* Canceled due to timeout */ 139 ret |= LM_OUT_ERROR; 140 goto out; 141 case 0: /* Success */ 142 break; 143 default: /* Something unexpected */ 144 BUG(); 145 } 146 147 ret = gl->gl_req; 148 if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) { 149 if (gl->gl_req == LM_ST_SHARED) 150 ret = LM_ST_DEFERRED; 151 else if (gl->gl_req == LM_ST_DEFERRED) 152 ret = LM_ST_SHARED; 153 else 154 BUG(); 155 } 156 157 set_bit(GLF_INITIAL, &gl->gl_flags); 158 gfs2_glock_complete(gl, ret); 159 return; 160 out: 161 if (!test_bit(GLF_INITIAL, &gl->gl_flags)) 162 gl->gl_lksb.sb_lkid = 0; 163 gfs2_glock_complete(gl, ret); 164 } 165 166 static void gdlm_bast(void *arg, int mode) 167 { 168 struct gfs2_glock *gl = arg; 169 170 switch (mode) { 171 case DLM_LOCK_EX: 172 gfs2_glock_cb(gl, LM_ST_UNLOCKED); 173 break; 174 case DLM_LOCK_CW: 175 gfs2_glock_cb(gl, LM_ST_DEFERRED); 176 break; 177 case DLM_LOCK_PR: 178 gfs2_glock_cb(gl, LM_ST_SHARED); 179 break; 180 default: 181 pr_err("unknown bast mode %d\n", mode); 182 BUG(); 183 } 184 } 185 186 /* convert gfs lock-state to dlm lock-mode */ 187 188 static int make_mode(const unsigned int lmstate) 189 { 190 switch (lmstate) { 191 case LM_ST_UNLOCKED: 192 return DLM_LOCK_NL; 193 case LM_ST_EXCLUSIVE: 194 return DLM_LOCK_EX; 195 case LM_ST_DEFERRED: 196 return DLM_LOCK_CW; 197 case LM_ST_SHARED: 198 return DLM_LOCK_PR; 199 } 200 pr_err("unknown LM state %d\n", lmstate); 201 BUG(); 202 return -1; 203 } 204 205 static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags, 206 const int req) 207 { 208 u32 lkf = 0; 209 210 if (gl->gl_lksb.sb_lvbptr) 211 lkf |= DLM_LKF_VALBLK; 212 213 if (gfs_flags & LM_FLAG_TRY) 214 lkf |= DLM_LKF_NOQUEUE; 215 216 if (gfs_flags & LM_FLAG_TRY_1CB) { 217 lkf |= DLM_LKF_NOQUEUE; 218 lkf |= DLM_LKF_NOQUEUEBAST; 219 } 220 221 if (gfs_flags & LM_FLAG_PRIORITY) { 222 lkf |= DLM_LKF_NOORDER; 223 lkf |= DLM_LKF_HEADQUE; 224 } 225 226 if (gfs_flags & LM_FLAG_ANY) { 227 if (req == DLM_LOCK_PR) 228 lkf |= DLM_LKF_ALTCW; 229 else if (req == DLM_LOCK_CW) 230 lkf |= DLM_LKF_ALTPR; 231 else 232 BUG(); 233 } 234 235 if (gl->gl_lksb.sb_lkid != 0) { 236 lkf |= DLM_LKF_CONVERT; 237 if (test_bit(GLF_BLOCKING, &gl->gl_flags)) 238 lkf |= DLM_LKF_QUECVT; 239 } 240 241 return lkf; 242 } 243 244 static void gfs2_reverse_hex(char *c, u64 value) 245 { 246 *c = '0'; 247 while (value) { 248 *c-- = hex_asc[value & 0x0f]; 249 value >>= 4; 250 } 251 } 252 253 static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state, 254 unsigned int flags) 255 { 256 struct lm_lockstruct *ls = &gl->gl_sbd->sd_lockstruct; 257 int req; 258 u32 lkf; 259 char strname[GDLM_STRNAME_BYTES] = ""; 260 261 req = make_mode(req_state); 262 lkf = make_flags(gl, flags, req); 263 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT); 264 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT); 265 if (gl->gl_lksb.sb_lkid) { 266 gfs2_update_request_times(gl); 267 } else { 268 memset(strname, ' ', GDLM_STRNAME_BYTES - 1); 269 strname[GDLM_STRNAME_BYTES - 1] = '\0'; 270 gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type); 271 gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number); 272 gl->gl_dstamp = ktime_get_real(); 273 } 274 /* 275 * Submit the actual lock request. 276 */ 277 278 return dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname, 279 GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast); 280 } 281 282 static void gdlm_put_lock(struct gfs2_glock *gl) 283 { 284 struct gfs2_sbd *sdp = gl->gl_sbd; 285 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 286 int lvb_needs_unlock = 0; 287 int error; 288 289 if (gl->gl_lksb.sb_lkid == 0) { 290 gfs2_glock_free(gl); 291 return; 292 } 293 294 clear_bit(GLF_BLOCKING, &gl->gl_flags); 295 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT); 296 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT); 297 gfs2_update_request_times(gl); 298 299 /* don't want to skip dlm_unlock writing the lvb when lock is ex */ 300 301 if (gl->gl_lksb.sb_lvbptr && (gl->gl_state == LM_ST_EXCLUSIVE)) 302 lvb_needs_unlock = 1; 303 304 if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) && 305 !lvb_needs_unlock) { 306 gfs2_glock_free(gl); 307 return; 308 } 309 310 error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK, 311 NULL, gl); 312 if (error) { 313 pr_err("gdlm_unlock %x,%llx err=%d\n", 314 gl->gl_name.ln_type, 315 (unsigned long long)gl->gl_name.ln_number, error); 316 return; 317 } 318 } 319 320 static void gdlm_cancel(struct gfs2_glock *gl) 321 { 322 struct lm_lockstruct *ls = &gl->gl_sbd->sd_lockstruct; 323 dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl); 324 } 325 326 /* 327 * dlm/gfs2 recovery coordination using dlm_recover callbacks 328 * 329 * 1. dlm_controld sees lockspace members change 330 * 2. dlm_controld blocks dlm-kernel locking activity 331 * 3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep) 332 * 4. dlm_controld starts and finishes its own user level recovery 333 * 5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery 334 * 6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot) 335 * 7. dlm_recoverd does its own lock recovery 336 * 8. dlm_recoverd unblocks dlm-kernel locking activity 337 * 9. dlm_recoverd notifies gfs2 when done (recover_done with new generation) 338 * 10. gfs2_control updates control_lock lvb with new generation and jid bits 339 * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none) 340 * 12. gfs2_recover dequeues and recovers journals of failed nodes 341 * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result) 342 * 14. gfs2_control updates control_lock lvb jid bits for recovered journals 343 * 15. gfs2_control unblocks normal locking when all journals are recovered 344 * 345 * - failures during recovery 346 * 347 * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control 348 * clears BLOCK_LOCKS (step 15), e.g. another node fails while still 349 * recovering for a prior failure. gfs2_control needs a way to detect 350 * this so it can leave BLOCK_LOCKS set in step 15. This is managed using 351 * the recover_block and recover_start values. 352 * 353 * recover_done() provides a new lockspace generation number each time it 354 * is called (step 9). This generation number is saved as recover_start. 355 * When recover_prep() is called, it sets BLOCK_LOCKS and sets 356 * recover_block = recover_start. So, while recover_block is equal to 357 * recover_start, BLOCK_LOCKS should remain set. (recover_spin must 358 * be held around the BLOCK_LOCKS/recover_block/recover_start logic.) 359 * 360 * - more specific gfs2 steps in sequence above 361 * 362 * 3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start 363 * 6. recover_slot records any failed jids (maybe none) 364 * 9. recover_done sets recover_start = new generation number 365 * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids 366 * 12. gfs2_recover does journal recoveries for failed jids identified above 367 * 14. gfs2_control clears control_lock lvb bits for recovered jids 368 * 15. gfs2_control checks if recover_block == recover_start (step 3 occured 369 * again) then do nothing, otherwise if recover_start > recover_block 370 * then clear BLOCK_LOCKS. 371 * 372 * - parallel recovery steps across all nodes 373 * 374 * All nodes attempt to update the control_lock lvb with the new generation 375 * number and jid bits, but only the first to get the control_lock EX will 376 * do so; others will see that it's already done (lvb already contains new 377 * generation number.) 378 * 379 * . All nodes get the same recover_prep/recover_slot/recover_done callbacks 380 * . All nodes attempt to set control_lock lvb gen + bits for the new gen 381 * . One node gets control_lock first and writes the lvb, others see it's done 382 * . All nodes attempt to recover jids for which they see control_lock bits set 383 * . One node succeeds for a jid, and that one clears the jid bit in the lvb 384 * . All nodes will eventually see all lvb bits clear and unblock locks 385 * 386 * - is there a problem with clearing an lvb bit that should be set 387 * and missing a journal recovery? 388 * 389 * 1. jid fails 390 * 2. lvb bit set for step 1 391 * 3. jid recovered for step 1 392 * 4. jid taken again (new mount) 393 * 5. jid fails (for step 4) 394 * 6. lvb bit set for step 5 (will already be set) 395 * 7. lvb bit cleared for step 3 396 * 397 * This is not a problem because the failure in step 5 does not 398 * require recovery, because the mount in step 4 could not have 399 * progressed far enough to unblock locks and access the fs. The 400 * control_mount() function waits for all recoveries to be complete 401 * for the latest lockspace generation before ever unblocking locks 402 * and returning. The mount in step 4 waits until the recovery in 403 * step 1 is done. 404 * 405 * - special case of first mounter: first node to mount the fs 406 * 407 * The first node to mount a gfs2 fs needs to check all the journals 408 * and recover any that need recovery before other nodes are allowed 409 * to mount the fs. (Others may begin mounting, but they must wait 410 * for the first mounter to be done before taking locks on the fs 411 * or accessing the fs.) This has two parts: 412 * 413 * 1. The mounted_lock tells a node it's the first to mount the fs. 414 * Each node holds the mounted_lock in PR while it's mounted. 415 * Each node tries to acquire the mounted_lock in EX when it mounts. 416 * If a node is granted the mounted_lock EX it means there are no 417 * other mounted nodes (no PR locks exist), and it is the first mounter. 418 * The mounted_lock is demoted to PR when first recovery is done, so 419 * others will fail to get an EX lock, but will get a PR lock. 420 * 421 * 2. The control_lock blocks others in control_mount() while the first 422 * mounter is doing first mount recovery of all journals. 423 * A mounting node needs to acquire control_lock in EX mode before 424 * it can proceed. The first mounter holds control_lock in EX while doing 425 * the first mount recovery, blocking mounts from other nodes, then demotes 426 * control_lock to NL when it's done (others_may_mount/first_done), 427 * allowing other nodes to continue mounting. 428 * 429 * first mounter: 430 * control_lock EX/NOQUEUE success 431 * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters) 432 * set first=1 433 * do first mounter recovery 434 * mounted_lock EX->PR 435 * control_lock EX->NL, write lvb generation 436 * 437 * other mounter: 438 * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry) 439 * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR) 440 * mounted_lock PR/NOQUEUE success 441 * read lvb generation 442 * control_lock EX->NL 443 * set first=0 444 * 445 * - mount during recovery 446 * 447 * If a node mounts while others are doing recovery (not first mounter), 448 * the mounting node will get its initial recover_done() callback without 449 * having seen any previous failures/callbacks. 450 * 451 * It must wait for all recoveries preceding its mount to be finished 452 * before it unblocks locks. It does this by repeating the "other mounter" 453 * steps above until the lvb generation number is >= its mount generation 454 * number (from initial recover_done) and all lvb bits are clear. 455 * 456 * - control_lock lvb format 457 * 458 * 4 bytes generation number: the latest dlm lockspace generation number 459 * from recover_done callback. Indicates the jid bitmap has been updated 460 * to reflect all slot failures through that generation. 461 * 4 bytes unused. 462 * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates 463 * that jid N needs recovery. 464 */ 465 466 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */ 467 468 static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen, 469 char *lvb_bits) 470 { 471 __le32 gen; 472 memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE); 473 memcpy(&gen, lvb_bits, sizeof(__le32)); 474 *lvb_gen = le32_to_cpu(gen); 475 } 476 477 static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen, 478 char *lvb_bits) 479 { 480 __le32 gen; 481 memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE); 482 gen = cpu_to_le32(lvb_gen); 483 memcpy(ls->ls_control_lvb, &gen, sizeof(__le32)); 484 } 485 486 static int all_jid_bits_clear(char *lvb) 487 { 488 return !memchr_inv(lvb + JID_BITMAP_OFFSET, 0, 489 GDLM_LVB_SIZE - JID_BITMAP_OFFSET); 490 } 491 492 static void sync_wait_cb(void *arg) 493 { 494 struct lm_lockstruct *ls = arg; 495 complete(&ls->ls_sync_wait); 496 } 497 498 static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name) 499 { 500 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 501 int error; 502 503 error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls); 504 if (error) { 505 fs_err(sdp, "%s lkid %x error %d\n", 506 name, lksb->sb_lkid, error); 507 return error; 508 } 509 510 wait_for_completion(&ls->ls_sync_wait); 511 512 if (lksb->sb_status != -DLM_EUNLOCK) { 513 fs_err(sdp, "%s lkid %x status %d\n", 514 name, lksb->sb_lkid, lksb->sb_status); 515 return -1; 516 } 517 return 0; 518 } 519 520 static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags, 521 unsigned int num, struct dlm_lksb *lksb, char *name) 522 { 523 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 524 char strname[GDLM_STRNAME_BYTES]; 525 int error, status; 526 527 memset(strname, 0, GDLM_STRNAME_BYTES); 528 snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num); 529 530 error = dlm_lock(ls->ls_dlm, mode, lksb, flags, 531 strname, GDLM_STRNAME_BYTES - 1, 532 0, sync_wait_cb, ls, NULL); 533 if (error) { 534 fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n", 535 name, lksb->sb_lkid, flags, mode, error); 536 return error; 537 } 538 539 wait_for_completion(&ls->ls_sync_wait); 540 541 status = lksb->sb_status; 542 543 if (status && status != -EAGAIN) { 544 fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n", 545 name, lksb->sb_lkid, flags, mode, status); 546 } 547 548 return status; 549 } 550 551 static int mounted_unlock(struct gfs2_sbd *sdp) 552 { 553 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 554 return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock"); 555 } 556 557 static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags) 558 { 559 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 560 return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK, 561 &ls->ls_mounted_lksb, "mounted_lock"); 562 } 563 564 static int control_unlock(struct gfs2_sbd *sdp) 565 { 566 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 567 return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock"); 568 } 569 570 static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags) 571 { 572 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 573 return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK, 574 &ls->ls_control_lksb, "control_lock"); 575 } 576 577 static void gfs2_control_func(struct work_struct *work) 578 { 579 struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work); 580 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 581 uint32_t block_gen, start_gen, lvb_gen, flags; 582 int recover_set = 0; 583 int write_lvb = 0; 584 int recover_size; 585 int i, error; 586 587 spin_lock(&ls->ls_recover_spin); 588 /* 589 * No MOUNT_DONE means we're still mounting; control_mount() 590 * will set this flag, after which this thread will take over 591 * all further clearing of BLOCK_LOCKS. 592 * 593 * FIRST_MOUNT means this node is doing first mounter recovery, 594 * for which recovery control is handled by 595 * control_mount()/control_first_done(), not this thread. 596 */ 597 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || 598 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 599 spin_unlock(&ls->ls_recover_spin); 600 return; 601 } 602 block_gen = ls->ls_recover_block; 603 start_gen = ls->ls_recover_start; 604 spin_unlock(&ls->ls_recover_spin); 605 606 /* 607 * Equal block_gen and start_gen implies we are between 608 * recover_prep and recover_done callbacks, which means 609 * dlm recovery is in progress and dlm locking is blocked. 610 * There's no point trying to do any work until recover_done. 611 */ 612 613 if (block_gen == start_gen) 614 return; 615 616 /* 617 * Propagate recover_submit[] and recover_result[] to lvb: 618 * dlm_recoverd adds to recover_submit[] jids needing recovery 619 * gfs2_recover adds to recover_result[] journal recovery results 620 * 621 * set lvb bit for jids in recover_submit[] if the lvb has not 622 * yet been updated for the generation of the failure 623 * 624 * clear lvb bit for jids in recover_result[] if the result of 625 * the journal recovery is SUCCESS 626 */ 627 628 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK); 629 if (error) { 630 fs_err(sdp, "control lock EX error %d\n", error); 631 return; 632 } 633 634 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits); 635 636 spin_lock(&ls->ls_recover_spin); 637 if (block_gen != ls->ls_recover_block || 638 start_gen != ls->ls_recover_start) { 639 fs_info(sdp, "recover generation %u block1 %u %u\n", 640 start_gen, block_gen, ls->ls_recover_block); 641 spin_unlock(&ls->ls_recover_spin); 642 control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); 643 return; 644 } 645 646 recover_size = ls->ls_recover_size; 647 648 if (lvb_gen <= start_gen) { 649 /* 650 * Clear lvb bits for jids we've successfully recovered. 651 * Because all nodes attempt to recover failed journals, 652 * a journal can be recovered multiple times successfully 653 * in succession. Only the first will really do recovery, 654 * the others find it clean, but still report a successful 655 * recovery. So, another node may have already recovered 656 * the jid and cleared the lvb bit for it. 657 */ 658 for (i = 0; i < recover_size; i++) { 659 if (ls->ls_recover_result[i] != LM_RD_SUCCESS) 660 continue; 661 662 ls->ls_recover_result[i] = 0; 663 664 if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) 665 continue; 666 667 __clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET); 668 write_lvb = 1; 669 } 670 } 671 672 if (lvb_gen == start_gen) { 673 /* 674 * Failed slots before start_gen are already set in lvb. 675 */ 676 for (i = 0; i < recover_size; i++) { 677 if (!ls->ls_recover_submit[i]) 678 continue; 679 if (ls->ls_recover_submit[i] < lvb_gen) 680 ls->ls_recover_submit[i] = 0; 681 } 682 } else if (lvb_gen < start_gen) { 683 /* 684 * Failed slots before start_gen are not yet set in lvb. 685 */ 686 for (i = 0; i < recover_size; i++) { 687 if (!ls->ls_recover_submit[i]) 688 continue; 689 if (ls->ls_recover_submit[i] < start_gen) { 690 ls->ls_recover_submit[i] = 0; 691 __set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET); 692 } 693 } 694 /* even if there are no bits to set, we need to write the 695 latest generation to the lvb */ 696 write_lvb = 1; 697 } else { 698 /* 699 * we should be getting a recover_done() for lvb_gen soon 700 */ 701 } 702 spin_unlock(&ls->ls_recover_spin); 703 704 if (write_lvb) { 705 control_lvb_write(ls, start_gen, ls->ls_lvb_bits); 706 flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK; 707 } else { 708 flags = DLM_LKF_CONVERT; 709 } 710 711 error = control_lock(sdp, DLM_LOCK_NL, flags); 712 if (error) { 713 fs_err(sdp, "control lock NL error %d\n", error); 714 return; 715 } 716 717 /* 718 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(), 719 * and clear a jid bit in the lvb if the recovery is a success. 720 * Eventually all journals will be recovered, all jid bits will 721 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS. 722 */ 723 724 for (i = 0; i < recover_size; i++) { 725 if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) { 726 fs_info(sdp, "recover generation %u jid %d\n", 727 start_gen, i); 728 gfs2_recover_set(sdp, i); 729 recover_set++; 730 } 731 } 732 if (recover_set) 733 return; 734 735 /* 736 * No more jid bits set in lvb, all recovery is done, unblock locks 737 * (unless a new recover_prep callback has occured blocking locks 738 * again while working above) 739 */ 740 741 spin_lock(&ls->ls_recover_spin); 742 if (ls->ls_recover_block == block_gen && 743 ls->ls_recover_start == start_gen) { 744 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 745 spin_unlock(&ls->ls_recover_spin); 746 fs_info(sdp, "recover generation %u done\n", start_gen); 747 gfs2_glock_thaw(sdp); 748 } else { 749 fs_info(sdp, "recover generation %u block2 %u %u\n", 750 start_gen, block_gen, ls->ls_recover_block); 751 spin_unlock(&ls->ls_recover_spin); 752 } 753 } 754 755 static int control_mount(struct gfs2_sbd *sdp) 756 { 757 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 758 uint32_t start_gen, block_gen, mount_gen, lvb_gen; 759 int mounted_mode; 760 int retries = 0; 761 int error; 762 763 memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb)); 764 memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb)); 765 memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE); 766 ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb; 767 init_completion(&ls->ls_sync_wait); 768 769 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 770 771 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK); 772 if (error) { 773 fs_err(sdp, "control_mount control_lock NL error %d\n", error); 774 return error; 775 } 776 777 error = mounted_lock(sdp, DLM_LOCK_NL, 0); 778 if (error) { 779 fs_err(sdp, "control_mount mounted_lock NL error %d\n", error); 780 control_unlock(sdp); 781 return error; 782 } 783 mounted_mode = DLM_LOCK_NL; 784 785 restart: 786 if (retries++ && signal_pending(current)) { 787 error = -EINTR; 788 goto fail; 789 } 790 791 /* 792 * We always start with both locks in NL. control_lock is 793 * demoted to NL below so we don't need to do it here. 794 */ 795 796 if (mounted_mode != DLM_LOCK_NL) { 797 error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); 798 if (error) 799 goto fail; 800 mounted_mode = DLM_LOCK_NL; 801 } 802 803 /* 804 * Other nodes need to do some work in dlm recovery and gfs2_control 805 * before the recover_done and control_lock will be ready for us below. 806 * A delay here is not required but often avoids having to retry. 807 */ 808 809 msleep_interruptible(500); 810 811 /* 812 * Acquire control_lock in EX and mounted_lock in either EX or PR. 813 * control_lock lvb keeps track of any pending journal recoveries. 814 * mounted_lock indicates if any other nodes have the fs mounted. 815 */ 816 817 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK); 818 if (error == -EAGAIN) { 819 goto restart; 820 } else if (error) { 821 fs_err(sdp, "control_mount control_lock EX error %d\n", error); 822 goto fail; 823 } 824 825 error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE); 826 if (!error) { 827 mounted_mode = DLM_LOCK_EX; 828 goto locks_done; 829 } else if (error != -EAGAIN) { 830 fs_err(sdp, "control_mount mounted_lock EX error %d\n", error); 831 goto fail; 832 } 833 834 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE); 835 if (!error) { 836 mounted_mode = DLM_LOCK_PR; 837 goto locks_done; 838 } else { 839 /* not even -EAGAIN should happen here */ 840 fs_err(sdp, "control_mount mounted_lock PR error %d\n", error); 841 goto fail; 842 } 843 844 locks_done: 845 /* 846 * If we got both locks above in EX, then we're the first mounter. 847 * If not, then we need to wait for the control_lock lvb to be 848 * updated by other mounted nodes to reflect our mount generation. 849 * 850 * In simple first mounter cases, first mounter will see zero lvb_gen, 851 * but in cases where all existing nodes leave/fail before mounting 852 * nodes finish control_mount, then all nodes will be mounting and 853 * lvb_gen will be non-zero. 854 */ 855 856 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits); 857 858 if (lvb_gen == 0xFFFFFFFF) { 859 /* special value to force mount attempts to fail */ 860 fs_err(sdp, "control_mount control_lock disabled\n"); 861 error = -EINVAL; 862 goto fail; 863 } 864 865 if (mounted_mode == DLM_LOCK_EX) { 866 /* first mounter, keep both EX while doing first recovery */ 867 spin_lock(&ls->ls_recover_spin); 868 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 869 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags); 870 set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); 871 spin_unlock(&ls->ls_recover_spin); 872 fs_info(sdp, "first mounter control generation %u\n", lvb_gen); 873 return 0; 874 } 875 876 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); 877 if (error) 878 goto fail; 879 880 /* 881 * We are not first mounter, now we need to wait for the control_lock 882 * lvb generation to be >= the generation from our first recover_done 883 * and all lvb bits to be clear (no pending journal recoveries.) 884 */ 885 886 if (!all_jid_bits_clear(ls->ls_lvb_bits)) { 887 /* journals need recovery, wait until all are clear */ 888 fs_info(sdp, "control_mount wait for journal recovery\n"); 889 goto restart; 890 } 891 892 spin_lock(&ls->ls_recover_spin); 893 block_gen = ls->ls_recover_block; 894 start_gen = ls->ls_recover_start; 895 mount_gen = ls->ls_recover_mount; 896 897 if (lvb_gen < mount_gen) { 898 /* wait for mounted nodes to update control_lock lvb to our 899 generation, which might include new recovery bits set */ 900 fs_info(sdp, "control_mount wait1 block %u start %u mount %u " 901 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen, 902 lvb_gen, ls->ls_recover_flags); 903 spin_unlock(&ls->ls_recover_spin); 904 goto restart; 905 } 906 907 if (lvb_gen != start_gen) { 908 /* wait for mounted nodes to update control_lock lvb to the 909 latest recovery generation */ 910 fs_info(sdp, "control_mount wait2 block %u start %u mount %u " 911 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen, 912 lvb_gen, ls->ls_recover_flags); 913 spin_unlock(&ls->ls_recover_spin); 914 goto restart; 915 } 916 917 if (block_gen == start_gen) { 918 /* dlm recovery in progress, wait for it to finish */ 919 fs_info(sdp, "control_mount wait3 block %u start %u mount %u " 920 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen, 921 lvb_gen, ls->ls_recover_flags); 922 spin_unlock(&ls->ls_recover_spin); 923 goto restart; 924 } 925 926 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 927 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags); 928 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t)); 929 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t)); 930 spin_unlock(&ls->ls_recover_spin); 931 return 0; 932 933 fail: 934 mounted_unlock(sdp); 935 control_unlock(sdp); 936 return error; 937 } 938 939 static int control_first_done(struct gfs2_sbd *sdp) 940 { 941 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 942 uint32_t start_gen, block_gen; 943 int error; 944 945 restart: 946 spin_lock(&ls->ls_recover_spin); 947 start_gen = ls->ls_recover_start; 948 block_gen = ls->ls_recover_block; 949 950 if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) || 951 !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || 952 !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 953 /* sanity check, should not happen */ 954 fs_err(sdp, "control_first_done start %u block %u flags %lx\n", 955 start_gen, block_gen, ls->ls_recover_flags); 956 spin_unlock(&ls->ls_recover_spin); 957 control_unlock(sdp); 958 return -1; 959 } 960 961 if (start_gen == block_gen) { 962 /* 963 * Wait for the end of a dlm recovery cycle to switch from 964 * first mounter recovery. We can ignore any recover_slot 965 * callbacks between the recover_prep and next recover_done 966 * because we are still the first mounter and any failed nodes 967 * have not fully mounted, so they don't need recovery. 968 */ 969 spin_unlock(&ls->ls_recover_spin); 970 fs_info(sdp, "control_first_done wait gen %u\n", start_gen); 971 972 wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY, 973 TASK_UNINTERRUPTIBLE); 974 goto restart; 975 } 976 977 clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); 978 set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags); 979 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t)); 980 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t)); 981 spin_unlock(&ls->ls_recover_spin); 982 983 memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE); 984 control_lvb_write(ls, start_gen, ls->ls_lvb_bits); 985 986 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT); 987 if (error) 988 fs_err(sdp, "control_first_done mounted PR error %d\n", error); 989 990 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK); 991 if (error) 992 fs_err(sdp, "control_first_done control NL error %d\n", error); 993 994 return error; 995 } 996 997 /* 998 * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC) 999 * to accomodate the largest slot number. (NB dlm slot numbers start at 1, 1000 * gfs2 jids start at 0, so jid = slot - 1) 1001 */ 1002 1003 #define RECOVER_SIZE_INC 16 1004 1005 static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots, 1006 int num_slots) 1007 { 1008 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1009 uint32_t *submit = NULL; 1010 uint32_t *result = NULL; 1011 uint32_t old_size, new_size; 1012 int i, max_jid; 1013 1014 if (!ls->ls_lvb_bits) { 1015 ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS); 1016 if (!ls->ls_lvb_bits) 1017 return -ENOMEM; 1018 } 1019 1020 max_jid = 0; 1021 for (i = 0; i < num_slots; i++) { 1022 if (max_jid < slots[i].slot - 1) 1023 max_jid = slots[i].slot - 1; 1024 } 1025 1026 old_size = ls->ls_recover_size; 1027 1028 if (old_size >= max_jid + 1) 1029 return 0; 1030 1031 new_size = old_size + RECOVER_SIZE_INC; 1032 1033 submit = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS); 1034 result = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS); 1035 if (!submit || !result) { 1036 kfree(submit); 1037 kfree(result); 1038 return -ENOMEM; 1039 } 1040 1041 spin_lock(&ls->ls_recover_spin); 1042 memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t)); 1043 memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t)); 1044 kfree(ls->ls_recover_submit); 1045 kfree(ls->ls_recover_result); 1046 ls->ls_recover_submit = submit; 1047 ls->ls_recover_result = result; 1048 ls->ls_recover_size = new_size; 1049 spin_unlock(&ls->ls_recover_spin); 1050 return 0; 1051 } 1052 1053 static void free_recover_size(struct lm_lockstruct *ls) 1054 { 1055 kfree(ls->ls_lvb_bits); 1056 kfree(ls->ls_recover_submit); 1057 kfree(ls->ls_recover_result); 1058 ls->ls_recover_submit = NULL; 1059 ls->ls_recover_result = NULL; 1060 ls->ls_recover_size = 0; 1061 } 1062 1063 /* dlm calls before it does lock recovery */ 1064 1065 static void gdlm_recover_prep(void *arg) 1066 { 1067 struct gfs2_sbd *sdp = arg; 1068 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1069 1070 spin_lock(&ls->ls_recover_spin); 1071 ls->ls_recover_block = ls->ls_recover_start; 1072 set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags); 1073 1074 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || 1075 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 1076 spin_unlock(&ls->ls_recover_spin); 1077 return; 1078 } 1079 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 1080 spin_unlock(&ls->ls_recover_spin); 1081 } 1082 1083 /* dlm calls after recover_prep has been completed on all lockspace members; 1084 identifies slot/jid of failed member */ 1085 1086 static void gdlm_recover_slot(void *arg, struct dlm_slot *slot) 1087 { 1088 struct gfs2_sbd *sdp = arg; 1089 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1090 int jid = slot->slot - 1; 1091 1092 spin_lock(&ls->ls_recover_spin); 1093 if (ls->ls_recover_size < jid + 1) { 1094 fs_err(sdp, "recover_slot jid %d gen %u short size %d", 1095 jid, ls->ls_recover_block, ls->ls_recover_size); 1096 spin_unlock(&ls->ls_recover_spin); 1097 return; 1098 } 1099 1100 if (ls->ls_recover_submit[jid]) { 1101 fs_info(sdp, "recover_slot jid %d gen %u prev %u\n", 1102 jid, ls->ls_recover_block, ls->ls_recover_submit[jid]); 1103 } 1104 ls->ls_recover_submit[jid] = ls->ls_recover_block; 1105 spin_unlock(&ls->ls_recover_spin); 1106 } 1107 1108 /* dlm calls after recover_slot and after it completes lock recovery */ 1109 1110 static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots, 1111 int our_slot, uint32_t generation) 1112 { 1113 struct gfs2_sbd *sdp = arg; 1114 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1115 1116 /* ensure the ls jid arrays are large enough */ 1117 set_recover_size(sdp, slots, num_slots); 1118 1119 spin_lock(&ls->ls_recover_spin); 1120 ls->ls_recover_start = generation; 1121 1122 if (!ls->ls_recover_mount) { 1123 ls->ls_recover_mount = generation; 1124 ls->ls_jid = our_slot - 1; 1125 } 1126 1127 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) 1128 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0); 1129 1130 clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags); 1131 smp_mb__after_atomic(); 1132 wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY); 1133 spin_unlock(&ls->ls_recover_spin); 1134 } 1135 1136 /* gfs2_recover thread has a journal recovery result */ 1137 1138 static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid, 1139 unsigned int result) 1140 { 1141 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1142 1143 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) 1144 return; 1145 1146 /* don't care about the recovery of own journal during mount */ 1147 if (jid == ls->ls_jid) 1148 return; 1149 1150 spin_lock(&ls->ls_recover_spin); 1151 if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 1152 spin_unlock(&ls->ls_recover_spin); 1153 return; 1154 } 1155 if (ls->ls_recover_size < jid + 1) { 1156 fs_err(sdp, "recovery_result jid %d short size %d", 1157 jid, ls->ls_recover_size); 1158 spin_unlock(&ls->ls_recover_spin); 1159 return; 1160 } 1161 1162 fs_info(sdp, "recover jid %d result %s\n", jid, 1163 result == LM_RD_GAVEUP ? "busy" : "success"); 1164 1165 ls->ls_recover_result[jid] = result; 1166 1167 /* GAVEUP means another node is recovering the journal; delay our 1168 next attempt to recover it, to give the other node a chance to 1169 finish before trying again */ 1170 1171 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) 1172 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 1173 result == LM_RD_GAVEUP ? HZ : 0); 1174 spin_unlock(&ls->ls_recover_spin); 1175 } 1176 1177 const struct dlm_lockspace_ops gdlm_lockspace_ops = { 1178 .recover_prep = gdlm_recover_prep, 1179 .recover_slot = gdlm_recover_slot, 1180 .recover_done = gdlm_recover_done, 1181 }; 1182 1183 static int gdlm_mount(struct gfs2_sbd *sdp, const char *table) 1184 { 1185 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1186 char cluster[GFS2_LOCKNAME_LEN]; 1187 const char *fsname; 1188 uint32_t flags; 1189 int error, ops_result; 1190 1191 /* 1192 * initialize everything 1193 */ 1194 1195 INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func); 1196 spin_lock_init(&ls->ls_recover_spin); 1197 ls->ls_recover_flags = 0; 1198 ls->ls_recover_mount = 0; 1199 ls->ls_recover_start = 0; 1200 ls->ls_recover_block = 0; 1201 ls->ls_recover_size = 0; 1202 ls->ls_recover_submit = NULL; 1203 ls->ls_recover_result = NULL; 1204 ls->ls_lvb_bits = NULL; 1205 1206 error = set_recover_size(sdp, NULL, 0); 1207 if (error) 1208 goto fail; 1209 1210 /* 1211 * prepare dlm_new_lockspace args 1212 */ 1213 1214 fsname = strchr(table, ':'); 1215 if (!fsname) { 1216 fs_info(sdp, "no fsname found\n"); 1217 error = -EINVAL; 1218 goto fail_free; 1219 } 1220 memset(cluster, 0, sizeof(cluster)); 1221 memcpy(cluster, table, strlen(table) - strlen(fsname)); 1222 fsname++; 1223 1224 flags = DLM_LSFL_FS | DLM_LSFL_NEWEXCL; 1225 1226 /* 1227 * create/join lockspace 1228 */ 1229 1230 error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE, 1231 &gdlm_lockspace_ops, sdp, &ops_result, 1232 &ls->ls_dlm); 1233 if (error) { 1234 fs_err(sdp, "dlm_new_lockspace error %d\n", error); 1235 goto fail_free; 1236 } 1237 1238 if (ops_result < 0) { 1239 /* 1240 * dlm does not support ops callbacks, 1241 * old dlm_controld/gfs_controld are used, try without ops. 1242 */ 1243 fs_info(sdp, "dlm lockspace ops not used\n"); 1244 free_recover_size(ls); 1245 set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags); 1246 return 0; 1247 } 1248 1249 if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) { 1250 fs_err(sdp, "dlm lockspace ops disallow jid preset\n"); 1251 error = -EINVAL; 1252 goto fail_release; 1253 } 1254 1255 /* 1256 * control_mount() uses control_lock to determine first mounter, 1257 * and for later mounts, waits for any recoveries to be cleared. 1258 */ 1259 1260 error = control_mount(sdp); 1261 if (error) { 1262 fs_err(sdp, "mount control error %d\n", error); 1263 goto fail_release; 1264 } 1265 1266 ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); 1267 clear_bit(SDF_NOJOURNALID, &sdp->sd_flags); 1268 smp_mb__after_atomic(); 1269 wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID); 1270 return 0; 1271 1272 fail_release: 1273 dlm_release_lockspace(ls->ls_dlm, 2); 1274 fail_free: 1275 free_recover_size(ls); 1276 fail: 1277 return error; 1278 } 1279 1280 static void gdlm_first_done(struct gfs2_sbd *sdp) 1281 { 1282 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1283 int error; 1284 1285 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) 1286 return; 1287 1288 error = control_first_done(sdp); 1289 if (error) 1290 fs_err(sdp, "mount first_done error %d\n", error); 1291 } 1292 1293 static void gdlm_unmount(struct gfs2_sbd *sdp) 1294 { 1295 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1296 1297 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) 1298 goto release; 1299 1300 /* wait for gfs2_control_wq to be done with this mount */ 1301 1302 spin_lock(&ls->ls_recover_spin); 1303 set_bit(DFL_UNMOUNT, &ls->ls_recover_flags); 1304 spin_unlock(&ls->ls_recover_spin); 1305 flush_delayed_work(&sdp->sd_control_work); 1306 1307 /* mounted_lock and control_lock will be purged in dlm recovery */ 1308 release: 1309 if (ls->ls_dlm) { 1310 dlm_release_lockspace(ls->ls_dlm, 2); 1311 ls->ls_dlm = NULL; 1312 } 1313 1314 free_recover_size(ls); 1315 } 1316 1317 static const match_table_t dlm_tokens = { 1318 { Opt_jid, "jid=%d"}, 1319 { Opt_id, "id=%d"}, 1320 { Opt_first, "first=%d"}, 1321 { Opt_nodir, "nodir=%d"}, 1322 { Opt_err, NULL }, 1323 }; 1324 1325 const struct lm_lockops gfs2_dlm_ops = { 1326 .lm_proto_name = "lock_dlm", 1327 .lm_mount = gdlm_mount, 1328 .lm_first_done = gdlm_first_done, 1329 .lm_recovery_result = gdlm_recovery_result, 1330 .lm_unmount = gdlm_unmount, 1331 .lm_put_lock = gdlm_put_lock, 1332 .lm_lock = gdlm_lock, 1333 .lm_cancel = gdlm_cancel, 1334 .lm_tokens = &dlm_tokens, 1335 }; 1336 1337