1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 4 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved. 5 */ 6 7 #include <linux/slab.h> 8 #include <linux/spinlock.h> 9 #include <linux/compat.h> 10 #include <linux/completion.h> 11 #include <linux/buffer_head.h> 12 #include <linux/pagemap.h> 13 #include <linux/uio.h> 14 #include <linux/blkdev.h> 15 #include <linux/mm.h> 16 #include <linux/mount.h> 17 #include <linux/fs.h> 18 #include <linux/filelock.h> 19 #include <linux/gfs2_ondisk.h> 20 #include <linux/falloc.h> 21 #include <linux/swap.h> 22 #include <linux/crc32.h> 23 #include <linux/writeback.h> 24 #include <linux/uaccess.h> 25 #include <linux/dlm.h> 26 #include <linux/dlm_plock.h> 27 #include <linux/delay.h> 28 #include <linux/backing-dev.h> 29 #include <linux/fileattr.h> 30 31 #include "gfs2.h" 32 #include "incore.h" 33 #include "bmap.h" 34 #include "aops.h" 35 #include "dir.h" 36 #include "glock.h" 37 #include "glops.h" 38 #include "inode.h" 39 #include "log.h" 40 #include "meta_io.h" 41 #include "quota.h" 42 #include "rgrp.h" 43 #include "trans.h" 44 #include "util.h" 45 46 /** 47 * gfs2_llseek - seek to a location in a file 48 * @file: the file 49 * @offset: the offset 50 * @whence: Where to seek from (SEEK_SET, SEEK_CUR, or SEEK_END) 51 * 52 * SEEK_END requires the glock for the file because it references the 53 * file's size. 54 * 55 * Returns: The new offset, or errno 56 */ 57 58 static loff_t gfs2_llseek(struct file *file, loff_t offset, int whence) 59 { 60 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host); 61 struct gfs2_holder i_gh; 62 loff_t error; 63 64 switch (whence) { 65 case SEEK_END: 66 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, 67 &i_gh); 68 if (!error) { 69 error = generic_file_llseek(file, offset, whence); 70 gfs2_glock_dq_uninit(&i_gh); 71 } 72 break; 73 74 case SEEK_DATA: 75 error = gfs2_seek_data(file, offset); 76 break; 77 78 case SEEK_HOLE: 79 error = gfs2_seek_hole(file, offset); 80 break; 81 82 case SEEK_CUR: 83 case SEEK_SET: 84 /* 85 * These don't reference inode->i_size and don't depend on the 86 * block mapping, so we don't need the glock. 87 */ 88 error = generic_file_llseek(file, offset, whence); 89 break; 90 default: 91 error = -EINVAL; 92 } 93 94 return error; 95 } 96 97 /** 98 * gfs2_readdir - Iterator for a directory 99 * @file: The directory to read from 100 * @ctx: What to feed directory entries to 101 * 102 * Returns: errno 103 */ 104 105 static int gfs2_readdir(struct file *file, struct dir_context *ctx) 106 { 107 struct inode *dir = file->f_mapping->host; 108 struct gfs2_inode *dip = GFS2_I(dir); 109 struct gfs2_holder d_gh; 110 int error; 111 112 error = gfs2_glock_nq_init(dip->i_gl, LM_ST_SHARED, 0, &d_gh); 113 if (error) 114 return error; 115 116 error = gfs2_dir_read(dir, ctx, &file->f_ra); 117 118 gfs2_glock_dq_uninit(&d_gh); 119 120 return error; 121 } 122 123 /* 124 * struct fsflag_gfs2flag 125 * 126 * The FS_JOURNAL_DATA_FL flag maps to GFS2_DIF_INHERIT_JDATA for directories, 127 * and to GFS2_DIF_JDATA for non-directories. 128 */ 129 static struct { 130 u32 fsflag; 131 u32 gfsflag; 132 } fsflag_gfs2flag[] = { 133 {FS_SYNC_FL, GFS2_DIF_SYNC}, 134 {FS_IMMUTABLE_FL, GFS2_DIF_IMMUTABLE}, 135 {FS_APPEND_FL, GFS2_DIF_APPENDONLY}, 136 {FS_NOATIME_FL, GFS2_DIF_NOATIME}, 137 {FS_INDEX_FL, GFS2_DIF_EXHASH}, 138 {FS_TOPDIR_FL, GFS2_DIF_TOPDIR}, 139 {FS_JOURNAL_DATA_FL, GFS2_DIF_JDATA | GFS2_DIF_INHERIT_JDATA}, 140 }; 141 142 static inline u32 gfs2_gfsflags_to_fsflags(struct inode *inode, u32 gfsflags) 143 { 144 int i; 145 u32 fsflags = 0; 146 147 if (S_ISDIR(inode->i_mode)) 148 gfsflags &= ~GFS2_DIF_JDATA; 149 else 150 gfsflags &= ~GFS2_DIF_INHERIT_JDATA; 151 152 for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++) 153 if (gfsflags & fsflag_gfs2flag[i].gfsflag) 154 fsflags |= fsflag_gfs2flag[i].fsflag; 155 return fsflags; 156 } 157 158 int gfs2_fileattr_get(struct dentry *dentry, struct fileattr *fa) 159 { 160 struct inode *inode = d_inode(dentry); 161 struct gfs2_inode *ip = GFS2_I(inode); 162 struct gfs2_holder gh; 163 int error; 164 u32 fsflags; 165 166 if (d_is_special(dentry)) 167 return -ENOTTY; 168 169 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh); 170 error = gfs2_glock_nq(&gh); 171 if (error) 172 goto out_uninit; 173 174 fsflags = gfs2_gfsflags_to_fsflags(inode, ip->i_diskflags); 175 176 fileattr_fill_flags(fa, fsflags); 177 178 gfs2_glock_dq(&gh); 179 out_uninit: 180 gfs2_holder_uninit(&gh); 181 return error; 182 } 183 184 void gfs2_set_inode_flags(struct inode *inode) 185 { 186 struct gfs2_inode *ip = GFS2_I(inode); 187 unsigned int flags = inode->i_flags; 188 189 flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_NOSEC); 190 if ((ip->i_eattr == 0) && !is_sxid(inode->i_mode)) 191 flags |= S_NOSEC; 192 if (ip->i_diskflags & GFS2_DIF_IMMUTABLE) 193 flags |= S_IMMUTABLE; 194 if (ip->i_diskflags & GFS2_DIF_APPENDONLY) 195 flags |= S_APPEND; 196 if (ip->i_diskflags & GFS2_DIF_NOATIME) 197 flags |= S_NOATIME; 198 if (ip->i_diskflags & GFS2_DIF_SYNC) 199 flags |= S_SYNC; 200 inode->i_flags = flags; 201 } 202 203 /* Flags that can be set by user space */ 204 #define GFS2_FLAGS_USER_SET (GFS2_DIF_JDATA| \ 205 GFS2_DIF_IMMUTABLE| \ 206 GFS2_DIF_APPENDONLY| \ 207 GFS2_DIF_NOATIME| \ 208 GFS2_DIF_SYNC| \ 209 GFS2_DIF_TOPDIR| \ 210 GFS2_DIF_INHERIT_JDATA) 211 212 /** 213 * do_gfs2_set_flags - set flags on an inode 214 * @inode: The inode 215 * @reqflags: The flags to set 216 * @mask: Indicates which flags are valid 217 * 218 */ 219 static int do_gfs2_set_flags(struct inode *inode, u32 reqflags, u32 mask) 220 { 221 struct gfs2_inode *ip = GFS2_I(inode); 222 struct gfs2_sbd *sdp = GFS2_SB(inode); 223 struct buffer_head *bh; 224 struct gfs2_holder gh; 225 int error; 226 u32 new_flags, flags; 227 228 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh); 229 if (error) 230 return error; 231 232 error = 0; 233 flags = ip->i_diskflags; 234 new_flags = (flags & ~mask) | (reqflags & mask); 235 if ((new_flags ^ flags) == 0) 236 goto out; 237 238 if (!IS_IMMUTABLE(inode)) { 239 error = gfs2_permission(&nop_mnt_idmap, inode, MAY_WRITE); 240 if (error) 241 goto out; 242 } 243 if ((flags ^ new_flags) & GFS2_DIF_JDATA) { 244 if (new_flags & GFS2_DIF_JDATA) 245 gfs2_log_flush(sdp, ip->i_gl, 246 GFS2_LOG_HEAD_FLUSH_NORMAL | 247 GFS2_LFC_SET_FLAGS); 248 error = filemap_fdatawrite(inode->i_mapping); 249 if (error) 250 goto out; 251 error = filemap_fdatawait(inode->i_mapping); 252 if (error) 253 goto out; 254 truncate_inode_pages(inode->i_mapping, 0); 255 if (new_flags & GFS2_DIF_JDATA) 256 gfs2_ordered_del_inode(ip); 257 } 258 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 259 if (error) 260 goto out; 261 error = gfs2_meta_inode_buffer(ip, &bh); 262 if (error) 263 goto out_trans_end; 264 inode_set_ctime_current(inode); 265 gfs2_trans_add_meta(ip->i_gl, bh); 266 ip->i_diskflags = new_flags; 267 gfs2_dinode_out(ip, bh->b_data); 268 brelse(bh); 269 gfs2_set_inode_flags(inode); 270 gfs2_set_aops(inode); 271 out_trans_end: 272 gfs2_trans_end(sdp); 273 out: 274 gfs2_glock_dq_uninit(&gh); 275 return error; 276 } 277 278 int gfs2_fileattr_set(struct mnt_idmap *idmap, 279 struct dentry *dentry, struct fileattr *fa) 280 { 281 struct inode *inode = d_inode(dentry); 282 u32 fsflags = fa->flags, gfsflags = 0; 283 u32 mask; 284 int i; 285 286 if (d_is_special(dentry)) 287 return -ENOTTY; 288 289 if (fileattr_has_fsx(fa)) 290 return -EOPNOTSUPP; 291 292 for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++) { 293 if (fsflags & fsflag_gfs2flag[i].fsflag) { 294 fsflags &= ~fsflag_gfs2flag[i].fsflag; 295 gfsflags |= fsflag_gfs2flag[i].gfsflag; 296 } 297 } 298 if (fsflags || gfsflags & ~GFS2_FLAGS_USER_SET) 299 return -EINVAL; 300 301 mask = GFS2_FLAGS_USER_SET; 302 if (S_ISDIR(inode->i_mode)) { 303 mask &= ~GFS2_DIF_JDATA; 304 } else { 305 /* The GFS2_DIF_TOPDIR flag is only valid for directories. */ 306 if (gfsflags & GFS2_DIF_TOPDIR) 307 return -EINVAL; 308 mask &= ~(GFS2_DIF_TOPDIR | GFS2_DIF_INHERIT_JDATA); 309 } 310 311 return do_gfs2_set_flags(inode, gfsflags, mask); 312 } 313 314 static int gfs2_getlabel(struct file *filp, char __user *label) 315 { 316 struct inode *inode = file_inode(filp); 317 struct gfs2_sbd *sdp = GFS2_SB(inode); 318 319 if (copy_to_user(label, sdp->sd_sb.sb_locktable, GFS2_LOCKNAME_LEN)) 320 return -EFAULT; 321 322 return 0; 323 } 324 325 static long gfs2_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 326 { 327 switch(cmd) { 328 case FITRIM: 329 return gfs2_fitrim(filp, (void __user *)arg); 330 case FS_IOC_GETFSLABEL: 331 return gfs2_getlabel(filp, (char __user *)arg); 332 } 333 334 return -ENOTTY; 335 } 336 337 #ifdef CONFIG_COMPAT 338 static long gfs2_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 339 { 340 switch(cmd) { 341 /* Keep this list in sync with gfs2_ioctl */ 342 case FITRIM: 343 case FS_IOC_GETFSLABEL: 344 break; 345 default: 346 return -ENOIOCTLCMD; 347 } 348 349 return gfs2_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)); 350 } 351 #else 352 #define gfs2_compat_ioctl NULL 353 #endif 354 355 /** 356 * gfs2_size_hint - Give a hint to the size of a write request 357 * @filep: The struct file 358 * @offset: The file offset of the write 359 * @size: The length of the write 360 * 361 * When we are about to do a write, this function records the total 362 * write size in order to provide a suitable hint to the lower layers 363 * about how many blocks will be required. 364 * 365 */ 366 367 static void gfs2_size_hint(struct file *filep, loff_t offset, size_t size) 368 { 369 struct inode *inode = file_inode(filep); 370 struct gfs2_sbd *sdp = GFS2_SB(inode); 371 struct gfs2_inode *ip = GFS2_I(inode); 372 size_t blks = (size + sdp->sd_sb.sb_bsize - 1) >> sdp->sd_sb.sb_bsize_shift; 373 int hint = min_t(size_t, INT_MAX, blks); 374 375 if (hint > atomic_read(&ip->i_sizehint)) 376 atomic_set(&ip->i_sizehint, hint); 377 } 378 379 /** 380 * gfs2_allocate_folio_backing - Allocate blocks for a write fault 381 * @folio: The (locked) folio to allocate backing for 382 * @length: Size of the allocation 383 * 384 * We try to allocate all the blocks required for the folio in one go. This 385 * might fail for various reasons, so we keep trying until all the blocks to 386 * back this folio are allocated. If some of the blocks are already allocated, 387 * that is ok too. 388 */ 389 static int gfs2_allocate_folio_backing(struct folio *folio, size_t length) 390 { 391 u64 pos = folio_pos(folio); 392 393 do { 394 struct iomap iomap = { }; 395 396 if (gfs2_iomap_alloc(folio->mapping->host, pos, length, &iomap)) 397 return -EIO; 398 399 if (length < iomap.length) 400 iomap.length = length; 401 length -= iomap.length; 402 pos += iomap.length; 403 } while (length > 0); 404 405 return 0; 406 } 407 408 /** 409 * gfs2_page_mkwrite - Make a shared, mmap()ed, page writable 410 * @vmf: The virtual memory fault containing the page to become writable 411 * 412 * When the page becomes writable, we need to ensure that we have 413 * blocks allocated on disk to back that page. 414 */ 415 416 static vm_fault_t gfs2_page_mkwrite(struct vm_fault *vmf) 417 { 418 struct folio *folio = page_folio(vmf->page); 419 struct inode *inode = file_inode(vmf->vma->vm_file); 420 struct gfs2_inode *ip = GFS2_I(inode); 421 struct gfs2_sbd *sdp = GFS2_SB(inode); 422 struct gfs2_alloc_parms ap = {}; 423 u64 pos = folio_pos(folio); 424 unsigned int data_blocks, ind_blocks, rblocks; 425 vm_fault_t ret = VM_FAULT_LOCKED; 426 struct gfs2_holder gh; 427 size_t length; 428 loff_t size; 429 int err; 430 431 sb_start_pagefault(inode->i_sb); 432 433 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh); 434 err = gfs2_glock_nq(&gh); 435 if (err) { 436 ret = vmf_fs_error(err); 437 goto out_uninit; 438 } 439 440 /* Check folio index against inode size */ 441 size = i_size_read(inode); 442 if (pos >= size) { 443 ret = VM_FAULT_SIGBUS; 444 goto out_unlock; 445 } 446 447 /* Update file times before taking folio lock */ 448 file_update_time(vmf->vma->vm_file); 449 450 /* folio is wholly or partially inside EOF */ 451 if (size - pos < folio_size(folio)) 452 length = size - pos; 453 else 454 length = folio_size(folio); 455 456 gfs2_size_hint(vmf->vma->vm_file, pos, length); 457 458 set_bit(GLF_DIRTY, &ip->i_gl->gl_flags); 459 set_bit(GIF_SW_PAGED, &ip->i_flags); 460 461 /* 462 * iomap_writepage / iomap_writepages currently don't support inline 463 * files, so always unstuff here. 464 */ 465 466 if (!gfs2_is_stuffed(ip) && 467 !gfs2_write_alloc_required(ip, pos, length)) { 468 folio_lock(folio); 469 if (!folio_test_uptodate(folio) || 470 folio->mapping != inode->i_mapping) { 471 ret = VM_FAULT_NOPAGE; 472 folio_unlock(folio); 473 } 474 goto out_unlock; 475 } 476 477 err = gfs2_rindex_update(sdp); 478 if (err) { 479 ret = vmf_fs_error(err); 480 goto out_unlock; 481 } 482 483 gfs2_write_calc_reserv(ip, length, &data_blocks, &ind_blocks); 484 ap.target = data_blocks + ind_blocks; 485 err = gfs2_quota_lock_check(ip, &ap); 486 if (err) { 487 ret = vmf_fs_error(err); 488 goto out_unlock; 489 } 490 err = gfs2_inplace_reserve(ip, &ap); 491 if (err) { 492 ret = vmf_fs_error(err); 493 goto out_quota_unlock; 494 } 495 496 rblocks = RES_DINODE + ind_blocks; 497 if (gfs2_is_jdata(ip)) 498 rblocks += data_blocks ? data_blocks : 1; 499 if (ind_blocks || data_blocks) { 500 rblocks += RES_STATFS + RES_QUOTA; 501 rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks); 502 } 503 err = gfs2_trans_begin(sdp, rblocks, 0); 504 if (err) { 505 ret = vmf_fs_error(err); 506 goto out_trans_fail; 507 } 508 509 /* Unstuff, if required, and allocate backing blocks for folio */ 510 if (gfs2_is_stuffed(ip)) { 511 err = gfs2_unstuff_dinode(ip); 512 if (err) { 513 ret = vmf_fs_error(err); 514 goto out_trans_end; 515 } 516 } 517 518 folio_lock(folio); 519 /* If truncated, we must retry the operation, we may have raced 520 * with the glock demotion code. 521 */ 522 if (!folio_test_uptodate(folio) || folio->mapping != inode->i_mapping) { 523 ret = VM_FAULT_NOPAGE; 524 goto out_page_locked; 525 } 526 527 err = gfs2_allocate_folio_backing(folio, length); 528 if (err) 529 ret = vmf_fs_error(err); 530 531 out_page_locked: 532 if (ret != VM_FAULT_LOCKED) 533 folio_unlock(folio); 534 out_trans_end: 535 gfs2_trans_end(sdp); 536 out_trans_fail: 537 gfs2_inplace_release(ip); 538 out_quota_unlock: 539 gfs2_quota_unlock(ip); 540 out_unlock: 541 gfs2_glock_dq(&gh); 542 out_uninit: 543 gfs2_holder_uninit(&gh); 544 if (ret == VM_FAULT_LOCKED) { 545 folio_mark_dirty(folio); 546 folio_wait_stable(folio); 547 } 548 sb_end_pagefault(inode->i_sb); 549 return ret; 550 } 551 552 static vm_fault_t gfs2_fault(struct vm_fault *vmf) 553 { 554 struct inode *inode = file_inode(vmf->vma->vm_file); 555 struct gfs2_inode *ip = GFS2_I(inode); 556 struct gfs2_holder gh; 557 vm_fault_t ret; 558 int err; 559 560 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh); 561 err = gfs2_glock_nq(&gh); 562 if (err) { 563 ret = vmf_fs_error(err); 564 goto out_uninit; 565 } 566 ret = filemap_fault(vmf); 567 gfs2_glock_dq(&gh); 568 out_uninit: 569 gfs2_holder_uninit(&gh); 570 return ret; 571 } 572 573 static const struct vm_operations_struct gfs2_vm_ops = { 574 .fault = gfs2_fault, 575 .map_pages = filemap_map_pages, 576 .page_mkwrite = gfs2_page_mkwrite, 577 }; 578 579 /** 580 * gfs2_mmap 581 * @file: The file to map 582 * @vma: The VMA which described the mapping 583 * 584 * There is no need to get a lock here unless we should be updating 585 * atime. We ignore any locking errors since the only consequence is 586 * a missed atime update (which will just be deferred until later). 587 * 588 * Returns: 0 589 */ 590 591 static int gfs2_mmap(struct file *file, struct vm_area_struct *vma) 592 { 593 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host); 594 595 if (!(file->f_flags & O_NOATIME) && 596 !IS_NOATIME(&ip->i_inode)) { 597 struct gfs2_holder i_gh; 598 int error; 599 600 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, 601 &i_gh); 602 if (error) 603 return error; 604 /* grab lock to update inode */ 605 gfs2_glock_dq_uninit(&i_gh); 606 file_accessed(file); 607 } 608 vma->vm_ops = &gfs2_vm_ops; 609 610 return 0; 611 } 612 613 /** 614 * gfs2_open_common - This is common to open and atomic_open 615 * @inode: The inode being opened 616 * @file: The file being opened 617 * 618 * This maybe called under a glock or not depending upon how it has 619 * been called. We must always be called under a glock for regular 620 * files, however. For other file types, it does not matter whether 621 * we hold the glock or not. 622 * 623 * Returns: Error code or 0 for success 624 */ 625 626 int gfs2_open_common(struct inode *inode, struct file *file) 627 { 628 struct gfs2_file *fp; 629 int ret; 630 631 if (S_ISREG(inode->i_mode)) { 632 ret = generic_file_open(inode, file); 633 if (ret) 634 return ret; 635 636 if (!gfs2_is_jdata(GFS2_I(inode))) 637 file->f_mode |= FMODE_CAN_ODIRECT; 638 } 639 640 fp = kzalloc(sizeof(struct gfs2_file), GFP_NOFS); 641 if (!fp) 642 return -ENOMEM; 643 644 mutex_init(&fp->f_fl_mutex); 645 646 gfs2_assert_warn(GFS2_SB(inode), !file->private_data); 647 file->private_data = fp; 648 if (file->f_mode & FMODE_WRITE) { 649 ret = gfs2_qa_get(GFS2_I(inode)); 650 if (ret) 651 goto fail; 652 } 653 return 0; 654 655 fail: 656 kfree(file->private_data); 657 file->private_data = NULL; 658 return ret; 659 } 660 661 /** 662 * gfs2_open - open a file 663 * @inode: the inode to open 664 * @file: the struct file for this opening 665 * 666 * After atomic_open, this function is only used for opening files 667 * which are already cached. We must still get the glock for regular 668 * files to ensure that we have the file size uptodate for the large 669 * file check which is in the common code. That is only an issue for 670 * regular files though. 671 * 672 * Returns: errno 673 */ 674 675 static int gfs2_open(struct inode *inode, struct file *file) 676 { 677 struct gfs2_inode *ip = GFS2_I(inode); 678 struct gfs2_holder i_gh; 679 int error; 680 bool need_unlock = false; 681 682 if (S_ISREG(ip->i_inode.i_mode)) { 683 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, 684 &i_gh); 685 if (error) 686 return error; 687 need_unlock = true; 688 } 689 690 error = gfs2_open_common(inode, file); 691 692 if (need_unlock) 693 gfs2_glock_dq_uninit(&i_gh); 694 695 return error; 696 } 697 698 /** 699 * gfs2_release - called to close a struct file 700 * @inode: the inode the struct file belongs to 701 * @file: the struct file being closed 702 * 703 * Returns: errno 704 */ 705 706 static int gfs2_release(struct inode *inode, struct file *file) 707 { 708 struct gfs2_inode *ip = GFS2_I(inode); 709 710 kfree(file->private_data); 711 file->private_data = NULL; 712 713 if (file->f_mode & FMODE_WRITE) { 714 if (gfs2_rs_active(&ip->i_res)) 715 gfs2_rs_delete(ip); 716 gfs2_qa_put(ip); 717 } 718 return 0; 719 } 720 721 /** 722 * gfs2_fsync - sync the dirty data for a file (across the cluster) 723 * @file: the file that points to the dentry 724 * @start: the start position in the file to sync 725 * @end: the end position in the file to sync 726 * @datasync: set if we can ignore timestamp changes 727 * 728 * We split the data flushing here so that we don't wait for the data 729 * until after we've also sent the metadata to disk. Note that for 730 * data=ordered, we will write & wait for the data at the log flush 731 * stage anyway, so this is unlikely to make much of a difference 732 * except in the data=writeback case. 733 * 734 * If the fdatawrite fails due to any reason except -EIO, we will 735 * continue the remainder of the fsync, although we'll still report 736 * the error at the end. This is to match filemap_write_and_wait_range() 737 * behaviour. 738 * 739 * Returns: errno 740 */ 741 742 static int gfs2_fsync(struct file *file, loff_t start, loff_t end, 743 int datasync) 744 { 745 struct address_space *mapping = file->f_mapping; 746 struct inode *inode = mapping->host; 747 int sync_state = inode->i_state & I_DIRTY; 748 struct gfs2_inode *ip = GFS2_I(inode); 749 int ret = 0, ret1 = 0; 750 751 if (mapping->nrpages) { 752 ret1 = filemap_fdatawrite_range(mapping, start, end); 753 if (ret1 == -EIO) 754 return ret1; 755 } 756 757 if (!gfs2_is_jdata(ip)) 758 sync_state &= ~I_DIRTY_PAGES; 759 if (datasync) 760 sync_state &= ~I_DIRTY_SYNC; 761 762 if (sync_state) { 763 ret = sync_inode_metadata(inode, 1); 764 if (ret) 765 return ret; 766 if (gfs2_is_jdata(ip)) 767 ret = file_write_and_wait(file); 768 if (ret) 769 return ret; 770 gfs2_ail_flush(ip->i_gl, 1); 771 } 772 773 if (mapping->nrpages) 774 ret = file_fdatawait_range(file, start, end); 775 776 return ret ? ret : ret1; 777 } 778 779 static inline bool should_fault_in_pages(struct iov_iter *i, 780 struct kiocb *iocb, 781 size_t *prev_count, 782 size_t *window_size) 783 { 784 size_t count = iov_iter_count(i); 785 size_t size, offs; 786 787 if (!count) 788 return false; 789 if (!user_backed_iter(i)) 790 return false; 791 792 /* 793 * Try to fault in multiple pages initially. When that doesn't result 794 * in any progress, fall back to a single page. 795 */ 796 size = PAGE_SIZE; 797 offs = offset_in_page(iocb->ki_pos); 798 if (*prev_count != count) { 799 size_t nr_dirtied; 800 801 nr_dirtied = max(current->nr_dirtied_pause - 802 current->nr_dirtied, 8); 803 size = min_t(size_t, SZ_1M, nr_dirtied << PAGE_SHIFT); 804 } 805 806 *prev_count = count; 807 *window_size = size - offs; 808 return true; 809 } 810 811 static ssize_t gfs2_file_direct_read(struct kiocb *iocb, struct iov_iter *to, 812 struct gfs2_holder *gh) 813 { 814 struct file *file = iocb->ki_filp; 815 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host); 816 size_t prev_count = 0, window_size = 0; 817 size_t read = 0; 818 ssize_t ret; 819 820 /* 821 * In this function, we disable page faults when we're holding the 822 * inode glock while doing I/O. If a page fault occurs, we indicate 823 * that the inode glock may be dropped, fault in the pages manually, 824 * and retry. 825 * 826 * Unlike generic_file_read_iter, for reads, iomap_dio_rw can trigger 827 * physical as well as manual page faults, and we need to disable both 828 * kinds. 829 * 830 * For direct I/O, gfs2 takes the inode glock in deferred mode. This 831 * locking mode is compatible with other deferred holders, so multiple 832 * processes and nodes can do direct I/O to a file at the same time. 833 * There's no guarantee that reads or writes will be atomic. Any 834 * coordination among readers and writers needs to happen externally. 835 */ 836 837 if (!iov_iter_count(to)) 838 return 0; /* skip atime */ 839 840 gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, gh); 841 retry: 842 ret = gfs2_glock_nq(gh); 843 if (ret) 844 goto out_uninit; 845 pagefault_disable(); 846 to->nofault = true; 847 ret = iomap_dio_rw(iocb, to, &gfs2_iomap_ops, NULL, 848 IOMAP_DIO_PARTIAL, NULL, read); 849 to->nofault = false; 850 pagefault_enable(); 851 if (ret <= 0 && ret != -EFAULT) 852 goto out_unlock; 853 /* No increment (+=) because iomap_dio_rw returns a cumulative value. */ 854 if (ret > 0) 855 read = ret; 856 857 if (should_fault_in_pages(to, iocb, &prev_count, &window_size)) { 858 gfs2_glock_dq(gh); 859 window_size -= fault_in_iov_iter_writeable(to, window_size); 860 if (window_size) 861 goto retry; 862 } 863 out_unlock: 864 if (gfs2_holder_queued(gh)) 865 gfs2_glock_dq(gh); 866 out_uninit: 867 gfs2_holder_uninit(gh); 868 /* User space doesn't expect partial success. */ 869 if (ret < 0) 870 return ret; 871 return read; 872 } 873 874 static ssize_t gfs2_file_direct_write(struct kiocb *iocb, struct iov_iter *from, 875 struct gfs2_holder *gh) 876 { 877 struct file *file = iocb->ki_filp; 878 struct inode *inode = file->f_mapping->host; 879 struct gfs2_inode *ip = GFS2_I(inode); 880 size_t prev_count = 0, window_size = 0; 881 size_t written = 0; 882 bool enough_retries; 883 ssize_t ret; 884 885 /* 886 * In this function, we disable page faults when we're holding the 887 * inode glock while doing I/O. If a page fault occurs, we indicate 888 * that the inode glock may be dropped, fault in the pages manually, 889 * and retry. 890 * 891 * For writes, iomap_dio_rw only triggers manual page faults, so we 892 * don't need to disable physical ones. 893 */ 894 895 /* 896 * Deferred lock, even if its a write, since we do no allocation on 897 * this path. All we need to change is the atime, and this lock mode 898 * ensures that other nodes have flushed their buffered read caches 899 * (i.e. their page cache entries for this inode). We do not, 900 * unfortunately, have the option of only flushing a range like the 901 * VFS does. 902 */ 903 gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, gh); 904 retry: 905 ret = gfs2_glock_nq(gh); 906 if (ret) 907 goto out_uninit; 908 /* Silently fall back to buffered I/O when writing beyond EOF */ 909 if (iocb->ki_pos + iov_iter_count(from) > i_size_read(&ip->i_inode)) 910 goto out_unlock; 911 912 from->nofault = true; 913 ret = iomap_dio_rw(iocb, from, &gfs2_iomap_ops, NULL, 914 IOMAP_DIO_PARTIAL, NULL, written); 915 from->nofault = false; 916 if (ret <= 0) { 917 if (ret == -ENOTBLK) 918 ret = 0; 919 if (ret != -EFAULT) 920 goto out_unlock; 921 } 922 /* No increment (+=) because iomap_dio_rw returns a cumulative value. */ 923 if (ret > 0) 924 written = ret; 925 926 enough_retries = prev_count == iov_iter_count(from) && 927 window_size <= PAGE_SIZE; 928 if (should_fault_in_pages(from, iocb, &prev_count, &window_size)) { 929 gfs2_glock_dq(gh); 930 window_size -= fault_in_iov_iter_readable(from, window_size); 931 if (window_size) { 932 if (!enough_retries) 933 goto retry; 934 /* fall back to buffered I/O */ 935 ret = 0; 936 } 937 } 938 out_unlock: 939 if (gfs2_holder_queued(gh)) 940 gfs2_glock_dq(gh); 941 out_uninit: 942 gfs2_holder_uninit(gh); 943 /* User space doesn't expect partial success. */ 944 if (ret < 0) 945 return ret; 946 return written; 947 } 948 949 static ssize_t gfs2_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 950 { 951 struct gfs2_inode *ip; 952 struct gfs2_holder gh; 953 size_t prev_count = 0, window_size = 0; 954 size_t read = 0; 955 ssize_t ret; 956 957 /* 958 * In this function, we disable page faults when we're holding the 959 * inode glock while doing I/O. If a page fault occurs, we indicate 960 * that the inode glock may be dropped, fault in the pages manually, 961 * and retry. 962 */ 963 964 if (iocb->ki_flags & IOCB_DIRECT) 965 return gfs2_file_direct_read(iocb, to, &gh); 966 967 pagefault_disable(); 968 iocb->ki_flags |= IOCB_NOIO; 969 ret = generic_file_read_iter(iocb, to); 970 iocb->ki_flags &= ~IOCB_NOIO; 971 pagefault_enable(); 972 if (ret >= 0) { 973 if (!iov_iter_count(to)) 974 return ret; 975 read = ret; 976 } else if (ret != -EFAULT) { 977 if (ret != -EAGAIN) 978 return ret; 979 if (iocb->ki_flags & IOCB_NOWAIT) 980 return ret; 981 } 982 ip = GFS2_I(iocb->ki_filp->f_mapping->host); 983 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh); 984 retry: 985 ret = gfs2_glock_nq(&gh); 986 if (ret) 987 goto out_uninit; 988 pagefault_disable(); 989 ret = generic_file_read_iter(iocb, to); 990 pagefault_enable(); 991 if (ret <= 0 && ret != -EFAULT) 992 goto out_unlock; 993 if (ret > 0) 994 read += ret; 995 996 if (should_fault_in_pages(to, iocb, &prev_count, &window_size)) { 997 gfs2_glock_dq(&gh); 998 window_size -= fault_in_iov_iter_writeable(to, window_size); 999 if (window_size) 1000 goto retry; 1001 } 1002 out_unlock: 1003 if (gfs2_holder_queued(&gh)) 1004 gfs2_glock_dq(&gh); 1005 out_uninit: 1006 gfs2_holder_uninit(&gh); 1007 return read ? read : ret; 1008 } 1009 1010 static ssize_t gfs2_file_buffered_write(struct kiocb *iocb, 1011 struct iov_iter *from, 1012 struct gfs2_holder *gh) 1013 { 1014 struct file *file = iocb->ki_filp; 1015 struct inode *inode = file_inode(file); 1016 struct gfs2_inode *ip = GFS2_I(inode); 1017 struct gfs2_sbd *sdp = GFS2_SB(inode); 1018 struct gfs2_holder *statfs_gh = NULL; 1019 size_t prev_count = 0, window_size = 0; 1020 size_t orig_count = iov_iter_count(from); 1021 size_t written = 0; 1022 ssize_t ret; 1023 1024 /* 1025 * In this function, we disable page faults when we're holding the 1026 * inode glock while doing I/O. If a page fault occurs, we indicate 1027 * that the inode glock may be dropped, fault in the pages manually, 1028 * and retry. 1029 */ 1030 1031 if (inode == sdp->sd_rindex) { 1032 statfs_gh = kmalloc(sizeof(*statfs_gh), GFP_NOFS); 1033 if (!statfs_gh) 1034 return -ENOMEM; 1035 } 1036 1037 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, gh); 1038 if (should_fault_in_pages(from, iocb, &prev_count, &window_size)) { 1039 retry: 1040 window_size -= fault_in_iov_iter_readable(from, window_size); 1041 if (!window_size) { 1042 ret = -EFAULT; 1043 goto out_uninit; 1044 } 1045 from->count = min(from->count, window_size); 1046 } 1047 ret = gfs2_glock_nq(gh); 1048 if (ret) 1049 goto out_uninit; 1050 1051 if (inode == sdp->sd_rindex) { 1052 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode); 1053 1054 ret = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE, 1055 GL_NOCACHE, statfs_gh); 1056 if (ret) 1057 goto out_unlock; 1058 } 1059 1060 pagefault_disable(); 1061 ret = iomap_file_buffered_write(iocb, from, &gfs2_iomap_ops, NULL); 1062 pagefault_enable(); 1063 if (ret > 0) 1064 written += ret; 1065 1066 if (inode == sdp->sd_rindex) 1067 gfs2_glock_dq_uninit(statfs_gh); 1068 1069 if (ret <= 0 && ret != -EFAULT) 1070 goto out_unlock; 1071 1072 from->count = orig_count - written; 1073 if (should_fault_in_pages(from, iocb, &prev_count, &window_size)) { 1074 gfs2_glock_dq(gh); 1075 goto retry; 1076 } 1077 out_unlock: 1078 if (gfs2_holder_queued(gh)) 1079 gfs2_glock_dq(gh); 1080 out_uninit: 1081 gfs2_holder_uninit(gh); 1082 kfree(statfs_gh); 1083 from->count = orig_count - written; 1084 return written ? written : ret; 1085 } 1086 1087 /** 1088 * gfs2_file_write_iter - Perform a write to a file 1089 * @iocb: The io context 1090 * @from: The data to write 1091 * 1092 * We have to do a lock/unlock here to refresh the inode size for 1093 * O_APPEND writes, otherwise we can land up writing at the wrong 1094 * offset. There is still a race, but provided the app is using its 1095 * own file locking, this will make O_APPEND work as expected. 1096 * 1097 */ 1098 1099 static ssize_t gfs2_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 1100 { 1101 struct file *file = iocb->ki_filp; 1102 struct inode *inode = file_inode(file); 1103 struct gfs2_inode *ip = GFS2_I(inode); 1104 struct gfs2_holder gh; 1105 ssize_t ret; 1106 1107 gfs2_size_hint(file, iocb->ki_pos, iov_iter_count(from)); 1108 1109 if (iocb->ki_flags & IOCB_APPEND) { 1110 ret = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, 0, &gh); 1111 if (ret) 1112 return ret; 1113 gfs2_glock_dq_uninit(&gh); 1114 } 1115 1116 inode_lock(inode); 1117 ret = generic_write_checks(iocb, from); 1118 if (ret <= 0) 1119 goto out_unlock; 1120 1121 ret = file_remove_privs(file); 1122 if (ret) 1123 goto out_unlock; 1124 1125 if (iocb->ki_flags & IOCB_DIRECT) { 1126 struct address_space *mapping = file->f_mapping; 1127 ssize_t buffered, ret2; 1128 1129 /* 1130 * Note that under direct I/O, we don't allow and inode 1131 * timestamp updates, so we're not calling file_update_time() 1132 * here. 1133 */ 1134 1135 ret = gfs2_file_direct_write(iocb, from, &gh); 1136 if (ret < 0 || !iov_iter_count(from)) 1137 goto out_unlock; 1138 1139 iocb->ki_flags |= IOCB_DSYNC; 1140 buffered = gfs2_file_buffered_write(iocb, from, &gh); 1141 if (unlikely(buffered <= 0)) { 1142 if (!ret) 1143 ret = buffered; 1144 goto out_unlock; 1145 } 1146 1147 /* 1148 * We need to ensure that the page cache pages are written to 1149 * disk and invalidated to preserve the expected O_DIRECT 1150 * semantics. If the writeback or invalidate fails, only report 1151 * the direct I/O range as we don't know if the buffered pages 1152 * made it to disk. 1153 */ 1154 ret2 = generic_write_sync(iocb, buffered); 1155 invalidate_mapping_pages(mapping, 1156 (iocb->ki_pos - buffered) >> PAGE_SHIFT, 1157 (iocb->ki_pos - 1) >> PAGE_SHIFT); 1158 if (!ret || ret2 > 0) 1159 ret += ret2; 1160 } else { 1161 ret = file_update_time(file); 1162 if (ret) 1163 goto out_unlock; 1164 1165 ret = gfs2_file_buffered_write(iocb, from, &gh); 1166 if (likely(ret > 0)) 1167 ret = generic_write_sync(iocb, ret); 1168 } 1169 1170 out_unlock: 1171 inode_unlock(inode); 1172 return ret; 1173 } 1174 1175 static int fallocate_chunk(struct inode *inode, loff_t offset, loff_t len, 1176 int mode) 1177 { 1178 struct super_block *sb = inode->i_sb; 1179 struct gfs2_inode *ip = GFS2_I(inode); 1180 loff_t end = offset + len; 1181 struct buffer_head *dibh; 1182 int error; 1183 1184 error = gfs2_meta_inode_buffer(ip, &dibh); 1185 if (unlikely(error)) 1186 return error; 1187 1188 gfs2_trans_add_meta(ip->i_gl, dibh); 1189 1190 if (gfs2_is_stuffed(ip)) { 1191 error = gfs2_unstuff_dinode(ip); 1192 if (unlikely(error)) 1193 goto out; 1194 } 1195 1196 while (offset < end) { 1197 struct iomap iomap = { }; 1198 1199 error = gfs2_iomap_alloc(inode, offset, end - offset, &iomap); 1200 if (error) 1201 goto out; 1202 offset = iomap.offset + iomap.length; 1203 if (!(iomap.flags & IOMAP_F_NEW)) 1204 continue; 1205 error = sb_issue_zeroout(sb, iomap.addr >> inode->i_blkbits, 1206 iomap.length >> inode->i_blkbits, 1207 GFP_NOFS); 1208 if (error) { 1209 fs_err(GFS2_SB(inode), "Failed to zero data buffers\n"); 1210 goto out; 1211 } 1212 } 1213 out: 1214 brelse(dibh); 1215 return error; 1216 } 1217 1218 /** 1219 * calc_max_reserv() - Reverse of write_calc_reserv. Given a number of 1220 * blocks, determine how many bytes can be written. 1221 * @ip: The inode in question. 1222 * @len: Max cap of bytes. What we return in *len must be <= this. 1223 * @data_blocks: Compute and return the number of data blocks needed 1224 * @ind_blocks: Compute and return the number of indirect blocks needed 1225 * @max_blocks: The total blocks available to work with. 1226 * 1227 * Returns: void, but @len, @data_blocks and @ind_blocks are filled in. 1228 */ 1229 static void calc_max_reserv(struct gfs2_inode *ip, loff_t *len, 1230 unsigned int *data_blocks, unsigned int *ind_blocks, 1231 unsigned int max_blocks) 1232 { 1233 loff_t max = *len; 1234 const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1235 unsigned int tmp, max_data = max_blocks - 3 * (sdp->sd_max_height - 1); 1236 1237 for (tmp = max_data; tmp > sdp->sd_diptrs;) { 1238 tmp = DIV_ROUND_UP(tmp, sdp->sd_inptrs); 1239 max_data -= tmp; 1240 } 1241 1242 *data_blocks = max_data; 1243 *ind_blocks = max_blocks - max_data; 1244 *len = ((loff_t)max_data - 3) << sdp->sd_sb.sb_bsize_shift; 1245 if (*len > max) { 1246 *len = max; 1247 gfs2_write_calc_reserv(ip, max, data_blocks, ind_blocks); 1248 } 1249 } 1250 1251 static long __gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len) 1252 { 1253 struct inode *inode = file_inode(file); 1254 struct gfs2_sbd *sdp = GFS2_SB(inode); 1255 struct gfs2_inode *ip = GFS2_I(inode); 1256 struct gfs2_alloc_parms ap = {}; 1257 unsigned int data_blocks = 0, ind_blocks = 0, rblocks; 1258 loff_t bytes, max_bytes, max_blks; 1259 int error; 1260 const loff_t pos = offset; 1261 const loff_t count = len; 1262 loff_t bsize_mask = ~((loff_t)sdp->sd_sb.sb_bsize - 1); 1263 loff_t next = (offset + len - 1) >> sdp->sd_sb.sb_bsize_shift; 1264 loff_t max_chunk_size = UINT_MAX & bsize_mask; 1265 1266 next = (next + 1) << sdp->sd_sb.sb_bsize_shift; 1267 1268 offset &= bsize_mask; 1269 1270 len = next - offset; 1271 bytes = sdp->sd_max_rg_data * sdp->sd_sb.sb_bsize / 2; 1272 if (!bytes) 1273 bytes = UINT_MAX; 1274 bytes &= bsize_mask; 1275 if (bytes == 0) 1276 bytes = sdp->sd_sb.sb_bsize; 1277 1278 gfs2_size_hint(file, offset, len); 1279 1280 gfs2_write_calc_reserv(ip, PAGE_SIZE, &data_blocks, &ind_blocks); 1281 ap.min_target = data_blocks + ind_blocks; 1282 1283 while (len > 0) { 1284 if (len < bytes) 1285 bytes = len; 1286 if (!gfs2_write_alloc_required(ip, offset, bytes)) { 1287 len -= bytes; 1288 offset += bytes; 1289 continue; 1290 } 1291 1292 /* We need to determine how many bytes we can actually 1293 * fallocate without exceeding quota or going over the 1294 * end of the fs. We start off optimistically by assuming 1295 * we can write max_bytes */ 1296 max_bytes = (len > max_chunk_size) ? max_chunk_size : len; 1297 1298 /* Since max_bytes is most likely a theoretical max, we 1299 * calculate a more realistic 'bytes' to serve as a good 1300 * starting point for the number of bytes we may be able 1301 * to write */ 1302 gfs2_write_calc_reserv(ip, bytes, &data_blocks, &ind_blocks); 1303 ap.target = data_blocks + ind_blocks; 1304 1305 error = gfs2_quota_lock_check(ip, &ap); 1306 if (error) 1307 return error; 1308 /* ap.allowed tells us how many blocks quota will allow 1309 * us to write. Check if this reduces max_blks */ 1310 max_blks = UINT_MAX; 1311 if (ap.allowed) 1312 max_blks = ap.allowed; 1313 1314 error = gfs2_inplace_reserve(ip, &ap); 1315 if (error) 1316 goto out_qunlock; 1317 1318 /* check if the selected rgrp limits our max_blks further */ 1319 if (ip->i_res.rs_reserved < max_blks) 1320 max_blks = ip->i_res.rs_reserved; 1321 1322 /* Almost done. Calculate bytes that can be written using 1323 * max_blks. We also recompute max_bytes, data_blocks and 1324 * ind_blocks */ 1325 calc_max_reserv(ip, &max_bytes, &data_blocks, 1326 &ind_blocks, max_blks); 1327 1328 rblocks = RES_DINODE + ind_blocks + RES_STATFS + RES_QUOTA + 1329 RES_RG_HDR + gfs2_rg_blocks(ip, data_blocks + ind_blocks); 1330 if (gfs2_is_jdata(ip)) 1331 rblocks += data_blocks ? data_blocks : 1; 1332 1333 error = gfs2_trans_begin(sdp, rblocks, 1334 PAGE_SIZE >> inode->i_blkbits); 1335 if (error) 1336 goto out_trans_fail; 1337 1338 error = fallocate_chunk(inode, offset, max_bytes, mode); 1339 gfs2_trans_end(sdp); 1340 1341 if (error) 1342 goto out_trans_fail; 1343 1344 len -= max_bytes; 1345 offset += max_bytes; 1346 gfs2_inplace_release(ip); 1347 gfs2_quota_unlock(ip); 1348 } 1349 1350 if (!(mode & FALLOC_FL_KEEP_SIZE) && (pos + count) > inode->i_size) 1351 i_size_write(inode, pos + count); 1352 file_update_time(file); 1353 mark_inode_dirty(inode); 1354 1355 if ((file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host)) 1356 return vfs_fsync_range(file, pos, pos + count - 1, 1357 (file->f_flags & __O_SYNC) ? 0 : 1); 1358 return 0; 1359 1360 out_trans_fail: 1361 gfs2_inplace_release(ip); 1362 out_qunlock: 1363 gfs2_quota_unlock(ip); 1364 return error; 1365 } 1366 1367 static long gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len) 1368 { 1369 struct inode *inode = file_inode(file); 1370 struct gfs2_sbd *sdp = GFS2_SB(inode); 1371 struct gfs2_inode *ip = GFS2_I(inode); 1372 struct gfs2_holder gh; 1373 int ret; 1374 1375 if (mode & ~(FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE)) 1376 return -EOPNOTSUPP; 1377 /* fallocate is needed by gfs2_grow to reserve space in the rindex */ 1378 if (gfs2_is_jdata(ip) && inode != sdp->sd_rindex) 1379 return -EOPNOTSUPP; 1380 1381 inode_lock(inode); 1382 1383 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh); 1384 ret = gfs2_glock_nq(&gh); 1385 if (ret) 1386 goto out_uninit; 1387 1388 if (!(mode & FALLOC_FL_KEEP_SIZE) && 1389 (offset + len) > inode->i_size) { 1390 ret = inode_newsize_ok(inode, offset + len); 1391 if (ret) 1392 goto out_unlock; 1393 } 1394 1395 ret = get_write_access(inode); 1396 if (ret) 1397 goto out_unlock; 1398 1399 if (mode & FALLOC_FL_PUNCH_HOLE) { 1400 ret = __gfs2_punch_hole(file, offset, len); 1401 } else { 1402 ret = __gfs2_fallocate(file, mode, offset, len); 1403 if (ret) 1404 gfs2_rs_deltree(&ip->i_res); 1405 } 1406 1407 put_write_access(inode); 1408 out_unlock: 1409 gfs2_glock_dq(&gh); 1410 out_uninit: 1411 gfs2_holder_uninit(&gh); 1412 inode_unlock(inode); 1413 return ret; 1414 } 1415 1416 static ssize_t gfs2_file_splice_write(struct pipe_inode_info *pipe, 1417 struct file *out, loff_t *ppos, 1418 size_t len, unsigned int flags) 1419 { 1420 ssize_t ret; 1421 1422 gfs2_size_hint(out, *ppos, len); 1423 1424 ret = iter_file_splice_write(pipe, out, ppos, len, flags); 1425 return ret; 1426 } 1427 1428 #ifdef CONFIG_GFS2_FS_LOCKING_DLM 1429 1430 /** 1431 * gfs2_lock - acquire/release a posix lock on a file 1432 * @file: the file pointer 1433 * @cmd: either modify or retrieve lock state, possibly wait 1434 * @fl: type and range of lock 1435 * 1436 * Returns: errno 1437 */ 1438 1439 static int gfs2_lock(struct file *file, int cmd, struct file_lock *fl) 1440 { 1441 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host); 1442 struct gfs2_sbd *sdp = GFS2_SB(file->f_mapping->host); 1443 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1444 1445 if (!(fl->c.flc_flags & FL_POSIX)) 1446 return -ENOLCK; 1447 if (gfs2_withdrawing_or_withdrawn(sdp)) { 1448 if (lock_is_unlock(fl)) 1449 locks_lock_file_wait(file, fl); 1450 return -EIO; 1451 } 1452 if (cmd == F_CANCELLK) 1453 return dlm_posix_cancel(ls->ls_dlm, ip->i_no_addr, file, fl); 1454 else if (IS_GETLK(cmd)) 1455 return dlm_posix_get(ls->ls_dlm, ip->i_no_addr, file, fl); 1456 else if (lock_is_unlock(fl)) 1457 return dlm_posix_unlock(ls->ls_dlm, ip->i_no_addr, file, fl); 1458 else 1459 return dlm_posix_lock(ls->ls_dlm, ip->i_no_addr, file, cmd, fl); 1460 } 1461 1462 static void __flock_holder_uninit(struct file *file, struct gfs2_holder *fl_gh) 1463 { 1464 struct gfs2_glock *gl = gfs2_glock_hold(fl_gh->gh_gl); 1465 1466 /* 1467 * Make sure gfs2_glock_put() won't sleep under the file->f_lock 1468 * spinlock. 1469 */ 1470 1471 spin_lock(&file->f_lock); 1472 gfs2_holder_uninit(fl_gh); 1473 spin_unlock(&file->f_lock); 1474 gfs2_glock_put(gl); 1475 } 1476 1477 static int do_flock(struct file *file, int cmd, struct file_lock *fl) 1478 { 1479 struct gfs2_file *fp = file->private_data; 1480 struct gfs2_holder *fl_gh = &fp->f_fl_gh; 1481 struct gfs2_inode *ip = GFS2_I(file_inode(file)); 1482 struct gfs2_glock *gl; 1483 unsigned int state; 1484 u16 flags; 1485 int error = 0; 1486 int sleeptime; 1487 1488 state = lock_is_write(fl) ? LM_ST_EXCLUSIVE : LM_ST_SHARED; 1489 flags = GL_EXACT | GL_NOPID; 1490 if (!IS_SETLKW(cmd)) 1491 flags |= LM_FLAG_TRY_1CB; 1492 1493 mutex_lock(&fp->f_fl_mutex); 1494 1495 if (gfs2_holder_initialized(fl_gh)) { 1496 struct file_lock request; 1497 if (fl_gh->gh_state == state) 1498 goto out; 1499 locks_init_lock(&request); 1500 request.c.flc_type = F_UNLCK; 1501 request.c.flc_flags = FL_FLOCK; 1502 locks_lock_file_wait(file, &request); 1503 gfs2_glock_dq(fl_gh); 1504 gfs2_holder_reinit(state, flags, fl_gh); 1505 } else { 1506 error = gfs2_glock_get(GFS2_SB(&ip->i_inode), ip->i_no_addr, 1507 &gfs2_flock_glops, CREATE, &gl); 1508 if (error) 1509 goto out; 1510 spin_lock(&file->f_lock); 1511 gfs2_holder_init(gl, state, flags, fl_gh); 1512 spin_unlock(&file->f_lock); 1513 gfs2_glock_put(gl); 1514 } 1515 for (sleeptime = 1; sleeptime <= 4; sleeptime <<= 1) { 1516 error = gfs2_glock_nq(fl_gh); 1517 if (error != GLR_TRYFAILED) 1518 break; 1519 fl_gh->gh_flags &= ~LM_FLAG_TRY_1CB; 1520 fl_gh->gh_flags |= LM_FLAG_TRY; 1521 msleep(sleeptime); 1522 } 1523 if (error) { 1524 __flock_holder_uninit(file, fl_gh); 1525 if (error == GLR_TRYFAILED) 1526 error = -EAGAIN; 1527 } else { 1528 error = locks_lock_file_wait(file, fl); 1529 gfs2_assert_warn(GFS2_SB(&ip->i_inode), !error); 1530 } 1531 1532 out: 1533 mutex_unlock(&fp->f_fl_mutex); 1534 return error; 1535 } 1536 1537 static void do_unflock(struct file *file, struct file_lock *fl) 1538 { 1539 struct gfs2_file *fp = file->private_data; 1540 struct gfs2_holder *fl_gh = &fp->f_fl_gh; 1541 1542 mutex_lock(&fp->f_fl_mutex); 1543 locks_lock_file_wait(file, fl); 1544 if (gfs2_holder_initialized(fl_gh)) { 1545 gfs2_glock_dq(fl_gh); 1546 __flock_holder_uninit(file, fl_gh); 1547 } 1548 mutex_unlock(&fp->f_fl_mutex); 1549 } 1550 1551 /** 1552 * gfs2_flock - acquire/release a flock lock on a file 1553 * @file: the file pointer 1554 * @cmd: either modify or retrieve lock state, possibly wait 1555 * @fl: type and range of lock 1556 * 1557 * Returns: errno 1558 */ 1559 1560 static int gfs2_flock(struct file *file, int cmd, struct file_lock *fl) 1561 { 1562 if (!(fl->c.flc_flags & FL_FLOCK)) 1563 return -ENOLCK; 1564 1565 if (lock_is_unlock(fl)) { 1566 do_unflock(file, fl); 1567 return 0; 1568 } else { 1569 return do_flock(file, cmd, fl); 1570 } 1571 } 1572 1573 const struct file_operations gfs2_file_fops = { 1574 .llseek = gfs2_llseek, 1575 .read_iter = gfs2_file_read_iter, 1576 .write_iter = gfs2_file_write_iter, 1577 .iopoll = iocb_bio_iopoll, 1578 .unlocked_ioctl = gfs2_ioctl, 1579 .compat_ioctl = gfs2_compat_ioctl, 1580 .mmap = gfs2_mmap, 1581 .open = gfs2_open, 1582 .release = gfs2_release, 1583 .fsync = gfs2_fsync, 1584 .lock = gfs2_lock, 1585 .flock = gfs2_flock, 1586 .splice_read = copy_splice_read, 1587 .splice_write = gfs2_file_splice_write, 1588 .setlease = simple_nosetlease, 1589 .fallocate = gfs2_fallocate, 1590 .fop_flags = FOP_ASYNC_LOCK, 1591 }; 1592 1593 const struct file_operations gfs2_dir_fops = { 1594 .iterate_shared = gfs2_readdir, 1595 .unlocked_ioctl = gfs2_ioctl, 1596 .compat_ioctl = gfs2_compat_ioctl, 1597 .open = gfs2_open, 1598 .release = gfs2_release, 1599 .fsync = gfs2_fsync, 1600 .lock = gfs2_lock, 1601 .flock = gfs2_flock, 1602 .llseek = default_llseek, 1603 .fop_flags = FOP_ASYNC_LOCK, 1604 }; 1605 1606 #endif /* CONFIG_GFS2_FS_LOCKING_DLM */ 1607 1608 const struct file_operations gfs2_file_fops_nolock = { 1609 .llseek = gfs2_llseek, 1610 .read_iter = gfs2_file_read_iter, 1611 .write_iter = gfs2_file_write_iter, 1612 .iopoll = iocb_bio_iopoll, 1613 .unlocked_ioctl = gfs2_ioctl, 1614 .compat_ioctl = gfs2_compat_ioctl, 1615 .mmap = gfs2_mmap, 1616 .open = gfs2_open, 1617 .release = gfs2_release, 1618 .fsync = gfs2_fsync, 1619 .splice_read = copy_splice_read, 1620 .splice_write = gfs2_file_splice_write, 1621 .setlease = generic_setlease, 1622 .fallocate = gfs2_fallocate, 1623 }; 1624 1625 const struct file_operations gfs2_dir_fops_nolock = { 1626 .iterate_shared = gfs2_readdir, 1627 .unlocked_ioctl = gfs2_ioctl, 1628 .compat_ioctl = gfs2_compat_ioctl, 1629 .open = gfs2_open, 1630 .release = gfs2_release, 1631 .fsync = gfs2_fsync, 1632 .llseek = default_llseek, 1633 }; 1634 1635