1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 5 */ 6 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 9 #include <linux/sched.h> 10 #include <linux/slab.h> 11 #include <linux/spinlock.h> 12 #include <linux/buffer_head.h> 13 #include <linux/delay.h> 14 #include <linux/sort.h> 15 #include <linux/hash.h> 16 #include <linux/jhash.h> 17 #include <linux/kallsyms.h> 18 #include <linux/gfs2_ondisk.h> 19 #include <linux/list.h> 20 #include <linux/wait.h> 21 #include <linux/module.h> 22 #include <linux/uaccess.h> 23 #include <linux/seq_file.h> 24 #include <linux/debugfs.h> 25 #include <linux/kthread.h> 26 #include <linux/freezer.h> 27 #include <linux/workqueue.h> 28 #include <linux/jiffies.h> 29 #include <linux/rcupdate.h> 30 #include <linux/rculist_bl.h> 31 #include <linux/bit_spinlock.h> 32 #include <linux/percpu.h> 33 #include <linux/list_sort.h> 34 #include <linux/lockref.h> 35 #include <linux/rhashtable.h> 36 #include <linux/pid_namespace.h> 37 #include <linux/fdtable.h> 38 #include <linux/file.h> 39 40 #include "gfs2.h" 41 #include "incore.h" 42 #include "glock.h" 43 #include "glops.h" 44 #include "inode.h" 45 #include "lops.h" 46 #include "meta_io.h" 47 #include "quota.h" 48 #include "super.h" 49 #include "util.h" 50 #include "bmap.h" 51 #define CREATE_TRACE_POINTS 52 #include "trace_gfs2.h" 53 54 struct gfs2_glock_iter { 55 struct gfs2_sbd *sdp; /* incore superblock */ 56 struct rhashtable_iter hti; /* rhashtable iterator */ 57 struct gfs2_glock *gl; /* current glock struct */ 58 loff_t last_pos; /* last position */ 59 }; 60 61 typedef void (*glock_examiner) (struct gfs2_glock * gl); 62 63 static void do_xmote(struct gfs2_glock *gl, struct gfs2_holder *gh, unsigned int target); 64 static void __gfs2_glock_dq(struct gfs2_holder *gh); 65 static void handle_callback(struct gfs2_glock *gl, unsigned int state, 66 unsigned long delay, bool remote); 67 68 static struct dentry *gfs2_root; 69 static struct workqueue_struct *glock_workqueue; 70 static LIST_HEAD(lru_list); 71 static atomic_t lru_count = ATOMIC_INIT(0); 72 static DEFINE_SPINLOCK(lru_lock); 73 74 #define GFS2_GL_HASH_SHIFT 15 75 #define GFS2_GL_HASH_SIZE BIT(GFS2_GL_HASH_SHIFT) 76 77 static const struct rhashtable_params ht_parms = { 78 .nelem_hint = GFS2_GL_HASH_SIZE * 3 / 4, 79 .key_len = offsetofend(struct lm_lockname, ln_type), 80 .key_offset = offsetof(struct gfs2_glock, gl_name), 81 .head_offset = offsetof(struct gfs2_glock, gl_node), 82 }; 83 84 static struct rhashtable gl_hash_table; 85 86 #define GLOCK_WAIT_TABLE_BITS 12 87 #define GLOCK_WAIT_TABLE_SIZE (1 << GLOCK_WAIT_TABLE_BITS) 88 static wait_queue_head_t glock_wait_table[GLOCK_WAIT_TABLE_SIZE] __cacheline_aligned; 89 90 struct wait_glock_queue { 91 struct lm_lockname *name; 92 wait_queue_entry_t wait; 93 }; 94 95 static int glock_wake_function(wait_queue_entry_t *wait, unsigned int mode, 96 int sync, void *key) 97 { 98 struct wait_glock_queue *wait_glock = 99 container_of(wait, struct wait_glock_queue, wait); 100 struct lm_lockname *wait_name = wait_glock->name; 101 struct lm_lockname *wake_name = key; 102 103 if (wake_name->ln_sbd != wait_name->ln_sbd || 104 wake_name->ln_number != wait_name->ln_number || 105 wake_name->ln_type != wait_name->ln_type) 106 return 0; 107 return autoremove_wake_function(wait, mode, sync, key); 108 } 109 110 static wait_queue_head_t *glock_waitqueue(struct lm_lockname *name) 111 { 112 u32 hash = jhash2((u32 *)name, ht_parms.key_len / 4, 0); 113 114 return glock_wait_table + hash_32(hash, GLOCK_WAIT_TABLE_BITS); 115 } 116 117 /** 118 * wake_up_glock - Wake up waiters on a glock 119 * @gl: the glock 120 */ 121 static void wake_up_glock(struct gfs2_glock *gl) 122 { 123 wait_queue_head_t *wq = glock_waitqueue(&gl->gl_name); 124 125 if (waitqueue_active(wq)) 126 __wake_up(wq, TASK_NORMAL, 1, &gl->gl_name); 127 } 128 129 static void gfs2_glock_dealloc(struct rcu_head *rcu) 130 { 131 struct gfs2_glock *gl = container_of(rcu, struct gfs2_glock, gl_rcu); 132 133 kfree(gl->gl_lksb.sb_lvbptr); 134 if (gl->gl_ops->go_flags & GLOF_ASPACE) { 135 struct gfs2_glock_aspace *gla = 136 container_of(gl, struct gfs2_glock_aspace, glock); 137 kmem_cache_free(gfs2_glock_aspace_cachep, gla); 138 } else 139 kmem_cache_free(gfs2_glock_cachep, gl); 140 } 141 142 /** 143 * glock_blocked_by_withdraw - determine if we can still use a glock 144 * @gl: the glock 145 * 146 * We need to allow some glocks to be enqueued, dequeued, promoted, and demoted 147 * when we're withdrawn. For example, to maintain metadata integrity, we should 148 * disallow the use of inode and rgrp glocks when withdrawn. Other glocks like 149 * the iopen or freeze glock may be safely used because none of their 150 * metadata goes through the journal. So in general, we should disallow all 151 * glocks that are journaled, and allow all the others. One exception is: 152 * we need to allow our active journal to be promoted and demoted so others 153 * may recover it and we can reacquire it when they're done. 154 */ 155 static bool glock_blocked_by_withdraw(struct gfs2_glock *gl) 156 { 157 struct gfs2_sbd *sdp = gl->gl_name.ln_sbd; 158 159 if (!gfs2_withdrawing_or_withdrawn(sdp)) 160 return false; 161 if (gl->gl_ops->go_flags & GLOF_NONDISK) 162 return false; 163 if (!sdp->sd_jdesc || 164 gl->gl_name.ln_number == sdp->sd_jdesc->jd_no_addr) 165 return false; 166 return true; 167 } 168 169 static void __gfs2_glock_free(struct gfs2_glock *gl) 170 { 171 rhashtable_remove_fast(&gl_hash_table, &gl->gl_node, ht_parms); 172 smp_mb(); 173 wake_up_glock(gl); 174 call_rcu(&gl->gl_rcu, gfs2_glock_dealloc); 175 } 176 177 void gfs2_glock_free(struct gfs2_glock *gl) { 178 struct gfs2_sbd *sdp = gl->gl_name.ln_sbd; 179 180 __gfs2_glock_free(gl); 181 if (atomic_dec_and_test(&sdp->sd_glock_disposal)) 182 wake_up(&sdp->sd_kill_wait); 183 } 184 185 void gfs2_glock_free_later(struct gfs2_glock *gl) { 186 struct gfs2_sbd *sdp = gl->gl_name.ln_sbd; 187 188 spin_lock(&lru_lock); 189 list_add(&gl->gl_lru, &sdp->sd_dead_glocks); 190 spin_unlock(&lru_lock); 191 if (atomic_dec_and_test(&sdp->sd_glock_disposal)) 192 wake_up(&sdp->sd_kill_wait); 193 } 194 195 static void gfs2_free_dead_glocks(struct gfs2_sbd *sdp) 196 { 197 struct list_head *list = &sdp->sd_dead_glocks; 198 199 while(!list_empty(list)) { 200 struct gfs2_glock *gl; 201 202 gl = list_first_entry(list, struct gfs2_glock, gl_lru); 203 list_del_init(&gl->gl_lru); 204 __gfs2_glock_free(gl); 205 } 206 } 207 208 /** 209 * gfs2_glock_hold() - increment reference count on glock 210 * @gl: The glock to hold 211 * 212 */ 213 214 struct gfs2_glock *gfs2_glock_hold(struct gfs2_glock *gl) 215 { 216 GLOCK_BUG_ON(gl, __lockref_is_dead(&gl->gl_lockref)); 217 lockref_get(&gl->gl_lockref); 218 return gl; 219 } 220 221 /** 222 * demote_ok - Check to see if it's ok to unlock a glock 223 * @gl: the glock 224 * 225 * Returns: 1 if it's ok 226 */ 227 228 static int demote_ok(const struct gfs2_glock *gl) 229 { 230 const struct gfs2_glock_operations *glops = gl->gl_ops; 231 232 if (gl->gl_state == LM_ST_UNLOCKED) 233 return 0; 234 if (!list_empty(&gl->gl_holders)) 235 return 0; 236 if (glops->go_demote_ok) 237 return glops->go_demote_ok(gl); 238 return 1; 239 } 240 241 242 void gfs2_glock_add_to_lru(struct gfs2_glock *gl) 243 { 244 if (!(gl->gl_ops->go_flags & GLOF_LRU)) 245 return; 246 247 spin_lock(&lru_lock); 248 249 list_move_tail(&gl->gl_lru, &lru_list); 250 251 if (!test_bit(GLF_LRU, &gl->gl_flags)) { 252 set_bit(GLF_LRU, &gl->gl_flags); 253 atomic_inc(&lru_count); 254 } 255 256 spin_unlock(&lru_lock); 257 } 258 259 static void gfs2_glock_remove_from_lru(struct gfs2_glock *gl) 260 { 261 if (!(gl->gl_ops->go_flags & GLOF_LRU)) 262 return; 263 264 spin_lock(&lru_lock); 265 if (test_bit(GLF_LRU, &gl->gl_flags)) { 266 list_del_init(&gl->gl_lru); 267 atomic_dec(&lru_count); 268 clear_bit(GLF_LRU, &gl->gl_flags); 269 } 270 spin_unlock(&lru_lock); 271 } 272 273 /* 274 * Enqueue the glock on the work queue. Passes one glock reference on to the 275 * work queue. 276 */ 277 static void gfs2_glock_queue_work(struct gfs2_glock *gl, unsigned long delay) { 278 if (!queue_delayed_work(glock_workqueue, &gl->gl_work, delay)) { 279 /* 280 * We are holding the lockref spinlock, and the work was still 281 * queued above. The queued work (glock_work_func) takes that 282 * spinlock before dropping its glock reference(s), so it 283 * cannot have dropped them in the meantime. 284 */ 285 GLOCK_BUG_ON(gl, gl->gl_lockref.count < 2); 286 gl->gl_lockref.count--; 287 } 288 } 289 290 static void __gfs2_glock_put(struct gfs2_glock *gl) 291 { 292 struct gfs2_sbd *sdp = gl->gl_name.ln_sbd; 293 struct address_space *mapping = gfs2_glock2aspace(gl); 294 295 lockref_mark_dead(&gl->gl_lockref); 296 spin_unlock(&gl->gl_lockref.lock); 297 gfs2_glock_remove_from_lru(gl); 298 GLOCK_BUG_ON(gl, !list_empty(&gl->gl_holders)); 299 if (mapping) { 300 truncate_inode_pages_final(mapping); 301 if (!gfs2_withdrawing_or_withdrawn(sdp)) 302 GLOCK_BUG_ON(gl, !mapping_empty(mapping)); 303 } 304 trace_gfs2_glock_put(gl); 305 sdp->sd_lockstruct.ls_ops->lm_put_lock(gl); 306 } 307 308 /** 309 * gfs2_glock_put() - Decrement reference count on glock 310 * @gl: The glock to put 311 * 312 */ 313 314 void gfs2_glock_put(struct gfs2_glock *gl) 315 { 316 if (lockref_put_or_lock(&gl->gl_lockref)) 317 return; 318 319 __gfs2_glock_put(gl); 320 } 321 322 /* 323 * gfs2_glock_put_async - Decrement reference count without sleeping 324 * @gl: The glock to put 325 * 326 * Decrement the reference count on glock immediately unless it is the last 327 * reference. Defer putting the last reference to work queue context. 328 */ 329 void gfs2_glock_put_async(struct gfs2_glock *gl) 330 { 331 if (lockref_put_or_lock(&gl->gl_lockref)) 332 return; 333 334 GLOCK_BUG_ON(gl, gl->gl_lockref.count != 1); 335 gfs2_glock_queue_work(gl, 0); 336 spin_unlock(&gl->gl_lockref.lock); 337 } 338 339 /** 340 * may_grant - check if it's ok to grant a new lock 341 * @gl: The glock 342 * @current_gh: One of the current holders of @gl 343 * @gh: The lock request which we wish to grant 344 * 345 * With our current compatibility rules, if a glock has one or more active 346 * holders (HIF_HOLDER flag set), any of those holders can be passed in as 347 * @current_gh; they are all the same as far as compatibility with the new @gh 348 * goes. 349 * 350 * Returns true if it's ok to grant the lock. 351 */ 352 353 static inline bool may_grant(struct gfs2_glock *gl, 354 struct gfs2_holder *current_gh, 355 struct gfs2_holder *gh) 356 { 357 if (current_gh) { 358 GLOCK_BUG_ON(gl, !test_bit(HIF_HOLDER, ¤t_gh->gh_iflags)); 359 360 switch(current_gh->gh_state) { 361 case LM_ST_EXCLUSIVE: 362 /* 363 * Here we make a special exception to grant holders 364 * who agree to share the EX lock with other holders 365 * who also have the bit set. If the original holder 366 * has the LM_FLAG_NODE_SCOPE bit set, we grant more 367 * holders with the bit set. 368 */ 369 return gh->gh_state == LM_ST_EXCLUSIVE && 370 (current_gh->gh_flags & LM_FLAG_NODE_SCOPE) && 371 (gh->gh_flags & LM_FLAG_NODE_SCOPE); 372 373 case LM_ST_SHARED: 374 case LM_ST_DEFERRED: 375 return gh->gh_state == current_gh->gh_state; 376 377 default: 378 return false; 379 } 380 } 381 382 if (gl->gl_state == gh->gh_state) 383 return true; 384 if (gh->gh_flags & GL_EXACT) 385 return false; 386 if (gl->gl_state == LM_ST_EXCLUSIVE) { 387 return gh->gh_state == LM_ST_SHARED || 388 gh->gh_state == LM_ST_DEFERRED; 389 } 390 if (gh->gh_flags & LM_FLAG_ANY) 391 return gl->gl_state != LM_ST_UNLOCKED; 392 return false; 393 } 394 395 static void gfs2_holder_wake(struct gfs2_holder *gh) 396 { 397 clear_bit(HIF_WAIT, &gh->gh_iflags); 398 smp_mb__after_atomic(); 399 wake_up_bit(&gh->gh_iflags, HIF_WAIT); 400 if (gh->gh_flags & GL_ASYNC) { 401 struct gfs2_sbd *sdp = gh->gh_gl->gl_name.ln_sbd; 402 403 wake_up(&sdp->sd_async_glock_wait); 404 } 405 } 406 407 /** 408 * do_error - Something unexpected has happened during a lock request 409 * @gl: The glock 410 * @ret: The status from the DLM 411 */ 412 413 static void do_error(struct gfs2_glock *gl, const int ret) 414 { 415 struct gfs2_holder *gh, *tmp; 416 417 list_for_each_entry_safe(gh, tmp, &gl->gl_holders, gh_list) { 418 if (test_bit(HIF_HOLDER, &gh->gh_iflags)) 419 continue; 420 if (ret & LM_OUT_ERROR) 421 gh->gh_error = -EIO; 422 else if (gh->gh_flags & (LM_FLAG_TRY | LM_FLAG_TRY_1CB)) 423 gh->gh_error = GLR_TRYFAILED; 424 else 425 continue; 426 list_del_init(&gh->gh_list); 427 trace_gfs2_glock_queue(gh, 0); 428 gfs2_holder_wake(gh); 429 } 430 } 431 432 /** 433 * find_first_holder - find the first "holder" gh 434 * @gl: the glock 435 */ 436 437 static inline struct gfs2_holder *find_first_holder(const struct gfs2_glock *gl) 438 { 439 struct gfs2_holder *gh; 440 441 if (!list_empty(&gl->gl_holders)) { 442 gh = list_first_entry(&gl->gl_holders, struct gfs2_holder, 443 gh_list); 444 if (test_bit(HIF_HOLDER, &gh->gh_iflags)) 445 return gh; 446 } 447 return NULL; 448 } 449 450 /* 451 * gfs2_instantiate - Call the glops instantiate function 452 * @gh: The glock holder 453 * 454 * Returns: 0 if instantiate was successful, or error. 455 */ 456 int gfs2_instantiate(struct gfs2_holder *gh) 457 { 458 struct gfs2_glock *gl = gh->gh_gl; 459 const struct gfs2_glock_operations *glops = gl->gl_ops; 460 int ret; 461 462 again: 463 if (!test_bit(GLF_INSTANTIATE_NEEDED, &gl->gl_flags)) 464 goto done; 465 466 /* 467 * Since we unlock the lockref lock, we set a flag to indicate 468 * instantiate is in progress. 469 */ 470 if (test_and_set_bit(GLF_INSTANTIATE_IN_PROG, &gl->gl_flags)) { 471 wait_on_bit(&gl->gl_flags, GLF_INSTANTIATE_IN_PROG, 472 TASK_UNINTERRUPTIBLE); 473 /* 474 * Here we just waited for a different instantiate to finish. 475 * But that may not have been successful, as when a process 476 * locks an inode glock _before_ it has an actual inode to 477 * instantiate into. So we check again. This process might 478 * have an inode to instantiate, so might be successful. 479 */ 480 goto again; 481 } 482 483 ret = glops->go_instantiate(gl); 484 if (!ret) 485 clear_bit(GLF_INSTANTIATE_NEEDED, &gl->gl_flags); 486 clear_and_wake_up_bit(GLF_INSTANTIATE_IN_PROG, &gl->gl_flags); 487 if (ret) 488 return ret; 489 490 done: 491 if (glops->go_held) 492 return glops->go_held(gh); 493 return 0; 494 } 495 496 /** 497 * do_promote - promote as many requests as possible on the current queue 498 * @gl: The glock 499 * 500 * Returns true on success (i.e., progress was made or there are no waiters). 501 */ 502 503 static bool do_promote(struct gfs2_glock *gl) 504 { 505 struct gfs2_holder *gh, *current_gh; 506 507 current_gh = find_first_holder(gl); 508 list_for_each_entry(gh, &gl->gl_holders, gh_list) { 509 if (test_bit(HIF_HOLDER, &gh->gh_iflags)) 510 continue; 511 if (!may_grant(gl, current_gh, gh)) { 512 /* 513 * If we get here, it means we may not grant this 514 * holder for some reason. If this holder is at the 515 * head of the list, it means we have a blocked holder 516 * at the head, so return false. 517 */ 518 if (list_is_first(&gh->gh_list, &gl->gl_holders)) 519 return false; 520 do_error(gl, 0); 521 break; 522 } 523 set_bit(HIF_HOLDER, &gh->gh_iflags); 524 trace_gfs2_promote(gh); 525 gfs2_holder_wake(gh); 526 if (!current_gh) 527 current_gh = gh; 528 } 529 return true; 530 } 531 532 /** 533 * find_first_waiter - find the first gh that's waiting for the glock 534 * @gl: the glock 535 */ 536 537 static inline struct gfs2_holder *find_first_waiter(const struct gfs2_glock *gl) 538 { 539 struct gfs2_holder *gh; 540 541 list_for_each_entry(gh, &gl->gl_holders, gh_list) { 542 if (!test_bit(HIF_HOLDER, &gh->gh_iflags)) 543 return gh; 544 } 545 return NULL; 546 } 547 548 /** 549 * find_last_waiter - find the last gh that's waiting for the glock 550 * @gl: the glock 551 * 552 * This also is a fast way of finding out if there are any waiters. 553 */ 554 555 static inline struct gfs2_holder *find_last_waiter(const struct gfs2_glock *gl) 556 { 557 struct gfs2_holder *gh; 558 559 if (list_empty(&gl->gl_holders)) 560 return NULL; 561 gh = list_last_entry(&gl->gl_holders, struct gfs2_holder, gh_list); 562 return test_bit(HIF_HOLDER, &gh->gh_iflags) ? NULL : gh; 563 } 564 565 /** 566 * state_change - record that the glock is now in a different state 567 * @gl: the glock 568 * @new_state: the new state 569 */ 570 571 static void state_change(struct gfs2_glock *gl, unsigned int new_state) 572 { 573 int held1, held2; 574 575 held1 = (gl->gl_state != LM_ST_UNLOCKED); 576 held2 = (new_state != LM_ST_UNLOCKED); 577 578 if (held1 != held2) { 579 GLOCK_BUG_ON(gl, __lockref_is_dead(&gl->gl_lockref)); 580 if (held2) 581 gl->gl_lockref.count++; 582 else 583 gl->gl_lockref.count--; 584 } 585 if (new_state != gl->gl_target) 586 /* shorten our minimum hold time */ 587 gl->gl_hold_time = max(gl->gl_hold_time - GL_GLOCK_HOLD_DECR, 588 GL_GLOCK_MIN_HOLD); 589 gl->gl_state = new_state; 590 gl->gl_tchange = jiffies; 591 } 592 593 static void gfs2_set_demote(struct gfs2_glock *gl) 594 { 595 struct gfs2_sbd *sdp = gl->gl_name.ln_sbd; 596 597 set_bit(GLF_DEMOTE, &gl->gl_flags); 598 smp_mb(); 599 wake_up(&sdp->sd_async_glock_wait); 600 } 601 602 static void gfs2_demote_wake(struct gfs2_glock *gl) 603 { 604 gl->gl_demote_state = LM_ST_EXCLUSIVE; 605 clear_bit(GLF_DEMOTE, &gl->gl_flags); 606 smp_mb__after_atomic(); 607 wake_up_bit(&gl->gl_flags, GLF_DEMOTE); 608 } 609 610 /** 611 * finish_xmote - The DLM has replied to one of our lock requests 612 * @gl: The glock 613 * @ret: The status from the DLM 614 * 615 */ 616 617 static void finish_xmote(struct gfs2_glock *gl, unsigned int ret) 618 { 619 const struct gfs2_glock_operations *glops = gl->gl_ops; 620 struct gfs2_holder *gh; 621 unsigned state = ret & LM_OUT_ST_MASK; 622 623 trace_gfs2_glock_state_change(gl, state); 624 state_change(gl, state); 625 gh = find_first_waiter(gl); 626 627 /* Demote to UN request arrived during demote to SH or DF */ 628 if (test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags) && 629 state != LM_ST_UNLOCKED && gl->gl_demote_state == LM_ST_UNLOCKED) 630 gl->gl_target = LM_ST_UNLOCKED; 631 632 /* Check for state != intended state */ 633 if (unlikely(state != gl->gl_target)) { 634 if (gh && (ret & LM_OUT_CANCELED)) 635 gfs2_holder_wake(gh); 636 if (gh && !test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags)) { 637 /* move to back of queue and try next entry */ 638 if (ret & LM_OUT_CANCELED) { 639 list_move_tail(&gh->gh_list, &gl->gl_holders); 640 gh = find_first_waiter(gl); 641 gl->gl_target = gh->gh_state; 642 if (do_promote(gl)) 643 goto out; 644 goto retry; 645 } 646 /* Some error or failed "try lock" - report it */ 647 if ((ret & LM_OUT_ERROR) || 648 (gh->gh_flags & (LM_FLAG_TRY | LM_FLAG_TRY_1CB))) { 649 gl->gl_target = gl->gl_state; 650 do_error(gl, ret); 651 goto out; 652 } 653 } 654 switch(state) { 655 /* Unlocked due to conversion deadlock, try again */ 656 case LM_ST_UNLOCKED: 657 retry: 658 do_xmote(gl, gh, gl->gl_target); 659 break; 660 /* Conversion fails, unlock and try again */ 661 case LM_ST_SHARED: 662 case LM_ST_DEFERRED: 663 do_xmote(gl, gh, LM_ST_UNLOCKED); 664 break; 665 default: /* Everything else */ 666 fs_err(gl->gl_name.ln_sbd, "wanted %u got %u\n", 667 gl->gl_target, state); 668 GLOCK_BUG_ON(gl, 1); 669 } 670 return; 671 } 672 673 /* Fast path - we got what we asked for */ 674 if (test_and_clear_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags)) 675 gfs2_demote_wake(gl); 676 if (state != LM_ST_UNLOCKED) { 677 if (glops->go_xmote_bh) { 678 int rv; 679 680 spin_unlock(&gl->gl_lockref.lock); 681 rv = glops->go_xmote_bh(gl); 682 spin_lock(&gl->gl_lockref.lock); 683 if (rv) { 684 do_error(gl, rv); 685 goto out; 686 } 687 } 688 do_promote(gl); 689 } 690 out: 691 clear_bit(GLF_LOCK, &gl->gl_flags); 692 } 693 694 static bool is_system_glock(struct gfs2_glock *gl) 695 { 696 struct gfs2_sbd *sdp = gl->gl_name.ln_sbd; 697 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode); 698 699 if (gl == m_ip->i_gl) 700 return true; 701 return false; 702 } 703 704 /** 705 * do_xmote - Calls the DLM to change the state of a lock 706 * @gl: The lock state 707 * @gh: The holder (only for promotes) 708 * @target: The target lock state 709 * 710 */ 711 712 static void do_xmote(struct gfs2_glock *gl, struct gfs2_holder *gh, 713 unsigned int target) 714 __releases(&gl->gl_lockref.lock) 715 __acquires(&gl->gl_lockref.lock) 716 { 717 const struct gfs2_glock_operations *glops = gl->gl_ops; 718 struct gfs2_sbd *sdp = gl->gl_name.ln_sbd; 719 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 720 unsigned int lck_flags = (unsigned int)(gh ? gh->gh_flags : 0); 721 int ret; 722 723 if (target != LM_ST_UNLOCKED && glock_blocked_by_withdraw(gl) && 724 gh && !(gh->gh_flags & LM_FLAG_NOEXP)) 725 goto skip_inval; 726 727 lck_flags &= (LM_FLAG_TRY | LM_FLAG_TRY_1CB | LM_FLAG_NOEXP); 728 GLOCK_BUG_ON(gl, gl->gl_state == target); 729 GLOCK_BUG_ON(gl, gl->gl_state == gl->gl_target); 730 if ((target == LM_ST_UNLOCKED || target == LM_ST_DEFERRED) && 731 glops->go_inval) { 732 /* 733 * If another process is already doing the invalidate, let that 734 * finish first. The glock state machine will get back to this 735 * holder again later. 736 */ 737 if (test_and_set_bit(GLF_INVALIDATE_IN_PROGRESS, 738 &gl->gl_flags)) 739 return; 740 do_error(gl, 0); /* Fail queued try locks */ 741 } 742 gl->gl_req = target; 743 set_bit(GLF_BLOCKING, &gl->gl_flags); 744 if ((gl->gl_req == LM_ST_UNLOCKED) || 745 (gl->gl_state == LM_ST_EXCLUSIVE) || 746 (lck_flags & (LM_FLAG_TRY|LM_FLAG_TRY_1CB))) 747 clear_bit(GLF_BLOCKING, &gl->gl_flags); 748 if (!glops->go_inval && !glops->go_sync) 749 goto skip_inval; 750 751 spin_unlock(&gl->gl_lockref.lock); 752 if (glops->go_sync) { 753 ret = glops->go_sync(gl); 754 /* If we had a problem syncing (due to io errors or whatever, 755 * we should not invalidate the metadata or tell dlm to 756 * release the glock to other nodes. 757 */ 758 if (ret) { 759 if (cmpxchg(&sdp->sd_log_error, 0, ret)) { 760 fs_err(sdp, "Error %d syncing glock \n", ret); 761 gfs2_dump_glock(NULL, gl, true); 762 } 763 spin_lock(&gl->gl_lockref.lock); 764 goto skip_inval; 765 } 766 } 767 if (test_bit(GLF_INVALIDATE_IN_PROGRESS, &gl->gl_flags)) { 768 /* 769 * The call to go_sync should have cleared out the ail list. 770 * If there are still items, we have a problem. We ought to 771 * withdraw, but we can't because the withdraw code also uses 772 * glocks. Warn about the error, dump the glock, then fall 773 * through and wait for logd to do the withdraw for us. 774 */ 775 if ((atomic_read(&gl->gl_ail_count) != 0) && 776 (!cmpxchg(&sdp->sd_log_error, 0, -EIO))) { 777 gfs2_glock_assert_warn(gl, 778 !atomic_read(&gl->gl_ail_count)); 779 gfs2_dump_glock(NULL, gl, true); 780 } 781 glops->go_inval(gl, target == LM_ST_DEFERRED ? 0 : DIO_METADATA); 782 clear_bit(GLF_INVALIDATE_IN_PROGRESS, &gl->gl_flags); 783 } 784 spin_lock(&gl->gl_lockref.lock); 785 786 skip_inval: 787 gl->gl_lockref.count++; 788 /* 789 * Check for an error encountered since we called go_sync and go_inval. 790 * If so, we can't withdraw from the glock code because the withdraw 791 * code itself uses glocks (see function signal_our_withdraw) to 792 * change the mount to read-only. Most importantly, we must not call 793 * dlm to unlock the glock until the journal is in a known good state 794 * (after journal replay) otherwise other nodes may use the object 795 * (rgrp or dinode) and then later, journal replay will corrupt the 796 * file system. The best we can do here is wait for the logd daemon 797 * to see sd_log_error and withdraw, and in the meantime, requeue the 798 * work for later. 799 * 800 * We make a special exception for some system glocks, such as the 801 * system statfs inode glock, which needs to be granted before the 802 * gfs2_quotad daemon can exit, and that exit needs to finish before 803 * we can unmount the withdrawn file system. 804 * 805 * However, if we're just unlocking the lock (say, for unmount, when 806 * gfs2_gl_hash_clear calls clear_glock) and recovery is complete 807 * then it's okay to tell dlm to unlock it. 808 */ 809 if (unlikely(sdp->sd_log_error) && !gfs2_withdrawing_or_withdrawn(sdp)) 810 gfs2_withdraw_delayed(sdp); 811 if (glock_blocked_by_withdraw(gl) && 812 (target != LM_ST_UNLOCKED || 813 test_bit(SDF_WITHDRAW_RECOVERY, &sdp->sd_flags))) { 814 if (!is_system_glock(gl)) { 815 handle_callback(gl, LM_ST_UNLOCKED, 0, false); /* sets demote */ 816 /* 817 * Ordinarily, we would call dlm and its callback would call 818 * finish_xmote, which would call state_change() to the new state. 819 * Since we withdrew, we won't call dlm, so call state_change 820 * manually, but to the UNLOCKED state we desire. 821 */ 822 state_change(gl, LM_ST_UNLOCKED); 823 /* 824 * We skip telling dlm to do the locking, so we won't get a 825 * reply that would otherwise clear GLF_LOCK. So we clear it here. 826 */ 827 clear_bit(GLF_LOCK, &gl->gl_flags); 828 clear_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags); 829 gfs2_glock_queue_work(gl, GL_GLOCK_DFT_HOLD); 830 return; 831 } else { 832 clear_bit(GLF_INVALIDATE_IN_PROGRESS, &gl->gl_flags); 833 } 834 } 835 836 if (ls->ls_ops->lm_lock) { 837 spin_unlock(&gl->gl_lockref.lock); 838 ret = ls->ls_ops->lm_lock(gl, target, lck_flags); 839 spin_lock(&gl->gl_lockref.lock); 840 841 if (ret == -EINVAL && gl->gl_target == LM_ST_UNLOCKED && 842 target == LM_ST_UNLOCKED && 843 test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) { 844 /* 845 * The lockspace has been released and the lock has 846 * been unlocked implicitly. 847 */ 848 } else if (ret) { 849 fs_err(sdp, "lm_lock ret %d\n", ret); 850 target = gl->gl_state | LM_OUT_ERROR; 851 } else { 852 /* The operation will be completed asynchronously. */ 853 return; 854 } 855 } 856 857 /* Complete the operation now. */ 858 finish_xmote(gl, target); 859 gfs2_glock_queue_work(gl, 0); 860 } 861 862 /** 863 * run_queue - do all outstanding tasks related to a glock 864 * @gl: The glock in question 865 * @nonblock: True if we must not block in run_queue 866 * 867 */ 868 869 static void run_queue(struct gfs2_glock *gl, const int nonblock) 870 __releases(&gl->gl_lockref.lock) 871 __acquires(&gl->gl_lockref.lock) 872 { 873 struct gfs2_holder *gh = NULL; 874 875 if (test_bit(GLF_LOCK, &gl->gl_flags)) 876 return; 877 set_bit(GLF_LOCK, &gl->gl_flags); 878 879 GLOCK_BUG_ON(gl, test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags)); 880 881 if (test_bit(GLF_DEMOTE, &gl->gl_flags) && 882 gl->gl_demote_state != gl->gl_state) { 883 if (find_first_holder(gl)) 884 goto out_unlock; 885 if (nonblock) 886 goto out_sched; 887 set_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags); 888 GLOCK_BUG_ON(gl, gl->gl_demote_state == LM_ST_EXCLUSIVE); 889 gl->gl_target = gl->gl_demote_state; 890 } else { 891 if (test_bit(GLF_DEMOTE, &gl->gl_flags)) 892 gfs2_demote_wake(gl); 893 if (do_promote(gl)) 894 goto out_unlock; 895 gh = find_first_waiter(gl); 896 gl->gl_target = gh->gh_state; 897 if (!(gh->gh_flags & (LM_FLAG_TRY | LM_FLAG_TRY_1CB))) 898 do_error(gl, 0); /* Fail queued try locks */ 899 } 900 do_xmote(gl, gh, gl->gl_target); 901 return; 902 903 out_sched: 904 clear_bit(GLF_LOCK, &gl->gl_flags); 905 smp_mb__after_atomic(); 906 gl->gl_lockref.count++; 907 gfs2_glock_queue_work(gl, 0); 908 return; 909 910 out_unlock: 911 clear_bit(GLF_LOCK, &gl->gl_flags); 912 smp_mb__after_atomic(); 913 return; 914 } 915 916 /** 917 * glock_set_object - set the gl_object field of a glock 918 * @gl: the glock 919 * @object: the object 920 */ 921 void glock_set_object(struct gfs2_glock *gl, void *object) 922 { 923 void *prev_object; 924 925 spin_lock(&gl->gl_lockref.lock); 926 prev_object = gl->gl_object; 927 gl->gl_object = object; 928 spin_unlock(&gl->gl_lockref.lock); 929 if (gfs2_assert_warn(gl->gl_name.ln_sbd, prev_object == NULL)) { 930 pr_warn("glock=%u/%llx\n", 931 gl->gl_name.ln_type, 932 (unsigned long long)gl->gl_name.ln_number); 933 gfs2_dump_glock(NULL, gl, true); 934 } 935 } 936 937 /** 938 * glock_clear_object - clear the gl_object field of a glock 939 * @gl: the glock 940 * @object: object the glock currently points at 941 */ 942 void glock_clear_object(struct gfs2_glock *gl, void *object) 943 { 944 void *prev_object; 945 946 spin_lock(&gl->gl_lockref.lock); 947 prev_object = gl->gl_object; 948 gl->gl_object = NULL; 949 spin_unlock(&gl->gl_lockref.lock); 950 if (gfs2_assert_warn(gl->gl_name.ln_sbd, prev_object == object)) { 951 pr_warn("glock=%u/%llx\n", 952 gl->gl_name.ln_type, 953 (unsigned long long)gl->gl_name.ln_number); 954 gfs2_dump_glock(NULL, gl, true); 955 } 956 } 957 958 void gfs2_inode_remember_delete(struct gfs2_glock *gl, u64 generation) 959 { 960 struct gfs2_inode_lvb *ri = (void *)gl->gl_lksb.sb_lvbptr; 961 962 if (ri->ri_magic == 0) 963 ri->ri_magic = cpu_to_be32(GFS2_MAGIC); 964 if (ri->ri_magic == cpu_to_be32(GFS2_MAGIC)) 965 ri->ri_generation_deleted = cpu_to_be64(generation); 966 } 967 968 bool gfs2_inode_already_deleted(struct gfs2_glock *gl, u64 generation) 969 { 970 struct gfs2_inode_lvb *ri = (void *)gl->gl_lksb.sb_lvbptr; 971 972 if (ri->ri_magic != cpu_to_be32(GFS2_MAGIC)) 973 return false; 974 return generation <= be64_to_cpu(ri->ri_generation_deleted); 975 } 976 977 static void gfs2_glock_poke(struct gfs2_glock *gl) 978 { 979 int flags = LM_FLAG_TRY_1CB | LM_FLAG_ANY | GL_SKIP; 980 struct gfs2_holder gh; 981 int error; 982 983 __gfs2_holder_init(gl, LM_ST_SHARED, flags, &gh, _RET_IP_); 984 error = gfs2_glock_nq(&gh); 985 if (!error) 986 gfs2_glock_dq(&gh); 987 gfs2_holder_uninit(&gh); 988 } 989 990 static bool gfs2_try_evict(struct gfs2_glock *gl) 991 { 992 struct gfs2_inode *ip; 993 bool evicted = false; 994 995 /* 996 * If there is contention on the iopen glock and we have an inode, try 997 * to grab and release the inode so that it can be evicted. This will 998 * allow the remote node to go ahead and delete the inode without us 999 * having to do it, which will avoid rgrp glock thrashing. 1000 * 1001 * The remote node is likely still holding the corresponding inode 1002 * glock, so it will run before we get to verify that the delete has 1003 * happened below. 1004 */ 1005 spin_lock(&gl->gl_lockref.lock); 1006 ip = gl->gl_object; 1007 if (ip && !igrab(&ip->i_inode)) 1008 ip = NULL; 1009 spin_unlock(&gl->gl_lockref.lock); 1010 if (ip) { 1011 gl->gl_no_formal_ino = ip->i_no_formal_ino; 1012 set_bit(GIF_DEFERRED_DELETE, &ip->i_flags); 1013 d_prune_aliases(&ip->i_inode); 1014 iput(&ip->i_inode); 1015 1016 /* If the inode was evicted, gl->gl_object will now be NULL. */ 1017 spin_lock(&gl->gl_lockref.lock); 1018 ip = gl->gl_object; 1019 if (ip) { 1020 clear_bit(GIF_DEFERRED_DELETE, &ip->i_flags); 1021 if (!igrab(&ip->i_inode)) 1022 ip = NULL; 1023 } 1024 spin_unlock(&gl->gl_lockref.lock); 1025 if (ip) { 1026 gfs2_glock_poke(ip->i_gl); 1027 iput(&ip->i_inode); 1028 } 1029 evicted = !ip; 1030 } 1031 return evicted; 1032 } 1033 1034 bool gfs2_queue_try_to_evict(struct gfs2_glock *gl) 1035 { 1036 struct gfs2_sbd *sdp = gl->gl_name.ln_sbd; 1037 1038 if (test_and_set_bit(GLF_TRY_TO_EVICT, &gl->gl_flags)) 1039 return false; 1040 return queue_delayed_work(sdp->sd_delete_wq, 1041 &gl->gl_delete, 0); 1042 } 1043 1044 static bool gfs2_queue_verify_evict(struct gfs2_glock *gl) 1045 { 1046 struct gfs2_sbd *sdp = gl->gl_name.ln_sbd; 1047 1048 if (test_and_set_bit(GLF_VERIFY_EVICT, &gl->gl_flags)) 1049 return false; 1050 return queue_delayed_work(sdp->sd_delete_wq, 1051 &gl->gl_delete, 5 * HZ); 1052 } 1053 1054 static void delete_work_func(struct work_struct *work) 1055 { 1056 struct delayed_work *dwork = to_delayed_work(work); 1057 struct gfs2_glock *gl = container_of(dwork, struct gfs2_glock, gl_delete); 1058 struct gfs2_sbd *sdp = gl->gl_name.ln_sbd; 1059 struct inode *inode; 1060 u64 no_addr = gl->gl_name.ln_number; 1061 1062 if (test_and_clear_bit(GLF_TRY_TO_EVICT, &gl->gl_flags)) { 1063 /* 1064 * If we can evict the inode, give the remote node trying to 1065 * delete the inode some time before verifying that the delete 1066 * has happened. Otherwise, if we cause contention on the inode glock 1067 * immediately, the remote node will think that we still have 1068 * the inode in use, and so it will give up waiting. 1069 * 1070 * If we can't evict the inode, signal to the remote node that 1071 * the inode is still in use. We'll later try to delete the 1072 * inode locally in gfs2_evict_inode. 1073 * 1074 * FIXME: We only need to verify that the remote node has 1075 * deleted the inode because nodes before this remote delete 1076 * rework won't cooperate. At a later time, when we no longer 1077 * care about compatibility with such nodes, we can skip this 1078 * step entirely. 1079 */ 1080 if (gfs2_try_evict(gl)) { 1081 if (test_bit(SDF_KILL, &sdp->sd_flags)) 1082 goto out; 1083 if (gfs2_queue_verify_evict(gl)) 1084 return; 1085 } 1086 goto out; 1087 } 1088 1089 if (test_and_clear_bit(GLF_VERIFY_EVICT, &gl->gl_flags)) { 1090 inode = gfs2_lookup_by_inum(sdp, no_addr, gl->gl_no_formal_ino, 1091 GFS2_BLKST_UNLINKED); 1092 if (IS_ERR(inode)) { 1093 if (PTR_ERR(inode) == -EAGAIN && 1094 !test_bit(SDF_KILL, &sdp->sd_flags) && 1095 gfs2_queue_verify_evict(gl)) 1096 return; 1097 } else { 1098 d_prune_aliases(inode); 1099 iput(inode); 1100 } 1101 } 1102 1103 out: 1104 gfs2_glock_put(gl); 1105 } 1106 1107 static void glock_work_func(struct work_struct *work) 1108 { 1109 unsigned long delay = 0; 1110 struct gfs2_glock *gl = container_of(work, struct gfs2_glock, gl_work.work); 1111 unsigned int drop_refs = 1; 1112 1113 spin_lock(&gl->gl_lockref.lock); 1114 if (test_bit(GLF_REPLY_PENDING, &gl->gl_flags)) { 1115 clear_bit(GLF_REPLY_PENDING, &gl->gl_flags); 1116 finish_xmote(gl, gl->gl_reply); 1117 drop_refs++; 1118 } 1119 if (test_bit(GLF_PENDING_DEMOTE, &gl->gl_flags) && 1120 gl->gl_state != LM_ST_UNLOCKED && 1121 gl->gl_demote_state != LM_ST_EXCLUSIVE) { 1122 unsigned long holdtime, now = jiffies; 1123 1124 holdtime = gl->gl_tchange + gl->gl_hold_time; 1125 if (time_before(now, holdtime)) 1126 delay = holdtime - now; 1127 1128 if (!delay) { 1129 clear_bit(GLF_PENDING_DEMOTE, &gl->gl_flags); 1130 gfs2_set_demote(gl); 1131 } 1132 } 1133 run_queue(gl, 0); 1134 if (delay) { 1135 /* Keep one glock reference for the work we requeue. */ 1136 drop_refs--; 1137 if (gl->gl_name.ln_type != LM_TYPE_INODE) 1138 delay = 0; 1139 gfs2_glock_queue_work(gl, delay); 1140 } 1141 1142 /* 1143 * Drop the remaining glock references manually here. (Mind that 1144 * gfs2_glock_queue_work depends on the lockref spinlock begin held 1145 * here as well.) 1146 */ 1147 gl->gl_lockref.count -= drop_refs; 1148 if (!gl->gl_lockref.count) { 1149 __gfs2_glock_put(gl); 1150 return; 1151 } 1152 spin_unlock(&gl->gl_lockref.lock); 1153 } 1154 1155 static struct gfs2_glock *find_insert_glock(struct lm_lockname *name, 1156 struct gfs2_glock *new) 1157 { 1158 struct wait_glock_queue wait; 1159 wait_queue_head_t *wq = glock_waitqueue(name); 1160 struct gfs2_glock *gl; 1161 1162 wait.name = name; 1163 init_wait(&wait.wait); 1164 wait.wait.func = glock_wake_function; 1165 1166 again: 1167 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 1168 rcu_read_lock(); 1169 if (new) { 1170 gl = rhashtable_lookup_get_insert_fast(&gl_hash_table, 1171 &new->gl_node, ht_parms); 1172 if (IS_ERR(gl)) 1173 goto out; 1174 } else { 1175 gl = rhashtable_lookup_fast(&gl_hash_table, 1176 name, ht_parms); 1177 } 1178 if (gl && !lockref_get_not_dead(&gl->gl_lockref)) { 1179 rcu_read_unlock(); 1180 schedule(); 1181 goto again; 1182 } 1183 out: 1184 rcu_read_unlock(); 1185 finish_wait(wq, &wait.wait); 1186 return gl; 1187 } 1188 1189 /** 1190 * gfs2_glock_get() - Get a glock, or create one if one doesn't exist 1191 * @sdp: The GFS2 superblock 1192 * @number: the lock number 1193 * @glops: The glock_operations to use 1194 * @create: If 0, don't create the glock if it doesn't exist 1195 * @glp: the glock is returned here 1196 * 1197 * This does not lock a glock, just finds/creates structures for one. 1198 * 1199 * Returns: errno 1200 */ 1201 1202 int gfs2_glock_get(struct gfs2_sbd *sdp, u64 number, 1203 const struct gfs2_glock_operations *glops, int create, 1204 struct gfs2_glock **glp) 1205 { 1206 struct super_block *s = sdp->sd_vfs; 1207 struct lm_lockname name = { .ln_number = number, 1208 .ln_type = glops->go_type, 1209 .ln_sbd = sdp }; 1210 struct gfs2_glock *gl, *tmp; 1211 struct address_space *mapping; 1212 int ret = 0; 1213 1214 gl = find_insert_glock(&name, NULL); 1215 if (gl) { 1216 *glp = gl; 1217 return 0; 1218 } 1219 if (!create) 1220 return -ENOENT; 1221 1222 if (glops->go_flags & GLOF_ASPACE) { 1223 struct gfs2_glock_aspace *gla = 1224 kmem_cache_alloc(gfs2_glock_aspace_cachep, GFP_NOFS); 1225 if (!gla) 1226 return -ENOMEM; 1227 gl = &gla->glock; 1228 } else { 1229 gl = kmem_cache_alloc(gfs2_glock_cachep, GFP_NOFS); 1230 if (!gl) 1231 return -ENOMEM; 1232 } 1233 memset(&gl->gl_lksb, 0, sizeof(struct dlm_lksb)); 1234 gl->gl_ops = glops; 1235 1236 if (glops->go_flags & GLOF_LVB) { 1237 gl->gl_lksb.sb_lvbptr = kzalloc(GDLM_LVB_SIZE, GFP_NOFS); 1238 if (!gl->gl_lksb.sb_lvbptr) { 1239 gfs2_glock_dealloc(&gl->gl_rcu); 1240 return -ENOMEM; 1241 } 1242 } 1243 1244 atomic_inc(&sdp->sd_glock_disposal); 1245 gl->gl_node.next = NULL; 1246 gl->gl_flags = glops->go_instantiate ? BIT(GLF_INSTANTIATE_NEEDED) : 0; 1247 gl->gl_name = name; 1248 lockdep_set_subclass(&gl->gl_lockref.lock, glops->go_subclass); 1249 gl->gl_lockref.count = 1; 1250 gl->gl_state = LM_ST_UNLOCKED; 1251 gl->gl_target = LM_ST_UNLOCKED; 1252 gl->gl_demote_state = LM_ST_EXCLUSIVE; 1253 gl->gl_dstamp = 0; 1254 preempt_disable(); 1255 /* We use the global stats to estimate the initial per-glock stats */ 1256 gl->gl_stats = this_cpu_ptr(sdp->sd_lkstats)->lkstats[glops->go_type]; 1257 preempt_enable(); 1258 gl->gl_stats.stats[GFS2_LKS_DCOUNT] = 0; 1259 gl->gl_stats.stats[GFS2_LKS_QCOUNT] = 0; 1260 gl->gl_tchange = jiffies; 1261 gl->gl_object = NULL; 1262 gl->gl_hold_time = GL_GLOCK_DFT_HOLD; 1263 INIT_DELAYED_WORK(&gl->gl_work, glock_work_func); 1264 if (gl->gl_name.ln_type == LM_TYPE_IOPEN) 1265 INIT_DELAYED_WORK(&gl->gl_delete, delete_work_func); 1266 1267 mapping = gfs2_glock2aspace(gl); 1268 if (mapping) { 1269 mapping->a_ops = &gfs2_meta_aops; 1270 mapping->host = s->s_bdev->bd_mapping->host; 1271 mapping->flags = 0; 1272 mapping_set_gfp_mask(mapping, GFP_NOFS); 1273 mapping->i_private_data = NULL; 1274 mapping->writeback_index = 0; 1275 } 1276 1277 tmp = find_insert_glock(&name, gl); 1278 if (!tmp) { 1279 *glp = gl; 1280 goto out; 1281 } 1282 if (IS_ERR(tmp)) { 1283 ret = PTR_ERR(tmp); 1284 goto out_free; 1285 } 1286 *glp = tmp; 1287 1288 out_free: 1289 gfs2_glock_dealloc(&gl->gl_rcu); 1290 if (atomic_dec_and_test(&sdp->sd_glock_disposal)) 1291 wake_up(&sdp->sd_kill_wait); 1292 1293 out: 1294 return ret; 1295 } 1296 1297 /** 1298 * __gfs2_holder_init - initialize a struct gfs2_holder in the default way 1299 * @gl: the glock 1300 * @state: the state we're requesting 1301 * @flags: the modifier flags 1302 * @gh: the holder structure 1303 * 1304 */ 1305 1306 void __gfs2_holder_init(struct gfs2_glock *gl, unsigned int state, u16 flags, 1307 struct gfs2_holder *gh, unsigned long ip) 1308 { 1309 INIT_LIST_HEAD(&gh->gh_list); 1310 gh->gh_gl = gfs2_glock_hold(gl); 1311 gh->gh_ip = ip; 1312 gh->gh_owner_pid = get_pid(task_pid(current)); 1313 gh->gh_state = state; 1314 gh->gh_flags = flags; 1315 gh->gh_iflags = 0; 1316 } 1317 1318 /** 1319 * gfs2_holder_reinit - reinitialize a struct gfs2_holder so we can requeue it 1320 * @state: the state we're requesting 1321 * @flags: the modifier flags 1322 * @gh: the holder structure 1323 * 1324 * Don't mess with the glock. 1325 * 1326 */ 1327 1328 void gfs2_holder_reinit(unsigned int state, u16 flags, struct gfs2_holder *gh) 1329 { 1330 gh->gh_state = state; 1331 gh->gh_flags = flags; 1332 gh->gh_iflags = 0; 1333 gh->gh_ip = _RET_IP_; 1334 put_pid(gh->gh_owner_pid); 1335 gh->gh_owner_pid = get_pid(task_pid(current)); 1336 } 1337 1338 /** 1339 * gfs2_holder_uninit - uninitialize a holder structure (drop glock reference) 1340 * @gh: the holder structure 1341 * 1342 */ 1343 1344 void gfs2_holder_uninit(struct gfs2_holder *gh) 1345 { 1346 put_pid(gh->gh_owner_pid); 1347 gfs2_glock_put(gh->gh_gl); 1348 gfs2_holder_mark_uninitialized(gh); 1349 gh->gh_ip = 0; 1350 } 1351 1352 static void gfs2_glock_update_hold_time(struct gfs2_glock *gl, 1353 unsigned long start_time) 1354 { 1355 /* Have we waited longer that a second? */ 1356 if (time_after(jiffies, start_time + HZ)) { 1357 /* Lengthen the minimum hold time. */ 1358 gl->gl_hold_time = min(gl->gl_hold_time + GL_GLOCK_HOLD_INCR, 1359 GL_GLOCK_MAX_HOLD); 1360 } 1361 } 1362 1363 /** 1364 * gfs2_glock_holder_ready - holder is ready and its error code can be collected 1365 * @gh: the glock holder 1366 * 1367 * Called when a glock holder no longer needs to be waited for because it is 1368 * now either held (HIF_HOLDER set; gh_error == 0), or acquiring the lock has 1369 * failed (gh_error != 0). 1370 */ 1371 1372 int gfs2_glock_holder_ready(struct gfs2_holder *gh) 1373 { 1374 if (gh->gh_error || (gh->gh_flags & GL_SKIP)) 1375 return gh->gh_error; 1376 gh->gh_error = gfs2_instantiate(gh); 1377 if (gh->gh_error) 1378 gfs2_glock_dq(gh); 1379 return gh->gh_error; 1380 } 1381 1382 /** 1383 * gfs2_glock_wait - wait on a glock acquisition 1384 * @gh: the glock holder 1385 * 1386 * Returns: 0 on success 1387 */ 1388 1389 int gfs2_glock_wait(struct gfs2_holder *gh) 1390 { 1391 unsigned long start_time = jiffies; 1392 1393 might_sleep(); 1394 wait_on_bit(&gh->gh_iflags, HIF_WAIT, TASK_UNINTERRUPTIBLE); 1395 gfs2_glock_update_hold_time(gh->gh_gl, start_time); 1396 return gfs2_glock_holder_ready(gh); 1397 } 1398 1399 static int glocks_pending(unsigned int num_gh, struct gfs2_holder *ghs) 1400 { 1401 int i; 1402 1403 for (i = 0; i < num_gh; i++) 1404 if (test_bit(HIF_WAIT, &ghs[i].gh_iflags)) 1405 return 1; 1406 return 0; 1407 } 1408 1409 /** 1410 * gfs2_glock_async_wait - wait on multiple asynchronous glock acquisitions 1411 * @num_gh: the number of holders in the array 1412 * @ghs: the glock holder array 1413 * 1414 * Returns: 0 on success, meaning all glocks have been granted and are held. 1415 * -ESTALE if the request timed out, meaning all glocks were released, 1416 * and the caller should retry the operation. 1417 */ 1418 1419 int gfs2_glock_async_wait(unsigned int num_gh, struct gfs2_holder *ghs) 1420 { 1421 struct gfs2_sbd *sdp = ghs[0].gh_gl->gl_name.ln_sbd; 1422 int i, ret = 0, timeout = 0; 1423 unsigned long start_time = jiffies; 1424 1425 might_sleep(); 1426 /* 1427 * Total up the (minimum hold time * 2) of all glocks and use that to 1428 * determine the max amount of time we should wait. 1429 */ 1430 for (i = 0; i < num_gh; i++) 1431 timeout += ghs[i].gh_gl->gl_hold_time << 1; 1432 1433 if (!wait_event_timeout(sdp->sd_async_glock_wait, 1434 !glocks_pending(num_gh, ghs), timeout)) { 1435 ret = -ESTALE; /* request timed out. */ 1436 goto out; 1437 } 1438 1439 for (i = 0; i < num_gh; i++) { 1440 struct gfs2_holder *gh = &ghs[i]; 1441 int ret2; 1442 1443 if (test_bit(HIF_HOLDER, &gh->gh_iflags)) { 1444 gfs2_glock_update_hold_time(gh->gh_gl, 1445 start_time); 1446 } 1447 ret2 = gfs2_glock_holder_ready(gh); 1448 if (!ret) 1449 ret = ret2; 1450 } 1451 1452 out: 1453 if (ret) { 1454 for (i = 0; i < num_gh; i++) { 1455 struct gfs2_holder *gh = &ghs[i]; 1456 1457 gfs2_glock_dq(gh); 1458 } 1459 } 1460 return ret; 1461 } 1462 1463 /** 1464 * handle_callback - process a demote request 1465 * @gl: the glock 1466 * @state: the state the caller wants us to change to 1467 * @delay: zero to demote immediately; otherwise pending demote 1468 * @remote: true if this came from a different cluster node 1469 * 1470 * There are only two requests that we are going to see in actual 1471 * practise: LM_ST_SHARED and LM_ST_UNLOCKED 1472 */ 1473 1474 static void handle_callback(struct gfs2_glock *gl, unsigned int state, 1475 unsigned long delay, bool remote) 1476 { 1477 if (delay) 1478 set_bit(GLF_PENDING_DEMOTE, &gl->gl_flags); 1479 else 1480 gfs2_set_demote(gl); 1481 if (gl->gl_demote_state == LM_ST_EXCLUSIVE) { 1482 gl->gl_demote_state = state; 1483 gl->gl_demote_time = jiffies; 1484 } else if (gl->gl_demote_state != LM_ST_UNLOCKED && 1485 gl->gl_demote_state != state) { 1486 gl->gl_demote_state = LM_ST_UNLOCKED; 1487 } 1488 if (gl->gl_ops->go_callback) 1489 gl->gl_ops->go_callback(gl, remote); 1490 trace_gfs2_demote_rq(gl, remote); 1491 } 1492 1493 void gfs2_print_dbg(struct seq_file *seq, const char *fmt, ...) 1494 { 1495 struct va_format vaf; 1496 va_list args; 1497 1498 va_start(args, fmt); 1499 1500 if (seq) { 1501 seq_vprintf(seq, fmt, args); 1502 } else { 1503 vaf.fmt = fmt; 1504 vaf.va = &args; 1505 1506 pr_err("%pV", &vaf); 1507 } 1508 1509 va_end(args); 1510 } 1511 1512 static inline bool pid_is_meaningful(const struct gfs2_holder *gh) 1513 { 1514 if (!(gh->gh_flags & GL_NOPID)) 1515 return true; 1516 if (gh->gh_state == LM_ST_UNLOCKED) 1517 return true; 1518 return false; 1519 } 1520 1521 /** 1522 * add_to_queue - Add a holder to the wait queue (but look for recursion) 1523 * @gh: the holder structure to add 1524 * 1525 * Eventually we should move the recursive locking trap to a 1526 * debugging option or something like that. This is the fast 1527 * path and needs to have the minimum number of distractions. 1528 * 1529 */ 1530 1531 static inline void add_to_queue(struct gfs2_holder *gh) 1532 __releases(&gl->gl_lockref.lock) 1533 __acquires(&gl->gl_lockref.lock) 1534 { 1535 struct gfs2_glock *gl = gh->gh_gl; 1536 struct gfs2_sbd *sdp = gl->gl_name.ln_sbd; 1537 struct list_head *insert_pt = NULL; 1538 struct gfs2_holder *gh2; 1539 int try_futile = 0; 1540 1541 GLOCK_BUG_ON(gl, gh->gh_owner_pid == NULL); 1542 if (test_and_set_bit(HIF_WAIT, &gh->gh_iflags)) 1543 GLOCK_BUG_ON(gl, true); 1544 1545 if (gh->gh_flags & (LM_FLAG_TRY | LM_FLAG_TRY_1CB)) { 1546 if (test_bit(GLF_LOCK, &gl->gl_flags)) { 1547 struct gfs2_holder *current_gh; 1548 1549 current_gh = find_first_holder(gl); 1550 try_futile = !may_grant(gl, current_gh, gh); 1551 } 1552 if (test_bit(GLF_INVALIDATE_IN_PROGRESS, &gl->gl_flags)) 1553 goto fail; 1554 } 1555 1556 list_for_each_entry(gh2, &gl->gl_holders, gh_list) { 1557 if (likely(gh2->gh_owner_pid != gh->gh_owner_pid)) 1558 continue; 1559 if (gh->gh_gl->gl_ops->go_type == LM_TYPE_FLOCK) 1560 continue; 1561 if (!pid_is_meaningful(gh2)) 1562 continue; 1563 goto trap_recursive; 1564 } 1565 list_for_each_entry(gh2, &gl->gl_holders, gh_list) { 1566 if (try_futile && 1567 !(gh2->gh_flags & (LM_FLAG_TRY | LM_FLAG_TRY_1CB))) { 1568 fail: 1569 gh->gh_error = GLR_TRYFAILED; 1570 gfs2_holder_wake(gh); 1571 return; 1572 } 1573 if (test_bit(HIF_HOLDER, &gh2->gh_iflags)) 1574 continue; 1575 } 1576 trace_gfs2_glock_queue(gh, 1); 1577 gfs2_glstats_inc(gl, GFS2_LKS_QCOUNT); 1578 gfs2_sbstats_inc(gl, GFS2_LKS_QCOUNT); 1579 if (likely(insert_pt == NULL)) { 1580 list_add_tail(&gh->gh_list, &gl->gl_holders); 1581 return; 1582 } 1583 list_add_tail(&gh->gh_list, insert_pt); 1584 spin_unlock(&gl->gl_lockref.lock); 1585 if (sdp->sd_lockstruct.ls_ops->lm_cancel) 1586 sdp->sd_lockstruct.ls_ops->lm_cancel(gl); 1587 spin_lock(&gl->gl_lockref.lock); 1588 return; 1589 1590 trap_recursive: 1591 fs_err(sdp, "original: %pSR\n", (void *)gh2->gh_ip); 1592 fs_err(sdp, "pid: %d\n", pid_nr(gh2->gh_owner_pid)); 1593 fs_err(sdp, "lock type: %d req lock state : %d\n", 1594 gh2->gh_gl->gl_name.ln_type, gh2->gh_state); 1595 fs_err(sdp, "new: %pSR\n", (void *)gh->gh_ip); 1596 fs_err(sdp, "pid: %d\n", pid_nr(gh->gh_owner_pid)); 1597 fs_err(sdp, "lock type: %d req lock state : %d\n", 1598 gh->gh_gl->gl_name.ln_type, gh->gh_state); 1599 gfs2_dump_glock(NULL, gl, true); 1600 BUG(); 1601 } 1602 1603 /** 1604 * gfs2_glock_nq - enqueue a struct gfs2_holder onto a glock (acquire a glock) 1605 * @gh: the holder structure 1606 * 1607 * if (gh->gh_flags & GL_ASYNC), this never returns an error 1608 * 1609 * Returns: 0, GLR_TRYFAILED, or errno on failure 1610 */ 1611 1612 int gfs2_glock_nq(struct gfs2_holder *gh) 1613 { 1614 struct gfs2_glock *gl = gh->gh_gl; 1615 int error; 1616 1617 if (glock_blocked_by_withdraw(gl) && !(gh->gh_flags & LM_FLAG_NOEXP)) 1618 return -EIO; 1619 1620 if (gh->gh_flags & GL_NOBLOCK) { 1621 struct gfs2_holder *current_gh; 1622 1623 error = -ECHILD; 1624 spin_lock(&gl->gl_lockref.lock); 1625 if (find_last_waiter(gl)) 1626 goto unlock; 1627 current_gh = find_first_holder(gl); 1628 if (!may_grant(gl, current_gh, gh)) 1629 goto unlock; 1630 set_bit(HIF_HOLDER, &gh->gh_iflags); 1631 list_add_tail(&gh->gh_list, &gl->gl_holders); 1632 trace_gfs2_promote(gh); 1633 error = 0; 1634 unlock: 1635 spin_unlock(&gl->gl_lockref.lock); 1636 return error; 1637 } 1638 1639 if (test_bit(GLF_LRU, &gl->gl_flags)) 1640 gfs2_glock_remove_from_lru(gl); 1641 1642 gh->gh_error = 0; 1643 spin_lock(&gl->gl_lockref.lock); 1644 add_to_queue(gh); 1645 if (unlikely((LM_FLAG_NOEXP & gh->gh_flags) && 1646 test_and_clear_bit(GLF_FROZEN, &gl->gl_flags))) { 1647 set_bit(GLF_REPLY_PENDING, &gl->gl_flags); 1648 gl->gl_lockref.count++; 1649 gfs2_glock_queue_work(gl, 0); 1650 } 1651 run_queue(gl, 1); 1652 spin_unlock(&gl->gl_lockref.lock); 1653 1654 error = 0; 1655 if (!(gh->gh_flags & GL_ASYNC)) 1656 error = gfs2_glock_wait(gh); 1657 1658 return error; 1659 } 1660 1661 /** 1662 * gfs2_glock_poll - poll to see if an async request has been completed 1663 * @gh: the holder 1664 * 1665 * Returns: 1 if the request is ready to be gfs2_glock_wait()ed on 1666 */ 1667 1668 int gfs2_glock_poll(struct gfs2_holder *gh) 1669 { 1670 return test_bit(HIF_WAIT, &gh->gh_iflags) ? 0 : 1; 1671 } 1672 1673 static inline bool needs_demote(struct gfs2_glock *gl) 1674 { 1675 return (test_bit(GLF_DEMOTE, &gl->gl_flags) || 1676 test_bit(GLF_PENDING_DEMOTE, &gl->gl_flags)); 1677 } 1678 1679 static void __gfs2_glock_dq(struct gfs2_holder *gh) 1680 { 1681 struct gfs2_glock *gl = gh->gh_gl; 1682 unsigned delay = 0; 1683 int fast_path = 0; 1684 1685 /* 1686 * This holder should not be cached, so mark it for demote. 1687 * Note: this should be done before the check for needs_demote 1688 * below. 1689 */ 1690 if (gh->gh_flags & GL_NOCACHE) 1691 handle_callback(gl, LM_ST_UNLOCKED, 0, false); 1692 1693 list_del_init(&gh->gh_list); 1694 clear_bit(HIF_HOLDER, &gh->gh_iflags); 1695 trace_gfs2_glock_queue(gh, 0); 1696 1697 /* 1698 * If there hasn't been a demote request we are done. 1699 * (Let the remaining holders, if any, keep holding it.) 1700 */ 1701 if (!needs_demote(gl)) { 1702 if (list_empty(&gl->gl_holders)) 1703 fast_path = 1; 1704 } 1705 1706 if (!test_bit(GLF_LFLUSH, &gl->gl_flags) && demote_ok(gl)) 1707 gfs2_glock_add_to_lru(gl); 1708 1709 if (unlikely(!fast_path)) { 1710 gl->gl_lockref.count++; 1711 if (test_bit(GLF_PENDING_DEMOTE, &gl->gl_flags) && 1712 !test_bit(GLF_DEMOTE, &gl->gl_flags) && 1713 gl->gl_name.ln_type == LM_TYPE_INODE) 1714 delay = gl->gl_hold_time; 1715 gfs2_glock_queue_work(gl, delay); 1716 } 1717 } 1718 1719 /** 1720 * gfs2_glock_dq - dequeue a struct gfs2_holder from a glock (release a glock) 1721 * @gh: the glock holder 1722 * 1723 */ 1724 void gfs2_glock_dq(struct gfs2_holder *gh) 1725 { 1726 struct gfs2_glock *gl = gh->gh_gl; 1727 struct gfs2_sbd *sdp = gl->gl_name.ln_sbd; 1728 1729 spin_lock(&gl->gl_lockref.lock); 1730 if (!gfs2_holder_queued(gh)) { 1731 /* 1732 * May have already been dequeued because the locking request 1733 * was GL_ASYNC and it has failed in the meantime. 1734 */ 1735 goto out; 1736 } 1737 1738 if (list_is_first(&gh->gh_list, &gl->gl_holders) && 1739 !test_bit(HIF_HOLDER, &gh->gh_iflags)) { 1740 spin_unlock(&gl->gl_lockref.lock); 1741 gl->gl_name.ln_sbd->sd_lockstruct.ls_ops->lm_cancel(gl); 1742 wait_on_bit(&gh->gh_iflags, HIF_WAIT, TASK_UNINTERRUPTIBLE); 1743 spin_lock(&gl->gl_lockref.lock); 1744 } 1745 1746 /* 1747 * If we're in the process of file system withdraw, we cannot just 1748 * dequeue any glocks until our journal is recovered, lest we introduce 1749 * file system corruption. We need two exceptions to this rule: We need 1750 * to allow unlocking of nondisk glocks and the glock for our own 1751 * journal that needs recovery. 1752 */ 1753 if (test_bit(SDF_WITHDRAW_RECOVERY, &sdp->sd_flags) && 1754 glock_blocked_by_withdraw(gl) && 1755 gh->gh_gl != sdp->sd_jinode_gl) { 1756 sdp->sd_glock_dqs_held++; 1757 spin_unlock(&gl->gl_lockref.lock); 1758 might_sleep(); 1759 wait_on_bit(&sdp->sd_flags, SDF_WITHDRAW_RECOVERY, 1760 TASK_UNINTERRUPTIBLE); 1761 spin_lock(&gl->gl_lockref.lock); 1762 } 1763 1764 __gfs2_glock_dq(gh); 1765 out: 1766 spin_unlock(&gl->gl_lockref.lock); 1767 } 1768 1769 void gfs2_glock_dq_wait(struct gfs2_holder *gh) 1770 { 1771 struct gfs2_glock *gl = gh->gh_gl; 1772 gfs2_glock_dq(gh); 1773 might_sleep(); 1774 wait_on_bit(&gl->gl_flags, GLF_DEMOTE, TASK_UNINTERRUPTIBLE); 1775 } 1776 1777 /** 1778 * gfs2_glock_dq_uninit - dequeue a holder from a glock and initialize it 1779 * @gh: the holder structure 1780 * 1781 */ 1782 1783 void gfs2_glock_dq_uninit(struct gfs2_holder *gh) 1784 { 1785 gfs2_glock_dq(gh); 1786 gfs2_holder_uninit(gh); 1787 } 1788 1789 /** 1790 * gfs2_glock_nq_num - acquire a glock based on lock number 1791 * @sdp: the filesystem 1792 * @number: the lock number 1793 * @glops: the glock operations for the type of glock 1794 * @state: the state to acquire the glock in 1795 * @flags: modifier flags for the acquisition 1796 * @gh: the struct gfs2_holder 1797 * 1798 * Returns: errno 1799 */ 1800 1801 int gfs2_glock_nq_num(struct gfs2_sbd *sdp, u64 number, 1802 const struct gfs2_glock_operations *glops, 1803 unsigned int state, u16 flags, struct gfs2_holder *gh) 1804 { 1805 struct gfs2_glock *gl; 1806 int error; 1807 1808 error = gfs2_glock_get(sdp, number, glops, CREATE, &gl); 1809 if (!error) { 1810 error = gfs2_glock_nq_init(gl, state, flags, gh); 1811 gfs2_glock_put(gl); 1812 } 1813 1814 return error; 1815 } 1816 1817 /** 1818 * glock_compare - Compare two struct gfs2_glock structures for sorting 1819 * @arg_a: the first structure 1820 * @arg_b: the second structure 1821 * 1822 */ 1823 1824 static int glock_compare(const void *arg_a, const void *arg_b) 1825 { 1826 const struct gfs2_holder *gh_a = *(const struct gfs2_holder **)arg_a; 1827 const struct gfs2_holder *gh_b = *(const struct gfs2_holder **)arg_b; 1828 const struct lm_lockname *a = &gh_a->gh_gl->gl_name; 1829 const struct lm_lockname *b = &gh_b->gh_gl->gl_name; 1830 1831 if (a->ln_number > b->ln_number) 1832 return 1; 1833 if (a->ln_number < b->ln_number) 1834 return -1; 1835 BUG_ON(gh_a->gh_gl->gl_ops->go_type == gh_b->gh_gl->gl_ops->go_type); 1836 return 0; 1837 } 1838 1839 /** 1840 * nq_m_sync - synchronously acquire more than one glock in deadlock free order 1841 * @num_gh: the number of structures 1842 * @ghs: an array of struct gfs2_holder structures 1843 * @p: placeholder for the holder structure to pass back 1844 * 1845 * Returns: 0 on success (all glocks acquired), 1846 * errno on failure (no glocks acquired) 1847 */ 1848 1849 static int nq_m_sync(unsigned int num_gh, struct gfs2_holder *ghs, 1850 struct gfs2_holder **p) 1851 { 1852 unsigned int x; 1853 int error = 0; 1854 1855 for (x = 0; x < num_gh; x++) 1856 p[x] = &ghs[x]; 1857 1858 sort(p, num_gh, sizeof(struct gfs2_holder *), glock_compare, NULL); 1859 1860 for (x = 0; x < num_gh; x++) { 1861 error = gfs2_glock_nq(p[x]); 1862 if (error) { 1863 while (x--) 1864 gfs2_glock_dq(p[x]); 1865 break; 1866 } 1867 } 1868 1869 return error; 1870 } 1871 1872 /** 1873 * gfs2_glock_nq_m - acquire multiple glocks 1874 * @num_gh: the number of structures 1875 * @ghs: an array of struct gfs2_holder structures 1876 * 1877 * Returns: 0 on success (all glocks acquired), 1878 * errno on failure (no glocks acquired) 1879 */ 1880 1881 int gfs2_glock_nq_m(unsigned int num_gh, struct gfs2_holder *ghs) 1882 { 1883 struct gfs2_holder *tmp[4]; 1884 struct gfs2_holder **pph = tmp; 1885 int error = 0; 1886 1887 switch(num_gh) { 1888 case 0: 1889 return 0; 1890 case 1: 1891 return gfs2_glock_nq(ghs); 1892 default: 1893 if (num_gh <= 4) 1894 break; 1895 pph = kmalloc_array(num_gh, sizeof(struct gfs2_holder *), 1896 GFP_NOFS); 1897 if (!pph) 1898 return -ENOMEM; 1899 } 1900 1901 error = nq_m_sync(num_gh, ghs, pph); 1902 1903 if (pph != tmp) 1904 kfree(pph); 1905 1906 return error; 1907 } 1908 1909 /** 1910 * gfs2_glock_dq_m - release multiple glocks 1911 * @num_gh: the number of structures 1912 * @ghs: an array of struct gfs2_holder structures 1913 * 1914 */ 1915 1916 void gfs2_glock_dq_m(unsigned int num_gh, struct gfs2_holder *ghs) 1917 { 1918 while (num_gh--) 1919 gfs2_glock_dq(&ghs[num_gh]); 1920 } 1921 1922 void gfs2_glock_cb(struct gfs2_glock *gl, unsigned int state) 1923 { 1924 unsigned long delay = 0; 1925 unsigned long holdtime; 1926 unsigned long now = jiffies; 1927 1928 gfs2_glock_hold(gl); 1929 spin_lock(&gl->gl_lockref.lock); 1930 holdtime = gl->gl_tchange + gl->gl_hold_time; 1931 if (!list_empty(&gl->gl_holders) && 1932 gl->gl_name.ln_type == LM_TYPE_INODE) { 1933 if (time_before(now, holdtime)) 1934 delay = holdtime - now; 1935 if (test_bit(GLF_REPLY_PENDING, &gl->gl_flags)) 1936 delay = gl->gl_hold_time; 1937 } 1938 handle_callback(gl, state, delay, true); 1939 gfs2_glock_queue_work(gl, delay); 1940 spin_unlock(&gl->gl_lockref.lock); 1941 } 1942 1943 /** 1944 * gfs2_should_freeze - Figure out if glock should be frozen 1945 * @gl: The glock in question 1946 * 1947 * Glocks are not frozen if (a) the result of the dlm operation is 1948 * an error, (b) the locking operation was an unlock operation or 1949 * (c) if there is a "noexp" flagged request anywhere in the queue 1950 * 1951 * Returns: 1 if freezing should occur, 0 otherwise 1952 */ 1953 1954 static int gfs2_should_freeze(const struct gfs2_glock *gl) 1955 { 1956 const struct gfs2_holder *gh; 1957 1958 if (gl->gl_reply & ~LM_OUT_ST_MASK) 1959 return 0; 1960 if (gl->gl_target == LM_ST_UNLOCKED) 1961 return 0; 1962 1963 list_for_each_entry(gh, &gl->gl_holders, gh_list) { 1964 if (test_bit(HIF_HOLDER, &gh->gh_iflags)) 1965 continue; 1966 if (LM_FLAG_NOEXP & gh->gh_flags) 1967 return 0; 1968 } 1969 1970 return 1; 1971 } 1972 1973 /** 1974 * gfs2_glock_complete - Callback used by locking 1975 * @gl: Pointer to the glock 1976 * @ret: The return value from the dlm 1977 * 1978 * The gl_reply field is under the gl_lockref.lock lock so that it is ok 1979 * to use a bitfield shared with other glock state fields. 1980 */ 1981 1982 void gfs2_glock_complete(struct gfs2_glock *gl, int ret) 1983 { 1984 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct; 1985 1986 spin_lock(&gl->gl_lockref.lock); 1987 gl->gl_reply = ret; 1988 1989 if (unlikely(test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags))) { 1990 if (gfs2_should_freeze(gl)) { 1991 set_bit(GLF_FROZEN, &gl->gl_flags); 1992 spin_unlock(&gl->gl_lockref.lock); 1993 return; 1994 } 1995 } 1996 1997 gl->gl_lockref.count++; 1998 set_bit(GLF_REPLY_PENDING, &gl->gl_flags); 1999 gfs2_glock_queue_work(gl, 0); 2000 spin_unlock(&gl->gl_lockref.lock); 2001 } 2002 2003 static int glock_cmp(void *priv, const struct list_head *a, 2004 const struct list_head *b) 2005 { 2006 struct gfs2_glock *gla, *glb; 2007 2008 gla = list_entry(a, struct gfs2_glock, gl_lru); 2009 glb = list_entry(b, struct gfs2_glock, gl_lru); 2010 2011 if (gla->gl_name.ln_number > glb->gl_name.ln_number) 2012 return 1; 2013 if (gla->gl_name.ln_number < glb->gl_name.ln_number) 2014 return -1; 2015 2016 return 0; 2017 } 2018 2019 static bool can_free_glock(struct gfs2_glock *gl) 2020 { 2021 bool held = gl->gl_state != LM_ST_UNLOCKED; 2022 2023 return !test_bit(GLF_LOCK, &gl->gl_flags) && 2024 gl->gl_lockref.count == held; 2025 } 2026 2027 /** 2028 * gfs2_dispose_glock_lru - Demote a list of glocks 2029 * @list: The list to dispose of 2030 * 2031 * Disposing of glocks may involve disk accesses, so that here we sort 2032 * the glocks by number (i.e. disk location of the inodes) so that if 2033 * there are any such accesses, they'll be sent in order (mostly). 2034 * 2035 * Must be called under the lru_lock, but may drop and retake this 2036 * lock. While the lru_lock is dropped, entries may vanish from the 2037 * list, but no new entries will appear on the list (since it is 2038 * private) 2039 */ 2040 2041 static unsigned long gfs2_dispose_glock_lru(struct list_head *list) 2042 __releases(&lru_lock) 2043 __acquires(&lru_lock) 2044 { 2045 struct gfs2_glock *gl; 2046 unsigned long freed = 0; 2047 2048 list_sort(NULL, list, glock_cmp); 2049 2050 while(!list_empty(list)) { 2051 gl = list_first_entry(list, struct gfs2_glock, gl_lru); 2052 if (!spin_trylock(&gl->gl_lockref.lock)) { 2053 add_back_to_lru: 2054 list_move(&gl->gl_lru, &lru_list); 2055 continue; 2056 } 2057 if (!can_free_glock(gl)) { 2058 spin_unlock(&gl->gl_lockref.lock); 2059 goto add_back_to_lru; 2060 } 2061 list_del_init(&gl->gl_lru); 2062 atomic_dec(&lru_count); 2063 clear_bit(GLF_LRU, &gl->gl_flags); 2064 freed++; 2065 gl->gl_lockref.count++; 2066 if (demote_ok(gl)) 2067 handle_callback(gl, LM_ST_UNLOCKED, 0, false); 2068 gfs2_glock_queue_work(gl, 0); 2069 spin_unlock(&gl->gl_lockref.lock); 2070 cond_resched_lock(&lru_lock); 2071 } 2072 return freed; 2073 } 2074 2075 /** 2076 * gfs2_scan_glock_lru - Scan the LRU looking for locks to demote 2077 * @nr: The number of entries to scan 2078 * 2079 * This function selects the entries on the LRU which are able to 2080 * be demoted, and then kicks off the process by calling 2081 * gfs2_dispose_glock_lru() above. 2082 */ 2083 2084 static unsigned long gfs2_scan_glock_lru(unsigned long nr) 2085 { 2086 struct gfs2_glock *gl, *next; 2087 LIST_HEAD(dispose); 2088 unsigned long freed = 0; 2089 2090 spin_lock(&lru_lock); 2091 list_for_each_entry_safe(gl, next, &lru_list, gl_lru) { 2092 if (!nr--) 2093 break; 2094 if (can_free_glock(gl)) 2095 list_move(&gl->gl_lru, &dispose); 2096 } 2097 if (!list_empty(&dispose)) 2098 freed = gfs2_dispose_glock_lru(&dispose); 2099 spin_unlock(&lru_lock); 2100 2101 return freed; 2102 } 2103 2104 static unsigned long gfs2_glock_shrink_scan(struct shrinker *shrink, 2105 struct shrink_control *sc) 2106 { 2107 if (!(sc->gfp_mask & __GFP_FS)) 2108 return SHRINK_STOP; 2109 return gfs2_scan_glock_lru(sc->nr_to_scan); 2110 } 2111 2112 static unsigned long gfs2_glock_shrink_count(struct shrinker *shrink, 2113 struct shrink_control *sc) 2114 { 2115 return vfs_pressure_ratio(atomic_read(&lru_count)); 2116 } 2117 2118 static struct shrinker *glock_shrinker; 2119 2120 /** 2121 * glock_hash_walk - Call a function for glock in a hash bucket 2122 * @examiner: the function 2123 * @sdp: the filesystem 2124 * 2125 * Note that the function can be called multiple times on the same 2126 * object. So the user must ensure that the function can cope with 2127 * that. 2128 */ 2129 2130 static void glock_hash_walk(glock_examiner examiner, const struct gfs2_sbd *sdp) 2131 { 2132 struct gfs2_glock *gl; 2133 struct rhashtable_iter iter; 2134 2135 rhashtable_walk_enter(&gl_hash_table, &iter); 2136 2137 do { 2138 rhashtable_walk_start(&iter); 2139 2140 while ((gl = rhashtable_walk_next(&iter)) && !IS_ERR(gl)) { 2141 if (gl->gl_name.ln_sbd == sdp) 2142 examiner(gl); 2143 } 2144 2145 rhashtable_walk_stop(&iter); 2146 } while (cond_resched(), gl == ERR_PTR(-EAGAIN)); 2147 2148 rhashtable_walk_exit(&iter); 2149 } 2150 2151 void gfs2_cancel_delete_work(struct gfs2_glock *gl) 2152 { 2153 clear_bit(GLF_TRY_TO_EVICT, &gl->gl_flags); 2154 clear_bit(GLF_VERIFY_EVICT, &gl->gl_flags); 2155 if (cancel_delayed_work(&gl->gl_delete)) 2156 gfs2_glock_put(gl); 2157 } 2158 2159 static void flush_delete_work(struct gfs2_glock *gl) 2160 { 2161 if (gl->gl_name.ln_type == LM_TYPE_IOPEN) { 2162 struct gfs2_sbd *sdp = gl->gl_name.ln_sbd; 2163 2164 if (cancel_delayed_work(&gl->gl_delete)) { 2165 queue_delayed_work(sdp->sd_delete_wq, 2166 &gl->gl_delete, 0); 2167 } 2168 } 2169 } 2170 2171 void gfs2_flush_delete_work(struct gfs2_sbd *sdp) 2172 { 2173 glock_hash_walk(flush_delete_work, sdp); 2174 flush_workqueue(sdp->sd_delete_wq); 2175 } 2176 2177 /** 2178 * thaw_glock - thaw out a glock which has an unprocessed reply waiting 2179 * @gl: The glock to thaw 2180 * 2181 */ 2182 2183 static void thaw_glock(struct gfs2_glock *gl) 2184 { 2185 if (!test_and_clear_bit(GLF_FROZEN, &gl->gl_flags)) 2186 return; 2187 if (!lockref_get_not_dead(&gl->gl_lockref)) 2188 return; 2189 2190 spin_lock(&gl->gl_lockref.lock); 2191 set_bit(GLF_REPLY_PENDING, &gl->gl_flags); 2192 gfs2_glock_queue_work(gl, 0); 2193 spin_unlock(&gl->gl_lockref.lock); 2194 } 2195 2196 /** 2197 * clear_glock - look at a glock and see if we can free it from glock cache 2198 * @gl: the glock to look at 2199 * 2200 */ 2201 2202 static void clear_glock(struct gfs2_glock *gl) 2203 { 2204 gfs2_glock_remove_from_lru(gl); 2205 2206 spin_lock(&gl->gl_lockref.lock); 2207 if (!__lockref_is_dead(&gl->gl_lockref)) { 2208 gl->gl_lockref.count++; 2209 if (gl->gl_state != LM_ST_UNLOCKED) 2210 handle_callback(gl, LM_ST_UNLOCKED, 0, false); 2211 gfs2_glock_queue_work(gl, 0); 2212 } 2213 spin_unlock(&gl->gl_lockref.lock); 2214 } 2215 2216 /** 2217 * gfs2_glock_thaw - Thaw any frozen glocks 2218 * @sdp: The super block 2219 * 2220 */ 2221 2222 void gfs2_glock_thaw(struct gfs2_sbd *sdp) 2223 { 2224 glock_hash_walk(thaw_glock, sdp); 2225 } 2226 2227 static void dump_glock(struct seq_file *seq, struct gfs2_glock *gl, bool fsid) 2228 { 2229 spin_lock(&gl->gl_lockref.lock); 2230 gfs2_dump_glock(seq, gl, fsid); 2231 spin_unlock(&gl->gl_lockref.lock); 2232 } 2233 2234 static void dump_glock_func(struct gfs2_glock *gl) 2235 { 2236 dump_glock(NULL, gl, true); 2237 } 2238 2239 static void withdraw_dq(struct gfs2_glock *gl) 2240 { 2241 spin_lock(&gl->gl_lockref.lock); 2242 if (!__lockref_is_dead(&gl->gl_lockref) && 2243 glock_blocked_by_withdraw(gl)) 2244 do_error(gl, LM_OUT_ERROR); /* remove pending waiters */ 2245 spin_unlock(&gl->gl_lockref.lock); 2246 } 2247 2248 void gfs2_gl_dq_holders(struct gfs2_sbd *sdp) 2249 { 2250 glock_hash_walk(withdraw_dq, sdp); 2251 } 2252 2253 /** 2254 * gfs2_gl_hash_clear - Empty out the glock hash table 2255 * @sdp: the filesystem 2256 * 2257 * Called when unmounting the filesystem. 2258 */ 2259 2260 void gfs2_gl_hash_clear(struct gfs2_sbd *sdp) 2261 { 2262 set_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags); 2263 flush_workqueue(glock_workqueue); 2264 glock_hash_walk(clear_glock, sdp); 2265 flush_workqueue(glock_workqueue); 2266 wait_event_timeout(sdp->sd_kill_wait, 2267 atomic_read(&sdp->sd_glock_disposal) == 0, 2268 HZ * 600); 2269 gfs2_lm_unmount(sdp); 2270 gfs2_free_dead_glocks(sdp); 2271 glock_hash_walk(dump_glock_func, sdp); 2272 } 2273 2274 static const char *state2str(unsigned state) 2275 { 2276 switch(state) { 2277 case LM_ST_UNLOCKED: 2278 return "UN"; 2279 case LM_ST_SHARED: 2280 return "SH"; 2281 case LM_ST_DEFERRED: 2282 return "DF"; 2283 case LM_ST_EXCLUSIVE: 2284 return "EX"; 2285 } 2286 return "??"; 2287 } 2288 2289 static const char *hflags2str(char *buf, u16 flags, unsigned long iflags) 2290 { 2291 char *p = buf; 2292 if (flags & LM_FLAG_TRY) 2293 *p++ = 't'; 2294 if (flags & LM_FLAG_TRY_1CB) 2295 *p++ = 'T'; 2296 if (flags & LM_FLAG_NOEXP) 2297 *p++ = 'e'; 2298 if (flags & LM_FLAG_ANY) 2299 *p++ = 'A'; 2300 if (flags & LM_FLAG_NODE_SCOPE) 2301 *p++ = 'n'; 2302 if (flags & GL_ASYNC) 2303 *p++ = 'a'; 2304 if (flags & GL_EXACT) 2305 *p++ = 'E'; 2306 if (flags & GL_NOCACHE) 2307 *p++ = 'c'; 2308 if (test_bit(HIF_HOLDER, &iflags)) 2309 *p++ = 'H'; 2310 if (test_bit(HIF_WAIT, &iflags)) 2311 *p++ = 'W'; 2312 if (flags & GL_SKIP) 2313 *p++ = 's'; 2314 *p = 0; 2315 return buf; 2316 } 2317 2318 /** 2319 * dump_holder - print information about a glock holder 2320 * @seq: the seq_file struct 2321 * @gh: the glock holder 2322 * @fs_id_buf: pointer to file system id (if requested) 2323 * 2324 */ 2325 2326 static void dump_holder(struct seq_file *seq, const struct gfs2_holder *gh, 2327 const char *fs_id_buf) 2328 { 2329 const char *comm = "(none)"; 2330 pid_t owner_pid = 0; 2331 char flags_buf[32]; 2332 2333 rcu_read_lock(); 2334 if (pid_is_meaningful(gh)) { 2335 struct task_struct *gh_owner; 2336 2337 comm = "(ended)"; 2338 owner_pid = pid_nr(gh->gh_owner_pid); 2339 gh_owner = pid_task(gh->gh_owner_pid, PIDTYPE_PID); 2340 if (gh_owner) 2341 comm = gh_owner->comm; 2342 } 2343 gfs2_print_dbg(seq, "%s H: s:%s f:%s e:%d p:%ld [%s] %pS\n", 2344 fs_id_buf, state2str(gh->gh_state), 2345 hflags2str(flags_buf, gh->gh_flags, gh->gh_iflags), 2346 gh->gh_error, (long)owner_pid, comm, (void *)gh->gh_ip); 2347 rcu_read_unlock(); 2348 } 2349 2350 static const char *gflags2str(char *buf, const struct gfs2_glock *gl) 2351 { 2352 const unsigned long *gflags = &gl->gl_flags; 2353 char *p = buf; 2354 2355 if (test_bit(GLF_LOCK, gflags)) 2356 *p++ = 'l'; 2357 if (test_bit(GLF_DEMOTE, gflags)) 2358 *p++ = 'D'; 2359 if (test_bit(GLF_PENDING_DEMOTE, gflags)) 2360 *p++ = 'd'; 2361 if (test_bit(GLF_DEMOTE_IN_PROGRESS, gflags)) 2362 *p++ = 'p'; 2363 if (test_bit(GLF_DIRTY, gflags)) 2364 *p++ = 'y'; 2365 if (test_bit(GLF_LFLUSH, gflags)) 2366 *p++ = 'f'; 2367 if (test_bit(GLF_INVALIDATE_IN_PROGRESS, gflags)) 2368 *p++ = 'i'; 2369 if (test_bit(GLF_REPLY_PENDING, gflags)) 2370 *p++ = 'r'; 2371 if (test_bit(GLF_INITIAL, gflags)) 2372 *p++ = 'I'; 2373 if (test_bit(GLF_FROZEN, gflags)) 2374 *p++ = 'F'; 2375 if (!list_empty(&gl->gl_holders)) 2376 *p++ = 'q'; 2377 if (test_bit(GLF_LRU, gflags)) 2378 *p++ = 'L'; 2379 if (gl->gl_object) 2380 *p++ = 'o'; 2381 if (test_bit(GLF_BLOCKING, gflags)) 2382 *p++ = 'b'; 2383 if (test_bit(GLF_FREEING, gflags)) 2384 *p++ = 'x'; 2385 if (test_bit(GLF_INSTANTIATE_NEEDED, gflags)) 2386 *p++ = 'n'; 2387 if (test_bit(GLF_INSTANTIATE_IN_PROG, gflags)) 2388 *p++ = 'N'; 2389 if (test_bit(GLF_TRY_TO_EVICT, gflags)) 2390 *p++ = 'e'; 2391 if (test_bit(GLF_VERIFY_EVICT, gflags)) 2392 *p++ = 'E'; 2393 *p = 0; 2394 return buf; 2395 } 2396 2397 /** 2398 * gfs2_dump_glock - print information about a glock 2399 * @seq: The seq_file struct 2400 * @gl: the glock 2401 * @fsid: If true, also dump the file system id 2402 * 2403 * The file format is as follows: 2404 * One line per object, capital letters are used to indicate objects 2405 * G = glock, I = Inode, R = rgrp, H = holder. Glocks are not indented, 2406 * other objects are indented by a single space and follow the glock to 2407 * which they are related. Fields are indicated by lower case letters 2408 * followed by a colon and the field value, except for strings which are in 2409 * [] so that its possible to see if they are composed of spaces for 2410 * example. The field's are n = number (id of the object), f = flags, 2411 * t = type, s = state, r = refcount, e = error, p = pid. 2412 * 2413 */ 2414 2415 void gfs2_dump_glock(struct seq_file *seq, struct gfs2_glock *gl, bool fsid) 2416 { 2417 const struct gfs2_glock_operations *glops = gl->gl_ops; 2418 unsigned long long dtime; 2419 const struct gfs2_holder *gh; 2420 char gflags_buf[32]; 2421 struct gfs2_sbd *sdp = gl->gl_name.ln_sbd; 2422 char fs_id_buf[sizeof(sdp->sd_fsname) + 7]; 2423 unsigned long nrpages = 0; 2424 2425 if (gl->gl_ops->go_flags & GLOF_ASPACE) { 2426 struct address_space *mapping = gfs2_glock2aspace(gl); 2427 2428 nrpages = mapping->nrpages; 2429 } 2430 memset(fs_id_buf, 0, sizeof(fs_id_buf)); 2431 if (fsid && sdp) /* safety precaution */ 2432 sprintf(fs_id_buf, "fsid=%s: ", sdp->sd_fsname); 2433 dtime = jiffies - gl->gl_demote_time; 2434 dtime *= 1000000/HZ; /* demote time in uSec */ 2435 if (!test_bit(GLF_DEMOTE, &gl->gl_flags)) 2436 dtime = 0; 2437 gfs2_print_dbg(seq, "%sG: s:%s n:%u/%llx f:%s t:%s d:%s/%llu a:%d " 2438 "v:%d r:%d m:%ld p:%lu\n", 2439 fs_id_buf, state2str(gl->gl_state), 2440 gl->gl_name.ln_type, 2441 (unsigned long long)gl->gl_name.ln_number, 2442 gflags2str(gflags_buf, gl), 2443 state2str(gl->gl_target), 2444 state2str(gl->gl_demote_state), dtime, 2445 atomic_read(&gl->gl_ail_count), 2446 atomic_read(&gl->gl_revokes), 2447 (int)gl->gl_lockref.count, gl->gl_hold_time, nrpages); 2448 2449 list_for_each_entry(gh, &gl->gl_holders, gh_list) 2450 dump_holder(seq, gh, fs_id_buf); 2451 2452 if (gl->gl_state != LM_ST_UNLOCKED && glops->go_dump) 2453 glops->go_dump(seq, gl, fs_id_buf); 2454 } 2455 2456 static int gfs2_glstats_seq_show(struct seq_file *seq, void *iter_ptr) 2457 { 2458 struct gfs2_glock *gl = iter_ptr; 2459 2460 seq_printf(seq, "G: n:%u/%llx rtt:%llu/%llu rttb:%llu/%llu irt:%llu/%llu dcnt: %llu qcnt: %llu\n", 2461 gl->gl_name.ln_type, 2462 (unsigned long long)gl->gl_name.ln_number, 2463 (unsigned long long)gl->gl_stats.stats[GFS2_LKS_SRTT], 2464 (unsigned long long)gl->gl_stats.stats[GFS2_LKS_SRTTVAR], 2465 (unsigned long long)gl->gl_stats.stats[GFS2_LKS_SRTTB], 2466 (unsigned long long)gl->gl_stats.stats[GFS2_LKS_SRTTVARB], 2467 (unsigned long long)gl->gl_stats.stats[GFS2_LKS_SIRT], 2468 (unsigned long long)gl->gl_stats.stats[GFS2_LKS_SIRTVAR], 2469 (unsigned long long)gl->gl_stats.stats[GFS2_LKS_DCOUNT], 2470 (unsigned long long)gl->gl_stats.stats[GFS2_LKS_QCOUNT]); 2471 return 0; 2472 } 2473 2474 static const char *gfs2_gltype[] = { 2475 "type", 2476 "reserved", 2477 "nondisk", 2478 "inode", 2479 "rgrp", 2480 "meta", 2481 "iopen", 2482 "flock", 2483 "plock", 2484 "quota", 2485 "journal", 2486 }; 2487 2488 static const char *gfs2_stype[] = { 2489 [GFS2_LKS_SRTT] = "srtt", 2490 [GFS2_LKS_SRTTVAR] = "srttvar", 2491 [GFS2_LKS_SRTTB] = "srttb", 2492 [GFS2_LKS_SRTTVARB] = "srttvarb", 2493 [GFS2_LKS_SIRT] = "sirt", 2494 [GFS2_LKS_SIRTVAR] = "sirtvar", 2495 [GFS2_LKS_DCOUNT] = "dlm", 2496 [GFS2_LKS_QCOUNT] = "queue", 2497 }; 2498 2499 #define GFS2_NR_SBSTATS (ARRAY_SIZE(gfs2_gltype) * ARRAY_SIZE(gfs2_stype)) 2500 2501 static int gfs2_sbstats_seq_show(struct seq_file *seq, void *iter_ptr) 2502 { 2503 struct gfs2_sbd *sdp = seq->private; 2504 loff_t pos = *(loff_t *)iter_ptr; 2505 unsigned index = pos >> 3; 2506 unsigned subindex = pos & 0x07; 2507 int i; 2508 2509 if (index == 0 && subindex != 0) 2510 return 0; 2511 2512 seq_printf(seq, "%-10s %8s:", gfs2_gltype[index], 2513 (index == 0) ? "cpu": gfs2_stype[subindex]); 2514 2515 for_each_possible_cpu(i) { 2516 const struct gfs2_pcpu_lkstats *lkstats = per_cpu_ptr(sdp->sd_lkstats, i); 2517 2518 if (index == 0) 2519 seq_printf(seq, " %15u", i); 2520 else 2521 seq_printf(seq, " %15llu", (unsigned long long)lkstats-> 2522 lkstats[index - 1].stats[subindex]); 2523 } 2524 seq_putc(seq, '\n'); 2525 return 0; 2526 } 2527 2528 int __init gfs2_glock_init(void) 2529 { 2530 int i, ret; 2531 2532 ret = rhashtable_init(&gl_hash_table, &ht_parms); 2533 if (ret < 0) 2534 return ret; 2535 2536 glock_workqueue = alloc_workqueue("glock_workqueue", WQ_MEM_RECLAIM | 2537 WQ_HIGHPRI | WQ_FREEZABLE, 0); 2538 if (!glock_workqueue) { 2539 rhashtable_destroy(&gl_hash_table); 2540 return -ENOMEM; 2541 } 2542 2543 glock_shrinker = shrinker_alloc(0, "gfs2-glock"); 2544 if (!glock_shrinker) { 2545 destroy_workqueue(glock_workqueue); 2546 rhashtable_destroy(&gl_hash_table); 2547 return -ENOMEM; 2548 } 2549 2550 glock_shrinker->count_objects = gfs2_glock_shrink_count; 2551 glock_shrinker->scan_objects = gfs2_glock_shrink_scan; 2552 2553 shrinker_register(glock_shrinker); 2554 2555 for (i = 0; i < GLOCK_WAIT_TABLE_SIZE; i++) 2556 init_waitqueue_head(glock_wait_table + i); 2557 2558 return 0; 2559 } 2560 2561 void gfs2_glock_exit(void) 2562 { 2563 shrinker_free(glock_shrinker); 2564 rhashtable_destroy(&gl_hash_table); 2565 destroy_workqueue(glock_workqueue); 2566 } 2567 2568 static void gfs2_glock_iter_next(struct gfs2_glock_iter *gi, loff_t n) 2569 { 2570 struct gfs2_glock *gl = gi->gl; 2571 2572 if (gl) { 2573 if (n == 0) 2574 return; 2575 gfs2_glock_put_async(gl); 2576 } 2577 for (;;) { 2578 gl = rhashtable_walk_next(&gi->hti); 2579 if (IS_ERR_OR_NULL(gl)) { 2580 if (gl == ERR_PTR(-EAGAIN)) { 2581 n = 1; 2582 continue; 2583 } 2584 gl = NULL; 2585 break; 2586 } 2587 if (gl->gl_name.ln_sbd != gi->sdp) 2588 continue; 2589 if (n <= 1) { 2590 if (!lockref_get_not_dead(&gl->gl_lockref)) 2591 continue; 2592 break; 2593 } else { 2594 if (__lockref_is_dead(&gl->gl_lockref)) 2595 continue; 2596 n--; 2597 } 2598 } 2599 gi->gl = gl; 2600 } 2601 2602 static void *gfs2_glock_seq_start(struct seq_file *seq, loff_t *pos) 2603 __acquires(RCU) 2604 { 2605 struct gfs2_glock_iter *gi = seq->private; 2606 loff_t n; 2607 2608 /* 2609 * We can either stay where we are, skip to the next hash table 2610 * entry, or start from the beginning. 2611 */ 2612 if (*pos < gi->last_pos) { 2613 rhashtable_walk_exit(&gi->hti); 2614 rhashtable_walk_enter(&gl_hash_table, &gi->hti); 2615 n = *pos + 1; 2616 } else { 2617 n = *pos - gi->last_pos; 2618 } 2619 2620 rhashtable_walk_start(&gi->hti); 2621 2622 gfs2_glock_iter_next(gi, n); 2623 gi->last_pos = *pos; 2624 return gi->gl; 2625 } 2626 2627 static void *gfs2_glock_seq_next(struct seq_file *seq, void *iter_ptr, 2628 loff_t *pos) 2629 { 2630 struct gfs2_glock_iter *gi = seq->private; 2631 2632 (*pos)++; 2633 gi->last_pos = *pos; 2634 gfs2_glock_iter_next(gi, 1); 2635 return gi->gl; 2636 } 2637 2638 static void gfs2_glock_seq_stop(struct seq_file *seq, void *iter_ptr) 2639 __releases(RCU) 2640 { 2641 struct gfs2_glock_iter *gi = seq->private; 2642 2643 rhashtable_walk_stop(&gi->hti); 2644 } 2645 2646 static int gfs2_glock_seq_show(struct seq_file *seq, void *iter_ptr) 2647 { 2648 dump_glock(seq, iter_ptr, false); 2649 return 0; 2650 } 2651 2652 static void *gfs2_sbstats_seq_start(struct seq_file *seq, loff_t *pos) 2653 { 2654 preempt_disable(); 2655 if (*pos >= GFS2_NR_SBSTATS) 2656 return NULL; 2657 return pos; 2658 } 2659 2660 static void *gfs2_sbstats_seq_next(struct seq_file *seq, void *iter_ptr, 2661 loff_t *pos) 2662 { 2663 (*pos)++; 2664 if (*pos >= GFS2_NR_SBSTATS) 2665 return NULL; 2666 return pos; 2667 } 2668 2669 static void gfs2_sbstats_seq_stop(struct seq_file *seq, void *iter_ptr) 2670 { 2671 preempt_enable(); 2672 } 2673 2674 static const struct seq_operations gfs2_glock_seq_ops = { 2675 .start = gfs2_glock_seq_start, 2676 .next = gfs2_glock_seq_next, 2677 .stop = gfs2_glock_seq_stop, 2678 .show = gfs2_glock_seq_show, 2679 }; 2680 2681 static const struct seq_operations gfs2_glstats_seq_ops = { 2682 .start = gfs2_glock_seq_start, 2683 .next = gfs2_glock_seq_next, 2684 .stop = gfs2_glock_seq_stop, 2685 .show = gfs2_glstats_seq_show, 2686 }; 2687 2688 static const struct seq_operations gfs2_sbstats_sops = { 2689 .start = gfs2_sbstats_seq_start, 2690 .next = gfs2_sbstats_seq_next, 2691 .stop = gfs2_sbstats_seq_stop, 2692 .show = gfs2_sbstats_seq_show, 2693 }; 2694 2695 #define GFS2_SEQ_GOODSIZE min(PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER, 65536UL) 2696 2697 static int __gfs2_glocks_open(struct inode *inode, struct file *file, 2698 const struct seq_operations *ops) 2699 { 2700 int ret = seq_open_private(file, ops, sizeof(struct gfs2_glock_iter)); 2701 if (ret == 0) { 2702 struct seq_file *seq = file->private_data; 2703 struct gfs2_glock_iter *gi = seq->private; 2704 2705 gi->sdp = inode->i_private; 2706 seq->buf = kmalloc(GFS2_SEQ_GOODSIZE, GFP_KERNEL | __GFP_NOWARN); 2707 if (seq->buf) 2708 seq->size = GFS2_SEQ_GOODSIZE; 2709 /* 2710 * Initially, we are "before" the first hash table entry; the 2711 * first call to rhashtable_walk_next gets us the first entry. 2712 */ 2713 gi->last_pos = -1; 2714 gi->gl = NULL; 2715 rhashtable_walk_enter(&gl_hash_table, &gi->hti); 2716 } 2717 return ret; 2718 } 2719 2720 static int gfs2_glocks_open(struct inode *inode, struct file *file) 2721 { 2722 return __gfs2_glocks_open(inode, file, &gfs2_glock_seq_ops); 2723 } 2724 2725 static int gfs2_glocks_release(struct inode *inode, struct file *file) 2726 { 2727 struct seq_file *seq = file->private_data; 2728 struct gfs2_glock_iter *gi = seq->private; 2729 2730 if (gi->gl) 2731 gfs2_glock_put(gi->gl); 2732 rhashtable_walk_exit(&gi->hti); 2733 return seq_release_private(inode, file); 2734 } 2735 2736 static int gfs2_glstats_open(struct inode *inode, struct file *file) 2737 { 2738 return __gfs2_glocks_open(inode, file, &gfs2_glstats_seq_ops); 2739 } 2740 2741 static const struct file_operations gfs2_glocks_fops = { 2742 .owner = THIS_MODULE, 2743 .open = gfs2_glocks_open, 2744 .read = seq_read, 2745 .llseek = seq_lseek, 2746 .release = gfs2_glocks_release, 2747 }; 2748 2749 static const struct file_operations gfs2_glstats_fops = { 2750 .owner = THIS_MODULE, 2751 .open = gfs2_glstats_open, 2752 .read = seq_read, 2753 .llseek = seq_lseek, 2754 .release = gfs2_glocks_release, 2755 }; 2756 2757 struct gfs2_glockfd_iter { 2758 struct super_block *sb; 2759 unsigned int tgid; 2760 struct task_struct *task; 2761 unsigned int fd; 2762 struct file *file; 2763 }; 2764 2765 static struct task_struct *gfs2_glockfd_next_task(struct gfs2_glockfd_iter *i) 2766 { 2767 struct pid_namespace *ns = task_active_pid_ns(current); 2768 struct pid *pid; 2769 2770 if (i->task) 2771 put_task_struct(i->task); 2772 2773 rcu_read_lock(); 2774 retry: 2775 i->task = NULL; 2776 pid = find_ge_pid(i->tgid, ns); 2777 if (pid) { 2778 i->tgid = pid_nr_ns(pid, ns); 2779 i->task = pid_task(pid, PIDTYPE_TGID); 2780 if (!i->task) { 2781 i->tgid++; 2782 goto retry; 2783 } 2784 get_task_struct(i->task); 2785 } 2786 rcu_read_unlock(); 2787 return i->task; 2788 } 2789 2790 static struct file *gfs2_glockfd_next_file(struct gfs2_glockfd_iter *i) 2791 { 2792 if (i->file) { 2793 fput(i->file); 2794 i->file = NULL; 2795 } 2796 2797 rcu_read_lock(); 2798 for(;; i->fd++) { 2799 struct inode *inode; 2800 2801 i->file = task_lookup_next_fdget_rcu(i->task, &i->fd); 2802 if (!i->file) { 2803 i->fd = 0; 2804 break; 2805 } 2806 2807 inode = file_inode(i->file); 2808 if (inode->i_sb == i->sb) 2809 break; 2810 2811 rcu_read_unlock(); 2812 fput(i->file); 2813 rcu_read_lock(); 2814 } 2815 rcu_read_unlock(); 2816 return i->file; 2817 } 2818 2819 static void *gfs2_glockfd_seq_start(struct seq_file *seq, loff_t *pos) 2820 { 2821 struct gfs2_glockfd_iter *i = seq->private; 2822 2823 if (*pos) 2824 return NULL; 2825 while (gfs2_glockfd_next_task(i)) { 2826 if (gfs2_glockfd_next_file(i)) 2827 return i; 2828 i->tgid++; 2829 } 2830 return NULL; 2831 } 2832 2833 static void *gfs2_glockfd_seq_next(struct seq_file *seq, void *iter_ptr, 2834 loff_t *pos) 2835 { 2836 struct gfs2_glockfd_iter *i = seq->private; 2837 2838 (*pos)++; 2839 i->fd++; 2840 do { 2841 if (gfs2_glockfd_next_file(i)) 2842 return i; 2843 i->tgid++; 2844 } while (gfs2_glockfd_next_task(i)); 2845 return NULL; 2846 } 2847 2848 static void gfs2_glockfd_seq_stop(struct seq_file *seq, void *iter_ptr) 2849 { 2850 struct gfs2_glockfd_iter *i = seq->private; 2851 2852 if (i->file) 2853 fput(i->file); 2854 if (i->task) 2855 put_task_struct(i->task); 2856 } 2857 2858 static void gfs2_glockfd_seq_show_flock(struct seq_file *seq, 2859 struct gfs2_glockfd_iter *i) 2860 { 2861 struct gfs2_file *fp = i->file->private_data; 2862 struct gfs2_holder *fl_gh = &fp->f_fl_gh; 2863 struct lm_lockname gl_name = { .ln_type = LM_TYPE_RESERVED }; 2864 2865 if (!READ_ONCE(fl_gh->gh_gl)) 2866 return; 2867 2868 spin_lock(&i->file->f_lock); 2869 if (gfs2_holder_initialized(fl_gh)) 2870 gl_name = fl_gh->gh_gl->gl_name; 2871 spin_unlock(&i->file->f_lock); 2872 2873 if (gl_name.ln_type != LM_TYPE_RESERVED) { 2874 seq_printf(seq, "%d %u %u/%llx\n", 2875 i->tgid, i->fd, gl_name.ln_type, 2876 (unsigned long long)gl_name.ln_number); 2877 } 2878 } 2879 2880 static int gfs2_glockfd_seq_show(struct seq_file *seq, void *iter_ptr) 2881 { 2882 struct gfs2_glockfd_iter *i = seq->private; 2883 struct inode *inode = file_inode(i->file); 2884 struct gfs2_glock *gl; 2885 2886 inode_lock_shared(inode); 2887 gl = GFS2_I(inode)->i_iopen_gh.gh_gl; 2888 if (gl) { 2889 seq_printf(seq, "%d %u %u/%llx\n", 2890 i->tgid, i->fd, gl->gl_name.ln_type, 2891 (unsigned long long)gl->gl_name.ln_number); 2892 } 2893 gfs2_glockfd_seq_show_flock(seq, i); 2894 inode_unlock_shared(inode); 2895 return 0; 2896 } 2897 2898 static const struct seq_operations gfs2_glockfd_seq_ops = { 2899 .start = gfs2_glockfd_seq_start, 2900 .next = gfs2_glockfd_seq_next, 2901 .stop = gfs2_glockfd_seq_stop, 2902 .show = gfs2_glockfd_seq_show, 2903 }; 2904 2905 static int gfs2_glockfd_open(struct inode *inode, struct file *file) 2906 { 2907 struct gfs2_glockfd_iter *i; 2908 struct gfs2_sbd *sdp = inode->i_private; 2909 2910 i = __seq_open_private(file, &gfs2_glockfd_seq_ops, 2911 sizeof(struct gfs2_glockfd_iter)); 2912 if (!i) 2913 return -ENOMEM; 2914 i->sb = sdp->sd_vfs; 2915 return 0; 2916 } 2917 2918 static const struct file_operations gfs2_glockfd_fops = { 2919 .owner = THIS_MODULE, 2920 .open = gfs2_glockfd_open, 2921 .read = seq_read, 2922 .llseek = seq_lseek, 2923 .release = seq_release_private, 2924 }; 2925 2926 DEFINE_SEQ_ATTRIBUTE(gfs2_sbstats); 2927 2928 void gfs2_create_debugfs_file(struct gfs2_sbd *sdp) 2929 { 2930 sdp->debugfs_dir = debugfs_create_dir(sdp->sd_table_name, gfs2_root); 2931 2932 debugfs_create_file("glocks", S_IFREG | S_IRUGO, sdp->debugfs_dir, sdp, 2933 &gfs2_glocks_fops); 2934 2935 debugfs_create_file("glockfd", S_IFREG | S_IRUGO, sdp->debugfs_dir, sdp, 2936 &gfs2_glockfd_fops); 2937 2938 debugfs_create_file("glstats", S_IFREG | S_IRUGO, sdp->debugfs_dir, sdp, 2939 &gfs2_glstats_fops); 2940 2941 debugfs_create_file("sbstats", S_IFREG | S_IRUGO, sdp->debugfs_dir, sdp, 2942 &gfs2_sbstats_fops); 2943 } 2944 2945 void gfs2_delete_debugfs_file(struct gfs2_sbd *sdp) 2946 { 2947 debugfs_remove_recursive(sdp->debugfs_dir); 2948 sdp->debugfs_dir = NULL; 2949 } 2950 2951 void gfs2_register_debugfs(void) 2952 { 2953 gfs2_root = debugfs_create_dir("gfs2", NULL); 2954 } 2955 2956 void gfs2_unregister_debugfs(void) 2957 { 2958 debugfs_remove(gfs2_root); 2959 gfs2_root = NULL; 2960 } 2961