1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 4 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved. 5 */ 6 7 #include <linux/slab.h> 8 #include <linux/spinlock.h> 9 #include <linux/compat.h> 10 #include <linux/completion.h> 11 #include <linux/buffer_head.h> 12 #include <linux/pagemap.h> 13 #include <linux/uio.h> 14 #include <linux/blkdev.h> 15 #include <linux/mm.h> 16 #include <linux/mount.h> 17 #include <linux/fs.h> 18 #include <linux/gfs2_ondisk.h> 19 #include <linux/falloc.h> 20 #include <linux/swap.h> 21 #include <linux/crc32.h> 22 #include <linux/writeback.h> 23 #include <linux/uaccess.h> 24 #include <linux/dlm.h> 25 #include <linux/dlm_plock.h> 26 #include <linux/delay.h> 27 #include <linux/backing-dev.h> 28 #include <linux/fileattr.h> 29 30 #include "gfs2.h" 31 #include "incore.h" 32 #include "bmap.h" 33 #include "aops.h" 34 #include "dir.h" 35 #include "glock.h" 36 #include "glops.h" 37 #include "inode.h" 38 #include "log.h" 39 #include "meta_io.h" 40 #include "quota.h" 41 #include "rgrp.h" 42 #include "trans.h" 43 #include "util.h" 44 45 /** 46 * gfs2_llseek - seek to a location in a file 47 * @file: the file 48 * @offset: the offset 49 * @whence: Where to seek from (SEEK_SET, SEEK_CUR, or SEEK_END) 50 * 51 * SEEK_END requires the glock for the file because it references the 52 * file's size. 53 * 54 * Returns: The new offset, or errno 55 */ 56 57 static loff_t gfs2_llseek(struct file *file, loff_t offset, int whence) 58 { 59 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host); 60 struct gfs2_holder i_gh; 61 loff_t error; 62 63 switch (whence) { 64 case SEEK_END: 65 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, 66 &i_gh); 67 if (!error) { 68 error = generic_file_llseek(file, offset, whence); 69 gfs2_glock_dq_uninit(&i_gh); 70 } 71 break; 72 73 case SEEK_DATA: 74 error = gfs2_seek_data(file, offset); 75 break; 76 77 case SEEK_HOLE: 78 error = gfs2_seek_hole(file, offset); 79 break; 80 81 case SEEK_CUR: 82 case SEEK_SET: 83 /* 84 * These don't reference inode->i_size and don't depend on the 85 * block mapping, so we don't need the glock. 86 */ 87 error = generic_file_llseek(file, offset, whence); 88 break; 89 default: 90 error = -EINVAL; 91 } 92 93 return error; 94 } 95 96 /** 97 * gfs2_readdir - Iterator for a directory 98 * @file: The directory to read from 99 * @ctx: What to feed directory entries to 100 * 101 * Returns: errno 102 */ 103 104 static int gfs2_readdir(struct file *file, struct dir_context *ctx) 105 { 106 struct inode *dir = file->f_mapping->host; 107 struct gfs2_inode *dip = GFS2_I(dir); 108 struct gfs2_holder d_gh; 109 int error; 110 111 error = gfs2_glock_nq_init(dip->i_gl, LM_ST_SHARED, 0, &d_gh); 112 if (error) 113 return error; 114 115 error = gfs2_dir_read(dir, ctx, &file->f_ra); 116 117 gfs2_glock_dq_uninit(&d_gh); 118 119 return error; 120 } 121 122 /* 123 * struct fsflag_gfs2flag 124 * 125 * The FS_JOURNAL_DATA_FL flag maps to GFS2_DIF_INHERIT_JDATA for directories, 126 * and to GFS2_DIF_JDATA for non-directories. 127 */ 128 static struct { 129 u32 fsflag; 130 u32 gfsflag; 131 } fsflag_gfs2flag[] = { 132 {FS_SYNC_FL, GFS2_DIF_SYNC}, 133 {FS_IMMUTABLE_FL, GFS2_DIF_IMMUTABLE}, 134 {FS_APPEND_FL, GFS2_DIF_APPENDONLY}, 135 {FS_NOATIME_FL, GFS2_DIF_NOATIME}, 136 {FS_INDEX_FL, GFS2_DIF_EXHASH}, 137 {FS_TOPDIR_FL, GFS2_DIF_TOPDIR}, 138 {FS_JOURNAL_DATA_FL, GFS2_DIF_JDATA | GFS2_DIF_INHERIT_JDATA}, 139 }; 140 141 static inline u32 gfs2_gfsflags_to_fsflags(struct inode *inode, u32 gfsflags) 142 { 143 int i; 144 u32 fsflags = 0; 145 146 if (S_ISDIR(inode->i_mode)) 147 gfsflags &= ~GFS2_DIF_JDATA; 148 else 149 gfsflags &= ~GFS2_DIF_INHERIT_JDATA; 150 151 for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++) 152 if (gfsflags & fsflag_gfs2flag[i].gfsflag) 153 fsflags |= fsflag_gfs2flag[i].fsflag; 154 return fsflags; 155 } 156 157 int gfs2_fileattr_get(struct dentry *dentry, struct fileattr *fa) 158 { 159 struct inode *inode = d_inode(dentry); 160 struct gfs2_inode *ip = GFS2_I(inode); 161 struct gfs2_holder gh; 162 int error; 163 u32 fsflags; 164 165 if (d_is_special(dentry)) 166 return -ENOTTY; 167 168 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh); 169 error = gfs2_glock_nq(&gh); 170 if (error) 171 goto out_uninit; 172 173 fsflags = gfs2_gfsflags_to_fsflags(inode, ip->i_diskflags); 174 175 fileattr_fill_flags(fa, fsflags); 176 177 gfs2_glock_dq(&gh); 178 out_uninit: 179 gfs2_holder_uninit(&gh); 180 return error; 181 } 182 183 void gfs2_set_inode_flags(struct inode *inode) 184 { 185 struct gfs2_inode *ip = GFS2_I(inode); 186 unsigned int flags = inode->i_flags; 187 188 flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_NOSEC); 189 if ((ip->i_eattr == 0) && !is_sxid(inode->i_mode)) 190 flags |= S_NOSEC; 191 if (ip->i_diskflags & GFS2_DIF_IMMUTABLE) 192 flags |= S_IMMUTABLE; 193 if (ip->i_diskflags & GFS2_DIF_APPENDONLY) 194 flags |= S_APPEND; 195 if (ip->i_diskflags & GFS2_DIF_NOATIME) 196 flags |= S_NOATIME; 197 if (ip->i_diskflags & GFS2_DIF_SYNC) 198 flags |= S_SYNC; 199 inode->i_flags = flags; 200 } 201 202 /* Flags that can be set by user space */ 203 #define GFS2_FLAGS_USER_SET (GFS2_DIF_JDATA| \ 204 GFS2_DIF_IMMUTABLE| \ 205 GFS2_DIF_APPENDONLY| \ 206 GFS2_DIF_NOATIME| \ 207 GFS2_DIF_SYNC| \ 208 GFS2_DIF_TOPDIR| \ 209 GFS2_DIF_INHERIT_JDATA) 210 211 /** 212 * do_gfs2_set_flags - set flags on an inode 213 * @inode: The inode 214 * @reqflags: The flags to set 215 * @mask: Indicates which flags are valid 216 * 217 */ 218 static int do_gfs2_set_flags(struct inode *inode, u32 reqflags, u32 mask) 219 { 220 struct gfs2_inode *ip = GFS2_I(inode); 221 struct gfs2_sbd *sdp = GFS2_SB(inode); 222 struct buffer_head *bh; 223 struct gfs2_holder gh; 224 int error; 225 u32 new_flags, flags; 226 227 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh); 228 if (error) 229 return error; 230 231 error = 0; 232 flags = ip->i_diskflags; 233 new_flags = (flags & ~mask) | (reqflags & mask); 234 if ((new_flags ^ flags) == 0) 235 goto out; 236 237 if (!IS_IMMUTABLE(inode)) { 238 error = gfs2_permission(&init_user_ns, inode, MAY_WRITE); 239 if (error) 240 goto out; 241 } 242 if ((flags ^ new_flags) & GFS2_DIF_JDATA) { 243 if (new_flags & GFS2_DIF_JDATA) 244 gfs2_log_flush(sdp, ip->i_gl, 245 GFS2_LOG_HEAD_FLUSH_NORMAL | 246 GFS2_LFC_SET_FLAGS); 247 error = filemap_fdatawrite(inode->i_mapping); 248 if (error) 249 goto out; 250 error = filemap_fdatawait(inode->i_mapping); 251 if (error) 252 goto out; 253 if (new_flags & GFS2_DIF_JDATA) 254 gfs2_ordered_del_inode(ip); 255 } 256 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 257 if (error) 258 goto out; 259 error = gfs2_meta_inode_buffer(ip, &bh); 260 if (error) 261 goto out_trans_end; 262 inode->i_ctime = current_time(inode); 263 gfs2_trans_add_meta(ip->i_gl, bh); 264 ip->i_diskflags = new_flags; 265 gfs2_dinode_out(ip, bh->b_data); 266 brelse(bh); 267 gfs2_set_inode_flags(inode); 268 gfs2_set_aops(inode); 269 out_trans_end: 270 gfs2_trans_end(sdp); 271 out: 272 gfs2_glock_dq_uninit(&gh); 273 return error; 274 } 275 276 int gfs2_fileattr_set(struct user_namespace *mnt_userns, 277 struct dentry *dentry, struct fileattr *fa) 278 { 279 struct inode *inode = d_inode(dentry); 280 u32 fsflags = fa->flags, gfsflags = 0; 281 u32 mask; 282 int i; 283 284 if (d_is_special(dentry)) 285 return -ENOTTY; 286 287 if (fileattr_has_fsx(fa)) 288 return -EOPNOTSUPP; 289 290 for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++) { 291 if (fsflags & fsflag_gfs2flag[i].fsflag) { 292 fsflags &= ~fsflag_gfs2flag[i].fsflag; 293 gfsflags |= fsflag_gfs2flag[i].gfsflag; 294 } 295 } 296 if (fsflags || gfsflags & ~GFS2_FLAGS_USER_SET) 297 return -EINVAL; 298 299 mask = GFS2_FLAGS_USER_SET; 300 if (S_ISDIR(inode->i_mode)) { 301 mask &= ~GFS2_DIF_JDATA; 302 } else { 303 /* The GFS2_DIF_TOPDIR flag is only valid for directories. */ 304 if (gfsflags & GFS2_DIF_TOPDIR) 305 return -EINVAL; 306 mask &= ~(GFS2_DIF_TOPDIR | GFS2_DIF_INHERIT_JDATA); 307 } 308 309 return do_gfs2_set_flags(inode, gfsflags, mask); 310 } 311 312 static int gfs2_getlabel(struct file *filp, char __user *label) 313 { 314 struct inode *inode = file_inode(filp); 315 struct gfs2_sbd *sdp = GFS2_SB(inode); 316 317 if (copy_to_user(label, sdp->sd_sb.sb_locktable, GFS2_LOCKNAME_LEN)) 318 return -EFAULT; 319 320 return 0; 321 } 322 323 static long gfs2_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 324 { 325 switch(cmd) { 326 case FITRIM: 327 return gfs2_fitrim(filp, (void __user *)arg); 328 case FS_IOC_GETFSLABEL: 329 return gfs2_getlabel(filp, (char __user *)arg); 330 } 331 332 return -ENOTTY; 333 } 334 335 #ifdef CONFIG_COMPAT 336 static long gfs2_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 337 { 338 switch(cmd) { 339 /* Keep this list in sync with gfs2_ioctl */ 340 case FITRIM: 341 case FS_IOC_GETFSLABEL: 342 break; 343 default: 344 return -ENOIOCTLCMD; 345 } 346 347 return gfs2_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)); 348 } 349 #else 350 #define gfs2_compat_ioctl NULL 351 #endif 352 353 /** 354 * gfs2_size_hint - Give a hint to the size of a write request 355 * @filep: The struct file 356 * @offset: The file offset of the write 357 * @size: The length of the write 358 * 359 * When we are about to do a write, this function records the total 360 * write size in order to provide a suitable hint to the lower layers 361 * about how many blocks will be required. 362 * 363 */ 364 365 static void gfs2_size_hint(struct file *filep, loff_t offset, size_t size) 366 { 367 struct inode *inode = file_inode(filep); 368 struct gfs2_sbd *sdp = GFS2_SB(inode); 369 struct gfs2_inode *ip = GFS2_I(inode); 370 size_t blks = (size + sdp->sd_sb.sb_bsize - 1) >> sdp->sd_sb.sb_bsize_shift; 371 int hint = min_t(size_t, INT_MAX, blks); 372 373 if (hint > atomic_read(&ip->i_sizehint)) 374 atomic_set(&ip->i_sizehint, hint); 375 } 376 377 /** 378 * gfs2_allocate_page_backing - Allocate blocks for a write fault 379 * @page: The (locked) page to allocate backing for 380 * @length: Size of the allocation 381 * 382 * We try to allocate all the blocks required for the page in one go. This 383 * might fail for various reasons, so we keep trying until all the blocks to 384 * back this page are allocated. If some of the blocks are already allocated, 385 * that is ok too. 386 */ 387 static int gfs2_allocate_page_backing(struct page *page, unsigned int length) 388 { 389 u64 pos = page_offset(page); 390 391 do { 392 struct iomap iomap = { }; 393 394 if (gfs2_iomap_alloc(page->mapping->host, pos, length, &iomap)) 395 return -EIO; 396 397 if (length < iomap.length) 398 iomap.length = length; 399 length -= iomap.length; 400 pos += iomap.length; 401 } while (length > 0); 402 403 return 0; 404 } 405 406 /** 407 * gfs2_page_mkwrite - Make a shared, mmap()ed, page writable 408 * @vmf: The virtual memory fault containing the page to become writable 409 * 410 * When the page becomes writable, we need to ensure that we have 411 * blocks allocated on disk to back that page. 412 */ 413 414 static vm_fault_t gfs2_page_mkwrite(struct vm_fault *vmf) 415 { 416 struct page *page = vmf->page; 417 struct inode *inode = file_inode(vmf->vma->vm_file); 418 struct gfs2_inode *ip = GFS2_I(inode); 419 struct gfs2_sbd *sdp = GFS2_SB(inode); 420 struct gfs2_alloc_parms ap = { .aflags = 0, }; 421 u64 offset = page_offset(page); 422 unsigned int data_blocks, ind_blocks, rblocks; 423 vm_fault_t ret = VM_FAULT_LOCKED; 424 struct gfs2_holder gh; 425 unsigned int length; 426 loff_t size; 427 int err; 428 429 sb_start_pagefault(inode->i_sb); 430 431 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh); 432 err = gfs2_glock_nq(&gh); 433 if (err) { 434 ret = block_page_mkwrite_return(err); 435 goto out_uninit; 436 } 437 438 /* Check page index against inode size */ 439 size = i_size_read(inode); 440 if (offset >= size) { 441 ret = VM_FAULT_SIGBUS; 442 goto out_unlock; 443 } 444 445 /* Update file times before taking page lock */ 446 file_update_time(vmf->vma->vm_file); 447 448 /* page is wholly or partially inside EOF */ 449 if (size - offset < PAGE_SIZE) 450 length = size - offset; 451 else 452 length = PAGE_SIZE; 453 454 gfs2_size_hint(vmf->vma->vm_file, offset, length); 455 456 set_bit(GLF_DIRTY, &ip->i_gl->gl_flags); 457 set_bit(GIF_SW_PAGED, &ip->i_flags); 458 459 /* 460 * iomap_writepage / iomap_writepages currently don't support inline 461 * files, so always unstuff here. 462 */ 463 464 if (!gfs2_is_stuffed(ip) && 465 !gfs2_write_alloc_required(ip, offset, length)) { 466 lock_page(page); 467 if (!PageUptodate(page) || page->mapping != inode->i_mapping) { 468 ret = VM_FAULT_NOPAGE; 469 unlock_page(page); 470 } 471 goto out_unlock; 472 } 473 474 err = gfs2_rindex_update(sdp); 475 if (err) { 476 ret = block_page_mkwrite_return(err); 477 goto out_unlock; 478 } 479 480 gfs2_write_calc_reserv(ip, length, &data_blocks, &ind_blocks); 481 ap.target = data_blocks + ind_blocks; 482 err = gfs2_quota_lock_check(ip, &ap); 483 if (err) { 484 ret = block_page_mkwrite_return(err); 485 goto out_unlock; 486 } 487 err = gfs2_inplace_reserve(ip, &ap); 488 if (err) { 489 ret = block_page_mkwrite_return(err); 490 goto out_quota_unlock; 491 } 492 493 rblocks = RES_DINODE + ind_blocks; 494 if (gfs2_is_jdata(ip)) 495 rblocks += data_blocks ? data_blocks : 1; 496 if (ind_blocks || data_blocks) { 497 rblocks += RES_STATFS + RES_QUOTA; 498 rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks); 499 } 500 err = gfs2_trans_begin(sdp, rblocks, 0); 501 if (err) { 502 ret = block_page_mkwrite_return(err); 503 goto out_trans_fail; 504 } 505 506 /* Unstuff, if required, and allocate backing blocks for page */ 507 if (gfs2_is_stuffed(ip)) { 508 err = gfs2_unstuff_dinode(ip); 509 if (err) { 510 ret = block_page_mkwrite_return(err); 511 goto out_trans_end; 512 } 513 } 514 515 lock_page(page); 516 /* If truncated, we must retry the operation, we may have raced 517 * with the glock demotion code. 518 */ 519 if (!PageUptodate(page) || page->mapping != inode->i_mapping) { 520 ret = VM_FAULT_NOPAGE; 521 goto out_page_locked; 522 } 523 524 err = gfs2_allocate_page_backing(page, length); 525 if (err) 526 ret = block_page_mkwrite_return(err); 527 528 out_page_locked: 529 if (ret != VM_FAULT_LOCKED) 530 unlock_page(page); 531 out_trans_end: 532 gfs2_trans_end(sdp); 533 out_trans_fail: 534 gfs2_inplace_release(ip); 535 out_quota_unlock: 536 gfs2_quota_unlock(ip); 537 out_unlock: 538 gfs2_glock_dq(&gh); 539 out_uninit: 540 gfs2_holder_uninit(&gh); 541 if (ret == VM_FAULT_LOCKED) { 542 set_page_dirty(page); 543 wait_for_stable_page(page); 544 } 545 sb_end_pagefault(inode->i_sb); 546 return ret; 547 } 548 549 static vm_fault_t gfs2_fault(struct vm_fault *vmf) 550 { 551 struct inode *inode = file_inode(vmf->vma->vm_file); 552 struct gfs2_inode *ip = GFS2_I(inode); 553 struct gfs2_holder gh; 554 vm_fault_t ret; 555 int err; 556 557 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh); 558 err = gfs2_glock_nq(&gh); 559 if (err) { 560 ret = block_page_mkwrite_return(err); 561 goto out_uninit; 562 } 563 ret = filemap_fault(vmf); 564 gfs2_glock_dq(&gh); 565 out_uninit: 566 gfs2_holder_uninit(&gh); 567 return ret; 568 } 569 570 static const struct vm_operations_struct gfs2_vm_ops = { 571 .fault = gfs2_fault, 572 .map_pages = filemap_map_pages, 573 .page_mkwrite = gfs2_page_mkwrite, 574 }; 575 576 /** 577 * gfs2_mmap 578 * @file: The file to map 579 * @vma: The VMA which described the mapping 580 * 581 * There is no need to get a lock here unless we should be updating 582 * atime. We ignore any locking errors since the only consequence is 583 * a missed atime update (which will just be deferred until later). 584 * 585 * Returns: 0 586 */ 587 588 static int gfs2_mmap(struct file *file, struct vm_area_struct *vma) 589 { 590 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host); 591 592 if (!(file->f_flags & O_NOATIME) && 593 !IS_NOATIME(&ip->i_inode)) { 594 struct gfs2_holder i_gh; 595 int error; 596 597 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, 598 &i_gh); 599 if (error) 600 return error; 601 /* grab lock to update inode */ 602 gfs2_glock_dq_uninit(&i_gh); 603 file_accessed(file); 604 } 605 vma->vm_ops = &gfs2_vm_ops; 606 607 return 0; 608 } 609 610 /** 611 * gfs2_open_common - This is common to open and atomic_open 612 * @inode: The inode being opened 613 * @file: The file being opened 614 * 615 * This maybe called under a glock or not depending upon how it has 616 * been called. We must always be called under a glock for regular 617 * files, however. For other file types, it does not matter whether 618 * we hold the glock or not. 619 * 620 * Returns: Error code or 0 for success 621 */ 622 623 int gfs2_open_common(struct inode *inode, struct file *file) 624 { 625 struct gfs2_file *fp; 626 int ret; 627 628 if (S_ISREG(inode->i_mode)) { 629 ret = generic_file_open(inode, file); 630 if (ret) 631 return ret; 632 } 633 634 fp = kzalloc(sizeof(struct gfs2_file), GFP_NOFS); 635 if (!fp) 636 return -ENOMEM; 637 638 mutex_init(&fp->f_fl_mutex); 639 640 gfs2_assert_warn(GFS2_SB(inode), !file->private_data); 641 file->private_data = fp; 642 if (file->f_mode & FMODE_WRITE) { 643 ret = gfs2_qa_get(GFS2_I(inode)); 644 if (ret) 645 goto fail; 646 } 647 return 0; 648 649 fail: 650 kfree(file->private_data); 651 file->private_data = NULL; 652 return ret; 653 } 654 655 /** 656 * gfs2_open - open a file 657 * @inode: the inode to open 658 * @file: the struct file for this opening 659 * 660 * After atomic_open, this function is only used for opening files 661 * which are already cached. We must still get the glock for regular 662 * files to ensure that we have the file size uptodate for the large 663 * file check which is in the common code. That is only an issue for 664 * regular files though. 665 * 666 * Returns: errno 667 */ 668 669 static int gfs2_open(struct inode *inode, struct file *file) 670 { 671 struct gfs2_inode *ip = GFS2_I(inode); 672 struct gfs2_holder i_gh; 673 int error; 674 bool need_unlock = false; 675 676 if (S_ISREG(ip->i_inode.i_mode)) { 677 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, 678 &i_gh); 679 if (error) 680 return error; 681 need_unlock = true; 682 } 683 684 error = gfs2_open_common(inode, file); 685 686 if (need_unlock) 687 gfs2_glock_dq_uninit(&i_gh); 688 689 return error; 690 } 691 692 /** 693 * gfs2_release - called to close a struct file 694 * @inode: the inode the struct file belongs to 695 * @file: the struct file being closed 696 * 697 * Returns: errno 698 */ 699 700 static int gfs2_release(struct inode *inode, struct file *file) 701 { 702 struct gfs2_inode *ip = GFS2_I(inode); 703 704 kfree(file->private_data); 705 file->private_data = NULL; 706 707 if (file->f_mode & FMODE_WRITE) { 708 if (gfs2_rs_active(&ip->i_res)) 709 gfs2_rs_delete(ip); 710 gfs2_qa_put(ip); 711 } 712 return 0; 713 } 714 715 /** 716 * gfs2_fsync - sync the dirty data for a file (across the cluster) 717 * @file: the file that points to the dentry 718 * @start: the start position in the file to sync 719 * @end: the end position in the file to sync 720 * @datasync: set if we can ignore timestamp changes 721 * 722 * We split the data flushing here so that we don't wait for the data 723 * until after we've also sent the metadata to disk. Note that for 724 * data=ordered, we will write & wait for the data at the log flush 725 * stage anyway, so this is unlikely to make much of a difference 726 * except in the data=writeback case. 727 * 728 * If the fdatawrite fails due to any reason except -EIO, we will 729 * continue the remainder of the fsync, although we'll still report 730 * the error at the end. This is to match filemap_write_and_wait_range() 731 * behaviour. 732 * 733 * Returns: errno 734 */ 735 736 static int gfs2_fsync(struct file *file, loff_t start, loff_t end, 737 int datasync) 738 { 739 struct address_space *mapping = file->f_mapping; 740 struct inode *inode = mapping->host; 741 int sync_state = inode->i_state & I_DIRTY; 742 struct gfs2_inode *ip = GFS2_I(inode); 743 int ret = 0, ret1 = 0; 744 745 if (mapping->nrpages) { 746 ret1 = filemap_fdatawrite_range(mapping, start, end); 747 if (ret1 == -EIO) 748 return ret1; 749 } 750 751 if (!gfs2_is_jdata(ip)) 752 sync_state &= ~I_DIRTY_PAGES; 753 if (datasync) 754 sync_state &= ~I_DIRTY_SYNC; 755 756 if (sync_state) { 757 ret = sync_inode_metadata(inode, 1); 758 if (ret) 759 return ret; 760 if (gfs2_is_jdata(ip)) 761 ret = file_write_and_wait(file); 762 if (ret) 763 return ret; 764 gfs2_ail_flush(ip->i_gl, 1); 765 } 766 767 if (mapping->nrpages) 768 ret = file_fdatawait_range(file, start, end); 769 770 return ret ? ret : ret1; 771 } 772 773 static inline bool should_fault_in_pages(ssize_t ret, struct iov_iter *i, 774 size_t *prev_count, 775 size_t *window_size) 776 { 777 size_t count = iov_iter_count(i); 778 size_t size, offs; 779 780 if (likely(!count)) 781 return false; 782 if (ret <= 0 && ret != -EFAULT) 783 return false; 784 if (!iter_is_iovec(i)) 785 return false; 786 787 size = PAGE_SIZE; 788 offs = offset_in_page(i->iov[0].iov_base + i->iov_offset); 789 if (*prev_count != count || !*window_size) { 790 size_t nr_dirtied; 791 792 size = ALIGN(offs + count, PAGE_SIZE); 793 size = min_t(size_t, size, SZ_1M); 794 nr_dirtied = max(current->nr_dirtied_pause - 795 current->nr_dirtied, 8); 796 size = min(size, nr_dirtied << PAGE_SHIFT); 797 } 798 799 *prev_count = count; 800 *window_size = size - offs; 801 return true; 802 } 803 804 static ssize_t gfs2_file_direct_read(struct kiocb *iocb, struct iov_iter *to, 805 struct gfs2_holder *gh) 806 { 807 struct file *file = iocb->ki_filp; 808 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host); 809 size_t prev_count = 0, window_size = 0; 810 size_t written = 0; 811 ssize_t ret; 812 813 /* 814 * In this function, we disable page faults when we're holding the 815 * inode glock while doing I/O. If a page fault occurs, we indicate 816 * that the inode glock may be dropped, fault in the pages manually, 817 * and retry. 818 * 819 * Unlike generic_file_read_iter, for reads, iomap_dio_rw can trigger 820 * physical as well as manual page faults, and we need to disable both 821 * kinds. 822 * 823 * For direct I/O, gfs2 takes the inode glock in deferred mode. This 824 * locking mode is compatible with other deferred holders, so multiple 825 * processes and nodes can do direct I/O to a file at the same time. 826 * There's no guarantee that reads or writes will be atomic. Any 827 * coordination among readers and writers needs to happen externally. 828 */ 829 830 if (!iov_iter_count(to)) 831 return 0; /* skip atime */ 832 833 gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, gh); 834 retry: 835 ret = gfs2_glock_nq(gh); 836 if (ret) 837 goto out_uninit; 838 retry_under_glock: 839 pagefault_disable(); 840 to->nofault = true; 841 ret = iomap_dio_rw(iocb, to, &gfs2_iomap_ops, NULL, 842 IOMAP_DIO_PARTIAL, written); 843 to->nofault = false; 844 pagefault_enable(); 845 if (ret > 0) 846 written = ret; 847 848 if (should_fault_in_pages(ret, to, &prev_count, &window_size)) { 849 size_t leftover; 850 851 gfs2_holder_allow_demote(gh); 852 leftover = fault_in_iov_iter_writeable(to, window_size); 853 gfs2_holder_disallow_demote(gh); 854 if (leftover != window_size) { 855 if (gfs2_holder_queued(gh)) 856 goto retry_under_glock; 857 goto retry; 858 } 859 } 860 if (gfs2_holder_queued(gh)) 861 gfs2_glock_dq(gh); 862 out_uninit: 863 gfs2_holder_uninit(gh); 864 if (ret < 0) 865 return ret; 866 return written; 867 } 868 869 static ssize_t gfs2_file_direct_write(struct kiocb *iocb, struct iov_iter *from, 870 struct gfs2_holder *gh) 871 { 872 struct file *file = iocb->ki_filp; 873 struct inode *inode = file->f_mapping->host; 874 struct gfs2_inode *ip = GFS2_I(inode); 875 size_t prev_count = 0, window_size = 0; 876 size_t read = 0; 877 ssize_t ret; 878 879 /* 880 * In this function, we disable page faults when we're holding the 881 * inode glock while doing I/O. If a page fault occurs, we indicate 882 * that the inode glock may be dropped, fault in the pages manually, 883 * and retry. 884 * 885 * For writes, iomap_dio_rw only triggers manual page faults, so we 886 * don't need to disable physical ones. 887 */ 888 889 /* 890 * Deferred lock, even if its a write, since we do no allocation on 891 * this path. All we need to change is the atime, and this lock mode 892 * ensures that other nodes have flushed their buffered read caches 893 * (i.e. their page cache entries for this inode). We do not, 894 * unfortunately, have the option of only flushing a range like the 895 * VFS does. 896 */ 897 gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, gh); 898 retry: 899 ret = gfs2_glock_nq(gh); 900 if (ret) 901 goto out_uninit; 902 retry_under_glock: 903 /* Silently fall back to buffered I/O when writing beyond EOF */ 904 if (iocb->ki_pos + iov_iter_count(from) > i_size_read(&ip->i_inode)) 905 goto out; 906 907 from->nofault = true; 908 ret = iomap_dio_rw(iocb, from, &gfs2_iomap_ops, NULL, 909 IOMAP_DIO_PARTIAL, read); 910 from->nofault = false; 911 912 if (ret == -ENOTBLK) 913 ret = 0; 914 if (ret > 0) 915 read = ret; 916 917 if (should_fault_in_pages(ret, from, &prev_count, &window_size)) { 918 size_t leftover; 919 920 gfs2_holder_allow_demote(gh); 921 leftover = fault_in_iov_iter_readable(from, window_size); 922 gfs2_holder_disallow_demote(gh); 923 if (leftover != window_size) { 924 if (gfs2_holder_queued(gh)) 925 goto retry_under_glock; 926 goto retry; 927 } 928 } 929 out: 930 if (gfs2_holder_queued(gh)) 931 gfs2_glock_dq(gh); 932 out_uninit: 933 gfs2_holder_uninit(gh); 934 if (ret < 0) 935 return ret; 936 return read; 937 } 938 939 static ssize_t gfs2_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 940 { 941 struct gfs2_inode *ip; 942 struct gfs2_holder gh; 943 size_t prev_count = 0, window_size = 0; 944 size_t written = 0; 945 ssize_t ret; 946 947 /* 948 * In this function, we disable page faults when we're holding the 949 * inode glock while doing I/O. If a page fault occurs, we indicate 950 * that the inode glock may be dropped, fault in the pages manually, 951 * and retry. 952 */ 953 954 if (iocb->ki_flags & IOCB_DIRECT) 955 return gfs2_file_direct_read(iocb, to, &gh); 956 957 pagefault_disable(); 958 iocb->ki_flags |= IOCB_NOIO; 959 ret = generic_file_read_iter(iocb, to); 960 iocb->ki_flags &= ~IOCB_NOIO; 961 pagefault_enable(); 962 if (ret >= 0) { 963 if (!iov_iter_count(to)) 964 return ret; 965 written = ret; 966 } else if (ret != -EFAULT) { 967 if (ret != -EAGAIN) 968 return ret; 969 if (iocb->ki_flags & IOCB_NOWAIT) 970 return ret; 971 } 972 ip = GFS2_I(iocb->ki_filp->f_mapping->host); 973 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh); 974 retry: 975 ret = gfs2_glock_nq(&gh); 976 if (ret) 977 goto out_uninit; 978 retry_under_glock: 979 pagefault_disable(); 980 ret = generic_file_read_iter(iocb, to); 981 pagefault_enable(); 982 if (ret > 0) 983 written += ret; 984 985 if (should_fault_in_pages(ret, to, &prev_count, &window_size)) { 986 size_t leftover; 987 988 gfs2_holder_allow_demote(&gh); 989 leftover = fault_in_iov_iter_writeable(to, window_size); 990 gfs2_holder_disallow_demote(&gh); 991 if (leftover != window_size) { 992 if (gfs2_holder_queued(&gh)) 993 goto retry_under_glock; 994 if (written) 995 goto out_uninit; 996 goto retry; 997 } 998 } 999 if (gfs2_holder_queued(&gh)) 1000 gfs2_glock_dq(&gh); 1001 out_uninit: 1002 gfs2_holder_uninit(&gh); 1003 return written ? written : ret; 1004 } 1005 1006 static ssize_t gfs2_file_buffered_write(struct kiocb *iocb, 1007 struct iov_iter *from, 1008 struct gfs2_holder *gh) 1009 { 1010 struct file *file = iocb->ki_filp; 1011 struct inode *inode = file_inode(file); 1012 struct gfs2_inode *ip = GFS2_I(inode); 1013 struct gfs2_sbd *sdp = GFS2_SB(inode); 1014 struct gfs2_holder *statfs_gh = NULL; 1015 size_t prev_count = 0, window_size = 0; 1016 size_t orig_count = iov_iter_count(from); 1017 size_t read = 0; 1018 ssize_t ret; 1019 1020 /* 1021 * In this function, we disable page faults when we're holding the 1022 * inode glock while doing I/O. If a page fault occurs, we indicate 1023 * that the inode glock may be dropped, fault in the pages manually, 1024 * and retry. 1025 */ 1026 1027 if (inode == sdp->sd_rindex) { 1028 statfs_gh = kmalloc(sizeof(*statfs_gh), GFP_NOFS); 1029 if (!statfs_gh) 1030 return -ENOMEM; 1031 } 1032 1033 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, gh); 1034 retry: 1035 ret = gfs2_glock_nq(gh); 1036 if (ret) 1037 goto out_uninit; 1038 retry_under_glock: 1039 if (inode == sdp->sd_rindex) { 1040 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode); 1041 1042 ret = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE, 1043 GL_NOCACHE, statfs_gh); 1044 if (ret) 1045 goto out_unlock; 1046 } 1047 1048 current->backing_dev_info = inode_to_bdi(inode); 1049 pagefault_disable(); 1050 ret = iomap_file_buffered_write(iocb, from, &gfs2_iomap_ops); 1051 pagefault_enable(); 1052 current->backing_dev_info = NULL; 1053 if (ret > 0) { 1054 iocb->ki_pos += ret; 1055 read += ret; 1056 } 1057 1058 if (inode == sdp->sd_rindex) 1059 gfs2_glock_dq_uninit(statfs_gh); 1060 1061 from->count = orig_count - read; 1062 if (should_fault_in_pages(ret, from, &prev_count, &window_size)) { 1063 size_t leftover; 1064 1065 gfs2_holder_allow_demote(gh); 1066 leftover = fault_in_iov_iter_readable(from, window_size); 1067 gfs2_holder_disallow_demote(gh); 1068 if (leftover != window_size) { 1069 from->count = min(from->count, window_size - leftover); 1070 if (gfs2_holder_queued(gh)) 1071 goto retry_under_glock; 1072 if (read && !(iocb->ki_flags & IOCB_DIRECT)) 1073 goto out_uninit; 1074 goto retry; 1075 } 1076 } 1077 out_unlock: 1078 if (gfs2_holder_queued(gh)) 1079 gfs2_glock_dq(gh); 1080 out_uninit: 1081 gfs2_holder_uninit(gh); 1082 if (statfs_gh) 1083 kfree(statfs_gh); 1084 from->count = orig_count - read; 1085 return read ? read : ret; 1086 } 1087 1088 /** 1089 * gfs2_file_write_iter - Perform a write to a file 1090 * @iocb: The io context 1091 * @from: The data to write 1092 * 1093 * We have to do a lock/unlock here to refresh the inode size for 1094 * O_APPEND writes, otherwise we can land up writing at the wrong 1095 * offset. There is still a race, but provided the app is using its 1096 * own file locking, this will make O_APPEND work as expected. 1097 * 1098 */ 1099 1100 static ssize_t gfs2_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 1101 { 1102 struct file *file = iocb->ki_filp; 1103 struct inode *inode = file_inode(file); 1104 struct gfs2_inode *ip = GFS2_I(inode); 1105 struct gfs2_holder gh; 1106 ssize_t ret; 1107 1108 gfs2_size_hint(file, iocb->ki_pos, iov_iter_count(from)); 1109 1110 if (iocb->ki_flags & IOCB_APPEND) { 1111 ret = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, 0, &gh); 1112 if (ret) 1113 return ret; 1114 gfs2_glock_dq_uninit(&gh); 1115 } 1116 1117 inode_lock(inode); 1118 ret = generic_write_checks(iocb, from); 1119 if (ret <= 0) 1120 goto out_unlock; 1121 1122 ret = file_remove_privs(file); 1123 if (ret) 1124 goto out_unlock; 1125 1126 ret = file_update_time(file); 1127 if (ret) 1128 goto out_unlock; 1129 1130 if (iocb->ki_flags & IOCB_DIRECT) { 1131 struct address_space *mapping = file->f_mapping; 1132 ssize_t buffered, ret2; 1133 1134 ret = gfs2_file_direct_write(iocb, from, &gh); 1135 if (ret < 0 || !iov_iter_count(from)) 1136 goto out_unlock; 1137 1138 iocb->ki_flags |= IOCB_DSYNC; 1139 buffered = gfs2_file_buffered_write(iocb, from, &gh); 1140 if (unlikely(buffered <= 0)) { 1141 if (!ret) 1142 ret = buffered; 1143 goto out_unlock; 1144 } 1145 1146 /* 1147 * We need to ensure that the page cache pages are written to 1148 * disk and invalidated to preserve the expected O_DIRECT 1149 * semantics. If the writeback or invalidate fails, only report 1150 * the direct I/O range as we don't know if the buffered pages 1151 * made it to disk. 1152 */ 1153 ret2 = generic_write_sync(iocb, buffered); 1154 invalidate_mapping_pages(mapping, 1155 (iocb->ki_pos - buffered) >> PAGE_SHIFT, 1156 (iocb->ki_pos - 1) >> PAGE_SHIFT); 1157 if (!ret || ret2 > 0) 1158 ret += ret2; 1159 } else { 1160 ret = gfs2_file_buffered_write(iocb, from, &gh); 1161 if (likely(ret > 0)) 1162 ret = generic_write_sync(iocb, ret); 1163 } 1164 1165 out_unlock: 1166 inode_unlock(inode); 1167 return ret; 1168 } 1169 1170 static int fallocate_chunk(struct inode *inode, loff_t offset, loff_t len, 1171 int mode) 1172 { 1173 struct super_block *sb = inode->i_sb; 1174 struct gfs2_inode *ip = GFS2_I(inode); 1175 loff_t end = offset + len; 1176 struct buffer_head *dibh; 1177 int error; 1178 1179 error = gfs2_meta_inode_buffer(ip, &dibh); 1180 if (unlikely(error)) 1181 return error; 1182 1183 gfs2_trans_add_meta(ip->i_gl, dibh); 1184 1185 if (gfs2_is_stuffed(ip)) { 1186 error = gfs2_unstuff_dinode(ip); 1187 if (unlikely(error)) 1188 goto out; 1189 } 1190 1191 while (offset < end) { 1192 struct iomap iomap = { }; 1193 1194 error = gfs2_iomap_alloc(inode, offset, end - offset, &iomap); 1195 if (error) 1196 goto out; 1197 offset = iomap.offset + iomap.length; 1198 if (!(iomap.flags & IOMAP_F_NEW)) 1199 continue; 1200 error = sb_issue_zeroout(sb, iomap.addr >> inode->i_blkbits, 1201 iomap.length >> inode->i_blkbits, 1202 GFP_NOFS); 1203 if (error) { 1204 fs_err(GFS2_SB(inode), "Failed to zero data buffers\n"); 1205 goto out; 1206 } 1207 } 1208 out: 1209 brelse(dibh); 1210 return error; 1211 } 1212 1213 /** 1214 * calc_max_reserv() - Reverse of write_calc_reserv. Given a number of 1215 * blocks, determine how many bytes can be written. 1216 * @ip: The inode in question. 1217 * @len: Max cap of bytes. What we return in *len must be <= this. 1218 * @data_blocks: Compute and return the number of data blocks needed 1219 * @ind_blocks: Compute and return the number of indirect blocks needed 1220 * @max_blocks: The total blocks available to work with. 1221 * 1222 * Returns: void, but @len, @data_blocks and @ind_blocks are filled in. 1223 */ 1224 static void calc_max_reserv(struct gfs2_inode *ip, loff_t *len, 1225 unsigned int *data_blocks, unsigned int *ind_blocks, 1226 unsigned int max_blocks) 1227 { 1228 loff_t max = *len; 1229 const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1230 unsigned int tmp, max_data = max_blocks - 3 * (sdp->sd_max_height - 1); 1231 1232 for (tmp = max_data; tmp > sdp->sd_diptrs;) { 1233 tmp = DIV_ROUND_UP(tmp, sdp->sd_inptrs); 1234 max_data -= tmp; 1235 } 1236 1237 *data_blocks = max_data; 1238 *ind_blocks = max_blocks - max_data; 1239 *len = ((loff_t)max_data - 3) << sdp->sd_sb.sb_bsize_shift; 1240 if (*len > max) { 1241 *len = max; 1242 gfs2_write_calc_reserv(ip, max, data_blocks, ind_blocks); 1243 } 1244 } 1245 1246 static long __gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len) 1247 { 1248 struct inode *inode = file_inode(file); 1249 struct gfs2_sbd *sdp = GFS2_SB(inode); 1250 struct gfs2_inode *ip = GFS2_I(inode); 1251 struct gfs2_alloc_parms ap = { .aflags = 0, }; 1252 unsigned int data_blocks = 0, ind_blocks = 0, rblocks; 1253 loff_t bytes, max_bytes, max_blks; 1254 int error; 1255 const loff_t pos = offset; 1256 const loff_t count = len; 1257 loff_t bsize_mask = ~((loff_t)sdp->sd_sb.sb_bsize - 1); 1258 loff_t next = (offset + len - 1) >> sdp->sd_sb.sb_bsize_shift; 1259 loff_t max_chunk_size = UINT_MAX & bsize_mask; 1260 1261 next = (next + 1) << sdp->sd_sb.sb_bsize_shift; 1262 1263 offset &= bsize_mask; 1264 1265 len = next - offset; 1266 bytes = sdp->sd_max_rg_data * sdp->sd_sb.sb_bsize / 2; 1267 if (!bytes) 1268 bytes = UINT_MAX; 1269 bytes &= bsize_mask; 1270 if (bytes == 0) 1271 bytes = sdp->sd_sb.sb_bsize; 1272 1273 gfs2_size_hint(file, offset, len); 1274 1275 gfs2_write_calc_reserv(ip, PAGE_SIZE, &data_blocks, &ind_blocks); 1276 ap.min_target = data_blocks + ind_blocks; 1277 1278 while (len > 0) { 1279 if (len < bytes) 1280 bytes = len; 1281 if (!gfs2_write_alloc_required(ip, offset, bytes)) { 1282 len -= bytes; 1283 offset += bytes; 1284 continue; 1285 } 1286 1287 /* We need to determine how many bytes we can actually 1288 * fallocate without exceeding quota or going over the 1289 * end of the fs. We start off optimistically by assuming 1290 * we can write max_bytes */ 1291 max_bytes = (len > max_chunk_size) ? max_chunk_size : len; 1292 1293 /* Since max_bytes is most likely a theoretical max, we 1294 * calculate a more realistic 'bytes' to serve as a good 1295 * starting point for the number of bytes we may be able 1296 * to write */ 1297 gfs2_write_calc_reserv(ip, bytes, &data_blocks, &ind_blocks); 1298 ap.target = data_blocks + ind_blocks; 1299 1300 error = gfs2_quota_lock_check(ip, &ap); 1301 if (error) 1302 return error; 1303 /* ap.allowed tells us how many blocks quota will allow 1304 * us to write. Check if this reduces max_blks */ 1305 max_blks = UINT_MAX; 1306 if (ap.allowed) 1307 max_blks = ap.allowed; 1308 1309 error = gfs2_inplace_reserve(ip, &ap); 1310 if (error) 1311 goto out_qunlock; 1312 1313 /* check if the selected rgrp limits our max_blks further */ 1314 if (ip->i_res.rs_reserved < max_blks) 1315 max_blks = ip->i_res.rs_reserved; 1316 1317 /* Almost done. Calculate bytes that can be written using 1318 * max_blks. We also recompute max_bytes, data_blocks and 1319 * ind_blocks */ 1320 calc_max_reserv(ip, &max_bytes, &data_blocks, 1321 &ind_blocks, max_blks); 1322 1323 rblocks = RES_DINODE + ind_blocks + RES_STATFS + RES_QUOTA + 1324 RES_RG_HDR + gfs2_rg_blocks(ip, data_blocks + ind_blocks); 1325 if (gfs2_is_jdata(ip)) 1326 rblocks += data_blocks ? data_blocks : 1; 1327 1328 error = gfs2_trans_begin(sdp, rblocks, 1329 PAGE_SIZE >> inode->i_blkbits); 1330 if (error) 1331 goto out_trans_fail; 1332 1333 error = fallocate_chunk(inode, offset, max_bytes, mode); 1334 gfs2_trans_end(sdp); 1335 1336 if (error) 1337 goto out_trans_fail; 1338 1339 len -= max_bytes; 1340 offset += max_bytes; 1341 gfs2_inplace_release(ip); 1342 gfs2_quota_unlock(ip); 1343 } 1344 1345 if (!(mode & FALLOC_FL_KEEP_SIZE) && (pos + count) > inode->i_size) 1346 i_size_write(inode, pos + count); 1347 file_update_time(file); 1348 mark_inode_dirty(inode); 1349 1350 if ((file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host)) 1351 return vfs_fsync_range(file, pos, pos + count - 1, 1352 (file->f_flags & __O_SYNC) ? 0 : 1); 1353 return 0; 1354 1355 out_trans_fail: 1356 gfs2_inplace_release(ip); 1357 out_qunlock: 1358 gfs2_quota_unlock(ip); 1359 return error; 1360 } 1361 1362 static long gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len) 1363 { 1364 struct inode *inode = file_inode(file); 1365 struct gfs2_sbd *sdp = GFS2_SB(inode); 1366 struct gfs2_inode *ip = GFS2_I(inode); 1367 struct gfs2_holder gh; 1368 int ret; 1369 1370 if (mode & ~(FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE)) 1371 return -EOPNOTSUPP; 1372 /* fallocate is needed by gfs2_grow to reserve space in the rindex */ 1373 if (gfs2_is_jdata(ip) && inode != sdp->sd_rindex) 1374 return -EOPNOTSUPP; 1375 1376 inode_lock(inode); 1377 1378 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh); 1379 ret = gfs2_glock_nq(&gh); 1380 if (ret) 1381 goto out_uninit; 1382 1383 if (!(mode & FALLOC_FL_KEEP_SIZE) && 1384 (offset + len) > inode->i_size) { 1385 ret = inode_newsize_ok(inode, offset + len); 1386 if (ret) 1387 goto out_unlock; 1388 } 1389 1390 ret = get_write_access(inode); 1391 if (ret) 1392 goto out_unlock; 1393 1394 if (mode & FALLOC_FL_PUNCH_HOLE) { 1395 ret = __gfs2_punch_hole(file, offset, len); 1396 } else { 1397 ret = __gfs2_fallocate(file, mode, offset, len); 1398 if (ret) 1399 gfs2_rs_deltree(&ip->i_res); 1400 } 1401 1402 put_write_access(inode); 1403 out_unlock: 1404 gfs2_glock_dq(&gh); 1405 out_uninit: 1406 gfs2_holder_uninit(&gh); 1407 inode_unlock(inode); 1408 return ret; 1409 } 1410 1411 static ssize_t gfs2_file_splice_write(struct pipe_inode_info *pipe, 1412 struct file *out, loff_t *ppos, 1413 size_t len, unsigned int flags) 1414 { 1415 ssize_t ret; 1416 1417 gfs2_size_hint(out, *ppos, len); 1418 1419 ret = iter_file_splice_write(pipe, out, ppos, len, flags); 1420 return ret; 1421 } 1422 1423 #ifdef CONFIG_GFS2_FS_LOCKING_DLM 1424 1425 /** 1426 * gfs2_lock - acquire/release a posix lock on a file 1427 * @file: the file pointer 1428 * @cmd: either modify or retrieve lock state, possibly wait 1429 * @fl: type and range of lock 1430 * 1431 * Returns: errno 1432 */ 1433 1434 static int gfs2_lock(struct file *file, int cmd, struct file_lock *fl) 1435 { 1436 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host); 1437 struct gfs2_sbd *sdp = GFS2_SB(file->f_mapping->host); 1438 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1439 1440 if (!(fl->fl_flags & FL_POSIX)) 1441 return -ENOLCK; 1442 if (cmd == F_CANCELLK) { 1443 /* Hack: */ 1444 cmd = F_SETLK; 1445 fl->fl_type = F_UNLCK; 1446 } 1447 if (unlikely(gfs2_withdrawn(sdp))) { 1448 if (fl->fl_type == F_UNLCK) 1449 locks_lock_file_wait(file, fl); 1450 return -EIO; 1451 } 1452 if (IS_GETLK(cmd)) 1453 return dlm_posix_get(ls->ls_dlm, ip->i_no_addr, file, fl); 1454 else if (fl->fl_type == F_UNLCK) 1455 return dlm_posix_unlock(ls->ls_dlm, ip->i_no_addr, file, fl); 1456 else 1457 return dlm_posix_lock(ls->ls_dlm, ip->i_no_addr, file, cmd, fl); 1458 } 1459 1460 static int do_flock(struct file *file, int cmd, struct file_lock *fl) 1461 { 1462 struct gfs2_file *fp = file->private_data; 1463 struct gfs2_holder *fl_gh = &fp->f_fl_gh; 1464 struct gfs2_inode *ip = GFS2_I(file_inode(file)); 1465 struct gfs2_glock *gl; 1466 unsigned int state; 1467 u16 flags; 1468 int error = 0; 1469 int sleeptime; 1470 1471 state = (fl->fl_type == F_WRLCK) ? LM_ST_EXCLUSIVE : LM_ST_SHARED; 1472 flags = (IS_SETLKW(cmd) ? 0 : LM_FLAG_TRY_1CB) | GL_EXACT; 1473 1474 mutex_lock(&fp->f_fl_mutex); 1475 1476 if (gfs2_holder_initialized(fl_gh)) { 1477 struct file_lock request; 1478 if (fl_gh->gh_state == state) 1479 goto out; 1480 locks_init_lock(&request); 1481 request.fl_type = F_UNLCK; 1482 request.fl_flags = FL_FLOCK; 1483 locks_lock_file_wait(file, &request); 1484 gfs2_glock_dq(fl_gh); 1485 gfs2_holder_reinit(state, flags, fl_gh); 1486 } else { 1487 error = gfs2_glock_get(GFS2_SB(&ip->i_inode), ip->i_no_addr, 1488 &gfs2_flock_glops, CREATE, &gl); 1489 if (error) 1490 goto out; 1491 gfs2_holder_init(gl, state, flags, fl_gh); 1492 gfs2_glock_put(gl); 1493 } 1494 for (sleeptime = 1; sleeptime <= 4; sleeptime <<= 1) { 1495 error = gfs2_glock_nq(fl_gh); 1496 if (error != GLR_TRYFAILED) 1497 break; 1498 fl_gh->gh_flags = LM_FLAG_TRY | GL_EXACT; 1499 msleep(sleeptime); 1500 } 1501 if (error) { 1502 gfs2_holder_uninit(fl_gh); 1503 if (error == GLR_TRYFAILED) 1504 error = -EAGAIN; 1505 } else { 1506 error = locks_lock_file_wait(file, fl); 1507 gfs2_assert_warn(GFS2_SB(&ip->i_inode), !error); 1508 } 1509 1510 out: 1511 mutex_unlock(&fp->f_fl_mutex); 1512 return error; 1513 } 1514 1515 static void do_unflock(struct file *file, struct file_lock *fl) 1516 { 1517 struct gfs2_file *fp = file->private_data; 1518 struct gfs2_holder *fl_gh = &fp->f_fl_gh; 1519 1520 mutex_lock(&fp->f_fl_mutex); 1521 locks_lock_file_wait(file, fl); 1522 if (gfs2_holder_initialized(fl_gh)) { 1523 gfs2_glock_dq(fl_gh); 1524 gfs2_holder_uninit(fl_gh); 1525 } 1526 mutex_unlock(&fp->f_fl_mutex); 1527 } 1528 1529 /** 1530 * gfs2_flock - acquire/release a flock lock on a file 1531 * @file: the file pointer 1532 * @cmd: either modify or retrieve lock state, possibly wait 1533 * @fl: type and range of lock 1534 * 1535 * Returns: errno 1536 */ 1537 1538 static int gfs2_flock(struct file *file, int cmd, struct file_lock *fl) 1539 { 1540 if (!(fl->fl_flags & FL_FLOCK)) 1541 return -ENOLCK; 1542 1543 if (fl->fl_type == F_UNLCK) { 1544 do_unflock(file, fl); 1545 return 0; 1546 } else { 1547 return do_flock(file, cmd, fl); 1548 } 1549 } 1550 1551 const struct file_operations gfs2_file_fops = { 1552 .llseek = gfs2_llseek, 1553 .read_iter = gfs2_file_read_iter, 1554 .write_iter = gfs2_file_write_iter, 1555 .iopoll = iocb_bio_iopoll, 1556 .unlocked_ioctl = gfs2_ioctl, 1557 .compat_ioctl = gfs2_compat_ioctl, 1558 .mmap = gfs2_mmap, 1559 .open = gfs2_open, 1560 .release = gfs2_release, 1561 .fsync = gfs2_fsync, 1562 .lock = gfs2_lock, 1563 .flock = gfs2_flock, 1564 .splice_read = generic_file_splice_read, 1565 .splice_write = gfs2_file_splice_write, 1566 .setlease = simple_nosetlease, 1567 .fallocate = gfs2_fallocate, 1568 }; 1569 1570 const struct file_operations gfs2_dir_fops = { 1571 .iterate_shared = gfs2_readdir, 1572 .unlocked_ioctl = gfs2_ioctl, 1573 .compat_ioctl = gfs2_compat_ioctl, 1574 .open = gfs2_open, 1575 .release = gfs2_release, 1576 .fsync = gfs2_fsync, 1577 .lock = gfs2_lock, 1578 .flock = gfs2_flock, 1579 .llseek = default_llseek, 1580 }; 1581 1582 #endif /* CONFIG_GFS2_FS_LOCKING_DLM */ 1583 1584 const struct file_operations gfs2_file_fops_nolock = { 1585 .llseek = gfs2_llseek, 1586 .read_iter = gfs2_file_read_iter, 1587 .write_iter = gfs2_file_write_iter, 1588 .iopoll = iocb_bio_iopoll, 1589 .unlocked_ioctl = gfs2_ioctl, 1590 .compat_ioctl = gfs2_compat_ioctl, 1591 .mmap = gfs2_mmap, 1592 .open = gfs2_open, 1593 .release = gfs2_release, 1594 .fsync = gfs2_fsync, 1595 .splice_read = generic_file_splice_read, 1596 .splice_write = gfs2_file_splice_write, 1597 .setlease = generic_setlease, 1598 .fallocate = gfs2_fallocate, 1599 }; 1600 1601 const struct file_operations gfs2_dir_fops_nolock = { 1602 .iterate_shared = gfs2_readdir, 1603 .unlocked_ioctl = gfs2_ioctl, 1604 .compat_ioctl = gfs2_compat_ioctl, 1605 .open = gfs2_open, 1606 .release = gfs2_release, 1607 .fsync = gfs2_fsync, 1608 .llseek = default_llseek, 1609 }; 1610 1611