xref: /linux/fs/gfs2/file.c (revision ca64d84e93762f4e587e040a44ad9f6089afc777)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
4  * Copyright (C) 2004-2006 Red Hat, Inc.  All rights reserved.
5  */
6 
7 #include <linux/slab.h>
8 #include <linux/spinlock.h>
9 #include <linux/compat.h>
10 #include <linux/completion.h>
11 #include <linux/buffer_head.h>
12 #include <linux/pagemap.h>
13 #include <linux/uio.h>
14 #include <linux/blkdev.h>
15 #include <linux/mm.h>
16 #include <linux/mount.h>
17 #include <linux/fs.h>
18 #include <linux/gfs2_ondisk.h>
19 #include <linux/falloc.h>
20 #include <linux/swap.h>
21 #include <linux/crc32.h>
22 #include <linux/writeback.h>
23 #include <linux/uaccess.h>
24 #include <linux/dlm.h>
25 #include <linux/dlm_plock.h>
26 #include <linux/delay.h>
27 #include <linux/backing-dev.h>
28 
29 #include "gfs2.h"
30 #include "incore.h"
31 #include "bmap.h"
32 #include "aops.h"
33 #include "dir.h"
34 #include "glock.h"
35 #include "glops.h"
36 #include "inode.h"
37 #include "log.h"
38 #include "meta_io.h"
39 #include "quota.h"
40 #include "rgrp.h"
41 #include "trans.h"
42 #include "util.h"
43 
44 /**
45  * gfs2_llseek - seek to a location in a file
46  * @file: the file
47  * @offset: the offset
48  * @whence: Where to seek from (SEEK_SET, SEEK_CUR, or SEEK_END)
49  *
50  * SEEK_END requires the glock for the file because it references the
51  * file's size.
52  *
53  * Returns: The new offset, or errno
54  */
55 
56 static loff_t gfs2_llseek(struct file *file, loff_t offset, int whence)
57 {
58 	struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
59 	struct gfs2_holder i_gh;
60 	loff_t error;
61 
62 	switch (whence) {
63 	case SEEK_END:
64 		error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
65 					   &i_gh);
66 		if (!error) {
67 			error = generic_file_llseek(file, offset, whence);
68 			gfs2_glock_dq_uninit(&i_gh);
69 		}
70 		break;
71 
72 	case SEEK_DATA:
73 		error = gfs2_seek_data(file, offset);
74 		break;
75 
76 	case SEEK_HOLE:
77 		error = gfs2_seek_hole(file, offset);
78 		break;
79 
80 	case SEEK_CUR:
81 	case SEEK_SET:
82 		/*
83 		 * These don't reference inode->i_size and don't depend on the
84 		 * block mapping, so we don't need the glock.
85 		 */
86 		error = generic_file_llseek(file, offset, whence);
87 		break;
88 	default:
89 		error = -EINVAL;
90 	}
91 
92 	return error;
93 }
94 
95 /**
96  * gfs2_readdir - Iterator for a directory
97  * @file: The directory to read from
98  * @ctx: What to feed directory entries to
99  *
100  * Returns: errno
101  */
102 
103 static int gfs2_readdir(struct file *file, struct dir_context *ctx)
104 {
105 	struct inode *dir = file->f_mapping->host;
106 	struct gfs2_inode *dip = GFS2_I(dir);
107 	struct gfs2_holder d_gh;
108 	int error;
109 
110 	error = gfs2_glock_nq_init(dip->i_gl, LM_ST_SHARED, 0, &d_gh);
111 	if (error)
112 		return error;
113 
114 	error = gfs2_dir_read(dir, ctx, &file->f_ra);
115 
116 	gfs2_glock_dq_uninit(&d_gh);
117 
118 	return error;
119 }
120 
121 /**
122  * fsflag_gfs2flag
123  *
124  * The FS_JOURNAL_DATA_FL flag maps to GFS2_DIF_INHERIT_JDATA for directories,
125  * and to GFS2_DIF_JDATA for non-directories.
126  */
127 static struct {
128 	u32 fsflag;
129 	u32 gfsflag;
130 } fsflag_gfs2flag[] = {
131 	{FS_SYNC_FL, GFS2_DIF_SYNC},
132 	{FS_IMMUTABLE_FL, GFS2_DIF_IMMUTABLE},
133 	{FS_APPEND_FL, GFS2_DIF_APPENDONLY},
134 	{FS_NOATIME_FL, GFS2_DIF_NOATIME},
135 	{FS_INDEX_FL, GFS2_DIF_EXHASH},
136 	{FS_TOPDIR_FL, GFS2_DIF_TOPDIR},
137 	{FS_JOURNAL_DATA_FL, GFS2_DIF_JDATA | GFS2_DIF_INHERIT_JDATA},
138 };
139 
140 static inline u32 gfs2_gfsflags_to_fsflags(struct inode *inode, u32 gfsflags)
141 {
142 	int i;
143 	u32 fsflags = 0;
144 
145 	if (S_ISDIR(inode->i_mode))
146 		gfsflags &= ~GFS2_DIF_JDATA;
147 	else
148 		gfsflags &= ~GFS2_DIF_INHERIT_JDATA;
149 
150 	for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++)
151 		if (gfsflags & fsflag_gfs2flag[i].gfsflag)
152 			fsflags |= fsflag_gfs2flag[i].fsflag;
153 	return fsflags;
154 }
155 
156 static int gfs2_get_flags(struct file *filp, u32 __user *ptr)
157 {
158 	struct inode *inode = file_inode(filp);
159 	struct gfs2_inode *ip = GFS2_I(inode);
160 	struct gfs2_holder gh;
161 	int error;
162 	u32 fsflags;
163 
164 	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
165 	error = gfs2_glock_nq(&gh);
166 	if (error)
167 		goto out_uninit;
168 
169 	fsflags = gfs2_gfsflags_to_fsflags(inode, ip->i_diskflags);
170 
171 	if (put_user(fsflags, ptr))
172 		error = -EFAULT;
173 
174 	gfs2_glock_dq(&gh);
175 out_uninit:
176 	gfs2_holder_uninit(&gh);
177 	return error;
178 }
179 
180 void gfs2_set_inode_flags(struct inode *inode)
181 {
182 	struct gfs2_inode *ip = GFS2_I(inode);
183 	unsigned int flags = inode->i_flags;
184 
185 	flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_NOSEC);
186 	if ((ip->i_eattr == 0) && !is_sxid(inode->i_mode))
187 		flags |= S_NOSEC;
188 	if (ip->i_diskflags & GFS2_DIF_IMMUTABLE)
189 		flags |= S_IMMUTABLE;
190 	if (ip->i_diskflags & GFS2_DIF_APPENDONLY)
191 		flags |= S_APPEND;
192 	if (ip->i_diskflags & GFS2_DIF_NOATIME)
193 		flags |= S_NOATIME;
194 	if (ip->i_diskflags & GFS2_DIF_SYNC)
195 		flags |= S_SYNC;
196 	inode->i_flags = flags;
197 }
198 
199 /* Flags that can be set by user space */
200 #define GFS2_FLAGS_USER_SET (GFS2_DIF_JDATA|			\
201 			     GFS2_DIF_IMMUTABLE|		\
202 			     GFS2_DIF_APPENDONLY|		\
203 			     GFS2_DIF_NOATIME|			\
204 			     GFS2_DIF_SYNC|			\
205 			     GFS2_DIF_TOPDIR|			\
206 			     GFS2_DIF_INHERIT_JDATA)
207 
208 /**
209  * do_gfs2_set_flags - set flags on an inode
210  * @filp: file pointer
211  * @reqflags: The flags to set
212  * @mask: Indicates which flags are valid
213  * @fsflags: The FS_* inode flags passed in
214  *
215  */
216 static int do_gfs2_set_flags(struct file *filp, u32 reqflags, u32 mask,
217 			     const u32 fsflags)
218 {
219 	struct inode *inode = file_inode(filp);
220 	struct gfs2_inode *ip = GFS2_I(inode);
221 	struct gfs2_sbd *sdp = GFS2_SB(inode);
222 	struct buffer_head *bh;
223 	struct gfs2_holder gh;
224 	int error;
225 	u32 new_flags, flags, oldflags;
226 
227 	error = mnt_want_write_file(filp);
228 	if (error)
229 		return error;
230 
231 	error = gfs2_glock_nq_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
232 	if (error)
233 		goto out_drop_write;
234 
235 	oldflags = gfs2_gfsflags_to_fsflags(inode, ip->i_diskflags);
236 	error = vfs_ioc_setflags_prepare(inode, oldflags, fsflags);
237 	if (error)
238 		goto out;
239 
240 	error = -EACCES;
241 	if (!inode_owner_or_capable(inode))
242 		goto out;
243 
244 	error = 0;
245 	flags = ip->i_diskflags;
246 	new_flags = (flags & ~mask) | (reqflags & mask);
247 	if ((new_flags ^ flags) == 0)
248 		goto out;
249 
250 	error = -EPERM;
251 	if (IS_IMMUTABLE(inode) && (new_flags & GFS2_DIF_IMMUTABLE))
252 		goto out;
253 	if (IS_APPEND(inode) && (new_flags & GFS2_DIF_APPENDONLY))
254 		goto out;
255 	if (((new_flags ^ flags) & GFS2_DIF_IMMUTABLE) &&
256 	    !capable(CAP_LINUX_IMMUTABLE))
257 		goto out;
258 	if (!IS_IMMUTABLE(inode)) {
259 		error = gfs2_permission(inode, MAY_WRITE);
260 		if (error)
261 			goto out;
262 	}
263 	if ((flags ^ new_flags) & GFS2_DIF_JDATA) {
264 		if (new_flags & GFS2_DIF_JDATA)
265 			gfs2_log_flush(sdp, ip->i_gl,
266 				       GFS2_LOG_HEAD_FLUSH_NORMAL |
267 				       GFS2_LFC_SET_FLAGS);
268 		error = filemap_fdatawrite(inode->i_mapping);
269 		if (error)
270 			goto out;
271 		error = filemap_fdatawait(inode->i_mapping);
272 		if (error)
273 			goto out;
274 		if (new_flags & GFS2_DIF_JDATA)
275 			gfs2_ordered_del_inode(ip);
276 	}
277 	error = gfs2_trans_begin(sdp, RES_DINODE, 0);
278 	if (error)
279 		goto out;
280 	error = gfs2_meta_inode_buffer(ip, &bh);
281 	if (error)
282 		goto out_trans_end;
283 	inode->i_ctime = current_time(inode);
284 	gfs2_trans_add_meta(ip->i_gl, bh);
285 	ip->i_diskflags = new_flags;
286 	gfs2_dinode_out(ip, bh->b_data);
287 	brelse(bh);
288 	gfs2_set_inode_flags(inode);
289 	gfs2_set_aops(inode);
290 out_trans_end:
291 	gfs2_trans_end(sdp);
292 out:
293 	gfs2_glock_dq_uninit(&gh);
294 out_drop_write:
295 	mnt_drop_write_file(filp);
296 	return error;
297 }
298 
299 static int gfs2_set_flags(struct file *filp, u32 __user *ptr)
300 {
301 	struct inode *inode = file_inode(filp);
302 	u32 fsflags, gfsflags = 0;
303 	u32 mask;
304 	int i;
305 
306 	if (get_user(fsflags, ptr))
307 		return -EFAULT;
308 
309 	for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++) {
310 		if (fsflags & fsflag_gfs2flag[i].fsflag) {
311 			fsflags &= ~fsflag_gfs2flag[i].fsflag;
312 			gfsflags |= fsflag_gfs2flag[i].gfsflag;
313 		}
314 	}
315 	if (fsflags || gfsflags & ~GFS2_FLAGS_USER_SET)
316 		return -EINVAL;
317 
318 	mask = GFS2_FLAGS_USER_SET;
319 	if (S_ISDIR(inode->i_mode)) {
320 		mask &= ~GFS2_DIF_JDATA;
321 	} else {
322 		/* The GFS2_DIF_TOPDIR flag is only valid for directories. */
323 		if (gfsflags & GFS2_DIF_TOPDIR)
324 			return -EINVAL;
325 		mask &= ~(GFS2_DIF_TOPDIR | GFS2_DIF_INHERIT_JDATA);
326 	}
327 
328 	return do_gfs2_set_flags(filp, gfsflags, mask, fsflags);
329 }
330 
331 static int gfs2_getlabel(struct file *filp, char __user *label)
332 {
333 	struct inode *inode = file_inode(filp);
334 	struct gfs2_sbd *sdp = GFS2_SB(inode);
335 
336 	if (copy_to_user(label, sdp->sd_sb.sb_locktable, GFS2_LOCKNAME_LEN))
337 		return -EFAULT;
338 
339 	return 0;
340 }
341 
342 static long gfs2_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
343 {
344 	switch(cmd) {
345 	case FS_IOC_GETFLAGS:
346 		return gfs2_get_flags(filp, (u32 __user *)arg);
347 	case FS_IOC_SETFLAGS:
348 		return gfs2_set_flags(filp, (u32 __user *)arg);
349 	case FITRIM:
350 		return gfs2_fitrim(filp, (void __user *)arg);
351 	case FS_IOC_GETFSLABEL:
352 		return gfs2_getlabel(filp, (char __user *)arg);
353 	}
354 
355 	return -ENOTTY;
356 }
357 
358 #ifdef CONFIG_COMPAT
359 static long gfs2_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
360 {
361 	switch(cmd) {
362 	/* These are just misnamed, they actually get/put from/to user an int */
363 	case FS_IOC32_GETFLAGS:
364 		cmd = FS_IOC_GETFLAGS;
365 		break;
366 	case FS_IOC32_SETFLAGS:
367 		cmd = FS_IOC_SETFLAGS;
368 		break;
369 	/* Keep this list in sync with gfs2_ioctl */
370 	case FITRIM:
371 	case FS_IOC_GETFSLABEL:
372 		break;
373 	default:
374 		return -ENOIOCTLCMD;
375 	}
376 
377 	return gfs2_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
378 }
379 #else
380 #define gfs2_compat_ioctl NULL
381 #endif
382 
383 /**
384  * gfs2_size_hint - Give a hint to the size of a write request
385  * @filep: The struct file
386  * @offset: The file offset of the write
387  * @size: The length of the write
388  *
389  * When we are about to do a write, this function records the total
390  * write size in order to provide a suitable hint to the lower layers
391  * about how many blocks will be required.
392  *
393  */
394 
395 static void gfs2_size_hint(struct file *filep, loff_t offset, size_t size)
396 {
397 	struct inode *inode = file_inode(filep);
398 	struct gfs2_sbd *sdp = GFS2_SB(inode);
399 	struct gfs2_inode *ip = GFS2_I(inode);
400 	size_t blks = (size + sdp->sd_sb.sb_bsize - 1) >> sdp->sd_sb.sb_bsize_shift;
401 	int hint = min_t(size_t, INT_MAX, blks);
402 
403 	if (hint > atomic_read(&ip->i_sizehint))
404 		atomic_set(&ip->i_sizehint, hint);
405 }
406 
407 /**
408  * gfs2_allocate_page_backing - Allocate blocks for a write fault
409  * @page: The (locked) page to allocate backing for
410  * @length: Size of the allocation
411  *
412  * We try to allocate all the blocks required for the page in one go.  This
413  * might fail for various reasons, so we keep trying until all the blocks to
414  * back this page are allocated.  If some of the blocks are already allocated,
415  * that is ok too.
416  */
417 static int gfs2_allocate_page_backing(struct page *page, unsigned int length)
418 {
419 	u64 pos = page_offset(page);
420 
421 	do {
422 		struct iomap iomap = { };
423 
424 		if (gfs2_iomap_get_alloc(page->mapping->host, pos, length, &iomap))
425 			return -EIO;
426 
427 		if (length < iomap.length)
428 			iomap.length = length;
429 		length -= iomap.length;
430 		pos += iomap.length;
431 	} while (length > 0);
432 
433 	return 0;
434 }
435 
436 /**
437  * gfs2_page_mkwrite - Make a shared, mmap()ed, page writable
438  * @vma: The virtual memory area
439  * @vmf: The virtual memory fault containing the page to become writable
440  *
441  * When the page becomes writable, we need to ensure that we have
442  * blocks allocated on disk to back that page.
443  */
444 
445 static vm_fault_t gfs2_page_mkwrite(struct vm_fault *vmf)
446 {
447 	struct page *page = vmf->page;
448 	struct inode *inode = file_inode(vmf->vma->vm_file);
449 	struct gfs2_inode *ip = GFS2_I(inode);
450 	struct gfs2_sbd *sdp = GFS2_SB(inode);
451 	struct gfs2_alloc_parms ap = { .aflags = 0, };
452 	u64 offset = page_offset(page);
453 	unsigned int data_blocks, ind_blocks, rblocks;
454 	struct gfs2_holder gh;
455 	unsigned int length;
456 	loff_t size;
457 	int ret;
458 
459 	sb_start_pagefault(inode->i_sb);
460 
461 	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
462 	ret = gfs2_glock_nq(&gh);
463 	if (ret)
464 		goto out_uninit;
465 
466 	/* Check page index against inode size */
467 	size = i_size_read(inode);
468 	if (offset >= size) {
469 		ret = -EINVAL;
470 		goto out_unlock;
471 	}
472 
473 	/* Update file times before taking page lock */
474 	file_update_time(vmf->vma->vm_file);
475 
476 	/* page is wholly or partially inside EOF */
477 	if (offset > size - PAGE_SIZE)
478 		length = offset_in_page(size);
479 	else
480 		length = PAGE_SIZE;
481 
482 	gfs2_size_hint(vmf->vma->vm_file, offset, length);
483 
484 	set_bit(GLF_DIRTY, &ip->i_gl->gl_flags);
485 	set_bit(GIF_SW_PAGED, &ip->i_flags);
486 
487 	/*
488 	 * iomap_writepage / iomap_writepages currently don't support inline
489 	 * files, so always unstuff here.
490 	 */
491 
492 	if (!gfs2_is_stuffed(ip) &&
493 	    !gfs2_write_alloc_required(ip, offset, length)) {
494 		lock_page(page);
495 		if (!PageUptodate(page) || page->mapping != inode->i_mapping) {
496 			ret = -EAGAIN;
497 			unlock_page(page);
498 		}
499 		goto out_unlock;
500 	}
501 
502 	ret = gfs2_rindex_update(sdp);
503 	if (ret)
504 		goto out_unlock;
505 
506 	gfs2_write_calc_reserv(ip, length, &data_blocks, &ind_blocks);
507 	ap.target = data_blocks + ind_blocks;
508 	ret = gfs2_quota_lock_check(ip, &ap);
509 	if (ret)
510 		goto out_unlock;
511 	ret = gfs2_inplace_reserve(ip, &ap);
512 	if (ret)
513 		goto out_quota_unlock;
514 
515 	rblocks = RES_DINODE + ind_blocks;
516 	if (gfs2_is_jdata(ip))
517 		rblocks += data_blocks ? data_blocks : 1;
518 	if (ind_blocks || data_blocks) {
519 		rblocks += RES_STATFS + RES_QUOTA;
520 		rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks);
521 	}
522 	ret = gfs2_trans_begin(sdp, rblocks, 0);
523 	if (ret)
524 		goto out_trans_fail;
525 
526 	lock_page(page);
527 	ret = -EAGAIN;
528 	/* If truncated, we must retry the operation, we may have raced
529 	 * with the glock demotion code.
530 	 */
531 	if (!PageUptodate(page) || page->mapping != inode->i_mapping)
532 		goto out_trans_end;
533 
534 	/* Unstuff, if required, and allocate backing blocks for page */
535 	ret = 0;
536 	if (gfs2_is_stuffed(ip))
537 		ret = gfs2_unstuff_dinode(ip, page);
538 	if (ret == 0)
539 		ret = gfs2_allocate_page_backing(page, length);
540 
541 out_trans_end:
542 	if (ret)
543 		unlock_page(page);
544 	gfs2_trans_end(sdp);
545 out_trans_fail:
546 	gfs2_inplace_release(ip);
547 out_quota_unlock:
548 	gfs2_quota_unlock(ip);
549 out_unlock:
550 	gfs2_glock_dq(&gh);
551 out_uninit:
552 	gfs2_holder_uninit(&gh);
553 	if (ret == 0) {
554 		set_page_dirty(page);
555 		wait_for_stable_page(page);
556 	}
557 	sb_end_pagefault(inode->i_sb);
558 	return block_page_mkwrite_return(ret);
559 }
560 
561 static const struct vm_operations_struct gfs2_vm_ops = {
562 	.fault = filemap_fault,
563 	.map_pages = filemap_map_pages,
564 	.page_mkwrite = gfs2_page_mkwrite,
565 };
566 
567 /**
568  * gfs2_mmap -
569  * @file: The file to map
570  * @vma: The VMA which described the mapping
571  *
572  * There is no need to get a lock here unless we should be updating
573  * atime. We ignore any locking errors since the only consequence is
574  * a missed atime update (which will just be deferred until later).
575  *
576  * Returns: 0
577  */
578 
579 static int gfs2_mmap(struct file *file, struct vm_area_struct *vma)
580 {
581 	struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
582 
583 	if (!(file->f_flags & O_NOATIME) &&
584 	    !IS_NOATIME(&ip->i_inode)) {
585 		struct gfs2_holder i_gh;
586 		int error;
587 
588 		error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
589 					   &i_gh);
590 		if (error)
591 			return error;
592 		/* grab lock to update inode */
593 		gfs2_glock_dq_uninit(&i_gh);
594 		file_accessed(file);
595 	}
596 	vma->vm_ops = &gfs2_vm_ops;
597 
598 	return 0;
599 }
600 
601 /**
602  * gfs2_open_common - This is common to open and atomic_open
603  * @inode: The inode being opened
604  * @file: The file being opened
605  *
606  * This maybe called under a glock or not depending upon how it has
607  * been called. We must always be called under a glock for regular
608  * files, however. For other file types, it does not matter whether
609  * we hold the glock or not.
610  *
611  * Returns: Error code or 0 for success
612  */
613 
614 int gfs2_open_common(struct inode *inode, struct file *file)
615 {
616 	struct gfs2_file *fp;
617 	int ret;
618 
619 	if (S_ISREG(inode->i_mode)) {
620 		ret = generic_file_open(inode, file);
621 		if (ret)
622 			return ret;
623 	}
624 
625 	fp = kzalloc(sizeof(struct gfs2_file), GFP_NOFS);
626 	if (!fp)
627 		return -ENOMEM;
628 
629 	mutex_init(&fp->f_fl_mutex);
630 
631 	gfs2_assert_warn(GFS2_SB(inode), !file->private_data);
632 	file->private_data = fp;
633 	if (file->f_mode & FMODE_WRITE) {
634 		ret = gfs2_qa_get(GFS2_I(inode));
635 		if (ret)
636 			goto fail;
637 	}
638 	return 0;
639 
640 fail:
641 	kfree(file->private_data);
642 	file->private_data = NULL;
643 	return ret;
644 }
645 
646 /**
647  * gfs2_open - open a file
648  * @inode: the inode to open
649  * @file: the struct file for this opening
650  *
651  * After atomic_open, this function is only used for opening files
652  * which are already cached. We must still get the glock for regular
653  * files to ensure that we have the file size uptodate for the large
654  * file check which is in the common code. That is only an issue for
655  * regular files though.
656  *
657  * Returns: errno
658  */
659 
660 static int gfs2_open(struct inode *inode, struct file *file)
661 {
662 	struct gfs2_inode *ip = GFS2_I(inode);
663 	struct gfs2_holder i_gh;
664 	int error;
665 	bool need_unlock = false;
666 
667 	if (S_ISREG(ip->i_inode.i_mode)) {
668 		error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
669 					   &i_gh);
670 		if (error)
671 			return error;
672 		need_unlock = true;
673 	}
674 
675 	error = gfs2_open_common(inode, file);
676 
677 	if (need_unlock)
678 		gfs2_glock_dq_uninit(&i_gh);
679 
680 	return error;
681 }
682 
683 /**
684  * gfs2_release - called to close a struct file
685  * @inode: the inode the struct file belongs to
686  * @file: the struct file being closed
687  *
688  * Returns: errno
689  */
690 
691 static int gfs2_release(struct inode *inode, struct file *file)
692 {
693 	struct gfs2_inode *ip = GFS2_I(inode);
694 
695 	kfree(file->private_data);
696 	file->private_data = NULL;
697 
698 	if (file->f_mode & FMODE_WRITE) {
699 		gfs2_rs_delete(ip, &inode->i_writecount);
700 		gfs2_qa_put(ip);
701 	}
702 	return 0;
703 }
704 
705 /**
706  * gfs2_fsync - sync the dirty data for a file (across the cluster)
707  * @file: the file that points to the dentry
708  * @start: the start position in the file to sync
709  * @end: the end position in the file to sync
710  * @datasync: set if we can ignore timestamp changes
711  *
712  * We split the data flushing here so that we don't wait for the data
713  * until after we've also sent the metadata to disk. Note that for
714  * data=ordered, we will write & wait for the data at the log flush
715  * stage anyway, so this is unlikely to make much of a difference
716  * except in the data=writeback case.
717  *
718  * If the fdatawrite fails due to any reason except -EIO, we will
719  * continue the remainder of the fsync, although we'll still report
720  * the error at the end. This is to match filemap_write_and_wait_range()
721  * behaviour.
722  *
723  * Returns: errno
724  */
725 
726 static int gfs2_fsync(struct file *file, loff_t start, loff_t end,
727 		      int datasync)
728 {
729 	struct address_space *mapping = file->f_mapping;
730 	struct inode *inode = mapping->host;
731 	int sync_state = inode->i_state & I_DIRTY_ALL;
732 	struct gfs2_inode *ip = GFS2_I(inode);
733 	int ret = 0, ret1 = 0;
734 
735 	if (mapping->nrpages) {
736 		ret1 = filemap_fdatawrite_range(mapping, start, end);
737 		if (ret1 == -EIO)
738 			return ret1;
739 	}
740 
741 	if (!gfs2_is_jdata(ip))
742 		sync_state &= ~I_DIRTY_PAGES;
743 	if (datasync)
744 		sync_state &= ~(I_DIRTY_SYNC | I_DIRTY_TIME);
745 
746 	if (sync_state) {
747 		ret = sync_inode_metadata(inode, 1);
748 		if (ret)
749 			return ret;
750 		if (gfs2_is_jdata(ip))
751 			ret = file_write_and_wait(file);
752 		if (ret)
753 			return ret;
754 		gfs2_ail_flush(ip->i_gl, 1);
755 	}
756 
757 	if (mapping->nrpages)
758 		ret = file_fdatawait_range(file, start, end);
759 
760 	return ret ? ret : ret1;
761 }
762 
763 static ssize_t gfs2_file_direct_read(struct kiocb *iocb, struct iov_iter *to)
764 {
765 	struct file *file = iocb->ki_filp;
766 	struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
767 	size_t count = iov_iter_count(to);
768 	struct gfs2_holder gh;
769 	ssize_t ret;
770 
771 	if (!count)
772 		return 0; /* skip atime */
773 
774 	gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
775 	ret = gfs2_glock_nq(&gh);
776 	if (ret)
777 		goto out_uninit;
778 
779 	ret = iomap_dio_rw(iocb, to, &gfs2_iomap_ops, NULL,
780 			   is_sync_kiocb(iocb));
781 
782 	gfs2_glock_dq(&gh);
783 out_uninit:
784 	gfs2_holder_uninit(&gh);
785 	return ret;
786 }
787 
788 static ssize_t gfs2_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
789 {
790 	struct file *file = iocb->ki_filp;
791 	struct inode *inode = file->f_mapping->host;
792 	struct gfs2_inode *ip = GFS2_I(inode);
793 	size_t len = iov_iter_count(from);
794 	loff_t offset = iocb->ki_pos;
795 	struct gfs2_holder gh;
796 	ssize_t ret;
797 
798 	/*
799 	 * Deferred lock, even if its a write, since we do no allocation on
800 	 * this path. All we need to change is the atime, and this lock mode
801 	 * ensures that other nodes have flushed their buffered read caches
802 	 * (i.e. their page cache entries for this inode). We do not,
803 	 * unfortunately, have the option of only flushing a range like the
804 	 * VFS does.
805 	 */
806 	gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
807 	ret = gfs2_glock_nq(&gh);
808 	if (ret)
809 		goto out_uninit;
810 
811 	/* Silently fall back to buffered I/O when writing beyond EOF */
812 	if (offset + len > i_size_read(&ip->i_inode))
813 		goto out;
814 
815 	ret = iomap_dio_rw(iocb, from, &gfs2_iomap_ops, NULL,
816 			   is_sync_kiocb(iocb));
817 
818 out:
819 	gfs2_glock_dq(&gh);
820 out_uninit:
821 	gfs2_holder_uninit(&gh);
822 	return ret;
823 }
824 
825 static ssize_t gfs2_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
826 {
827 	ssize_t ret;
828 
829 	if (iocb->ki_flags & IOCB_DIRECT) {
830 		ret = gfs2_file_direct_read(iocb, to);
831 		if (likely(ret != -ENOTBLK))
832 			return ret;
833 		iocb->ki_flags &= ~IOCB_DIRECT;
834 	}
835 	return generic_file_read_iter(iocb, to);
836 }
837 
838 /**
839  * gfs2_file_write_iter - Perform a write to a file
840  * @iocb: The io context
841  * @from: The data to write
842  *
843  * We have to do a lock/unlock here to refresh the inode size for
844  * O_APPEND writes, otherwise we can land up writing at the wrong
845  * offset. There is still a race, but provided the app is using its
846  * own file locking, this will make O_APPEND work as expected.
847  *
848  */
849 
850 static ssize_t gfs2_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
851 {
852 	struct file *file = iocb->ki_filp;
853 	struct inode *inode = file_inode(file);
854 	struct gfs2_inode *ip = GFS2_I(inode);
855 	ssize_t ret;
856 
857 	gfs2_size_hint(file, iocb->ki_pos, iov_iter_count(from));
858 
859 	if (iocb->ki_flags & IOCB_APPEND) {
860 		struct gfs2_holder gh;
861 
862 		ret = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
863 		if (ret)
864 			return ret;
865 		gfs2_glock_dq_uninit(&gh);
866 	}
867 
868 	inode_lock(inode);
869 	ret = generic_write_checks(iocb, from);
870 	if (ret <= 0)
871 		goto out_unlock;
872 
873 	ret = file_remove_privs(file);
874 	if (ret)
875 		goto out_unlock;
876 
877 	ret = file_update_time(file);
878 	if (ret)
879 		goto out_unlock;
880 
881 	if (iocb->ki_flags & IOCB_DIRECT) {
882 		struct address_space *mapping = file->f_mapping;
883 		ssize_t buffered, ret2;
884 
885 		ret = gfs2_file_direct_write(iocb, from);
886 		if (ret < 0 || !iov_iter_count(from))
887 			goto out_unlock;
888 
889 		iocb->ki_flags |= IOCB_DSYNC;
890 		current->backing_dev_info = inode_to_bdi(inode);
891 		buffered = iomap_file_buffered_write(iocb, from, &gfs2_iomap_ops);
892 		current->backing_dev_info = NULL;
893 		if (unlikely(buffered <= 0))
894 			goto out_unlock;
895 
896 		/*
897 		 * We need to ensure that the page cache pages are written to
898 		 * disk and invalidated to preserve the expected O_DIRECT
899 		 * semantics.  If the writeback or invalidate fails, only report
900 		 * the direct I/O range as we don't know if the buffered pages
901 		 * made it to disk.
902 		 */
903 		iocb->ki_pos += buffered;
904 		ret2 = generic_write_sync(iocb, buffered);
905 		invalidate_mapping_pages(mapping,
906 				(iocb->ki_pos - buffered) >> PAGE_SHIFT,
907 				(iocb->ki_pos - 1) >> PAGE_SHIFT);
908 		if (!ret || ret2 > 0)
909 			ret += ret2;
910 	} else {
911 		current->backing_dev_info = inode_to_bdi(inode);
912 		ret = iomap_file_buffered_write(iocb, from, &gfs2_iomap_ops);
913 		current->backing_dev_info = NULL;
914 		if (likely(ret > 0)) {
915 			iocb->ki_pos += ret;
916 			ret = generic_write_sync(iocb, ret);
917 		}
918 	}
919 
920 out_unlock:
921 	inode_unlock(inode);
922 	return ret;
923 }
924 
925 static int fallocate_chunk(struct inode *inode, loff_t offset, loff_t len,
926 			   int mode)
927 {
928 	struct super_block *sb = inode->i_sb;
929 	struct gfs2_inode *ip = GFS2_I(inode);
930 	loff_t end = offset + len;
931 	struct buffer_head *dibh;
932 	int error;
933 
934 	error = gfs2_meta_inode_buffer(ip, &dibh);
935 	if (unlikely(error))
936 		return error;
937 
938 	gfs2_trans_add_meta(ip->i_gl, dibh);
939 
940 	if (gfs2_is_stuffed(ip)) {
941 		error = gfs2_unstuff_dinode(ip, NULL);
942 		if (unlikely(error))
943 			goto out;
944 	}
945 
946 	while (offset < end) {
947 		struct iomap iomap = { };
948 
949 		error = gfs2_iomap_get_alloc(inode, offset, end - offset,
950 					     &iomap);
951 		if (error)
952 			goto out;
953 		offset = iomap.offset + iomap.length;
954 		if (!(iomap.flags & IOMAP_F_NEW))
955 			continue;
956 		error = sb_issue_zeroout(sb, iomap.addr >> inode->i_blkbits,
957 					 iomap.length >> inode->i_blkbits,
958 					 GFP_NOFS);
959 		if (error) {
960 			fs_err(GFS2_SB(inode), "Failed to zero data buffers\n");
961 			goto out;
962 		}
963 	}
964 out:
965 	brelse(dibh);
966 	return error;
967 }
968 
969 /**
970  * calc_max_reserv() - Reverse of write_calc_reserv. Given a number of
971  *                     blocks, determine how many bytes can be written.
972  * @ip:          The inode in question.
973  * @len:         Max cap of bytes. What we return in *len must be <= this.
974  * @data_blocks: Compute and return the number of data blocks needed
975  * @ind_blocks:  Compute and return the number of indirect blocks needed
976  * @max_blocks:  The total blocks available to work with.
977  *
978  * Returns: void, but @len, @data_blocks and @ind_blocks are filled in.
979  */
980 static void calc_max_reserv(struct gfs2_inode *ip, loff_t *len,
981 			    unsigned int *data_blocks, unsigned int *ind_blocks,
982 			    unsigned int max_blocks)
983 {
984 	loff_t max = *len;
985 	const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
986 	unsigned int tmp, max_data = max_blocks - 3 * (sdp->sd_max_height - 1);
987 
988 	for (tmp = max_data; tmp > sdp->sd_diptrs;) {
989 		tmp = DIV_ROUND_UP(tmp, sdp->sd_inptrs);
990 		max_data -= tmp;
991 	}
992 
993 	*data_blocks = max_data;
994 	*ind_blocks = max_blocks - max_data;
995 	*len = ((loff_t)max_data - 3) << sdp->sd_sb.sb_bsize_shift;
996 	if (*len > max) {
997 		*len = max;
998 		gfs2_write_calc_reserv(ip, max, data_blocks, ind_blocks);
999 	}
1000 }
1001 
1002 static long __gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
1003 {
1004 	struct inode *inode = file_inode(file);
1005 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1006 	struct gfs2_inode *ip = GFS2_I(inode);
1007 	struct gfs2_alloc_parms ap = { .aflags = 0, };
1008 	unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
1009 	loff_t bytes, max_bytes, max_blks;
1010 	int error;
1011 	const loff_t pos = offset;
1012 	const loff_t count = len;
1013 	loff_t bsize_mask = ~((loff_t)sdp->sd_sb.sb_bsize - 1);
1014 	loff_t next = (offset + len - 1) >> sdp->sd_sb.sb_bsize_shift;
1015 	loff_t max_chunk_size = UINT_MAX & bsize_mask;
1016 
1017 	next = (next + 1) << sdp->sd_sb.sb_bsize_shift;
1018 
1019 	offset &= bsize_mask;
1020 
1021 	len = next - offset;
1022 	bytes = sdp->sd_max_rg_data * sdp->sd_sb.sb_bsize / 2;
1023 	if (!bytes)
1024 		bytes = UINT_MAX;
1025 	bytes &= bsize_mask;
1026 	if (bytes == 0)
1027 		bytes = sdp->sd_sb.sb_bsize;
1028 
1029 	gfs2_size_hint(file, offset, len);
1030 
1031 	gfs2_write_calc_reserv(ip, PAGE_SIZE, &data_blocks, &ind_blocks);
1032 	ap.min_target = data_blocks + ind_blocks;
1033 
1034 	while (len > 0) {
1035 		if (len < bytes)
1036 			bytes = len;
1037 		if (!gfs2_write_alloc_required(ip, offset, bytes)) {
1038 			len -= bytes;
1039 			offset += bytes;
1040 			continue;
1041 		}
1042 
1043 		/* We need to determine how many bytes we can actually
1044 		 * fallocate without exceeding quota or going over the
1045 		 * end of the fs. We start off optimistically by assuming
1046 		 * we can write max_bytes */
1047 		max_bytes = (len > max_chunk_size) ? max_chunk_size : len;
1048 
1049 		/* Since max_bytes is most likely a theoretical max, we
1050 		 * calculate a more realistic 'bytes' to serve as a good
1051 		 * starting point for the number of bytes we may be able
1052 		 * to write */
1053 		gfs2_write_calc_reserv(ip, bytes, &data_blocks, &ind_blocks);
1054 		ap.target = data_blocks + ind_blocks;
1055 
1056 		error = gfs2_quota_lock_check(ip, &ap);
1057 		if (error)
1058 			return error;
1059 		/* ap.allowed tells us how many blocks quota will allow
1060 		 * us to write. Check if this reduces max_blks */
1061 		max_blks = UINT_MAX;
1062 		if (ap.allowed)
1063 			max_blks = ap.allowed;
1064 
1065 		error = gfs2_inplace_reserve(ip, &ap);
1066 		if (error)
1067 			goto out_qunlock;
1068 
1069 		/* check if the selected rgrp limits our max_blks further */
1070 		if (ap.allowed && ap.allowed < max_blks)
1071 			max_blks = ap.allowed;
1072 
1073 		/* Almost done. Calculate bytes that can be written using
1074 		 * max_blks. We also recompute max_bytes, data_blocks and
1075 		 * ind_blocks */
1076 		calc_max_reserv(ip, &max_bytes, &data_blocks,
1077 				&ind_blocks, max_blks);
1078 
1079 		rblocks = RES_DINODE + ind_blocks + RES_STATFS + RES_QUOTA +
1080 			  RES_RG_HDR + gfs2_rg_blocks(ip, data_blocks + ind_blocks);
1081 		if (gfs2_is_jdata(ip))
1082 			rblocks += data_blocks ? data_blocks : 1;
1083 
1084 		error = gfs2_trans_begin(sdp, rblocks,
1085 					 PAGE_SIZE >> inode->i_blkbits);
1086 		if (error)
1087 			goto out_trans_fail;
1088 
1089 		error = fallocate_chunk(inode, offset, max_bytes, mode);
1090 		gfs2_trans_end(sdp);
1091 
1092 		if (error)
1093 			goto out_trans_fail;
1094 
1095 		len -= max_bytes;
1096 		offset += max_bytes;
1097 		gfs2_inplace_release(ip);
1098 		gfs2_quota_unlock(ip);
1099 	}
1100 
1101 	if (!(mode & FALLOC_FL_KEEP_SIZE) && (pos + count) > inode->i_size)
1102 		i_size_write(inode, pos + count);
1103 	file_update_time(file);
1104 	mark_inode_dirty(inode);
1105 
1106 	if ((file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host))
1107 		return vfs_fsync_range(file, pos, pos + count - 1,
1108 			       (file->f_flags & __O_SYNC) ? 0 : 1);
1109 	return 0;
1110 
1111 out_trans_fail:
1112 	gfs2_inplace_release(ip);
1113 out_qunlock:
1114 	gfs2_quota_unlock(ip);
1115 	return error;
1116 }
1117 
1118 static long gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
1119 {
1120 	struct inode *inode = file_inode(file);
1121 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1122 	struct gfs2_inode *ip = GFS2_I(inode);
1123 	struct gfs2_holder gh;
1124 	int ret;
1125 
1126 	if (mode & ~(FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE))
1127 		return -EOPNOTSUPP;
1128 	/* fallocate is needed by gfs2_grow to reserve space in the rindex */
1129 	if (gfs2_is_jdata(ip) && inode != sdp->sd_rindex)
1130 		return -EOPNOTSUPP;
1131 
1132 	inode_lock(inode);
1133 
1134 	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
1135 	ret = gfs2_glock_nq(&gh);
1136 	if (ret)
1137 		goto out_uninit;
1138 
1139 	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
1140 	    (offset + len) > inode->i_size) {
1141 		ret = inode_newsize_ok(inode, offset + len);
1142 		if (ret)
1143 			goto out_unlock;
1144 	}
1145 
1146 	ret = get_write_access(inode);
1147 	if (ret)
1148 		goto out_unlock;
1149 
1150 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1151 		ret = __gfs2_punch_hole(file, offset, len);
1152 	} else {
1153 		ret = __gfs2_fallocate(file, mode, offset, len);
1154 		if (ret)
1155 			gfs2_rs_deltree(&ip->i_res);
1156 	}
1157 
1158 	put_write_access(inode);
1159 out_unlock:
1160 	gfs2_glock_dq(&gh);
1161 out_uninit:
1162 	gfs2_holder_uninit(&gh);
1163 	inode_unlock(inode);
1164 	return ret;
1165 }
1166 
1167 static ssize_t gfs2_file_splice_write(struct pipe_inode_info *pipe,
1168 				      struct file *out, loff_t *ppos,
1169 				      size_t len, unsigned int flags)
1170 {
1171 	ssize_t ret;
1172 
1173 	gfs2_size_hint(out, *ppos, len);
1174 
1175 	ret = iter_file_splice_write(pipe, out, ppos, len, flags);
1176 	return ret;
1177 }
1178 
1179 #ifdef CONFIG_GFS2_FS_LOCKING_DLM
1180 
1181 /**
1182  * gfs2_lock - acquire/release a posix lock on a file
1183  * @file: the file pointer
1184  * @cmd: either modify or retrieve lock state, possibly wait
1185  * @fl: type and range of lock
1186  *
1187  * Returns: errno
1188  */
1189 
1190 static int gfs2_lock(struct file *file, int cmd, struct file_lock *fl)
1191 {
1192 	struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
1193 	struct gfs2_sbd *sdp = GFS2_SB(file->f_mapping->host);
1194 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1195 
1196 	if (!(fl->fl_flags & FL_POSIX))
1197 		return -ENOLCK;
1198 	if (__mandatory_lock(&ip->i_inode) && fl->fl_type != F_UNLCK)
1199 		return -ENOLCK;
1200 
1201 	if (cmd == F_CANCELLK) {
1202 		/* Hack: */
1203 		cmd = F_SETLK;
1204 		fl->fl_type = F_UNLCK;
1205 	}
1206 	if (unlikely(gfs2_withdrawn(sdp))) {
1207 		if (fl->fl_type == F_UNLCK)
1208 			locks_lock_file_wait(file, fl);
1209 		return -EIO;
1210 	}
1211 	if (IS_GETLK(cmd))
1212 		return dlm_posix_get(ls->ls_dlm, ip->i_no_addr, file, fl);
1213 	else if (fl->fl_type == F_UNLCK)
1214 		return dlm_posix_unlock(ls->ls_dlm, ip->i_no_addr, file, fl);
1215 	else
1216 		return dlm_posix_lock(ls->ls_dlm, ip->i_no_addr, file, cmd, fl);
1217 }
1218 
1219 static int do_flock(struct file *file, int cmd, struct file_lock *fl)
1220 {
1221 	struct gfs2_file *fp = file->private_data;
1222 	struct gfs2_holder *fl_gh = &fp->f_fl_gh;
1223 	struct gfs2_inode *ip = GFS2_I(file_inode(file));
1224 	struct gfs2_glock *gl;
1225 	unsigned int state;
1226 	u16 flags;
1227 	int error = 0;
1228 	int sleeptime;
1229 
1230 	state = (fl->fl_type == F_WRLCK) ? LM_ST_EXCLUSIVE : LM_ST_SHARED;
1231 	flags = (IS_SETLKW(cmd) ? 0 : LM_FLAG_TRY_1CB) | GL_EXACT;
1232 
1233 	mutex_lock(&fp->f_fl_mutex);
1234 
1235 	if (gfs2_holder_initialized(fl_gh)) {
1236 		struct file_lock request;
1237 		if (fl_gh->gh_state == state)
1238 			goto out;
1239 		locks_init_lock(&request);
1240 		request.fl_type = F_UNLCK;
1241 		request.fl_flags = FL_FLOCK;
1242 		locks_lock_file_wait(file, &request);
1243 		gfs2_glock_dq(fl_gh);
1244 		gfs2_holder_reinit(state, flags, fl_gh);
1245 	} else {
1246 		error = gfs2_glock_get(GFS2_SB(&ip->i_inode), ip->i_no_addr,
1247 				       &gfs2_flock_glops, CREATE, &gl);
1248 		if (error)
1249 			goto out;
1250 		gfs2_holder_init(gl, state, flags, fl_gh);
1251 		gfs2_glock_put(gl);
1252 	}
1253 	for (sleeptime = 1; sleeptime <= 4; sleeptime <<= 1) {
1254 		error = gfs2_glock_nq(fl_gh);
1255 		if (error != GLR_TRYFAILED)
1256 			break;
1257 		fl_gh->gh_flags = LM_FLAG_TRY | GL_EXACT;
1258 		fl_gh->gh_error = 0;
1259 		msleep(sleeptime);
1260 	}
1261 	if (error) {
1262 		gfs2_holder_uninit(fl_gh);
1263 		if (error == GLR_TRYFAILED)
1264 			error = -EAGAIN;
1265 	} else {
1266 		error = locks_lock_file_wait(file, fl);
1267 		gfs2_assert_warn(GFS2_SB(&ip->i_inode), !error);
1268 	}
1269 
1270 out:
1271 	mutex_unlock(&fp->f_fl_mutex);
1272 	return error;
1273 }
1274 
1275 static void do_unflock(struct file *file, struct file_lock *fl)
1276 {
1277 	struct gfs2_file *fp = file->private_data;
1278 	struct gfs2_holder *fl_gh = &fp->f_fl_gh;
1279 
1280 	mutex_lock(&fp->f_fl_mutex);
1281 	locks_lock_file_wait(file, fl);
1282 	if (gfs2_holder_initialized(fl_gh)) {
1283 		gfs2_glock_dq(fl_gh);
1284 		gfs2_holder_uninit(fl_gh);
1285 	}
1286 	mutex_unlock(&fp->f_fl_mutex);
1287 }
1288 
1289 /**
1290  * gfs2_flock - acquire/release a flock lock on a file
1291  * @file: the file pointer
1292  * @cmd: either modify or retrieve lock state, possibly wait
1293  * @fl: type and range of lock
1294  *
1295  * Returns: errno
1296  */
1297 
1298 static int gfs2_flock(struct file *file, int cmd, struct file_lock *fl)
1299 {
1300 	if (!(fl->fl_flags & FL_FLOCK))
1301 		return -ENOLCK;
1302 	if (fl->fl_type & LOCK_MAND)
1303 		return -EOPNOTSUPP;
1304 
1305 	if (fl->fl_type == F_UNLCK) {
1306 		do_unflock(file, fl);
1307 		return 0;
1308 	} else {
1309 		return do_flock(file, cmd, fl);
1310 	}
1311 }
1312 
1313 const struct file_operations gfs2_file_fops = {
1314 	.llseek		= gfs2_llseek,
1315 	.read_iter	= gfs2_file_read_iter,
1316 	.write_iter	= gfs2_file_write_iter,
1317 	.iopoll		= iomap_dio_iopoll,
1318 	.unlocked_ioctl	= gfs2_ioctl,
1319 	.compat_ioctl	= gfs2_compat_ioctl,
1320 	.mmap		= gfs2_mmap,
1321 	.open		= gfs2_open,
1322 	.release	= gfs2_release,
1323 	.fsync		= gfs2_fsync,
1324 	.lock		= gfs2_lock,
1325 	.flock		= gfs2_flock,
1326 	.splice_read	= generic_file_splice_read,
1327 	.splice_write	= gfs2_file_splice_write,
1328 	.setlease	= simple_nosetlease,
1329 	.fallocate	= gfs2_fallocate,
1330 };
1331 
1332 const struct file_operations gfs2_dir_fops = {
1333 	.iterate_shared	= gfs2_readdir,
1334 	.unlocked_ioctl	= gfs2_ioctl,
1335 	.compat_ioctl	= gfs2_compat_ioctl,
1336 	.open		= gfs2_open,
1337 	.release	= gfs2_release,
1338 	.fsync		= gfs2_fsync,
1339 	.lock		= gfs2_lock,
1340 	.flock		= gfs2_flock,
1341 	.llseek		= default_llseek,
1342 };
1343 
1344 #endif /* CONFIG_GFS2_FS_LOCKING_DLM */
1345 
1346 const struct file_operations gfs2_file_fops_nolock = {
1347 	.llseek		= gfs2_llseek,
1348 	.read_iter	= gfs2_file_read_iter,
1349 	.write_iter	= gfs2_file_write_iter,
1350 	.iopoll		= iomap_dio_iopoll,
1351 	.unlocked_ioctl	= gfs2_ioctl,
1352 	.compat_ioctl	= gfs2_compat_ioctl,
1353 	.mmap		= gfs2_mmap,
1354 	.open		= gfs2_open,
1355 	.release	= gfs2_release,
1356 	.fsync		= gfs2_fsync,
1357 	.splice_read	= generic_file_splice_read,
1358 	.splice_write	= gfs2_file_splice_write,
1359 	.setlease	= generic_setlease,
1360 	.fallocate	= gfs2_fallocate,
1361 };
1362 
1363 const struct file_operations gfs2_dir_fops_nolock = {
1364 	.iterate_shared	= gfs2_readdir,
1365 	.unlocked_ioctl	= gfs2_ioctl,
1366 	.compat_ioctl	= gfs2_compat_ioctl,
1367 	.open		= gfs2_open,
1368 	.release	= gfs2_release,
1369 	.fsync		= gfs2_fsync,
1370 	.llseek		= default_llseek,
1371 };
1372 
1373